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Abstract—We consider the absolute stability of discrete-time
Lurye systems with SISO/MIMO (non-repeated SISO) nonlin-
earities that are sector bounded and slope restricted. For this
class of systems, we present a parametrization of Lyapunov-
Lurye functional (LLF) that is the time-domain equivalence
to finite impulse response (FIR) Zames-Falb multipliers. As
searches over FIR Zames-Falb multipliers provide the best-
known results in the literature, the parametrization here pro-
vides the best-known Lyapunov function for absolute stability.
A motivation of this alternative is making it easy to analyze
the system in the time domain, especially when the frequency
domain expression of the system is not straightforward. In this
letter, we show the equivalence between the proposed LLF and
FIR multipliers theoretically and numerically.

Index Terms—Nonlinear systems, Absolute stability,
Lyapunov-Lurye functional, Zames-Falb multipliers

I. Introduction
This letter studies discrete-time Lurye1 systems (see

Fig. 1), where G is a linear time-invariant (LTI) stable
plant, and ϕ is a memoryless nonlinear operator, which
is sector-bounded in the range [0,Ψ] and slope-restricted
in the range [0,Γ]. The system is said to be absolutely
stable if the origin is globally uniformly asymptotically
stable for all nonlinearities in the class [2]. The problem
to show absolute stability is called Lurye problem [3], and
it has been being an open question since the early 1940s
due to the lack of computational necessary and sufficient
conditions.
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Fig. 1: The Lurye system

Recently, major breakthroughs of the stability problem
were achieved by the input-output analysis in frequency
domain, in particular, with the use of Zames–Falb mul-
tipliers. On one hand, tighter slope bounds for which
systems are absolutely stable were obtained by searches
over FIR Zames-Falb multipliers for both SISO case [4],
[5] and MIMO case [6]. On the other hand, in [7],
counterexamples with periodic solutions in the SISO case
were developed by using the corresponding (conservative)
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1Also written as Lur’e or Lurie due to different translations [1].

dual bound of LTI Zames-Falb multipliers [8]. As the
gap between these two slope bounds are often very small
(see [8, Table II, III]), it was conjectured in [8], [9] that
the existence of LTI Zames-Falb multipliers is a sufficient
and necessary condition for absolute stability.

Meanwhile, the least conservative stability result in
Lyapunov approach was provided in [10] by the search over
a class of LLFs. The conservativeness is reduced because
the Lurye term is bounded tightly [11]. Furthermore, as
the bound is in quadratic form, the positivity condition
of the whole LLF takes the combination of the coefficient
matrix in the quadratic term and the coefficients in the
Lurye terms (as we will show in Section III-A), instead
of making them positive definite respectively. See similar
technique to relax the positivity condition in continuous-
time [12], [13]. Nevertheless, as shown in [5], the LLF
in [10] is the time-domain equivalence to a restricted
subclass of second order FIR Zames-Falb multipliers (also
see the equivalence by numerical examples in Sec.IV); as
shown in [14], the extensions of the parametrization in [10]
are equivalent to restricted subclasses of higher order FIR
Zames-Falb multipliers.

In this letter, we present a novel parametrization of
LLFs, which is the time-domain equivalence to the full
class of FIR Zames-Falb multipliers for the case with
SISO/non-repeated MIMO nonlinearities. In all existing
literature, the least conservative stability condition is
obtained by searches over FIR Zames-Falb multipliers,
so the proposed parametrization of LLFs would be the
best Lyapunov function currently. Although the Lya-
punov criterion in this letter does not provide less-
conservative results than FIR Zames-Falb multipliers, it
may be significant to analyze the system purely in the
time domain, especially when there is no direct frequency
domain description of the system [15]. Moreover, time-
domain approaches provide convenience to analyze local
stability [16], while an input-output local stability in the
frequency domain using Zames–Falb multipliers is given
in [17].

It is also possible to convert a particular Zames-Falb
multiplier to a Lyapunov function by using J-spectral
factorization [15]. Once we have obtained the multiplier,
then a Lyapunov function can be derived, however no
parametrization of the Lyapunov function is provided.
In addition, the state-space technique is used to search
unstructured noncausal Zames-Falb multipliers in [18],
which shows the possibility to construct the Lyapunov
function. It is worth highlighting that noncausal FIR
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multipliers do not have a state-space representation [5].
Our objective is to derive a prior parametrization of LLFs.

The outline of the rest parts of the letter is as follows. In
Section II, some preliminary notations and theorems are
introduced, especially the Zames-Falb theorem and FIR
Zames-Falb multipliers. In Section III, the main result
of the parametrization of the LLF is provided, following
by its frequency domain expression with FIR Zames-
Falb multipliers. In Section IV, examples are used to
show the equivalence between the proposed LLF and FIR
multipliers. The results are the least conservative in all
existing literature. In Section V, the letter is concluded
with future studies.

II. Preliminaries
A. Notations

Consider the feedback interconnection in Fig. 1,

xi+1 =Axi +Bui, (1a)
yi =Cxi, (1b)
ui =−ϕ(yi), (1c)

where xi ∈Rnp , ui ∈Rmp and yi ∈Rmp are the state, input
and output of the system G at time instant i respectively;
the matrices A ∈Rnp×np , B ∈Rnp×mp , C ∈Rmp×nP , and A is
Schur. The memoryless nonlinearity operator ϕ is defined
by a static MIMO function ϕ : Rmp 7→Rmp as

ϕ(yi)≡
[
ϕ1(y1

i ) ϕ2(y2
i ) · · · ϕmp(yi

mp)
]⊤

, (2)

which consists of non-repeated SISO function ϕ j satisfying
sector bounded and slope restricted conditions,

0 ≤
ϕ j(σ)

σ
≤ ψ j, ∀σ ̸= 0, (3a)

0 ≤
ϕ j(σ2)−ϕ j(σ1)

σ2 −σ1
≤ γ j, ∀σ1 ̸= σ2, (3b)

where y j
i ( j = 1,2, · · · ,mp) is the jth element of the output

yi; ψ j and γ j are the jth elements of the positive diagonal
matrices Ψ and Γ respectively.

The expression G∗(z) denotes the complex conjugate
transpose of G(z) on |z| = 1, i.e. G∗(z) = G⊤ ( 1

z

)
, where

the superscript ⊤ indicates the transpose. For a matrix
M, He{M} = M + M⊤; M > (≥)0 means M is positive
(semi)definite. The expression diag(· · ·) denotes a diagonal
matrix; ⋆ represents a term of a symmetric matrix that
can be inferred by symmetry.

B. Bounds of the Lurye term
In order to convert LLF inequalities to LMIs, the Lurye

term is bounded in quadratic form below.
Lemma 1 ([11]): For the nonlinearity ϕ in (2) and

satisfying (3), the lower and upper bounds of the Lurye
term of each element ϕ j are L ≤

∫ σ2
σ1

ϕ j(σ)dσ ≤U , where

L = ϕ j(σ1)(σ2 −σ1)+
1

2γ j

{
ϕ j(σ2)−ϕ j(σ1)

}2
, (4a)

U = ϕ j(σ2)(σ2 −σ1)−
1

2γ j

{
ϕ j(σ2)−ϕ j(σ1)

}2
. (4b)

C. Zames-Falb theorem and FIR multipliers
Zames-Falb theorem is a based on passivity. By

appropriate class of Zames-Falb multipliers and loop-
transformation, slope-restricted nonlinearites are pre-
served to be passive. Then, with the same multiplier, if
the linear part can be shown strictly passive, then the
closed-loop system is stable.

For the nonlinearities ϕ defined in (2) (3), the class of
Zames-Falb multipliers are defined as follows.

Definition 1 (Discrete-time LTI Zames-Falb multipli-
ers for non-repeated SISO nonlinearities [19], [20]): The
convolution operator M : ℓmp

2 7→ ℓ
mp
2 is a discrete-time LTI

Zames-Falb multiplier if its impulse response m satisfies
the ℓ1-norm condition ∑∞

i=−∞ |mi| ≤ 2m0, where mi ∈Rmp×mp

are diagonal, and mi ≤ 0 for all i ̸= 0.
Theorem 1 (Zames-Falb theorem [19]): Consider the

feedback interconnection (1) with ϕ satisfying (2) and (3).
The system is absolutely stable if

He
{

M(z)
(
G(z)+Γ−1)}> 0 ∀|z|= 1, (5)

where M is a discrete-time LTI Zames-Falb multiplier.
Particularly, a subclass of discrete-time Zames-Falb mul-

tipliers with finite impulse response (i < ∞) is considered.
Definition 2 (FIR Zames-Falb multipliers [5], [6]): The

convolution operator is an FIR Zames-Falb multiplier if

M(z) = mnbz−nb · · ·+m1z−1 +m0 +m−1z · · ·+m−n f zn f , (6)

where the causal part is with the backward-shift operator
z−ib (ib = 1,2, · · · ,nb), and the anticausal part is with the
forward-shift operator zi f (i f = 1,2, · · · ,n f ). In addition,
the coefficients mib ,m−i f ∈Rmp×mp are non-positive diago-
nal matrices and satisfy the ℓ1-norm condition ∑nb

ib=1 |mib |+
∑

n f
i f =1 |m−i f | ≤ m0.

D. Kalman-Yakubovich-Popov (KYP) lemma
The time domain stability condition in this letter will

be converted into frequency domain by the KYP lemma.
Lemma 2: Given A ∈ Rn×n, B ∈ Rn×m, Π = Π⊤ ∈

R(n+m)×(n+m), with det(zI − A) ̸= 0 for all |z| = 1, the
following statements are equivalent:

1) There is a symmetric matrix P ∈ Rn×n and[
A⊤PA−P A⊤PB

B⊤PA B⊤PB

]
+Π < 0. (7)

2) For all |z|= 1,[
(zI −A)−1B

I

]∗
Π
[
(zI −A)−1B

I

]
< 0. (8)

Remark 1: The above equivalence holds with non-
strict inequalities only if the pair (A,B) are controllable.
However, strict inequalities are used in the next section,
and the pair (A,B) are often uncontrollable.

III. Main results
A. Main theorem

Theorem 2: Given a free parameter n ≥ 2. Consider
the feedback interconnection (1) with ϕ satisfying (2)
and (3). The system is absolutely stable if there exist
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a symmetric matrix P ∈R(npn+mpn)×(npn+mpn) and positive
diagonal matrices L ∈Rmp×mp , Mr ∈Rmp×mp , Nr ∈Rmp×mp

(r = 1,2, · · · ,n), such that

P̂ = P+Ξ > 0, (9)

Ω̂ =

[
ÂT P̂Â− P̂ ÂT P̂B̂

B̂T P̂Â B̂T P̂B̂

]
+Ω < 0, (10)

where Qr = Mr +Nr, and (Â, B̂), Ξ, Ω are defined in (11),
(12), (13) respectively on the next page.

Proof: The proof is based on the standard Lyapunov
theorem for asymptotic stability (e.g. [21, Theorem 13.2]).
See the proof in Appendix A.

Remark 2: As shown in (23), some terms are added and
subtracted at the same time. It is not mandatory here, but
it makes the LMI (10) consistent with (7). This relation
provides convenience to convert Theorem 2 into frequency
domain by the KYP lemma in the next part.

The proof of Theorem 2 is valid for any n ≥ 1. However,
due to the slight difference in the expression of Ω, the case
for n = 1 is claimed as a corollary below.

Corollary 1: Consider the feedback interconnection (1)
with ϕ satisfying (2) and (3). The system is absolutely sta-
ble if there exist a symmetric matrix P ∈R(np+mp)×(np+mp)

and positive diagonal matrices L ∈Rmp×mp , M1 ∈Rmp×mp ,
N1 ∈Rmp×mp , such that (9), (10) are satisfied, where

Â =

[
A −B
0 0

]
, B̂ =

[
0
I

]
,

Ξ =

[
C⊤N1ΨC ⋆

−N1C Q1Γ−1

]
,

Ω =

 0 ⋆ ⋆
−N1CA+LC He{N1CB}−2LΨ−1 ⋆

−M1C+Q1CA Q1Γ−1 −Q1CB −2Q1Γ−1

 .

Proof: The proof follows from the proof of Theorem 2
by setting n = 1, so it is omitted.
B. Frequency domain interpretation

Similar to the technique in [5], [14], the main theorem
is converted into frequency domain below.

Theorem 3: Consider the feedback interconnection in
(1). If Theorem 2 or Corollary 1 is satisfied with some n,
Ψ, Γ by solutions L, Mr, Nr, then the frequency domain
condition

He
{

L(G(z)+Ψ−1)+M(z)(G(z)+Γ−1)
}
> 0 (14)

holds for all |z|= 1 with the FIR Zames-Falb multiplier

M(z) =−Mnz−n · · ·−M1z−1 +Q−N1z · · ·−Nnzn, (15)

where Q = ∑n
r=1 Mr +∑n

r=1 Nr.
Proof: As the LMI (10) is in the same structure of

(7), it is clear by the KYP lemma that (10) is equivalent
to the frequency domain condition[

(zI − Â)−1B̂
I

]∗
Ω
[
(zI − Â)−1B̂

I

]
< 0,

which can be simplified as (14) with (15). Note that
zG(z) = CA(zI −A)−1B+CB. The detailed procedures are
omitted, and refer to [5] for the similar proof.

Remark 3: Theorem 1 and 2 are sufficient for asymptotic
stability. Furthermore, in recent studies [22], [23], a subset
of FIR Zames-Falb multipliers are invoked to explore the
exponential decay rate of Lurye systems for which asymp-
totic stability is guaranteed. Similarly, if the Lyapunov
function is further bounded by α∥xi∥p ≤ V (xi) ≤ β∥xi∥p

and certifies ρV (xi+1)−V (xi)≤ 0 with some α,β > 0, p≥ 1
and ρ > 1, then the system is proved to be exponentially
stable in the way ∥xi∥ ≤ (β/α)1/p ∥x0∥(ρ1/p)−i [21, Theo-
rem 13.2]. Then, it is also possible to show the equivalence
between the Lyapunov criterion and the Zames-Falb theo-
rem in [22], [23] for exponential stability, but this problem
is still open.

In (15), the steps of causal and anticausal terms are
equal (nb = n f = n). It is also possible to make them
different. Assume that nb ̸= n f and n = max(nb,n f ). In
(17), by removing the terms with nr if n f < r ≤ n, or
removing the terms with mr if nb < r ≤ n, it leads to
FIR Zames-Falb multipliers with causal steps nb and
anticausal steps n f . Alternatively, it is also feasible by
vanishing the corresponding coefficients Mr or Nr in the
LMIs. Nevertheless, we fix nb = n f = n here.

IV. Numerical examples
A. Examples

1) G1(z) = 2z+0.92
z2−0.5z

2) G2(z) = 0.2343z2+0.1224z+0.04805
z3+1.611z2+1.065z+0.08843

3) G3(z) = z4−1.5z3+0.5z2−0.5z+0.5
4.4z5−8.957z4+9.893z3−5.671z2+2.207z−0.5

4) G4(z) =
[ 0.2

z−0.98
−0.2

z−0.92
0.3

z−0.97
0.1

z−0.91

]

5) G5(z) =


−0.551z+0.02933
z2+0.5z+0.1327

−0.852z−0.3544
z2+0.5z+0.1327

−0.255z−0.2061
z2+0.5z+0.1327

−2.386z−0.1756
z2+0.5z+0.1327

−2.054z−0.5572
z2+0.5z+0.1327

2.347z+1.259
z2+0.5z+0.1327

0.2442
z2+0.5z+0.1327

0.5568z−0.02436
z2+0.5z+0.1327

0.3456z−0.6324
z2+0.5z+0.1327


6) G6(z)=

[
−1.375z2−2.312z−0.9785
z3+2.29z2+1.774z+0.4605

−0.8586z2−0.5926z−0.06916
z3+0.75z2+0.0973z−0.002785

1.345z2+1.879z+0.6163
z3+2.38z2+1.856z+0.4714

1.497z2−1.582z+0.3669
z3−1.78z2+0.9876z−0.1586

]
Six plants are included to compare the results, where G1,

G3, G4 are taken from literature [5], [10]; the rest of plants
are new in this letter to address that less-conservative
results are possible by adding more terms in the LLF. We
present the results in Table I by Theorem 2/Corollary 1
with n = 1,2,3 and 10 respectively. For the MIMO exam-
ples, we set the maximum sector bound ψ j as a constant
for all j. Meanwhile, we set γ j = ψ j for all j. All LMIs
are solved in Matlab using semidefinite program (SDP)
toolbox Yalmip [24] with solver sdpt3 [25].

B. Numerical Results
The results are compared with the corresponding mul-

tipliers results, which are obtained by searching FIR
multipliers where nb = n f = n with factorization by lifting
in [5], [6]. The results are also compared with [10], which
is least-conservative in existing Lyapunov literature (see
numerical examples therein).
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Â =



0 I 0 · · · 0 0 0 0 · · · 0
0 0 I · · · 0 0 0 0 · · · 0

0 0 0
. . . 0 0 0 0 · · · 0

...
...

...
. . . . . .

...
...

...
. . .

...
0 0 0 · · · A 0 0 0 · · · −B
0 0 0 · · · 0 0 I 0 · · · 0
0 0 0 · · · 0 0 0 I · · · 0

0 0 0 · · · 0 0 0 0
. . . 0

...
...

...
. . .

...
...

...
...

. . . . . .
0 0 0 · · · 0 0 0 0 · · · 0


(npn+mpn)×(npn+mpn)

B̂ =



0
0
0
...
0
0
0
0
...
I


(npn+mpn)×mp

(11)

Ξ =



CT ∑n
r=1 NrΨC ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

0 CT ∑n
r=2 NrΨC ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

0 0 CT ∑n
r=3 NrΨC ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

...
...

...
. . . ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

0 0 0 · · · CT ∑n
r=n NrΨC ⋆ ⋆ ⋆ ⋆ ⋆

−∑n
r=1 NrC 0 0 · · · 0 ∑n

r=1 QrΓ−1 ⋆ ⋆ ⋆ ⋆

0 −∑n
r=2 NrC 0 · · · 0 0 ∑n

r=2 QrΓ−1 ⋆ ⋆ ⋆

0 0 −∑n
r=3 NrC · · · 0 0 0 ∑n

r=3 QrΓ−1 ⋆ ⋆
...

...
...

. . .
...

...
...

...
. . . ⋆

0 0 0 · · · −∑n
r=n NrC 0 0 0 · · · ∑n

r=n QrΓ−1



(12)

Ω =



0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
0 0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
0 0 0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
...

...
...

. . . ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
0 0 0 0 0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

LC −N1C −N2C · · · −Nn−1C−NnCA −2LΨ−1 ⋆ ⋆ ⋆ ⋆ ⋆

−M1C Q1C 0 · · · 0 Q1Γ−1 −2Q1Γ−1 ⋆ ⋆ ⋆ ⋆

−M2C 0 Q2C · · · 0 Q2Γ−1 0 −2Q2Γ−1 ⋆ ⋆ ⋆
...

...
...

. . .
...

...
...

...
. . . ⋆ ⋆

−Mn−1C 0 0 · · · Qn−1C Qn−1Γ−1

+BTCT Nn
0 0 · · · −2Qn−1Γ−1 ⋆

−MnC 0 0 · · · QnCA QnΓ−1 0 0 · · · −QnCB −2QnΓ−1



(13)

Particularly, the less-conservative SISO results are com-
pared with the slope bounds when periodic solutions exist.
As these two slope bounds are very close, the existence of
FIR multiplier/LLF is almost a necessary and sufficient
condition for absolute stability in SISO case, while the
techniques in [7] [8] need further development for the
MIMO case.

As shown in Table I, the maximum slope bounds are
less-conservative by increasing the order n in LLFs and the
order n f , nb in FIR multipliers. Further less-conservative
results are possible by using larger n and nb, n f at the cost
of increasing the computational complexity, e.g. numerous
decision variables and large size of LMIs. In consequence,
numerical results may deteriorate when the order of FIR
multipliers or LLF is overlarge (see [5, Fig.3]).

Because the criterion in [10] is equivalent to a restricted
second order FIR multiplier [5], the results in [10] are
close to first order FIR multipliers in all examples besides
Example 6. In Example 6, the result is between first order
and second order FIR multipliers. Moreover, according

to Theorem 3, the main theorem with a given n is the
time-domain equivalence of FIR multipliers with n f = nb =
n. Hence, the results in [10] are also between the main
theorem with n = 1 and n = 2, except for Example 4.

C. Discussion

The search of LLFs by Theorem 2 is slightly conservative
than the search of FIR multipliers numerically, especially
for Example 4, 5, 6, when n = 10. One reason may be that
two LMIs P̂> 0 and Ω̂< 0 are solved in the main theorem,
while only one LMI in the form of (7) is solved in the
multiplier approach. Note that Mr,Nr ≥ 0, mib ,m−i f ≤ 0
and the ℓ1-norm condition can be converted as scalar
inequalities because they are diagonal. Another reason
may be the large size of P̂ and Ω̂. For instance, for
Example 6, the sizes of P̂ and Ω̂ are 140×140 and 142×142
respectively, while the size of the LMI by multiplier
approach is 54×54 by lifting factorization [6, Sec.5]. As a
result, LLF takes about 100 s per iteration in the bisection
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TABLE I: Maximum slope bounds by FIR multipliers and LLF
Ex (1) Ex (2) Ex (3) Ex (4) Ex (5) Ex (6)

Park et al. (2019) [10] 0.9108076 0.665928 2.590419 3.809132 0.288438 0.620123
FIR multiplier [5], [6] (n f = nb = 1) 0.9108076 0.665932 2.590419 3.809133 0.288439 0.572377
FIR multiplier [5], [6] (n f = nb = 2) 0.9114577 1.366665 2.590428 3.810275 0.348746 0.690220
FIR multiplier [5], [6] (n f = nb = 3) 0.9114579 1.366665 3.225440 3.812292 0.534200 0.696217
FIR multiplier [5], [6] (n f = nb = 10) 0.9114579 1.661334 3.824034 3.822113 0.553116 0.737294
Main theorem (n = 1) 0.9108076 0.665931 2.590423 3.807457 0.288439 0.572376
Main theorem (n = 2) 0.9114580 1.366680 2.590423 3.808584 0.348746 0.689670
Main theorem (n = 3) 0.9114580 1.366680 3.225431 3.809960 0.533969 0.691339
Main theorem (n = 10) 0.9114580 1.661325 3.824028 3.809960 0.545365 0.723420
Slope bound when periodic solution exists [7], [8] 0.9114583 1.661340 3.824040 N/A N/A N/A
Nyquist Value 1.086956 2.285526 7.907000 3.850132 0.556590 0.878303

search on Γ, while FIR multiplier only takes about 4 s per
iteration.

The computational burden of Theorem 2 might
be reduced by expressing yi+l (l = 1,2, · · · ,r) in
(18) and (23) by yi+l = CAlxi −C ∑l

κ=1 Al−κ Bϕ(yi+(κ−1)).

Hence, ηi= [x⊤i ϕ(yi)
⊤· · ·ϕ

(
yi+(n−1)

)⊤
]⊤, and ζi =[x⊤i ϕ(yi)

⊤

ϕ(yi+1)
⊤· · ·ϕ(yi+n)

⊤]⊤, which indicates that the sizes of P̂
and Ω̂ of Example 6 can be reduced to 32×32 and 34×34
respectively. Nevertheless, it is complicated to provide the
general form of LMIs in a clear pattern as (12) and (13),
so this possible improvement for the numerical calculation
is left as a future study.

In short, Theorem 2 is the least conservative in Lya-
punov approach for Lurye systems with sector-bounded,
slope-restricted nonlinearities. Moreover, it is theoretically
equivalent to the search of FIR multipliers in frequency
domain, although the FIR parametrization is more nu-
merically efficient in particular for large values of n.

V. Conclusions
We have presented a time-domain stability criterion

for Lurye systems with sector-bounded, slope-restricted
nonlinearities. The stability criterion is based on LLFs,
which is equivalent to the frequency domain condition
with FIR Zames-Falb multipliers. The numerical results
are least conservative in all existing Lyapunov literature,
and equivalent to the search of FIR Zames-Falb multipliers
although minor computational issue may occur when the
size of LMIs becomes large.

Nevertheless, for Lurye systems where nonlinearities
are also odd and/or repeated, less-conservative stability
results can be obtained by searching over wider classes of
FIR Zames-Falb multipliers [5], [6], [20]. The equivalent
Lyapunov parametrization remains open.
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Appendix
A. Proof of Theorem 2

Proof: In brief, we prove a LLF candidate V is positive
if (9) holds, and its difference ∆V is negative if (10) holds.
Hence, it is sufficient for absolute stability.

Here, we denote Mr = diag(m1
r ,m

2
r , · · · ,m

mp
r ) and Nr =

diag(n1
r ,n

2
r , · · · ,n

mp
r ), where all elements are positive.

First, we consider the LLF candidate
V
(
xi, · · · ,xi+(n−1),ϕ(yi), · · · ,ϕ

(
yi+(n−1)

))
=

V0
(
xi, · · · ,xi+(n−1),ϕ(yi), · · · ,ϕ

(
yi+(n−1)

))
+V1(xi,ϕ(yi))+V2(xi,xi+1,ϕ(yi),ϕ(yi+1))

+ · · ·+Vn
(
xi, · · · ,xi+(n−1),ϕ(yi), · · · ,ϕ

(
yi+(n−1)

))
. (16)

Henceforth, the variables of V are omitted for simplicity.
In the LLF, V 0 = η⊤

i Pηi, and the augmented state is

ηi = [x⊤i · · · x⊤i+(n−1) ϕ(yi)
⊤ · · · ϕ

(
yi+(n−1)

)⊤
]⊤.

In addition, for r = 1,2, · · · ,n,

Vr = 2
mp

∑
j=1

m j
r

∫ y j
i

0
ϕ j(σ)⊤dσ +2

mp

∑
j=1

m j
r

∫ y j
i+1

0
ϕ j(σ)⊤dσ

+ · · ·+2
mp

∑
j=1

m j
r

∫ y j
i+(r−1)

0
ϕ j(σ)⊤dσ

+2
mp

∑
j=1

n j
r

∫ y j
i

0

{
ψ jσ −ϕ j(σ)

}⊤
dσ

+2
mp

∑
j=1

n j
r

∫ y j
i+1

0

{
ψ jσ −ϕ j(σ)

}⊤
dσ

+ · · ·+2
mp

∑
j=1

n j
r

∫ y j
i+(r−1)

0

{
ψ jσ −ϕ j(σ)

}⊤
dσ . (17)

By Lemma 1, the lower bound of Vr is given by

Vr ≥ y⊤i NrΨyi + y⊤i+1NrΨyi+1 + · · ·+ y⊤i+(r−1)NrΨyi+(r−1)

−He
{

ϕ(yi)
⊤Nryi

}
−He

{
ϕ(yi+1)

⊤Nryi+1

}
−·· ·−He

{
ϕ(yi+(r−1))

⊤Nryi+(r−1)

}
+ϕ(yi)

⊤QrΓ−1ϕ(yi)+ϕ(yi+1)
⊤QrΓ−1ϕ(yi+1)

+ · · ·+ϕ(yi+(r−1))
⊤QrΓ−1ϕ(yi+(r−1)). (18)

After some calculation, the lower bounds sum up as

V1 +V2 + · · ·+Vn ≥ η⊤
i Ξηi, (19)

where Ξ is in (12). Hence, together with the quadratic
term, the LLF (16) is bounded quadratically as V ≥

η⊤
i (P+Ξ)ηi, and it is positive for any nonzero ηi if and

only if (9) holds.
Next, we consider the difference of V ,

∆V = ∆V0 +∆V1 +∆V2 + · · ·+∆Vn, (20)

where ∆V0 = η⊤
i+1Pηi+1 −η⊤

i Pηi, and for r = 1,2, · · · ,n,

∆Vr = 2
mp

∑
j=1

m j
r

∫ y j
i+r

y j
i

ϕ j(σ)⊤dσ

+2
mp

∑
j=1

n j
r

∫ y j
i+r

y j
i

{
ψ jσ −ϕ j(σ)

}⊤
dσ . (21)

In ∆V0, the augmented state ηi satisfies the state-space
representation ηi+1 = Âηi+ B̂ϕ(yi+n), where the pair (Â, B̂)
are in (11), so we have

η⊤
i+1Pηi+1 −η⊤

i Pηi = ζ⊤
i

[
Â⊤PÂ−P Â⊤PB̂

B̂⊤PÂ B̂⊤PB̂

]
ζi,

where ζi = [x⊤i x⊤i+1 · · · x⊤i+(n−1) ϕ(yi)
⊤ ϕ(yi+1)

⊤ · · · ϕ(yi+n)
⊤]⊤,

and xi+n is expressed by

xi+n =CAxi+(n−1)−CBϕ(yi+(n−1)). (22)

The integral terms ∆V1 to ∆Vn above are bounded
quadratically by Lemma 1, and some terms are added and
subtracted at the same time in each term as discussed in
Remark 2. Then, we have the general form

∆Vr ≤ y⊤i+rNrΨyi+r − y⊤i NnΨyi

+2ϕ(yi+r)
⊤Mr(yi+r − yi)−2ϕ(yi)

⊤Nr(yi+r − yi)

− [ϕ(yi+r)−ϕ(yi)]
⊤ QrΓ−1 [ϕ(yi+r)−ϕ(yi)]

+ y⊤i+1(Nr −Nr)Ψyi+1 + y⊤i+2(Nr −Nr)Ψyi+2

+ · · ·+ y⊤i+(r−1)(Nr −Nr)Ψyi+(r−1)

+ϕ(yi+1)
⊤(Nr −Nr)yi+1 +ϕ(yi+2)

⊤(Nr −Nr)yi+2

+ · · ·+ϕ(yi+r)
⊤(Nr −Nr)yi+r

+ϕ(yi+1)
⊤(Qr −Qr)ϕ(yi+1)+ϕ(yi+2)

⊤(Qr −Qr)ϕ(yi+2)

+ · · ·+ϕ(yi+r)
⊤(Qr −Qr)ϕ(yi+r). (23)

Meanwhile, the sector condition (3a) implies that

2ϕ⊤(yi)L
[
yi −Ψ−1ϕ(yi)

]
≥ 0 (24)

holds with a positive diagonal matrix L.
Involving the upper bounds of ∆V0 and ∆Vr for r =

1,2, · · · ,n, and involving the sector condition (24), by
complicated but straightforward calculation, we have

∆V ≤ ζ⊤
i

([
Â⊤(P+Ξ)Â− (P+Ξ) Â⊤(P+Ξ)B̂

B̂⊤(P+Ξ)Â B̂⊤(P+Ξ)B̂

]
+Ω

)
ζi,

(25)
where xi+n is expressed by (22), and Ω is given in (13).
Hence, ∆V < 0 if (10) holds.

In summary, (9) and (10) is sufficient for asymptotic
stability [21, Theorem 13.2].
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