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Flame propagation in a small-scale parallel flow
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We consider the propagation of laminar premixed flames in the presence of a parallel flow whose scale
is smaller than the laminar flame thickness. The study addresses fundamental aspects with relevance
to flame propagation in narrow channels, to the emerging micro-combustion technology, and to the
understanding of the effect of small scales in a (turbulent) flow on the flame structure. In part, the study
extends the results of a previous analytical study carried out in the thick flame asymptotic limit which
has in particular addressed the validity of Damköhler’s second hypothesis in the context of laminar
steady parallel flows. Several new contributions are made here.

Analytical contributions include the derivation of an explicit formula for the effective speed of a
premixed flame UT in the presence of an oscillatory parallel flow whose scale � (measured with the
laminar flame thickness δL ) is small and amplitude A (measured with the laminar flame speed UL ) is
O(1). The formula shows a quadratic dependence on both the amplitude and the scale of the flow. The
validity of the formula is established analytically in two distinguished limits corresponding to O(1)
frequencies of oscillations (measured with the natural frequency of the flame UL/δL ), and to higher
frequencies of O(A/�) (the natural frequency of the flow). The analytical study yields partial support
of Damköhler’s second hypothesis in that it shows that the flame behaves as a planar flame (to leading
order) with an increased propagation speed which depends on both the scale and amplitude of the
velocity fluctuation. However our formula for UT contradicts the formula given by Damköhler in his
original paper where UT has a square root dependence on the scale and amplitude.

Numerical contributions include a significant set of two-dimensional calculations which determine
the range of validity of the asymptotic findings. In particular, these account for volumetric heat loss
and differential diffusion effects. Good agreement between the numerics and asymptotics is found
in all cases, both for steady and oscillatory flows, at least in the expected range of validity of the
asymptotics. The effect of the frequency of oscillation is also discussed. Additional related aspects
such as the difference in the response of thin and thick flames to the combined effect of heat loss and
fluid flow are also addressed. It is found for example that the sensitivity of thick flames to volumetric
heat loss is negligibly affected by the parallel flow intensity, in marked contrast to the sensitivity of
thin flames. Interestingly, and somewhat surprisingly, thin flames are found to be more resistant to
heat loss when a flow is present, even for unit Lewis number; this ceases to be the case, however, when
the Lewis number is large enough.

Keywords: Damköhler’s hypothesis; Laminar flame speed Premixed flames; Thick flame asymptotics; Turbulent
combustion

1. Introduction

The propagation of premixed flames in the presence of a flow whose scale is comparable or
smaller than the laminar flame thickness is a fundamental problem relevant to many areas.
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698 J. Daou and P. Sparks

Such areas include flame propagation in channels and tubes [1], combustion in potentially
promising micro-devices currently under development [2], and turbulent combustion where
the small scales of the flow-field can have significant effects on the flame, see, e.g. [3, 4].

The present investigation is carried out in the context of laminar parallel flows. In this
important and rather extensively studied context, we have been involved in various recent
contributions [5–8] where several aspects of flame propagation have been addressed. These
include the derivation of analytical formulae for the effective propagation speed in terms of
the scale and amplitude of the flow, the effect of heat losses and non-unit Lewis numbers,
flashback phenomena and the dependence of the quenching distance on the flow. However,
our main goal in this paper is to extend and complement the analytical results of [5] entitled
the thick flame asymptotic limit and Damköhler’s hypothesis. Thus, although the results can
be useful in other fields of study, such as micro-combustion in MEMS devices [2], we shall
only invoke Damköhler’s two hypotheses of turbulent combustion [9] in order to provide
motivation for our work.

The first hypothesis postulates that the large scales in the flow increase the effective flame
speed UT by wrinkling the flame, thus increasing its area, without a significant change in its
structure. This is relevant in the so-called flamelet regime [10] and has received significant
attention and confirmation in the literature. An example of analytical contributions relevant to
this regime is the often cited Clavin–Williams formula derived for flames propagating in large-
scale, low-intensity turbulence [11]. For a detailed recent account on turbulent combustion,
see [12] and references therein.

The second hypothesis postulates that the small scales in the flow do not cause any significant
flame wrinkling but do change the flame structure by enhancing the diffusive processes; the
change in the effective flame speed and thickness relative to those of a laminar planar flame
could be described using effective diffusion coefficients to account for the flow. As discussed
in [5] and pointed out in [1] however, this second hypothesis seems to have received little
attention or support. This lack of support is striking even in the context of simple prescribed
flows, in particular as far as analytical work is concerned. An analytical contribution aimed at
testing this hypothesis was carried in [5] in the framework of prescribed steady parallel flows.
Its main result is the formula

UT

U0
∼ 1 + �2

2

∫ 1

0

[∫ η

0
u(η1) dη1

]2

dη , (1)

valid for small values of the scale � of the flow u. Here � and u are measured against the
thickness δL and speed UL of the adiabatic planar flame. UT and U0 represent the effective
flame speed and the planar laminar flame speed, also measured with UL . In the absence of heat
losses U0 = 1, but more generally U0 is the larger root of U 2

0 ln U0 = −κ , where κ represent
the intensity of heat loss (see equation (3) below). In equation (1) the argument of u must lie
in [0, 1] and its spatial mean must be equal to zero (this is always possible by an appropriate
choice of the origin and scale on the transverse axis and of the reference frame). The formula
describes the increase in the effective flame speed UT which is seen to depend quadratically
on both the scale and intensity of the flow while being independent of the Lewis number.

It is useful to extend this result to more realistic situations, e.g. by accounting for flow
unsteadiness and for more complex flows. In the present paper, we have two main objectives.

� First, to extend the analytical formula (1) to time-periodic parallel flows; a formula will be
thus derived in two distinguished limits corresponding to O(1) frequencies of oscillations
(measured with the natural frequency of the flame UL/δL ), and to higher frequencies of os-
cillations of O(A/�) (the natural frequency of the flow). The latter choice of the frequency is
intended to mimic the fact that the characteristic frequency of eddies in turbulent combustion
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Flame propagation in a small-scale parallel flow 699

is commonly identified with the inverse of their turnover time which is proportional to their
scale divided by their velocity.

� Second, to complement the analytical results with two-dimensional computations. These
are aimed at: (a) assessing the range of validity of the analytical findings, both for steady and
unsteady flows, and accounting for heat loss and preferential diffusion effects; (b) examining
the influence of the frequency of oscillation; (c) pointing out certain differences between
thin and thick flames.

The paper is structured as follows. We begin by presenting the thermodiffusive model
used in the study. An asymptotic analysis is then carried out for time-periodic flows in two
distinguished limits. This is followed by a presentation of the numerical calculations which
are compared against the analytical predictions, and by a discussion of the main findings.

2. Formulation

We consider a two-dimensional flame propagating in the x-direction against a parallel flow
u(y, t) as represented in figure 1. A simple non-dimensional thermodiffusive model charac-
terizing the problem as in [5] consists of the equations

Yt + u(t, y)Yx = Le−1 (Yxx + Yyy) − ω, (2)

Tt + u(t, y)Tx = Txx + Tyy + ω − κ

β
T, (3)

and the boundary conditions

Y = 1, T = 0 as x → −∞ , (4)

Yx = Tx = 0 as x → +∞ , (5)

Yy = Ty = 0 at y = 0 and y = �, (6)

along with suitable initial conditions. Here T and Y are the (scaled) temperature and mass
fraction of the fuel, which is assumed to limit the reaction, and Le is the Lewis number. The
reaction rate, ω, is taken to follow an Arrhenius form

ω = β2

2Le
Y exp

{
β(T − 1)

1 + α(T − 1)

}
,

where β is the Zeldovich number and α an exothermicity parameter. Volumetric heat losses
are modelled by a linear sink term of strength κ/β. The non-dimensionalization corresponds
to the units for speed, length, and time being based on UL and δL , the propagation speed and
the thickness of the adiabatic unstretched planar flame respectively (more precisely to the
asymptotic values of these as β → ∞). The boundary conditions (4) and (5) correspond to a

Figure 1. Schematic of a flame propagating against a parallel flow.
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700 J. Daou and P. Sparks

frozen mixture with prescribed temperature and composition upstream and uniform properties
far downstream. The boundary conditions (6) assume that all profiles have zero slope at y = 0
and y = �, where � represents a characteristic transverse scale of the flow (measured with δL );
for example, for a flow which is periodic in the y-direction, � may be taken equal to the spatial
period, and the origin of the y axis is to be chosen so that the flame is vertical at y = 0 and
y = �.

An important quantity to be determined by the solution is the total burning rate per unit
transverse area

� ≡ 1

�

∫ ∞

−∞

∫ �

0
ω dy dx, (7)

which can be used to define an effective non-dimensional propagation speed UT as conven-
tionally done in turbulent combustion (possible divergence of the integral in (7) associated
with the cold-boundary difficulty is easily and routinely avoided, e.g. by introducing a cut-off
temperature below which w is set to zero). For time independent flows, u = u(y), UT = �.
For time-periodic flows sustaining an oscillatory flame propagation, UT = �̄; here and below
bars indicate time averages.

3. Asymptotic analysis for time-periodic parallel flows

In this section our aim is to extend the analytical formula (1) to oscillatory situations cor-
responding to time-periodic parallel flows u(y, t). The analysis will be carried out using the
asymptotic limit of small flow scale � → 0 and large β (with β−1 � �).

We shall assume that u(y, t) has a zero spatial mean (over the transverse length �) in the
frame of reference under consideration; thus we take u to be of the form u = ū(y) + v(t, y),
where ū(y) has a zero spatial mean and v(t, y) is a fluctuation with zero spatial and temporal
means. This is the case, e.g. for the time and space harmonic flows to be considered in the
numerics. This form also covers the time-independent parallel flow situations (for which v

can be set equal to zero and the zero-spatial mean of u is a consequence of a suitable choice
of the frame of reference).

For simplicity, we shall focus on the equidiffusional, adiabatic case (Le = 1, κ = 0) which
can be described by a single dependent variable, since Y + T = 1 then follows from the
governing equations and boundary conditions (assuming that this is compatible with the
initial conditions). In the limit β → ∞, the reaction is confined to a thin sheet given by
xflame = −UT t + f (t, y), say. Using the transverse scale η = y/� and the longitudinal coor-
dinate ζ = x − xflame = x +UT t − f (t, y), and writing f (t, y) = �2 F(t, η), the problem takes
the form T ≡ 1 in the burnt gas (ζ > 0) and

Tt + [UT + u(t, η̄) + Fηη − �2 Ft ] Tζ = (
1 + �2 F2

η

)
Tζ ζ + �−2Tηη − 2FηTζη (8)

in the unburnt gas (ζ < 0). Our task is to solve equation (8) subject to the upstream condition

T = 0 as ζ → −∞ , (9)

the standard jump conditions (see, e.g. [13, 14])

T = 1, Tζ = (
1 + �2 F2

η

)−1/2
at ζ = 0−, (10)

and the zero-slope conditions

Tη = Fη = 0 at η = 0 and η = 1. (11)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
h
e
 
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
a
n
c
h
e
s
t
e
r
]
 
A
t
:
 
0
9
:
4
9
 
6
 
N
o
v
e
m
b
e
r
 
2
0
0
8



Flame propagation in a small-scale parallel flow 701

In the problem thus formulated, now free from β, we take the limit � → 0 with the flow
amplitude assumed to be an arbitrary O(1) quantity as in [5]. Furthermore, we assume that
the temporal period is O(1), that is flow oscillations occur over (dimensional) time scales of
the order of the flame time δL/UL . However, the results that we shall derive can be extended
to higher frequencies, as discussed in the following section.

We begin by writing expansions in the form

T = T0 + �T1 + �2T2 + · · · , UT = U0 + �U1 + �2U2 + · · · , F = F0 + �F1 + · · · ,
which we substitute into equations (8)–(11).

ToO(�−2) we find T0ηη = 0 which, when used with (11), implies that T0 must be independent
of η, T0 = T0(t, ζ ).

To O(�−1) we have similarly T1ηη = 0 and T1 = T1(t, ζ ).
To O(1) we obtain

T0t + [U0 + u(t, η) + F0ηη(t, η)]T0ζ − T0ζ ζ = T2ηη , (12)

which we integrate with respect to η over the range (0, 1), using (11) and the fact that u has a
zero spatial mean. This yields the equation

T0t + U0T0ζ − T0ζ ζ = 0 ,

subject to T0 → 0 as ζ → −∞, and T0 = T0ζ = 1 at ζ = 0, which is clearly solved by taking

U0 = 1 , T0 = exp(ζ ) (ζ ≤ 0) , (13)

at least outside an initial transient regime. Thus, in first approximation, the solution is indepen-
dent of the flow and corresponds to the laminar planar flame. We now integrate equation (12)
twice with respect to η from 0 to η using (13). This yields

T2 = [S(t, η) + F0(t, η)] exp ζ + T̃2(t, ζ ) ,

where T̃2 is an arbitrary function of integration and S is a function which satisfies Sηη = u. The
continuity of temperature at the reaction sheet, T2 = 0 at ζ = 0, then implies that F0 = −S,
i.e.

F0(t, η) = −
∫ η

0
dη2

∫ η2

0
u(t, η1) dη1 , (14)

within an additive function of time which can be set to zero by modifying the function T̃2(t, ζ ),
if needed. Thus T2 must be independent of η, namely T2 = T2(t, ζ ) with T2 = 0 at ζ = 0.
Incidentally, we note that (14) describes the leading order effect of the flow field on the flame
shape.

To O(�) we obtain

T1t + T1ζ − T1ζ ζ = −(U1 + F1ηη)eζ + T3ηη ,

which integrated with respect to η over the range (0, 1) yields T1t + T1ζ − T1ζ ζ = −U1eζ ,
whose solution, subject to T1 = 0 as ζ → −∞ and T1 = T1ζ = 0 at ζ = 0−, is clearly

U1 = 0 , T1 = 0 , (15)

at least after an initial transient time.
To O(�2) we find

T2t + T2ζ − T2ζ ζ = −(
U2 + F2ηη − F0t − F2

0η

)
eζ + T4ηη ,
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702 J. Daou and P. Sparks

which we again integrate from η = 0 to 1 to get

T2t + T2ζ − T2ζ ζ =
[∫ 1

0
F0t dη +

∫ 1

0
F2

0ηdη − U2

]
eζ .

Upon time averaging, this yields the ordinary differential equation

T̄2ζ − T̄2ζ ζ =
[∫ 1

0
F2

0ηdη − U2

]
eζ (16)

whose solution subject to T̄2(−∞) = 0 and T̄2(0) = 0 is

T̄2 = Cζeζ where C ≡ U2 −
∫ 1

0
F2

0ηdη. (17)

Now, the jump conditions imply that T̄2ζ (0−) = −F2
0η/2, which should determine the constant

C ; clearly, this is impossible since the right-hand side of this equation is a function of η while
the left-hand side is not. This suggests the need to reconsider the problem in an inner layer
near the flame. To this end, we denote the straightforward expansion above by

T outer ∼ eζ + �2T2(t, ζ ) + �3T3(t, ζ, η) + · · · , (18)

where T2 satisfies (17), and write an inner expansion in the form

T inner ∼ 1 + �ξ + �2 ξ 2

2
+ �3�3(t, ξ, η) + · · · (ζ = �ξ ). (19)

Note that the first three terms of (19) have been given explicitly, using a Taylor expansion of
the uniformly valid leading order solution eζ as ζ → 0 and the condition T2 = 0 at ζ = 0.
Substitution of (19) into equations (8) to (11) shows that �3 is governed by

�3ξξ + �3ηη = ξ + F1ηη(t, η), (20)

so that

�3 = ξ 3/6 + F1(t, η) + θ (t, ξ, η) , (21)

where θ satisfy

θξξ + θηη = 0 , (22)

and

θη(t, ξ, 0) = 0 , θη(t, ξ, 1) = 0 , θξ (t, 0, η) = − F2
0η

2
. (23)

It follows on applying the divergence theorem to the integral of equation (22) over the rectan-
gular domain [ξ, 0] × [0, 1] that∫ 1

0
θξ (t, ξ, η) dη = −1

2

∫ 1

0
F2

0η(t, η) dη , (24)

which must hold, in particular, as ξ → −∞. Now the matching of the outer and inner expan-
sions (18) and (19) to O(�3) requires

�3(t, ξ, η) ∼ ξ 3

6
+ T2ζ (t, 0−)ξ + T3(t, 0, η) as ξ → −∞, (25)

which, together with (21) and (24), implies that

T2ζ = −1

2

∫ 1

0
F2

0ηdη at ζ = 0−,
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Flame propagation in a small-scale parallel flow 703

and upon time averaging

T̄2ζ (0−) = −1

2

∫ 1

0
F2

0ηdη.

This relation, together with (17), yields

U2 = 1

2

∫ 1

0
F2

0ηdη. (26)

To summarize, using (13), (15), and (26), we have

UT

U0
∼ 1 + �2

2

∫ 1

0

[∫ η

0
u(t, η1) dη1

]2

dη, (27)

with U0 = 1 in the present adiabatic equidiffusional case under consideration. The result can be
extended to account for non-zero heat losses and non-unit Lewis numbers, provided U0 is taken
again as the larger root of U 2

0 ln U0 = −κ . The proof of this generalization, which is not given
here (but which will be tested numerically below), follows a similar generalization carried out
in the steady flow cases based on a near-equidiffusion-flame approximation (Le = 1 + le/β
with le = O(1) as β → ∞) detailed in [5]. At this point, we remind the reader that the
derivation of this section has been based on the distinguished limit � → 0, A = O(1), and
τ = O(1), where �, A, and τ represent the scale, the amplitude, and the period of the oscillatory
flow, respectively.

In the next section, we shall show that formula (27) can be derived for higher frequencies
of the oscillating flow.

4. Asypmtotics with higher frequencies of the oscillating flow

In order to extend the derivation to oscillations with frequencies higher than the ones considered
in the previous section, we let the period of the oscillatory flow τ tend to zero as � → 0. More
precisely, we consider the distinguished limit � → 0, A = O(1), and τ = O(�). As argued in
the introduction, the choice of the scaling for τ may be seen as intended to mimic the fact
that the natural time scale for eddies in turbulent combustion is their turnover time which is
proportional to their size divided by their speed, i.e. τ ∼ �/A in our non-dimensional notations.
Of course, other distinguished limits could be examined by the reader, although some of these
may turn out to be analytically untractable.

In the sequel, we show that formula (27) can be derived in the limit � → 0, A = O(1), and
τ = O(�). Only a quick description of the main steps, especially those differing from those
of last section, needs to be given.

We begin by rescaling time in equation (8), using t ′ = t/�, in order to examine periods of
oscillations of O(�). Then dropping primes we obtain

�−1Tt + [UT + u(t, η) + Fηη − �Ft ] Tζ = (
1 + �2 F2

η

)
Tζ ζ + �−2Tηη − 2FηTζη , (28)

subject to the same auxiliary conditions as in the previous section.
To O(�−2) we find T0 = T0(t, ζ ) exactly as before.
To O(�−1) we have now however T0t = T1ηη which may be integrated with respect to η

to yield T1η = T0t (t, ζ )η + T̃1(t, ζ ); the integration function T̃1 is in fact identically zero and
so is T0t , on using the zero-slope conditions (11); therefore T1η is also identically zero. We
conclude that T0 = T0(ζ ) and T1 = T1(t, ζ ).
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704 J. Daou and P. Sparks

To O(1) we obtain

T1t + [U0 + u(t, η) + F0ηη(t, η)]T0ζ − T0ζ ζ = T2ηη , (29)

instead of (12), which we integrate with respect to η over the range (0, 1) to obtain

T0ζ ζ − U0T0ζ = T1t .

Now since the left-hand side of this equation is a function independent of t , say C = C(ζ ), we
conclude that T1 will grow linearly in time at each location ζ and thus becomes unbounded
unless C is set to zero, whence T1 = T1(ζ ) and

U0T0ζ − T0ζ ζ = 0 .

The solution of this equation, which is subject to T0 → 0 as ζ → −∞, and T0 = T0ζ = 1 at
ζ = 0, corresponds to the planar flame solution given by (13). At this stage it becomes clear
that equation (29) is in fact identical to (12), and as result equation (14) is still valid, and
T2 = T2(t, ζ ) with T2 = 0 at ζ = 0, as before.

To O(�) we obtain

T2t + T1ζ − T1ζ ζ = −(U1 + F1ηη − F0t )e
ζ + T3ηη ,

which integrated over η from zero to one and then time-averaged yields T1ζ − T1ζ ζ = −U1eζ ;
the latter equation, subject to the boundary conditions T1 = 0 as ζ → −∞ and T1 = T1ζ = 0
at ζ = 0−, is clearly solved by U1 = 0 and T1 = 0.

To O(�2) we find

T3t + T2ζ − T2ζ ζ = −(
U2 + F2ηη − F1t − F2

0η

)
eζ + T4ηη ,

which when integrated from η = 0 to 1 then time-averaged leads back to equation (16) whose
solution is given by (17). The inner analysis is almost identical to that given above except that
an additional term appears in (20) which now reads

�3ξξ + �3ηη = ξ + F1ηη(t, η) − F0t (t, η) , (30)

and thus

�3 = ξ 3/6 + F1(t, η) − G(t, η) + θ (t, ξ, η) , (31)

where G(t, η) is a function obtained by integrating F0t (t, η) twice with respect to η, i.e.
Gηη = F0t , and θ satisfies Laplace’s equation (22) and the boundary conditions (23). The rest
of the analysis leading to (26) proceeds exactly as before.

5. Numerical calculations and comparison with the asymptotic results

In this section, we present an extensive set of numerical calculations, mainly in order to assess
the validity of the asymptotic findings. Several additional aspects such as the influence of the
frequency of the oscillatory flow are also discussed.

Equations (2)–(6) are solved numerically using a finite volume discretization combined
with an algebraic multigrid solver. The transverse dimension of the computational domain
corresponds to the transverse scale of the flow, and its longitudinal extent is taken to be several
hundred times the planar flame thickness. A non-uniform grid with typically 80,000 points is
used. The grid is translated during the iterations so that the flame remains around the origin. The
independence of the numerical results of the spatio-temporal grids used (within one percent
accuracy) has been satisfactorily tested. In the computations we take β = 8, α = 0.85, and
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Flame propagation in a small-scale parallel flow 705

mainly vary the flow scale � and its amplitude A. The influence of other parameters such as
the reduced Lewis number le ≡ β(Le − 1), the heat loss coefficient κ , and the period of the
oscillatory flow τ are also considered for sake of completeness.

For time-independent flows, the non-dimensional form

u = A cos
πy

�
(32)

is adopted where A is the flow amplitude (measured with UL ) and � the flow scale (measured
with δL ). When used in (1) along with η ≡ y/�, this yields the asymptotic result

UT

U0
= 1 + A2�2

4π2
, (33)

against which the numerics will be compared; here U0 = 1 in the absence of heat loss, but
more generally U0 is the larger root of U 2

0 ln U0 = −κ .
For time-dependent situations, the harmonic form

u = A cos
2π t

τ
cos

πy

�
(34)

is adopted, where τ is the time-period measured against δL/UL . When used in (27), this yields

UT

U0
= 1 + A2�2

8π2
. (35)

We remind the reader again that formula (27) of which (35) is a particular case has been
derived in the asymptotic limit � → 0, A = O(1), and with either (a) τ = O(1) (slow oscil-
lations), or (b) τ = O(�) (faster oscillations). In the computations, case (b) will be mainly
adopted (by taking τ = 2�/A), when testing the validity of the asymptotics for oscillatory
flows. However, we shall also examine numerically, albeit briefly, the influence of τ on the
results. Before embarking on this programme however, we begin with the time-independent
situations.

5.1 Time-independent flows

In this subsection we address the time-independent cases pertinent to (32). Shown in figure 2
is the effective flame speed UT versus the flow amplitude A for selected values of � decreasing
from top to bottom in the adiabatic, equidiffusional case, κ = 0 and le = 0. The dashed lines
correspond to the numerical results* and the solid lines are based on the analytical formula
(33) (the circles indicate where values are computed based on the analytical formula or on
the numerics). It is seen that there is good agreement between the numerics and asymptotics,
provided A is not too large. The range of agreement extends to higher values of A as � is
decreased, up to A ≈ 50 when � = 0.1, for example. Now, formula (33) suggests that it is the
combination A�, representing the Peclet number of the flow, which is significant in determining
UT . This is confirmed in figure 3 where the same results are plotted versus A�. It is seen that
there is a good agreement provided A� ≤ 5, approximately.

We now examine the effect of non-zero heat loss and non-unit Lewis number (Le �= 1 or
le �= 0). The results are summarized in figures 4 and 5, both similar to figure 2. The figures
again show a good agreement between the asymptotics and numerics and allow us to draw
similar conclusions.

* Here and below, we have normalized the numerical values of UT by the corresponding numerical value of the
planar, unstretched flame speed. This allows a fair comparison between the asymptotics (based on an infinite β

assumption) and the numerics, without having to use excessively large values of β.
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706 J. Daou and P. Sparks

Figure 2. UT versus A predicted by asymptotics (solid line) and numerics (dashed line) for Le = 0 and κ = 0.

5.1.1 Effect of the flow on the response of thin and thick flames to heat loss. Before
leaving the time-independent cases, it is instructive to highlight the difference in the response
of thin and thick flames to the combined effect of heat loss and flow. This is illustrated in
figures 6 and 7, where UT is plotted versus κ for fixed values of A, and selected values of
Le increasing from top to bottom. The individual curves terminate at the extinction points
determined numerically. Figure 6, corresponding to a thick flame (� = 0.1), shows that UT

versus κ is practically unaffected by the flow. This observation is in agreement with the

Figure 3. UT versus A� predicted by asymptotics (solid line) and numerics (dashed lines) for Le = 0 and κ = 0.
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Flame propagation in a small-scale parallel flow 707

Figure 4. UT versus A predicted by asymptotics (solid line) and numerics (dashed line) for Le = 0 and κ = 0.1.

Figure 5. UT versus A predicted by asymptotics (solid line) and numerics (dashed line) for Le = 1 and κ = 0.
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708 J. Daou and P. Sparks

Figure 6. UT versus κ for � = 0.1 (thick flame) and selected values of A and Le.

Figure 7. UT versus κ for � = 10 (thin flame) and selected values of A and Le.
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Flame propagation in a small-scale parallel flow 709

asymptotic formula (33) which predicts that UT must deviate from its planar value U0 by an
amount of O(�2) which is very small (for O(1) values of A).

In contrast, figure 7, corresponding to a thin flame (� = 10), shows that UT versus κ is
significantly affected by the flow. Interestingly, and may be somewhat surprisingly, the thin
flame is found to be more resistant to heat loss in the presence of a flow, even for unit Lewis
number (Le = 0). When the Lewis number is large, however, the flame becomes less resistant
to heat loss in the presence of a flow, as seen on the bottom of figure 7. For near unit values of
the Lewis number at least, a plausible explanation for the increased resistance of the thin-flame
to heat losses is the increased surface area of the flame (due to the flow); this results in an
increased rate of heat generation per unit area perpendicular to direction of propagation; thus
stronger volumetric heat losses are required to cause flame extinction. Of course, flame stretch
and its sign along the flame front has also an important contribution which strongly depends
on the flow adopted and on the deviation of the Lewis number from unity, and which seems
difficult to predict without recourse to numerics. Although this is an important topic in its own
right, we shall not pursue it any further herein; see however [15] for a recent related study in
the framework of a vortical flow.

5.2 Oscillatory flows

We now turn our attention to the time-dependent cases, with the flow being of the form (34).
We begin with the adiabatic, equidiffusional case shown in figure 8, corresponding to � = 1,
A = 2 and τ = 1. Plotted are the instantaneous amplitude, Â ≡ A cos 2π t/τ , and total burning
rate � (defined in equation (7)) versus time t , after an initial transient which is not shown.
In each period τ of the flow, two maxima of � can be observed. These are due to the flow
amplitude reaching its maximum positive and negative values, leading to maxima in the flame
area and thus in �, which are seen to occur after a time lag however. From the plot, UT = �̄,
the time average of �, can be extracted and is found to be approximately equal to 0.92 in this
case.

5.2.1 Testing the validity of the asymptotics for oscillatory flows. Repeating the cal-
culation for several values of � and extracting �̄ as just described generates figure 9, where

Figure 8. Instantaneous amplitude Â (solid line) and total burning rate � (dashed line) versus time t for Le = 0
and κ = 0 (with � = 1, A = 2 and τ = 1).
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710 J. Daou and P. Sparks

Figure 9. UT versus � predicted by asymptotics (solid line) and numerics (dashed line) for Le = 0 and κ = 0 (with
A = 2 and τ = 2�/A).

UT (normalized as before) is plotted versus � along with the asymptotic curve based on for-
mula (35). In this figure, A is kept fixed, equal to 2, while taking τ = 2�/A. A good agreement
between the numerics and asymptotics can be observed, provided � < 0.8, approximately.
Similar calculations were performed in the presence of heat loss which are summarized in
figures 10 and 11 and lead to similar conclusions. Finally, we have also tested the influence of
non-unit Lewis number for two cases with Le = −1 and 3; the corresponding results appear
in figure 12. In summary, the numerical results confirm the validity of the time-dependent
asymptotics provided � is sufficiently small, although not excessively so, say � ≈ 0.8 for
A = 2.

5.2.2 Influence of the period of the oscillatory flow. Since the analytical formula (27)
was derived both for τ = O(1) and τ = O(�) in the asymptotic limit � → 0 with A = O(1),
we briefly examine the influence of the period of oscillations τ restricting ourselves to the
adiabatic equidiffusional case. A first set of computations is reported in figure 13 where UT

Figure 10. Instantaneous amplitude Â (solid line) and total burning rate � (dashed line) versus time t for Le = 0
and κ = 0.1 (with � = 1, A = 2 and τ = 1).
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Flame propagation in a small-scale parallel flow 711

Figure 11. UT versus � predicted by asymptotics (solid line) and numerics (dashed line) for Le = 0 and κ = 0.1
(with A = 2 and τ = 2�/A).

Figure 12. UT versus � predicted by asymptotics (solid line) and numerics (dashed lines) for κ = 0 and two cases
with Le = −1 and le = 3.

Figure 13. UT versus � predicted by asymptotics (solid line) and numerics (dashed line) for Le = 0, κ = 0, A = 2
and three cases with τ = 1, τ = � and τ = 10.
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712 J. Daou and P. Sparks

Figure 14. UT versus τ determined numerically for Le = 0, κ = 0, A = 2 and three cases with � = 0.1, � = 2 and
� = 5.

is plotted versus � for τ = � (as in figure 9) as well as for τ = 1 and τ = 10. This figure
confirms the validity of the asymptotics for both τ = O(1) and τ = O(�) cases, and shows
furthermore that the applicability of the asymptotics extends to higher values of � as τ is
increased. Another way of examining the influence of the period of the oscillatory flow τ is to
plot UT versus τ for selected fixed values of �. This is done in figure 14 where three values of �

are considered with the smallest value corresponding to a relatively thick flame and the larger
values to thinner flames. The figure illustrates that whereas thin flames are strongly affected
by the frequency of the oscillatory flows, thick flames are very weakly affected. More relevant
to this study, the figure illustrates that irrespective of the flow scale �, UT tends to unity (the
laminar flame speed) as τ → 0. This observation is in agreement with the results of [16] which
shows, within a G-equation model, that UT must tend to unity when the frequency of the flow
tends to infinity. Their result can in fact be derived from the model we use in this study by
considering the distinguished limit τ → 0 with A and � fixed. We conclude that formula (27)
must ultimately break down for τ sufficiently small. It does hold, however, for τ = O(�) as
shown analytically and confirmed numerically.

6. Conclusion

In this investigation, several new contributions have been made.
Firstly, we have derived an analytical formula for the effective flame speed UT in the

presence of a prescribed, oscillating, parallel flow, whose scale is small compared with
the laminar flame thickness and whose amplitude is of the order of the laminar flame speed.
The derivation was carried out in two distinguished limits in which the frequency of the os-
cillating flow is of the order of the natural frequency of the flame UL/δL or of the order of the
natural frequency of the flow (equal to the flow amplitude divided by its scale). The formula
derived in both limits, given by equation (27), shows that there is an increase in UT attributed
to the flow which depends quadratically on both the scale and intensity of the flow. We note
that our study yields partial support to Damköhler’s second hypothesis in that it shows that
the flame indeed behaves as a planar flame (to leading order) with and increased propagation
speed which depends on both the scale and amplitude of the velocity fluctuation. However our
formula for UT contradicts the formula given by Damköhler in his original paper [9] (pages 3
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Flame propagation in a small-scale parallel flow 713

and 35 of the English translation) which shows that UT has a square root dependence on the
scale and amplitude of the flow (i.e. UT ∼ (A�)1/2 in our non-dimensional notations), instead
of the quadratic dependence found in this paper (see also [12], page 123).

Secondly, we have carried out a large number of numerical calculations as a systematic test
of the asymptotic findings for both stationary and time-dependent flows. These accounted for
the effects of volumetric heat loss as well as differential diffusion. A good agreement was
found between the numerics and asymptotics for all cases, at least in the expected asymptotic
range of validity of the analytical results; of course the numerics do provide a concrete and
useful estimate of the actual range of validity of the asymptotics.

Thirdly the effect of the frequency of the oscillating flow has also been examined along
with additional aspects such as the differences in the response of thin and thick flames to heat
loss in the presence of a flow.

We close the paper by stressing the limitations of the present model and indicating a number
of possibilities to extend the range of validity of the findings. In doing so, our remarks will
focus on aspects relevant to turbulent combustion, although, as pointed out in the introduction,
the study is relevant to many other fields such as the emerging micro-combustion technology.
The first obvious limitation is the adoption of the constant density assumption for sake of
analytical tractability, which precludes to account for the effects of gas-expansion and the
Darrieus–Landau instability on flame interaction with small-scale turbulence (see, e.g. [17,
18]). The second limitation is that the flow considered is unidirectional and mono-scale.
The third limitation is related to the distinguished limits investigated (based here on � → 0
with A constant) under which we have examined Damköhler’s second hypothesis. A full
understanding of the problem requires naturally a knowledge of flame behaviour under a
variety of distinguished limits such as A → ∞ with � fixed, or A → ∞ with the Peclet (or
Reynolds) number A� fixed, etc. The latter two limits are important to understand the behaviour
of the effective flame speed UT for large values of the amplitude, say A, of the turbulent flow,
and the corresponding bending effect of UT versus A, which is frequently, but somewhat
inconclusively, discussed in the literature for parallel, vortical, and more general flows (see,
e.g. [19–24]). The interested reader may consult these references for an instructive discussion
of the bending effect and other aspects; of particular relevance to our study are references
[22] and [23] since they consider time-dependent flows without addressing the limit � → 0
however. Here we simply point out that the bending effect is believed by Ronney and Yakhot
[3] to be associated with the increasingly felt presence of the small scales in the (multi-scale)
flow by the flame, as the turbulent intensity is increased; these authors seem however to have
in mind a highly disrupted flame fronts similar to those investigated by Kagan and Sivashinsky
[15] for vortical flows, which cannot be obtained within the model of the present study. The
model, despite its simplicity and its extensive use in the literature however, can still be used
to provide significant analytical insight into flame behaviour in a flow field, under a variety of
distinguished limits which we are currently investigating. Similar investigations in the context
of multi-scale and more complex flows can also help get a clearer picture of turbulent premixed
flames in future studies.
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