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Asymptotic analysis of flame propagation in weakly-strained mixing
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We present an asymptotic study of triple-flames in a strained mixing layer under a
reversible reaction, which extends analytical descriptions of these flames beyond the
common framework of a single irreversible Arrhenius reaction and constitutes a first
step towards accounting for real chemistry effects. The study is carried out in the two-
dimensional counterflow configuration and adopts a constant-density assumption along
with a generalization of the near-equidiffusional flame (NEF) approximation to the
case of a reversible reaction. This generalization involves a convenient and physically
motivated distinguished limit comprising a specific scaling of the difference in the acti-
vation energies of the forward and backward reactions and of the degree of reversibility.
The resulting model yields an extensive set of results for weakly strained triple-flames
characterizing the combined influence of the stoichiometry and reversibility of the re-
action, the strain rate, and the Lewis numbers of the reactants. The findings include
the determination of the local burning speed, temperature and Markstein length along
the flame-front, the shape, leading edge and curvature of the latter, and the propagation
speed of the triple-flame. In particular, it is found that the Markstein length is affected
by the reversibility parameter and the local coordinate along the flame-front whenever
the Lewis numbers of the fuel and oxidizer are unequal and is independent of them
otherwise; in all cases, however, its value at the leading-edge, which features in the
formula derived for the propagation speed, is found to be unaffected by the reversibil-
ity. Several features of triple-flames specifically associated with the reversibility of the
reaction are described analytically, including the decrease in the propagation speed and
flame-front curvature and the increased shift of the location of the leading edge away
from the stoichiometric surface with increased reversibility. Some of these features have
no counterparts in the irreversible case. For example, whereas the maximum temperature
of the triple-flame front occurs at the stoichiometric location in the irreversible case,
irrespective of the location of the leading edge, it is typically found to be sandwiched
between these two locations in the reversible case.

Keywords: Triple-flames; asymptotics; reversible reaction; complex chemistry; par-
tially premixed flames

1. Introduction

The importance of triple-flames is now well established in applications involving combus-
tion phenomena such as flame spread over solid or liquid fuel surfaces, flame propagation in
mixing layers, ignition and extinction of diffusion flames and flame stabilization in flowing
reactive gases. Since early studies on these structures by Phillips [1], Ohki and Tsuge [2] and
Dold and collaborators [3,4], several realistic aspects of the problem have been investigated.
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190 Joel Daou

The investigated aspects include the effect of gas-expansion [5], preferential-diffusion [6,7],
unequal temperatures of the fresh reactants [7], the effect of heat-loss [8–11], the stability of
these flames [12–14] and others [15, 16]; see the review paper [12] and references therein.

A significant aspect of triple-flame propagation which does not appear to have been
investigated in the literature, however, at least as far as analytical studies are concerned,
is the sensitivity of triple-flames to chemistry models which go beyond the simplest stan-
dard model based on a single irreversible Arrhenius reaction. Although a few numerical
investigations have incorporated more realistic and complex chemistry such as in refer-
ences [17–22], analytical studies of triple-flames corresponding to these more complex
models are not available. The aim of this paper is to provide a first step towards accounting
analytically for real chemistry effects on triple-flames. To this end, we shall examine the
case of a reversible chemical reaction which has been addressed numerically in a recent
publication [22]. In this publication, we announced that a related analytical study is to
follow, and this is the subject of the present paper.

To motivate our study, we note that the reversibility of the chemical reactions is an
important realistic aspect of combustion phenomena, since, for both elementary and global
reactions, the reversibility is the rule rather than the exception. Accounting for this aspect is
particularly significant for the burning of high caloric fuels, such as hydrogen with oxygen,
where the neglect of the dissociation of the products typically leads to unrealistically
large values of the flame temperature [23, p. 25]. The importance of reversibility has
been well recognized both in unpremixed combustion, leading to the broadening of the
reaction zone of the diffusion flames among other effects [24–27], as well as in premixed
combustion [28–31]. The present study will extend such investigations on the effect of
reversibility to the context of partially-premixed combustion epitomized by triple-flames.
To incorporate this effect in the simplest way, we shall consider the case of a single reversible
reaction, whose forward and backward rates follow an Arrhenius law.

The paper is structured as follows. We begin by formulating the problem in the context
of a thermo-diffusive approximation and reversible reaction, and extract a model in the
limit of large activation energy of the forward reaction complete with jump conditions
valid at the flame-front of the triple-flame. The precise distinguished limit, including a
generalization of the so-called near-equidiffusional flame (NEF) approximation [32, p. 33]
and an appropriate scaling of the additional parameters introduced by the reversible nature
of the reaction, will be described. The resulting model will then be solved analytically for
weak values of the strain rate. The findings will then be presented and discussed in order
to clarify the combined influence of the stoichiometry and reversibility of the chemical
reaction, the strain rate and the Lewis numbers of the reactants on various characteristics
of triple-flame, notably its propagation speed.

2. Formulation

The study is carried out in the two-dimensional counterflow configuration, shown in
Figure 1, representing an upper stream carrying the oxidizer impinging against a lower
stream carrying the fuel. The flow components in the X, Y and Z directions are given by
vX = 0, vY = −aY and vZ = aZ, respectively, where a is the strain rate of the flow. In
this configuration, we shall address, within the thermo-diffusive approximation of constant
density and constant transport properties, the steady propagation of triple-flames in the
mixing layer along the X-axis; the propagation speed Û of the triple-flame is positive if the
front is moving along the negative X-direction.
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Figure 1. Schematic illustration of a triple-flame in a counterflow configuration.

To account for the reversibility of the chemistry in the simplest way, we consider a
single reversible reaction of the form

F + sOx � (1 + s)P + q

where F denotes the fuel, Ox the oxidizer and P the product. The quantities s and q represent
the mass of oxidizer consumed and the heat released per unit mass of fuel. The reaction
rate, ω̂, is assumed to follow an Arrhenius law in the forward and backward directions of
the form

ω̂ = Bρ2YF YO exp

(
− E

RT

)
− B ′ρYP exp

(
− E′

RT

)
.

Here B and E represent the pre-exponential factor and activation energy of the forward
reaction, B ′ and E′ the pre-exponential factor and activation energy of the backward
reaction, and ρ, YF , YO and YP are the density and the mass fractions of the fuel, oxidizer,
and product, respectively.

In a frame attached to the flame, the governing equations are

Û
∂T

∂X
− aY

∂T

∂Y
= DT

(
∂2T

∂X2
+ ∂2T

∂Y 2

)
+ q

cp

ω̂

ρ
(1)

Û
∂YF

∂X
− aY

∂YF

∂Y
= DF

(
∂2YF

∂X2
+ ∂2YF

∂Y 2

)
− ω̂

ρ
(2)

Û
∂YO

∂X
− aY

∂YO

∂Y
= DO

(
∂2YO

∂X2
+ ∂2YO

∂Y 2

)
− s

ω̂

ρ
(3)

Û
∂YP

∂X
− aY

∂YP

∂Y
= DP

(
∂2YP

∂X2
+ ∂2YP

∂Y 2

)
+ (1 + s)

ω̂

ρ
. (4)
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192 Joel Daou

Here, DT is the thermal diffusion coefficient and DF , DO and DP are diffusion coefficients
of the fuel, oxidizer and product, respectively.

The conditions at X = −∞ correspond to a practically frozen mixture where the profiles
depend only on Y , namely,

T = T0, YF = YF,F

2

[
1 − erf

(
Y√

2DF /a

)]
, YO = YO,O

2

[
1 + erf

(
Y√

2DO/a

)]
,

YP = 0. (5)

Here, YF,F is the fuel mass fraction in the fuel stream, and YO,O is oxidizer mass fraction
in the oxidizer stream, and these were used in the boundary conditions, at |Y | → ∞
and X → −∞ to obtain (5), and must be used at |Y | → ∞ for all X. Downstream, for
X → ∞, the solution are again independent of X, corresponding to the one-dimensional
strong burning solution of the strained diffusion flame.

The non-dimensional formulation of the problem largely follows [7], with the scaled
dependent variables being defined by

yF = YF

YF,st

, yO = YO

YO,st

, yP = YP

(1 + s)YF,st

and θ = T − T0

Tad − T0
.

Here the subscript st refers to values at (X = −∞, Y = Yst ) where Yst is the location of
the upstream stoichiometric surface defined by YO = sYF , so that, on using (5), we have

Serf

(
Yst√

2DF /a

)
+ erf

(
Yst√

2DO/a

)
= S − 1 , (6)

YF,st = YF,F

S + 1
and YO,st = SYO,O

S + 1
, (7)

where S ≡ s YF,F /YO,O is the normalized stoichiometric coefficient. The quantity Tad is
defined by Tad ≡ T0 + qYF,st /cp, and corresponds to the adiabatic flame temperature under
stoichiometric conditions and irreversible reaction.

As unit length, we select L/β, where L ≡ {2DT /a}1/2 is the (thermal) mixing layer
thickness and β ≡ E(Tad − T0)/RT 2

ad is the Zeldovich number based on the activation
of the forward reaction. As unit speed, we adopt the laminar speed of the stoichiometric
equidiffusional planar flame based on the irreversible forward reaction in the limit of large
β, namely S0

L = {4β−3YO,stρDT B exp(−E/RTad )}1/2.
In terms of the coordinates y ≡ β(Y − Yst )/L and x ≡ βX/L, Equations (1)–(3) take

the non-dimensional form

U
∂θ

∂x
− 2ε

β

(
ηs + y

β

)
∂θ

∂y
= ε

(
∂2θ

∂x2
+ ∂2θ

∂y2

)
+ ε−1w (8)

U
∂yF

∂x
− 2ε

β

(
ηs + y

β

)
∂yF

∂y
= ε

LeF

(
∂2yF

∂x2
+ ∂2yF

∂y2

)
− ε−1w (9)

U
∂yO

∂x
− 2ε

β

(
ηs + y

β

)
∂yO

∂y
= ε

LeO

(
∂2yO

∂x2
+ ∂2yO

∂y2

)
− ε−1w (10)
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U
∂yP

∂x
− 2ε

β

(
ηs + y

β

)
∂yP

∂y
= ε

LeP

(
∂2yP

∂x2
+ ∂2yP

∂y2

)
+ ε−1w . (11)

Here, U = Û/S0
L is the scaled propagation speed, and

ε ≡ l0
F l

L/β
= β

S0
L

(
DT

2

)1/2

a1/2 ,

represents a non-dimensional measure of the strain rate (and the typical thickness of the
flame relative to its radius of curvature, of order L/β). LeF ≡ DT /DF , LeO ≡ DT /DO

and LeP ≡ DT /DP are the Lewis numbers of the fuel, oxidizer and product respectively,
and ηs ≡ Yst/{2DT /a}1/2 is the non-dimensional location of the upstream stoichiometric
surface. On account of (5), the latter is given by

Serf
(
ηs

√
LeF

)
+ erf

(
ηs

√
LeO

)
= S − 1 . (12)

In terms of the new variables, the boundary conditions imply that

θ = 0 ,

yF = S + 1

2

[
1 − erf

((
ηs + y

β

)
Le

1/2
F

)]
,

yO = S + 1

2S

[
1 + erf

((
ηs + y

β

)
Le

1/2
O

)]
, (13)

yP = 0 as x → −∞ or y → ±∞

and

∂θ

∂x
= ∂yF

∂x
= ∂yO

∂x
= ∂yP

∂x
= 0 as x → +∞ . (14)

The non-dimensional reaction rate ω is given by

ω = β3

4

[
yF yO − ryP exp

−αψ

1 + α(θ − 1)

]
exp

β(θ − 1)

1 + α(θ − 1)
, (15)

where α ≡ (Tad − T0)/Tad , and where

r ≡ B ′

B

(YF,F + SYO,O)(S + 1)

ρYF,F YO,OS
and ψ ≡ E′ − E

R(Tad − T0)
(16)

are two additional parameters introduced by the reversibility of the reaction; r is proportional
to the ratio of the pre-exponential factors of the backward and forward reactions, and ψ is
the scaled difference of their activation energies. Naturally, r , which is a main parameter in
this study, is zero for an irreversible reaction.

The formulation of the problem is now complete, and is given by Equations
(refeq8dtemp)–(15). This eigen-boundary value problem allows, in principle, the deter-
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194 Joel Daou

mination of the (scaled) propagation speed U (an eigenvalue) in terms of the parameters ε,
r , S, ψ , LeF , LeO , LeP , β and α. Although this is a rather complicated problem, involving
four PDEs, an eigenvalue, and nine parameters, it can be greatly simplified in many circum-
stances. For example, the common equidiffusional assumption, LeF = LeO = LeP = 1,
implies that yF and yO can be expressed in terms of θ , namely by the right-hand-sides
of (13.b) and (13.c) from which θ is subtracted, and that yP = θ . It follows that a single
equation involving θ is needed which, for S = 1 (and thus ηs = 0), takes the form

U
∂θ

∂x
− 2ε

β2
y

∂θ

∂y
= ε

(
∂2θ

∂x2
+ ∂2θ

∂y2

)
+ ε−1w

with the requirement that

θ = 0 as x → −∞ or y → ±∞ ,
∂θ

∂x
= 0 as x → +∞ ,

and where

ω = β3

4

[
(1 − θ )2 − erf2 y

β
− r θ exp

−αψ

1 + α(θ − 1)

]
exp

β(θ − 1)

1 + α(θ − 1)
.

The equidiffusional problem aforementioned has in fact been tackled numerically in
a recent publication [22] for a range of values of ε, r and S, and fixed values of the
other parameters (namely, ψ = 1, β = 8, and α = 0.85). We announced in [22] that an
asymptotic treatment of the problem is to appear in a coming paper. The present paper
provides this treatment, carried out in a suitably specified distinguished limit, which will
be developed in the next section.

3. Asymptotic analysis

3.1. Distinguished limit

In this section, generalizing to the case of a reversible reaction the analysis of triple-flames
carried out in [7] for an irreversible reaction, we begin by reformulating the problem in
the asymptotic limit β → ∞ and ε ∼ 1, where β is the Zeldovich number based on the
activation energy E of the forward reaction. In this limit we also assume that the parameter
ψ , the scaled difference of the activation energies E′ and E defined in (16), is of O(1).
The latter assumption is motivated by a well known relation between the difference in the
activation energies and the enthalpy of the reaction, namely that this difference is equal to
the enthalpy, in the case of an elementary reaction [23, p. 20], i.e. ψ = 1 in our notation;
since the analysis is not restricted to elementary reactions, we are simply assuming that ψ

is a constant which is independent of the activation energies, since this assumption is more
general but consistent with ψ = 1 which should hold for elementary reactions.

Furthermore, we adopt as in [7] the near-equidiffusional approximation for which
lF ≡ β(LeF − 1) and lO ≡ β(LeO − 1) are of order unity; for simplicity we also assume
that LeP = 1 which implies that yP = θ and thus only the three dependent variables yF ,
yO , and θ need be considered henceforth. Finally, we scale the reversibility parameter so
as to insure that the deviation of temperature in the burnt gas from unity remains of order
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Combustion Theory and Modelling 195

β−1 for y ∼ 1. This is achieved if

R ≡ r β2 exp(−αψ) ∼ 1 , (17)

meaning that weakly reversible reactions, for which r = O(β−2), are considered.1 Although
other scaling for r are possible, the present one is sufficient to capture reversibility effects
in the simplest way, since, as we shall see, it leads to significant O(1) variations in the
propagation speed for its irreversible value.

In summary, we shall consider the distinguished limit

β → ∞ with ε, ψ, lF , lO and R ∼ 1. (18)

This limit is used in the next section to obtain a β-free reformulated problem. In the
reformulated problem, we subsequently consider the limit ε → 0. The results to be derived
are thus expected to be valid provided the activation energy is large and the strain rate is
small, more precisely for β−1 	 ε 	 1.

3.2. A β-free reformulated problem

For β → ∞, the reaction zone is confined to an infinitely thin region or flame surface given
by F (x, y) = x − f (y) = 0, say. In a coordinate system (ξ, y) attached to the flame with
ξ = x − f (y), the Laplacian is given by

� = (
1 + f ′2) ∂2

∂ξ 2
+ ∂2

∂y2
− f ′′ ∂

∂ξ
− 2f ′ ∂

∂ξ∂y
(19)

The upstream boundary conditions (13) can be linearized in the limit considered as

θ = 0 , yF = 1 − γF

β
y , yO = 1 + γO

β
y , (20)

in the flame-front region y ∼ 1. Here γF , γO are given by

γF = 2exp(−η2
s )√

π (1 − erf(ηs))
, γO = 2exp(−η2

s )√
π (1 + erf(ηs))

, (21)

and can be readily expressed in terms of S since within the near-equidiffusional approxi-
mation adopted Equation (12) implies that

ηs = erf−1

(
S − 1

S + 1

)
, (22)

1The consistency of this scaling will become clear after the reaction-zone analysis in Section 3.3 and
the results to be derived thereafter. A quick remark here is that this scaling insures that both terms in
the square bracket in (15) are O(β−2) in the reaction zone with yF , yO , θ − 1 being O(β−1) there.
Thus, with this scaling of r , ω remains O(β) in the reaction zone, as in the irreversible case.
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196 Joel Daou

to leading order, and hence

γF = SγO = (S + 1)
E√
π

where E ≡ exp

[
−

{
erf−1

(
S − 1

S + 1

)}2
]

. (23)

We shall use expansions in terms of β−1 of the form

yF = y0
F + β−1y1

F + · · · , yO = y0
O + β−1y1

O + · · · , θ = θ0 + β−1θ1 + · · · .

Then, given that the gradients in the upstream boundary conditions (20) are of order
β−1, and that r is taken to be O(β−2), we have θ0 + y0

F = 1, θ0 + y0
O = 1, identically, and

θ0 = 1, y0
F = 0, y0

O = 0 in the burnt gas ξ ≥ 0 . (24)

In terms of θ0 and the excess enthalpy h ≡ θ1 + y1
F and k ≡ θ1 + y1

O , the governing
equations yield

U
∂θ0

∂ξ
= ε�θ0 (25)

U
∂h

∂ξ
= ε�h + εlF �θ0 (26)

U
∂k

∂ξ
= ε�k + εlO�θ0 (27)

where Equations (26) and (27) are valid across the reaction sheet and (25) is only valid
for ξ �= 0. These equations are to be solved on both sides of the reaction sheet, ξ < 0 and
ξ > 0, with the jump conditions

[
θ0

] = [h] = [k] = 0 (28a)[
∂h

∂ξ

]
= −lF

[
∂θ0

∂ξ

]
(28b)[

∂k

∂ξ

]
= −lO

[
∂θ0

∂ξ

]
(28c)

ε

√
1 + f ′2

[
∂θ0

∂ξ

]
= −

(
1 +

√
(h − k)2 + 4R

2

)1/2

exp

(
h + k −

√
(h − k)2 + 4R

4

)
(28d)

at ξ = 0; see the next section for a brief justification of these jump conditions. Here and
below [�] ≡ �(ξ = 0+, y) − �(ξ = 0−, y) indicates the jump of any quantity �.

In addition, the upstream boundary conditions, which follow from (20), are

θ0 = 0 , h = −γF y , k = γOy as ξ → −∞ . (29)
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These can also be used for finite ξ and |y| → ∞ since they are exact solutions of (25)–(27).
As condition in the burnt gas, we shall simply require that θ0 = 1 and that the solutions are
free from exponentially growing terms as ξ → ∞.

3.3. Justification of the jump conditions

This section is dedicated to a brief derivation of the jump conditions (28), in which only
the last condition is seen to depend on the reversibility parameter. The other conditions are
identical to those of the irreversible case [7], and their derivation follows exactly the same
methodology commonly used in the irreversible case (see e.g. [32, p. 39] and [33, p. 527]).
Thus we focus our effort on the derivation of Equation (28d) which deserves more attention.
To this end, we introduce a stretched variable ξ̄ and inner expansions in the reaction zone
given by

ξ = ξ̄

β
, θ = 1 + �1(ξ̄ , y)

β
+ . . . , yF = F 1(ξ̄ , y)

β
+ . . . , yO = O1(ξ̄ , y)

β
+ . . .

(30)
The reaction term in (15) and the Laplacian in (19) then take the form

ω ∼ β

4
[F 1O1 − R] exp �1 and � ∼ β2(1 + f

′2)
∂2

∂ξ̄ 2

provided R ≡ rβ2 exp (−αψ) is O(1) as anticipated. To leading order, the governing equa-
tions (8)–(11) thus imply that

ε2(1 + f
′2)

∂2�1

∂ξ̄ 2
+ 1

4
[F 1O1 − R] exp �1 = 0

ε2(1 + f
′2)

∂2F 1

∂ξ̄ 2
− 1

4
[F 1O1 − R] exp �1 = 0

ε2(1 + f
′2)

∂2O1

∂ξ̄ 2
− 1

4
[F 1O1 − R] exp �1 = 0 ,

within the distinguished limit (18). These equations can be reduced to a single one, since
F 1 and O1 can be expressed in terms of �1 by F 1 = h+ − �1 and O1 = k+ − �1, where
h+ ≡ (θ1 + y1

F )|ξ=0+ and k+ ≡ (θ1 + y1
O)|ξ=0+. These expressions follow from the fact that

∂2(�1 + F 1)/∂ξ̄ 2 = ∂2(�1 + O1)/∂ξ̄ 2 = 0 (obtained by combining the equations above
so as to eliminate the source terms) and the matching requirement with the outer solution
which implies that �1 = θ1|ξ=0+, F 1 = y1

F |ξ=0+ and O1 = y1
O |ξ=0+ as ξ̄ → ∞.

Finally, the inner problem reduces to

ε2(1 + f ′2)
∂2�1

∂ξ̄ 2
+ 1

4
[(h+ − �1)(k+ − �1) − R] exp �1 = 0 , (31)

subject to the matching conditions

�1 = σ + ξ̄
∂θ0

∂ξ

∣∣∣∣
ξ=0−

as ξ̄ → −∞ and �1 = σ as ξ̄ → ∞ , (32)
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198 Joel Daou

where σ ≡ θ1|ξ=0+ is the perturbation in the flame temperature. Now, on multiplying
Equation (31) by ∂�1/∂ξ̄ and integrating with respect to ξ̄ from ξ̄ = −∞ to +∞ taking
into account (32), we obtain

.2ε2(1 + f
′2)(

∂θ0

∂ξ
)2|ξ=0− =

∫ σ

−∞
[(h+ − �1)(k+ − �1) − R] exp �1 d�1 (33)

= (σ 2 − (h+ + k+ + 2)σ + h+ + k+ + h+k+ − R + 2) exp σ ,

where the last expression is obtained on evaluating the integral.
The final step is to invoke chemical equilibrium behind the flame-front at ξ = 0+, which

corresponds to setting the square bracket in the expression for ω given in (15) to zero. This
implies that y1

F y1
O − R = 0, i.e.

σ 2 − (h+ + k+)σ + h+k+ − R = 0 (34)

in terms of σ ≡ θ1|ξ=0+, h+ ≡ (θ1 + y1
F )|ξ=0+ and k+ ≡ (θ1 + y1

O)|ξ=0+.
Equation (34) can be solved for σ to yield two real roots, the smaller of which, given by

σ = h+ + k+ −
√

(h+ − k+)2 + 4R

2
, (35)

is physically acceptable; the larger root is rejected since it leads to negative mass fractions
as it implies that h+ + k+ − 2σ ≤ 0, i.e. (y1

F + y1
O)|ξ=0+ ≤ 0.

The jump condition (28d) can now be easily obtained, after using (34) and (35) to sim-

plify the r.h.s of (33), performing a few simple manipulations, and noting that ∂θ0

∂ξ

∣∣∣
ξ=0+

= 0

on account of θ0 = 1 for ξ ≥ 0 and y ∼ 1.

3.4. Small strain limit ε � 1

In the β-free reformulated problem of Section 3.2, we now examine the small strain limit
ε → 0. In this limit, the flame, including its preheat zone, can be viewed as an infinitely
thin layer located at ξ = 0, since its thickness is O(ε). Outside this layer, diffusion and heat
conduction can be neglected in a first approximation.

We shall write expansions in the form

f = f0 + εf1 + · · · , U = U0 + εU1 + · · ·

and similar expressions for θ , h and k written for the different regions. In particular, the
local burning velocity SL(y) defined by

SL(y) ≡ U√
1 + f ′2 , (36)

will have the expansion SL = SL0(y) + εSL1(y) + · · · where

SL0 = U0√
1 + f

′2
0

and SL1 = 1√
1 + f

′2
0

[
U1 − U0

f
′
0f

′
1

1 + f
′2
0

]
. (37)
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Combustion Theory and Modelling 199

Similarly, the temperature of the flame-front, θF l ≡ θ (ξ = 0+, y), will be expanded as

θF l = 1 + σ0

β
+ ε

σ1

β
+ · · · , (38)

where σ is given by (35). Although expansion (38) will be determined explicitly later, we
note here that its first term, equal to one, is the flame temperature of the planar stoichio-
metric flame under an irreversible reaction, its second term describes the deviation of the
flame temperature from unity under infinitely weak strain (ε = 0) and should account for
reversibility and the gradients of mass fractions far upstream given by (20), and its third
term should account for the coupling between flame curvature, differential diffusion and
reversibility.

3.4.1. Outer solution

On both sides of the flame, ξ < 0 and ξ > 0, we seek outer expansions in the form

θ0 = �0 + ε�1 + · · · , h = H0 + εH1 + · · · , k = K0 + εK1 + · · ·

which we substitute into Equations (25)–(27). For θ0 we find, taking into account the
boundary conditions at ξ → ±∞, that

θ0 = �0 =
{

0 for ξ < 0
1 for ξ > 0,

�1 = �2 = · · · = 0. (39)

We then find U0∂H0/∂ξ = U0∂K0/∂ξ = 0, which, when used with the upstream boundary
conditions (29), implies that

H0 =
{−γF y for ξ < 0

A(y) for ξ > 0
(40)

and

K0 =
{

γOy for ξ < 0
B(y) for ξ > 0 ,

(41)

where A and B are integration constants which may depend on y.

3.4.2. Inner solution and results to leading order

Using the stretched variable ζ ≡ ξ/ε, we now examine the inner region of thickness O(ε)
around ξ = 0 where diffusive effects should be retained. We introduce inner expansions in
the form

θ0 = θ0 + εθ1 + · · · , h = h0 + εh1 + · · · , k = k0 + εk1 + · · · ,

which when used in the jump conditions (3.2) yield, to leading order,

[θ0] = [h0] = [k0] = 0 (42a)
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200 Joel Daou[
∂h0

∂ζ

]
= −lF

[
∂θ0

∂ζ

]
(42b)[

∂k0

∂ζ

]
= −lO

[
∂θ0

∂ζ

]
(42c)

√
1 + f ′

0
2
[
∂θ0

∂ζ

]
= −

(
1 +

√
(h0 − k0)2 + 4R

2

)1/2

×exp

(
h0 + k0 −

√
(h0 − k0)2 + 4R

4

)
. (42d)

In terms of ζ the leading order equations in the inner region are

U0
∂θ0

∂ζ
= (

1 + f ′2
0

)∂2θ0

∂ζ 2
(43)

U0
∂h0

∂ζ
= (

1 + f ′2
0

)∂2h0

∂ζ 2
+ lF

(
1 + f ′2

0

)∂2θ0

∂ζ 2
(44)

U0
∂k0

∂ζ
= (

1 + f ′2
0

)∂2k0

∂ζ 2
+ lO

(
1 + f ′2

0

)∂2θ0

∂ζ 2
. (45)

These yield, when used together with the jump conditions (42a)–(42c) and matched with
the outer solutions (39)–(41), the leading order solutions

θ0 =
⎧⎨⎩

exp(λζ ) for ζ ≤ 0

1 for ζ ≥ 0
(46)

h0 =
⎧⎨⎩

−γF y − λlF ζ exp(λζ ) for ζ ≤ 0

−γF y for ζ ≥ 0
(47)

k0 =
⎧⎨⎩

γOy − λlOζ exp(λζ ) for ζ ≤ 0

γOy for ζ ≥ 0
(48)

where

λ ≡ U0

1 + f ′2
0

. (49)

We note that in determining h0 and k0 for ζ ≥ 0, we have used the fact that no expo-
nential growth as ζ increases is allowed by matching; completing the matching allows the
determination of A and B in (40) and (41), namely A = −γF y and B = γOy.
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Combustion Theory and Modelling 201

Using the remaining jump condition (42d) we obtain

SL0 =
(

1 +
√

(γF + γO)2y2 + 4R

2

)1/2

exp

{
(γO − γF )y −

√
(γF + γO)2y2 + 4R

4

}
(50)

where SL0 ≡ U0/(1 + f ′2
0 )1/2 introduced in (37) is the local burning velocity, to leading

order. The propagation speed U0 and the location of the leading edge, y∗ say, can be
determined from (50) using the fact that f ′

0 = 0 and S ′
L0(y) = 0 at y = y∗. We thus find

that

y∗ = γO − γF

2γF γO(γF + γO)

[
γF + γO +

√
(γF − γO)2 + 4γF γOR

]
(51)

and

U0 = SL0(y∗) . (52)

With SL0 and y∗ being now known, the flame shape f0(y) can be determined by integration
using

f0 =
∫ (

S2
L0(y∗)

S2
L0(y)

− 1

)1/2

dy . (53)

We note that relations (50)–(53) can be expressed in terms of the stoichiometric coeffi-
cient S using (23); in particular, we find that

y∗ = 1 − S

1 + S

(
1 +

√
(1 − S)2 + 4RS

1 + S

) √
π

2E
(54)

and

U0 = (1 + S)
3
2

2S
1
2

(
1 +

√
(1 − S)2 + 4RS

1 + S

) 1
2

exp

[
−

√
(1 − S)2 + 4RS

2(1 + S)

]
. (55)

From its definition, S ≡ s YF,F /YO,O , we have 0 < S < ∞, with S = 1 correspond-
ing to a stoichiometric supply of reactants. In illustrating the results, however, only the
range 0 < S ≤ 1 needs be considered; indeed (50)–(53) imply that a change of S to
S−1 changes the leading edge y∗ to its negative and the graphs of f0(y) and SL0(y)
to their symmetric with respect to the y = 0 axis while keeping U0 unchanged, i.e.
S → S−1 ⇒ y∗ → −y∗ , f0(y) → f0(−y) , SL0(y) → SL0(−y) and U0 → U0. The last re-
mark is expected from the definition of S, since changing S to S−1 is simply equivalent to
swopping the ‘labels’ of the reactants as ‘Fuel’ and ‘Oxidizer’.

Figure 2 represents the local burning speed SL0 plotted against y for selected values of R

and S. The top subfigure corresponds to the symmetric case of stoichiometric supply, S = 1,
for which the peak of SL0 is located at y = 0; here an increase in the reversibility parameter
R is simply seen to decrease the burning speed and its peak, as expected. However, for S < 1
as in the middle and bottom subfigures, we also see a shift in the peak location towards
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202 Joel Daou

Figure 2. Local burning speed SL0 versus y for R = 0, 1, 5 and 10, and, from top to bottom, S = 1,
0.5 and 0.25.
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Combustion Theory and Modelling 203

Figure 3. Leading edge location, y∗, versus R, for selected values of S.

y = +∞ (the oxidizer side) as R is increased. These observations are further confirmed
in Figures 3 and 4, where the location of the peak y∗ and its amplitude U0 = SL0(y∗) are
plotted versus R for selected values of S. The dependence of the flame shape x = f0(y)
on R and S is illustrated in Figure 5. We can again make the same remarks concerning the
shift of the leading edge towards the oxidizer side as R is increased for S < 1. In addition,

Figure 4. Leading order propagation speed, U0, versus R, for selected values of S.
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204 Joel Daou

Figure 5. Flame shape, x = f0(y), for R = 0, 5 and 10, and, from top to bottom, S = 1, 0.5 and
0.25.
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Combustion Theory and Modelling 205

we note that an increase in R results in an decrease in the curvature of the flame-front
which will naturally affect the burning speed in the next approximation addressed in the
following section. At the leading edge, a simple formula for the flame curvature f ′′

0 (y∗) can
be derived, namely,

f ′′
0 (y∗) =

√
−S ′′

L0(y∗)

SL0(y∗)
, (56)

which follows from (53) and the fact that f ′
0(y∗) = 0 and S ′

L0(y∗) = 0; thus f ′′
0 (y∗) can be

evaluated from (50) and (51) although the resulting expressions are quite complex except in
a few special cases including the stoichiometrically symmetric case S = 1, the irreversible
case R = 0, and the case R = 1. For these special values of the parameters, for which the
integrand of the square root in (54) and (55) is a complete square, simple expressions can
be obtained on using (50), (54) and (56), namely,

y∗ = 0 and f
′′
0 (y∗) =

√
2

√
π (1 + √

R)
1
2

for S = 1 , (57)

y∗ = 1 − S

1 + S

(
1 + |1 − S|

1 + S

) √
π

2E
and f

′′
0 (y∗) = 1 + S

S

E√
2π

for R = 0 ,(58)

and

y∗ = 1 − S

1 + S

√
π

E
and f

′′
0 (y∗) = 1 + S√

1 + S2

E√
2π

for R = 1 , (59)

where E is defined in (23). Such formulae, along with expression (55) for U0, show the
precise way in which the increase in R decreases the flame curvature and its propagation
speed, to leading order.

The final point addressed in this section is the determination of the temperature θF l

of the flame-front whose deviation from unity, to leading order, is determined by σ0, in
accordance with (38). The latter is in fact twice the argument of the exponential in (50),
i.e.,

σ0 = (γO − γF )y −
√

(γF + γO)2y2 + 4R

2
, (60)

and is value a the leading edge, σ ∗
0 say, is twice the argument of the exponential in (55),

i.e.,

σ ∗
0 = −

√
(1 − S)2 + 4RS

1 + S
. (61)

Equation (60) implies that the maximum of σ0 and (hence of θF l to leading order) occurs
at a location y∗

θ which is related to the location of the leading edge y∗ by

y∗
θ = y∗ 2

√
RS

1 + S +
√

(1 − S)2 + 4RS
. (62)
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206 Joel Daou

It follows that y∗
θ = 0 when R = 0, meaning that the maximum temperature of the triple-

flame front (to leading order) occurs at the stoichiometric location y = 0 in the irreversible
case, irrespective of the location of the leading edge. This is not the case when the reaction
is reversible however, since the maximum flame-front temperature is then sandwiched be-
tween the stoichiometric surface and the leading edge. Indeed, Equation (62) implies that
0 ≤ y∗

θ /y∗ ≤ √
R/(1 + √

R), the upper bound which is clearly less than unity correspond-
ing to the stoichiometrically symmetric case S = 1.

3.4.3. Results in the next approximation

In the previous section, a leading order description of the flame-front has been given,
including the flame shape x = f (y), the local burning speed SL(y) and the propagation
speed U . To obtain a better description, we carry out the asymptotic analysis to the next
order in ε.

If the operator L is defined by

L ≡ 2f ′
0f

′
1

∂2

∂ζ 2
− f ′′

0

∂

∂ζ
− 2 f ′

0

∂2

∂y∂ζ
, (63)

then the governing equations in the inner region are

U0
∂θ1

∂ζ
− (

1 + f ′
0

2)∂2θ1

∂ζ 2
= L

(
θ0

) − U1
∂θ0

∂ζ
(64)

U0
∂h1

∂ζ
− (

1 + f ′
0

2)∂2h1

∂ζ 2
= L

(
h0 + lF θ0

) − U1
∂h0

∂ζ
+ lF (1 + f ′2

0 )
∂2θ1

∂ζ 2

U0
∂k1

∂ζ
− (

1 + f ′
0

2)∂2k1

∂ζ 2
= L

(
k0 + lOθ0

) − U1
∂k0

∂ζ
+ lO(1 + f ′2

0 )
∂2θ1

∂ζ 2
.

These are to be solved for ζ �= 0, subject to the jump conditions

[θ1] = [h1] = [k1] = 0[
∂h1

∂ζ

]
= −lF

[
∂θ1

∂ζ

]
[
∂k1

∂ζ

]
= −lO

[
∂θ1

∂ζ

]
(65)

[
∂θ1

∂ζ

]
=

(
σ1

2
+ (h0 − k0)(h1 − k1)

2(h0 − k0)2 + 8R + 4
√

(h0 − k0)2 + 4R
− f ′

0f
′
1

1 + f ′
0

2

)[
∂θ0

∂ζ

]
at the reaction sheet located at ζ = 0. Here σ1 is the perturbation in the flame temperature
given by

σ1 = h1 + k1

2
− (h0 − k0)(h1 − k1)

2
√

(h0 − k0)2 + 4R
,

on account of (35). Downstream of the reaction sheet, it is found that θ1 must be zero so as
to be bounded as ζ → ∞ and to match with (39). We thus have from (64) after eliminating
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Combustion Theory and Modelling 207

exponentially growing terms

θ1 = 0 , h1 = ĥ1 , k1 = k̂1 for ζ ≥ 0 , (66)

where ĥ1 and k̂1 are independent of ζ and are as yet undetermined.
Solving for θ1 in the unburnt gas, it is found that

θ1 = λ

U0

[
U1 − 2λf ′

0f
′
1 + f ′′

0 − 2
f ′2

0 f ′′
0

1 + f ′2
0

λζ

]
ζ exp (λζ ) for ζ ≤ 0 , (67)

where λ has been defined in (49) and where use has been made of the matching requirement
θ1 → 0 as ζ → −∞ and the continuity requirement θ1 = 0 at ζ = 0. We shall not need the
explicit solutions for h1 and k1 below. We now integrate Equations (64) from ζ = −∞ to
ζ = 0− to obtain

(
1 + f ′

0
2) [

∂θ1

∂ζ

]
= Iθ − U1 (68)

U0ĥ1 = Ih + lF Iθ

U0k̂1 = Ik + lOIθ ,

after using (47)–(48), (65)–(66), and the matching condition that θ1, h1 and k1 and their
derivatives with respect to ζ must vanish as ζ → −∞. In (68) we have introduced the
quantities

Iθ ≡
0∫

−∞
L(θ0)dζ, Ih =

0∫
−∞

L(h0)dζ, and Ik =
0∫

−∞
L(k0)dζ

which can be evaluated from (46)–(48) and (67), to yield

Iθ = 2 U0
f ′

0f
′
1

1 + f ′
0

2
− f ′′

0 , Ih = −2lF U0
f ′

0f
′
1

1 + f ′
0

2
, Ik = −2lOU0

f ′
0f

′
1

1 + f ′
0

2
.

When these expressions are used in (68), together with (47) and (65)–(67) we find

U0ĥ1 = −lF f ′′
0

U0k̂1 = −lOf ′′
0 (69)

U1 − U0f
′
0f

′
1

1 + f ′
0

2
= −f ′′

0 + U0σ1

2
+ U0(h0 − k0)(h1 − k1)

2(h0 − k0)2 + 8R + 4
√

(h0 − k0)2 + 4R
.

The system of equations (69) allows the determination of perturbation to the local burning
velocity SL1(y) introduced in (37). We thus find

SL1 = −
(

1 + lF + lO

4
+ lF − lO

4

(γO + γF )y

2 +
√

(γO + γF )2y2 + 4R

)
f

′′
0(

1 + f
′2
0

)1/2
,
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208 Joel Daou

so that a two-term expansion of SL in terms of ε is now available, namely

SL ∼ SL0(y)
(
1 − L̃(y)κ(y)

)
. (70)

Here SL0 is determined by (50) and κ and L̃ are given by

κ(y) = ε

SL0(y)

f
′′
0

(1 + f
′2
0 )1/2

, (71)

L̃(y) = 1 + lF + lO

4
+ lF − lO

4

(γO + γF )y

2 +
√

(γO + γF )2y2 + 4R
. (72)

We note that κ and L̃ appear as local non-dimesional flame-stretch and Markstein length,
respectively. It is interesting to note that the Markstein length is affected by the reversibility
parameter R and the local coordinate y whenever lF �= lO and is independent of them
otherwise.

For the perturbation in the propagation speed U1 we find

U1 = −L̃(y∗)f ′′
0 (y∗) (73)

by applying Equations (69) at the leading edge y∗ and using f ′
0(y∗) = 0. In this expression,

the Markstein length at the leading edge is given by

L̃(y∗) = 1 + lF + lO

4
+ lF − lO

4

γO − γF

γF + γO

on using (51) and (72). This can be expressed in terms of the stoichiometric coefficient S

as

L̃(y∗) = 1 + lF + lO

4
+ lF − lO

4

1 − S

1 + S
,

on using (23). We note that the value of L̃ at the leading edge y = y∗ has turned out to be
independent of R, which is not true for other values of y.

At this stage, a two-term approximation U ∼ U0 + εU1 is available from (52) and (73),
namely,

U ∼ SL0(y∗)

[
1 − ε

SL0(y∗)

(
1 + lF + lO

4
+ lF − lO

4

1 − S

1 + S

) √
−S ′′

L0(y∗)

SL0(y∗)

]
, (74)

where use has been made of (56), and where y∗ and U0 = SL0(y∗) are to be evaluated from
(54) and (55). This formula, which constitutes one of the main outcomes of the analysis,
describes the dependence of the propagation speed U on the stoichiometric coefficient S,
the reversibility parameter R and the reduced Lewis numbers lF and lO . In the particular
case S = 1, it takes the simpler form

U ∼ (1 +
√

R)1/2 exp

(
−

√
R

2

) [
1 −

(
1 + lF + lO

4

)
ε

√
2

π

exp (
√

R/2)

1 + √
R

]
, (75)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
h
e
 
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
a
n
c
h
e
s
t
e
r
]
 
A
t
:
 
1
0
:
0
6
 
2
2
 
O
c
t
o
b
e
r
 
2
0
0
9



Combustion Theory and Modelling 209

after using (55) and (57). Likewise, a simple two-term expansion for U can be readily
written down in the irreversible case R = 0, on using (55) and (58), which is more explicit
than, but agrees with, a corresponding formula derived by Daou and Liñán [7].2

Similarly, we note for completeness that the results also allow the determination of a
two-term expansion for the temperature of the flame-front θF l introduced in (38). It is found
that

θF l = 1 + σ0

β
+ ε

σ1

β
+ · · · with

σ0 = (γO − γF )y −
√

(γF + γO)2y2 + 4R

2
and

σ1 = −
{

lF + lO

2
+ lF − lO

2

(γF + γO)y√
(γF + γO)2y2 + 4R

}
f ′′

0 (y)

U0
,

where σ0 has been determined using (60). The term in the rhs of this formula involving
σ0 represents, as stated earlier, the deviation of the flame temperature from unity under
infinitely weak strain (ε = 0) and the linear gradients of mass fractions far upstream given
by (20). This deviation is seen to be a linear function of y only if R = 0, and its non-linearity
when R �= 0 presents another characteristic of triple-flames attributable to the reversibility
of the chemical reaction. The third term accounts for the coupling between flame curvature,
differential diffusion and reversibility, and typically involves both Lewis numbers at any
location y unless the reaction is irreversible; in the latter case only lF is involved in the
fuel-lean side y > 0 and lO in the oxygen-lean side y < 0. As a simple illustration in the
particular case S = 1, the formula can be applied to show that the flame temperature at the
leading edge, θ∗

F l say, is given by

θ∗
F l = 1 −

√
R

β
− lF + lO

2β
ε

√
2

π

exp(
√

R/2)

1 + √
R

, (76)

after using (57) and (61).
We close this section by a short discussion of the validity of the asymptotics, focusing

attention on the asymptotic formula (75) for the propagation speed U . Shown in Figure 6
is a plot of U versus ε based on this formula, for selected values of R; for simplicity
we set lF = lO = 0 although the results are equally valid if the factor 1 + (lF + lO)/4,
assumed positive, is absorbed into ε. The curves are straight lines whose ordinate at ε = 0,
U0, is a decreasing function of R, and their slope, U1, is an increasing function of R.
Any two such straight lines intersect thus each other, and the smallest value of ε where a
straight line pertaining to R �= 0 intersect other lines corresponds to the intersection point
with the line R = 0 of the irreversible case. The portion of the line beyond this smallest
value of ε is to be discarded, since the asymptotic formula is definitely invalid there since
it predicts unexpected cases where the propagation speed increases with R for ε fixed.
These unexpected cases may be explained by the fact that, for fixed ε, an increase in R

promotes two effects which have opposing influences on U , namely a decrease in the flame-
front curvature f ′′

0 (see (57) and a decrease in U0 (see (55). These cases are however to

2For comparison sake, we mention that the parameter � in [7] is equal to S/(S + 1) and the parameter
ϒ should be set to zero.
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Figure 6. Propagation speed U versus ε based on Equation (75), for selected values of R.

Figure 7. Propagation speed U versus ε computed numerically (dashed lines) and based on the
asymptotic formula (75) (solid lines), for selected values of R.
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be rejected after comparison with extensive numerical results. A sample of the numerical
results, obtained using the computational approach described in [7,22], is shown in Figure 7.
Depicted in this figure is the propagation speed U versus ε computed numerically3 (dashed
lines) and based on the asymptotic formula (75) (solid lines), for selected values of R. It is
seen that the numerical results are in good agreement with the asymptotic predictions, and
show that the latter have a rather wide range of validity.

4. Conclusion

An asymptotic study of triple-flames in a strained mixing layer has been carried out under
a reversible reaction. The investigation extends the analytical description of these flames
beyond the common framework of a single irreversible Arrhenius reaction. The study
identifies a suitable and physically motivated distinguished limit involving a specific scaling
of the difference in the activation energies of the forward and backward reactions and of the
degree of reversibility. Under this distinguished limit, which generalizes the classical near-
equidiffusional-flame (NEF) approximation [32] to the reversible case, an extensive set of
analytical results for weakly-strained triple-flames has been obtained. The results include
the determination of the local burning speed, temperature and Markstein length along the
flame-front, the shape, leading edge and curvature of the latter, and the propagation speed
of the triple-flame. The formulae derived concisely account for the combined effect of
several non-dimensional parameters characterizing the stoichiometry and reversibility of
the chemical reaction, the strain rate, and the Lewis numbers of the reactants. In particular,
it is found that the Markstein length is affected by the reversibility parameter and the local
coordinate along the flame-front whenever the Lewis numbers of the fuel and oxidizer are
unequal and is independent of them otherwise; in all cases however, it is value at the leading-
edge which features in the explicit formula derived for the propagation speed U is found to
be unaffected by the reversibility parameter. Several aspects specifically associated with the
reversibility of the reaction are identified and quantified analytically, including the decrease
in the propagation speed and flame-front curvature and the increased shift of the location
of the leading edge away from the stoichiometric surface with increased reversibility.
Some important features of triple-flames determined within a reversible reaction model are
found to have no counterparts in the irreversible case. For example, whereas the maximum
temperature of the triple-flame front occurs at the location of stoichiometric surface in the
irreversible case, irrespective of the location of the leading edge, it is typically found to be
sandwiched between these two locations in the reversible case, see (62).

Finally, we note that the findings and the methodology described can be seen as a
first step towards accounting analytically for real chemistry effects on triple-flames, and
towards modelling thin partially-premixed flames as propagating interfaces whose local
burning speed is affected by the local composition gradients via a suitably defined local
Markstein length.

3The numerical propagation speeds have been normalized (divided) by 0.75, which is the numerically
determined burning speed of the irreversible stoichiometric planar flame with β = 8. The main
reason for this normalization, which have been discussed and used in previous triple-flame studies,
e.g. [7, 9, 22], is the fact that an infinite value of β is assumed in the asymptotics, while the value
of β in the numerics is finite. This causes a common, rather trivial discrepancy between the laminar
planar flame speeds computed numerically and asymptotically, which is most simply resolved by the
normalization adopted, rather than by a computationally impractical increase in β to substantially
higher values of the order of 30 (to achieve an agreement close to 5%, for small ε).
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