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ABSTRACT
The bound of convergence rates for discrete-time Lur’e systems has recently attracted much
attention. The contributions of this technical note are twofold. Firstly, we show an example
where the asymptotic convergence rate is slower than the linear case. This example can be seen
as a counterexample of the Kalman conjecture extended to the analysis of convergence rates
and motivates a rigorous analysis. Secondly, we develop a result to bound the convergence
rate as a convex search over the suitable subclass of noncausal FIR Zames-Falb multipliers.
The convex search is demonstrated with several numerical examples.
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1. Introduction

A classic topic in control theory is the Lur’e problem (Lurie & Postnikov, 1944), which con-
cerns the stability of a feedback interconnection between a linear time-invariant (LTI) system
G and any uncertainty or nonlinearity ∆ within some classes (see Figure 11). Particularly,
when the nonlinearity ∆ is slope-restricted, the input-output stability of the closed-loop sys-
tem can be tested by Zames-Falb theorem, where the class of Zames-Falb multipliers M ,
defined in both continuous-time (G.Zames & P.L.Falb, 1968) and discrete-time (Willems &
Brockett, 1968; Willems, 1971) (see Carrasco, Turner, and Heath (2016) for a tutorial), is of-
ten involved to preserve the positivity of the class of nonlinearities. Then the absolute stability
problem is reduced to a search of M ∈M such that

Re{M(z)(−1+KG(z))}< 0 ∀|z|= 1, (1)

where K is the maximum slope of the nonlinearity.
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This condition can be expressed equivalently in the IQC framework (Megretski & Rantzer,
1997), where the frequency domain inequality (FDI) can be converted to computable linear
matrix inequalities (LMIs) by the Kalman-Yakubovich-Popov (KYP) lemma (Rantzer, 1996).
In continuous-time, there exist several search algorithms which have been summarised in Car-
rasco et al. (2016). In discrete-time, searches over finite impulse response (FIR) Zames-Falb
multipliers have been proposed in Carrasco, Heath, Zhang, Ahmad, and Wang (2019); Wang,
Heath, and Carrasco (2014).
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Figure 1. The Lur’e system

A direct analysis of the rate of exponential convergence has attracted much attention in re-
cent studies, since first-order optimisation algorithms, such as gradient decent method and
Nesterov method, can be rewritten as Lur’e systems (Lessard, Recht, & Packard, 2016).
Therefore, the convergence rate of these optimisation algorithms can be translated into the
exponential rate of the corresponding unforced Lur’e systems.

One of the cornerstone to understand the development of the absolute stability theory is
the Kalman conjecture (Kalman, 1957). It states that the Lur’e system is stable for all slope-
restricted nonlinearities if and only if the system is stable for all the corresponding linear
gains (Kalman, 1957). This conjecture is false in general, but provides useful insights. A first
contribution of this note is to extended the Kalman conjecture to the analysis of convergence
rate and to show that it is false in Section 3. To the best of our knowledge, we show the first
counterexample to this conjecture for the convergence rate. The examples in the literature
have shown systems with limit cycles (Lessard et al., 2016; Scoy, Freeman, & Lynch, 2018)
so they are equivalent to the counterexamples to the Kalman conjecture given in (Carrasco,
Heath, & de la Sen, 2015; Heath, Carrasco, & de la Sen, 2015). For all these examples,
the classical analysis would not be able to show stability (Carrasco et al., 2019; Willems &
Brockett, 1968). Here, we show that the convergence rate of an asymptotically stable system
could be slower than the linearised systems, hence the classical analysis is insufficient. The
fundamental difference between both classes of examples is the required nonlinearity as all
trajectories are asymptotically convergence, so a discontinuity in the derivative around zero
is required.

In Boczar, Lessard, Packard, and Recht (2017); Boczar, Lessard, and Recht (2015); Free-
man (2018); Hu and Seiler (2016), the convergence rate ρ of a Lur’e system has been es-
timated in two frameworks, as summarised below. By these techniques, less-conservative
results are obtained in optimisation (Badithela & Seiler, 2019; Cyrus, Hu, Scoy, & Lessard,
2018; Fazlyab, Ribeiro, Morari, & Preciado, 2018; Scoy et al., 2018) and control (Nelson &
Mallada, 2018).

• On the one hand, the conventional IQC analysis is applied in Hu and Seiler (2016),
where exponential stability (with rate 0 < ρ < 1) of the original system in Figure 1
is tested by linearly stability (ρ = 1) of the scaled system in Figure 2. The IQCs are
constructed for the scaled uncertainty ∆ρ , and the corresponding exponential stability
condition is to search for a multiplier that belongs to a suitable subset of M , such that

Re{M(z)(−1+KGρ(z))}< 0 ∀|z|= 1, (2)

2



6

m- - ρ+

ρ−

-

�

G

∆

-

� ρ+

ρ−

?m� �

g

f

wρ

vρ

w y

zρ z v

︷ ︸︸ ︷Gρ

︸ ︷︷ ︸
∆ρ

Figure 2. The scaled system in Hu and Seiler (2016). A mathematical definition of the operators ρ+ and ρ− is given in
Definition 2.8

where the multiplier is in the same form of original FIR Zames-Falb multipliers, while
the `1-norm condition is penalised with ρ .
• On the other hand, in Boczar et al. (2017, 2015); Freeman (2018), the so-called ρ-IQC

framework is proposed, where the exponential stability of the original system in Figure
1 can be tested directly. Similarly, ρ-IQCs are constructed for the original uncertainty
∆, and the exponential stability condition is to search for a multiplier that also belongs
to a subset of M , such that

Re{M(ρz)(−1+KG(ρz))}< 0 ∀|z|= 1, (3)

where the multiplier is constructed from the original FIR Zames-Falb multiplier M(z)
by replacing z by ρz, and the `1-norm condition is also penalised with ρ .

In both approaches, sound analysis on the causal FIR Zames-Falb multipliers are provided
in the literature above. In the IQC approach, noncausal multipliers are not used in Hu and
Seiler (2016). In the ρ-IQC approach, the noncausal FIR Zames-Falb multiplier in the form
M(ρz) is studied in Freeman (2018), where its modified `1-norm condition is deliberated.
In contrast, the techniques to search over the class of noncausal multipliers have not been
considered in the literature above. In addition, due to the extra complexity to deal with the
asymmetric variables ρz and ρ

z (instead of 1
ρz ), the IQC factorisations (Scherer & Weiland,

2011) are restricted in the ρ-IQC framework. The relation is shown in Figure 3.
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Figure 3. The analysis is on the circle with radius 1 in IQC framework; the analysis is on the circles with radii ρ and 1
ρ

in
ρ-IQC framework.

The second contribution of this note is to provide a unified convex search for noncausal
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multipliers in Section 4, following some of the techniques used in Carrasco et al. (2019);
Wang et al. (2014). As a result, an easy-to-check LMI is provided to estimate a tighter bound
of the convergence rate that can be used as a unified structure for FIR Zames-Falb multipliers.
Numerical results are demonstrated to lead to less-conservative analysis in Section 5.

This note formalises the search of noncausal multipliers initially drafted in (Zhang, Seiler,
& Carrasco, 2019), which has been already used in (Michalowsky, Scherer, & Ebenbauer,
2020) as part of the robustness analysis of optimization algorithms. The main difference with
the classical lifting technique in (Carrasco et al., 2019) is the requirement to deal with the
causal and anticausal parts in different vectors. Moreover, the factorisation method in this
note is applicable for both IQC and ρ-IQC approaches by simply changing a parameter in the
LMI.

2. Preliminaries

2.1. Notations and Lur’e systems

Let Z and Z+ (R and R+) be the set of integer (real) numbers and positive integer (real) num-
bers including zero, respectively. Let C be the set of complex numbers. We use the notations
0(a×b) for a× b zero matrices, and I(n) for n× n identity matrices, where the dimension is
neglected if it is straightforward. Moreover, the empty matrix is denoted by /0.

Let ` be the space of all real-valued sequences h : Z 7→R. Let `2 be the space of real-valued
square-summable sequences h :Z+ 7→R. For any ρ ∈ (0,1), we say that h∈ `ρ

2 if the sequence
{ρ−khk}∞

k=0 belongs to `2. Finally, for absolute-summable sequences h : Z 7→ R, we define
‖h‖1 = ∑

∞
k=−∞

|hk|.
We say a proper real rational transfer function G ∈ RH∞ if it has all poles inside the open

unit disk in the complex plane; G ∈ RL∞ if it has no pole on the unit disk. With the minimal
state-space realisation, the transfer function is G(z) =C(zI−A)−1B+D, or G∼

[
A B; C D

]
in

short. The expression G∗(z) denotes the complex conjugate transpose of G(z) at |z| = 1, i.e.
G∗(z) = GT

(1
z

)
, where the superscript T indicates the transpose. Moreover, if a parameter

ρ is involved in the variable, the complex conjugate transpose is expressed as G∗(ρ,z) =
GT
(
ρ, 1

z

)
. In some cases , we write G(ρz) as G(ρ,z) to stress the form of complex conjugate

transpose.
A nonlinear operator ∆ : `(Z+) 7→ `(Z+) is said to be memoryless if there exists a map

N : R → R such that (∆υ)k = N(υk), ∀k ∈ Z+. Assume that ∆(0) = 0. The memoryless
uncertainty ∆ is said to be (sector) bounded, denoted by ∆ ∈ [k,k] (0 ≤ k < k < ∞), if
kx≤∆(x)≤ kx,∀x∈R. The uncertainty ∆ is said to be slope-restricted, denoted by ∆∈ S[k,k],
if k(x1− x2) ≤ ∆(x1)−∆(x2) ≤ k(x1− x2),∀x1,x2 ∈ R and x1 6= x2. The slope-restricted un-
certainty is also sector bounded, but the reverse is not. Finally, the uncertainty ∆ is said to be
odd if ∆(−x) =−∆(x), ∀x ∈ R.

Consider the Lur’e system in Figure 1. It is expressed as

v = f +Gw, w = g+∆v.

The feedback interconnection is well-posed if the inverse map (v,w) 7→ (g, f ) is causal in
`.

Definition 2.1. The feedback interconnection in Figure 1 is `2-stable if it is well-posed, and
the signals (v,w) ∈ `2 for any (g, f ) ∈ `2.

Definition 2.2 (Vidyasagar (2002)). The feedback interconnection in Figure 1 is globally
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exponentially stable with convergence rate ρ if there exists some ρ ∈ (0,1) and c ≥ 1 such
that when g = 0 and f = 0,

‖xk‖ ≤ cρ
k‖x0‖ ∀k ≥ 0, ∀x0 ∈ Rn. (4)

Remark 1. Condition (4) is equivalent to the fact that the state xk of G converges to zero
exponentially with the rate ρ , i.e. xkρ−k→ 0 as k→ ∞.

Henceforth, the convergence rate of the feedback interconnection in Figure 1 is referred to
as ρ{G,∆}.

Comparing the definitions above, `2-stability is an input-output relation, while exponential
stability is an internal property. Therefore, we restate exponential stability in an input-output
manner as follows.

Definition 2.3. The feedback interconnection in Figure 1 is `ρ

2 -stable if it is well-posed, and
the signals (v,w) ∈ `

ρ

2 for any (g, f ) ∈ `
ρ

2 .

Theorem 2.4. For the Lur’e system in Figure 1, assume G is controllable and observable, and
∆ is memoryless and slope-restricted. The unforced system is globally exponentially stable
with rate ρ if and only if the forced system is `ρ

2 -stable.

Proof. The sufficiency can be proved in a similar way with Proposition 5 in Boczar et al.
(2017, 2015), and the necessity is proved in outline in Appendix A.

2.2. Kalman conjecture for convergence analysis

Definition 2.5 (Nyquist value, KN). The Nyquist value of a stable transfer function G(z) is

KN = sup
K
{K > 0 : (1− τKG(z))−1 is stable ∀τ ∈ [0,1]}.

Conjecture 2.6 (Kalman conjecture (Kalman, 1957)). Let ∆ be memoryless, and ∆ ∈ S[0,K].
The feedback interconnection between G and ∆ is asymptotically stable if and only if K < KN .

Although the Kalman conjecture is false in general, it is valid for some systems (see Car-
rasco et al. (2016) for a general summary). We say that a system satisfies the Kalman conjec-
ture when it is valid for this particular system.

We can translate the above definition and conjecture into the convergence analysis. Define
the absolute convergence rate of the class of systems defined by the Lur’e system as

ρ
∗
{G,K} = sup

∆∈S[0,K]

{ρ{G,∆}}, (5)

where K < KN . A lower bound of the ρ∗{G,K} is given by the linear case as

ρ
∗
{G,K} = max

τ∈[0,1]

{∣∣∣∣pole
(

G
1− τKG

)∣∣∣∣} . (6)

The Kalman conjecture for convergence analysis can be formulated by using definitions in
(5) and (6) as follows:
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Conjecture 2.7 (Kalman conjecture for convergence analysis). For any G ∈ RH∞, let ∆ ∈
S[0,K] with K < KN , then

ρ
∗
{G,K} = ρ

∗
{G,K}. (7)

A counter-example for this conjecture will be provided in Section 3. It shows that the
correct statement is ρ∗{G,K} ≥ ρ∗{G,K}, and it motivates the analysis below.

2.3. IQC framework for convergence analysis

In the last years, IQC and ρ-IQC analysis have been used to estimate an upper bound of
ρ∗{G,K}, denoted by ρ∗{G,K}. In this section, we will focus on the stability technique in the
IQC framework, and a class of ρ-IQC multipliers defined in literature will be mentioned for
comparison in the next section.

The relation below makes it possible to analyse exponential stability in the IQC framework.

Definition 2.8 (Boczar et al. (2017, 2015)). In Figure 2, with ρ ∈ (0,1), define ∆ρ ≡ ρ− ◦
(∆◦ρ+), and Gρ(z)≡ ρ− ◦(G(z)◦ρ+), where the operators ρ+ and ρ− are defined as follows

ρ+(wρ)≡ ρ
kwρ,k, ρ−(y)≡ ρ

−kyk.

Due to the linearity of G, Gρ(z) = G(ρz).

Lemma 2.9. ∆ρ is odd if and only if ∆ is odd.

Proof. For each given ρ , the operators ρ+ and ρ− are constant at each time instant k. As a
result, ∆ρ is a time-varying but memoryless operator. In addition, ∆ρ is odd at each instant k
if and only if ∆ is odd.

Theorem 2.10 (Boczar et al. (2017, 2015); Hu and Seiler (2016)). The system in Figure 1 is
well-posed if and only if the scaled system in Figure 2 is well-posed. Furthermore, the system
in Figure 1 is `ρ

2 -stable if and only if the scaled system in Figure 2 is `2-stable.

Henceforth, `ρ

2 stability of the system in Figure 1 is studied by `2 stability of the scaled
system in Figure 2, where an IQC should be constructed for the scaled uncertainty ∆ρ at first.

Definition 2.11 (IQC Megretski and Rantzer (1997)). Let Π(z) be a Hermitian (self-adjoint)
bounded measurable operator. Then, for a bounded and causal operator ∆ρ : ` 7→ `, it is said
to satisfy the IQC defined by Π, if

∫
|z|=1

[
v̂ρ(z)

∆̂ρ(vρ)(z)

]∗
Π(z)

[
v̂ρ(z)

∆̂ρ(vρ)(z)

]
dz≥ 0, ∀vρ ∈ `2, (8)

where v̂ρ and ∆̂ρ(vρ) denote the z-transform of vρ and ∆ρ(vρ) respectively.

Theorem 2.12 (Megretski and Rantzer (1997)). For the feedback interconnection between
Gρ and ∆ρ in Figure 2, let Gρ(z) ∈RH∞, and ∆ρ be a causal bounded operator. Assume that
∀τ ∈ [0,1],

(1) the feedback interconnection between Gρ and τ∆ρ is well-posed;
(2) the operator τ∆ρ satisfies the IQC defined by Π;
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(3) there exists ε > 0, such that[
Gρ(z)

I

]∗
Π(z)

[
Gρ(z)

I

]
≤−εI, ∀|z|= 1. (9)

Then, the system in Figure 2 is `2-stable.

In order to make the FDI (9) computable, the dynamic IQC Π(z) should be factorised, and
the KYP lemma Rantzer (1996) will be applied to convert the FDI to an LMI. The factorisa-
tion of an IQC Π(z) is defined below.

Definition 2.13 (Scherer and Weiland (2011)). The pair (Ψ(z),Kp) is said to be a factorisa-
tion of Π(z) ∈ RL∞ if

Π(z) = Ψ
∗(z)KpΨ(z), (10)

where Kp = KT
p is constant, and Ψ(z) is a stable LTI system.

The state-space representation of Ψ(z) is in the form

Ψ(z)∼
[

AΨ BΨ

CΨ DΨ

]
=

[
AΨ BΨ1 BΨ2
CΨ DΨ1 DΨ2

]
. (11)

On the other hand, in the ρ-IQC approach, a class of multipliers is defined in Freeman
(2018) to preserve the positivity of memoryless and slope-restricted uncertainties ∆ : `ρ

2 7→ `
ρ

2 .
With a fixed ρ ∈ (0,1), the multiplier is in the form

M(ρz) = ∑
k∈Z

m̃kρ
−kz−k (12)

where m̃0 > 0. In addition, m̃k ≤ 0 ∀k 6= 0, or ∆ is odd. Moreover, the `1 norm condition
should be satisfied

∑
k∈Z
|m̃k|min{1,ρ−2k}< 2m̃0, (13)

where we can set m̃0 = 1 without loss of generality. The notation here is slightly different
from Freeman (2018), and refer to it for other details.

In Section 4, the details to estimate ρ∗{G,K} in the IQC framework will be discussed: the
Zames-Falb IQC for the class of slope-restricted nonlinearities will be defined, and a unified
factorisation will be provided to search noncausal FIR multipliers. This subset of Zames-Falb
multipliers will be proved equivalent to (12) by variable change.

3. Motivating example

The Kalman conjecture, originally stated as a trivial theorem, has attracted much attention
since the Sixties. In discrete time, it is known that it is true for first order systems, but fails
for second order systems.

As the convergence analysis is mainly used in optimisation techniques, we show the first
counterexample of the Kalman conjecture for convergence analysis. In the existing counterex-
amples (Lessard et al., 2016; Scoy et al., 2018), the systems reach limit cycles where ρ = 1,
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similar to the counterexamples given in (Carrasco et al., 2015; Heath et al., 2015), which
means the system is not asymptotically stable, and there is no Zames-Falb multipliers in this
case. In contrast, the system here converges with a rate ρ < 1 asymptotically, but slower than
the linearised case. In short, we will show that ρ∗{G,K} < 1 but ρ∗{G,K} > ρ∗{G,K} is possible in

Conjecture 2.7. The possible difference between ρ∗{G,K} and ρ∗{G,K} motivates to bound the
worst-case convergence rate of this class of systems by utilising multipliers.

We consider a Heavy-Ball algorithm, i.e.

xk+1 = xk−α∇ f (xk)+β (xk− xk−1), (14)

where we assume that ∇ f is a slope-restricted nonlinearity in S[m,L] 2 with 0 < m < L, and
the parameters α and β are optimally selected as

α =
4

(
√

L−
√

m)2
, β =

(√
κ−1√
κ +1

)2

,

where κ = L/m. Then the heavy-ball algorithm can be described by the Lur’e system in
Figure 1, where

G∼

 1+β −β −α

1 0 0
1 0 0

 ,
and ∆(x) = ∇ f (x). So far, the use of Zames-Falb multipliers is motivated by examples where
the algorithm reaches a limit cycle when it is designed for strongly-convex quadratic func-
tions (Lessard et al., 2016).

To the best of authors’ knowledge, this is the first example in the literature where it is
demonstrated that the asymptotic rate of convergence above the expected rate of convergence
for the family of quadratic functions.

Let us take m = 0.1, L = 36.1, hence κ = 361, β = 0.81, and α = 0.1. Moreover, let

φ(x) = ∇ f (x) =

{
12.6x if x≥ 0;
6.9x if x < 0.

(15)

The slower asymptotic converge rate of the Lur’e system with ∆ replaced by any linear
gain in the interval [0.1,36.1] is given by 0.9.

Let us consider the initial condition

x1 =−1,x2 =
19899351

5(26860988+
√

446144163740329)
,

then it generate a cyclic convergence defined by x3 > 0, x4 > 0, x5 < 0, x6 < 0, and x7 < 0,
and x8 = λx2; since

((A+6.9BC)3(A+12.6BC)3)

[
x1
x2

]
= λ

[
x1
x2

]
,

2Note that it is standard in optimisation to use this sector, but it can be trivially translated into a [0,K] sector typically used in
absolute stability literature via standard loop transformations.
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where λ = 266558677+
√

446144163740329
500000000 ' 0.5753616. These values were found symbolically

using Maple to satisfy the cycle convergence equations. As a result, the a cyclic convergence
is preserved with the rate ρ = λ 1/6 ' 0.91199 > 0.9. The behaviour of the system is shown
in Figure 4 as a numeric verification of the symbolic solution.

Iterartion
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100

Figure 4. Decaying limit cycle in blue; the slower expected rate predicted by the analysis of convex quadratic functions in red.

This example shows that the heavy-ball algorithm can converge asymptotically at a slower
rate than predicted by the analysis of the class of convex quadratic functions.

It is important to highlight that the original statement of the Kalman conjecture requires the
nonlinearity to be differentiable everywhere, although this detail is normally ignored nowa-
days as the stability analysis (or the convergence analysis) deals with possible non-smooth
nonlinearities. The nonlinearity can be ”smoothed” around the non-differentiable point at the
origin. This will cause the algorithm to reproduce the slower convergence rate when outside
the ”smoothed” region. However, the faster, asymptotic linear convergence is achieved once
the iterates enter the smoothed region of the function.

As the slope condition is invariant to the scale, if a nonlinearity exhibits some local rate,
then it is possible to find a nonlinearity where this behaviour is reproduced arbitrarily close
to the origin. Loosely speaking, if we restrict our attention to smooth nonlinearities, slower
convergence rates will be found arbitrarily closed to the origin.

As an example, Fig. 5 shows the behavior of the family of smooth nonlinearities with slope
in the interval [0.1,36.1], where the nonlinearities are given by

φε(x) = ∇ fε(x) =


12.6x−2.85ε, if x≥ ε;
5.7
2ε

x2 +6.9x, if 0≤ x≤ ε;
6.9x if x < 0.

(16)

The iterates converge at the slower rate as long as x ≥ ε or x < 0. However, the faster linear
convergence rate is achieved once x ∈ [0,ε], i.e. the slope of the simulation is parallel to the
worst linear case.
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Figure 5. Simulations of the Lur’e system for φε with ε = 10−4 in black, ε = 10−8 in green, and ε = 10−12 in blue. In red,
convergence rate for the linarised system with k = 6.9.

4. Zames-Falb multipliers for convergence analysis in IQC framework

As mentioned in Section 2.3, the convergence analysis can be conducted in the IQC frame-
work on the scaled system in Figure 2. In this section, we consider the Zames-Flab IQC
for the scaled uncertainty ∆ρ , where the the multiplier belongs to a subclass of Zames-Falb
multipliers whose `1 norm condition is penalised with ρ .

Definition 4.1. With a given ρ ∈ (0,1), an LTI convolution operator M : `2(Z) 7→ `2(Z) is
said to be in the class Mρ if its impulse response m : Z 7→ R satisfies the `1 norm condition
∑

∞
k=−∞

|mk|ρ−|k| < 2m0. Without loss of generality, we can set m0 = 1.

Referring to the definition of the class of discrete-time Zames-Falb multipliers
M (Willems & Brockett, 1968; Willems, 1971), it is clear Mρ ⊂M .

Lemma 4.2 (Zames-Falb IQC for ∆ρ ). Assume the uncertainty ∆ is memoryless and ∆ ∈
S[0,K]. The corresponding scaled uncertainty ∆ρ satisfies the Zames-Falb IQC defined by Π

as

Π(z) =
[

0 KM∗(z)
KM(z) −(M(z)+M∗(z))

]
, (17)

where M ∈Mρ with either mk ≤ 0,∀k 6= 0 or ∆ is also odd.

Proof. The proof is linked with the argument in Freeman (2018). By setting mk = m̃kρ−k

∀k, the multiplier M(ρz) in (12) will be independent with ρ , and be in the form of M ∈Mρ .
Then, the `1 norm condition of M ∈Mρ is proved by (13) in turn.

Here, we focus on the search of a wide subset of Mρ .

Definition 4.3. An LTI convolution operator M : `2(Z) 7→ `2(Z) is said to be an FIR multiplier
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(M ∈Mρ,FIR) if it is in the form

M(z) = m−n f z
n f + · · ·+m−1z+m0 +m1z−1 + · · ·+mnbz−nb , (18)

where m−i f ≤ 0 (i f = 1, · · · ,n f ) and mib ≤ 0 (ib = 1, · · · ,nb), or ∆ρ is odd. In addition, the
impulse response of M should satisfy the `1 norm condition

n f

∑
i f =1
|m−i f |ρ

−i f +
nb

∑
ib=1
|mib |ρ

−ib < m0, (19)

where we can set m0 = 1 without loss of generality.

By the condition (19), it is clear that Mρ,FIR ⊂Mρ . Moreover, the causal part is with the
backward-shift operators z−ib , and the anticausal part is with the forward-shift operators zi f .
The FIR multiplier here is a restricted form of the original FIR multiplier in Carrasco et al.
(2019); Wang et al. (2014).

The following result is bound the convergence rate of a Lur’e system. The result is devel-
oped to cover both techniques in the Literature by using an additional parameter µ .

Definition 4.4. Let µ ∈ R. Given n f ∈ Z+, nb ∈ Z+, let i f = 1, · · · ,n f , ib = 1, · · · ,nb. Set
n̂ = max{n f ,nb}. Define the set of matrices

AS =

[
0 0

I(n̂−1) 0

]
(n̂×n̂)

, BS =

[
1

0(n̂−1)×1

]
(n̂×1)

,

CS1 =

[
0

1
µ

I(nb)
0�
]
((nb+1)×n̂)

,CS2 =

[
0

diag
(
µ

2i f−1) 04
]
((n f +1)×n̂)

,

DS1 =

[
1

0(nb×1)

]
((nb+1)×1)

, DS2 =

[
1

0(n f×1)

]
((n f +1)×1)

,

(20)

where the matrices 0� and 04 are

0� =

{
/0 if nb ≥ n f

0((nb+1)×(n̂−nb)) if nb < n f
,

04 =

{
/0 if n f ≥ nb

0((n f +1)×(n̂−n f )) if n f < nb
.

Theorem 4.5. Let ρ ∈ (0,1). Given n f ∈ Z+, nb ∈ Z+, let i f = 1, · · · ,n f , ib = 1, · · · ,nb. Set
n̂ = max{n f ,nb}, and µ = 1. For the feedback interconnection between G and ∆ in Figure 1,
let G(z) ∈ RH∞, and G(z)∼

[
A B; C D

]
; let ∆ be memoryless and ∆ ∈ S[0,K]. Assume there

exist a matrix P = PT , such that[
ÂT PÂ−P ÂT PB̂

B̂T PÂ B̂T PB̂

]
+

[
ĈT

D̂T

]
Kp
[
Ĉ D̂

]
< 0, (21)

where Kp is given in (23) and the variables mmm−i f = [m−1 m−2 · · · m−n f ]
T , mmmib =

[m1 m2 · · · mnb ]
T satisfy ∑

n f
i f =1 |m−i f |(ρ/µ)−i f +∑

nb
ib=1 |mib |(ρµ)−ib < m0, and set m0 = 1.
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Meanwhile, mib ≤ 0 and m−i f ≤ 0, or ∆ is odd. In addition, the matrices Â, B̂, Ĉ, D̂ are

Â =

[
ρ−1A 0
BΨ1C AΨ

]
, B̂ =

[
ρ−1B

BΨ2 +BΨ1D

]
,

Ĉ =
[
DΨ1C CΨ

]
, D̂ = DΨ2 +DΨ1D,

(22)

where AΨ, BΨ =
[
BΨ1 BΨ2

]
, CΨ, DΨ =

[
DΨ1 DΨ2

]
are in (24) with matrices AS, BS, CS1, CS2,

DS1, DS2 in (20). Then, a convergence rate of the unforced system in Figure 1 is ρ .

Kp =



0 0 Km0/2 0 0 0 0 0
0 0 Kmmmib 0 0 0 0 0

Km0/2 KmmmT
ib −m0 −mmmT

ib 0 0 0 0
0 0 −mmmib 0 0 0 0 0
0 0 0 0 0 0 Km0/2 KmmmT

−i f

0 0 0 0 0 0 0 0
0 0 0 0 Km0/2 0 −m0 −mmmT

−i f

0 0 0 0 Kmmm−i f 0 −mmm−i f 0


, (23)

AΨ =
1
µ

[
AS 0
0 AS

]
, BΨ =

[
BS 0
0 BS

]
,

CΨ =


CS1 0
0 CS1

CS2 0
0 CS2

 , DΨ =


DS1 0

0 DS1
DS2 0

0 DS2

 . (24)

Remark 2. The additional parameter µ = 1 is used in Theorem 4.5. In contrast, by setting
µ = ρ , Theorem 4.5 becomes a ρ-IQC analysis as provided Freeman (2018), but the details
are not discussed here.

Proof. First, the matrices in (24) correspond to the state-space representation of the matrix
function, called ”lifting matrix”,

Ψ(µ,z) =



1 0
µ−ibZZZ−ib 0

0 1
0 µ−ibZZZ−ib

1 0
µ

i f ZZZ−i f 0
0 1
0 µ

i f ZZZ−i f


. (25)

With µ = 1, it is equivalent to write Ψ(µ,z) as Ψ(z). Then, it is straightforward to show that
the pair (Ψ(µ,z),Kp) in (25) and (23) satisfies the definition of factorisation in (10) for the
IQC in the form (17) with M in the form (18). Moreover, because M satisfies the conditions in
Definition 4.3, M here belongs to the class Mρ . Then, according to Definition 2.8, Lemma 2.9
and 4.2, the scaled uncertainty ∆ρ satisfies this IQC. This argument is equivalent to Condition
2 of Theorem 2.12.
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Next, with G(z) ∼
[
A B; C D

]
, the scaled plant Gρ(z)= G(ρz) ∼

[
ρ−1A ρ−1B; C D

]
.

Hence, Ψ(µ,z)
[

Gρ(z)
I

]
∼
[

Â B̂
Ĉ D̂

]
holds. By the KYP lemma, the LMI (21) is equivalent to

the FDI (9) with the corresponding IQC in Condition 3 of Theorem 2.12.
Then, as the assumptions on G and ∆ ensure the well-posedness, the system between Gρ

and ∆ρ is also well-posed, which corresponds to Condition 1 of Theorem 2.12.
Finally, based on the analysis above, the scaled system in Figure 2 is `2-stable. By Theorem

2.10, the original system in Figure 1 is `
ρ

2 -stable. Therefore, according to Theorem 2.4, the
unforced system has the convergence ρ .

We call the pair (Ψ(µ,z),Kp) defined in (25) and (23) ”lifting factorisation” or ”factorisa-
tion by lifting”.

Remark 3. The lifting factorisation (Ψ(µ,z),Kp) can be used as a unified structure of factori-
sation for the Zames-Falb IQC in (17) with causal, anticausal, noncausal multipliers M ∈Mρ ,
where causal or anticausal multipliers can be obtained by setting n f = 0 or nb = 0 with the
corresponding matrices being empty respectively.

In short, by the IQC analysis, everything keeps the same as in the conventional IQC case
except that the `1 norm condition of the subset FIR Zames-Falb multipliers is penalised sym-
metrically on causal and anticausal parts with ρ . Then, the factorisation (Ψ(µ,z),Kp) with
µ = 1 defined in (25) and (23) can be used to construct the stability LMI (21). The minimum
ρ obtained by Theorem 4.5 corresponds to ρ∗{G,K}.

5. Numerical results

In this section, we compare the results by causal, anticausal and noncausal multipliers via
standard IQC analysis, i.e. µ = 1. The examples are listed in Table 1 with other relating
information. The Kalman conjecture is false for Ex.1−4, and true for Ex. 5. Here, we make
the causal and anticausal steps equal in noncausal multipliers (nb = n f = nz). According to
preliminary studies, small deterioration in results may occur with a large nz (see (Carrasco et
al., 2019, Fig.3) for instance), so nz is tuned for each example.

Ex G(z) K nz

1 − 0.1z
z2−1.8z+0.81 12 7

2 −−0.08658z+0.007162
z2+1.415z+0.5523 10 3

3 − z3−1.95z2+0.9z+0.05
z4−2.8z3+3.5z2−2.412z+0.7209 0.6 5

4 − z4−1.5z3+0.5z2−0.5z+0.5
4.4z5−8.957z4+9.893z3−5.671z2+2.207z−0.5 3.5 4

5 − 10z2+19z+9
100z3−80z2+17z−1 3 1

Table 1. The plant G, the stable slope K of nonlinearity and the order nz of multipliers in each example

The best bound of ρ∗{G,K} are obtained via Theorem 4.5 by a bisection search starting from
the initial range (ρ∗{G,K},1), where ρ∗{G,K} is given in (6). The software package CVX (Grant
& Boyd, 2014) with the solver sdpt3 (Tütüncü, Toh, & Todd, 2003) is used to solve the LMI
(21). The bound are listed in Table 2, where the best results of each example are in bold.

In the table, Ex. 1− 5 are with non-odd uncertainties, while Ex. 1odd − 5odd are with odd
uncertainties. As the Kalman conjecture is false for Ex. 1−4, ρ∗ is not tight. In contrast, the
Kalman conjecture is true for Ex. 5, so ρ∗ is tight, and the multiplier technique is not needed.
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Ex ρ∗{G,K} ρ∗{G,K}
Causal Anticausal Noncausal

1 0.900000 0.992474 invalid 0.9924650.9924650.992465
1odd 0.900000 0.991441 invalid 0.9905140.9905140.990514
2 0.789886 0.934003 0.934985 0.9296750.9296750.929675
2odd 0.789886 0.8639460.8639460.863946 0.906619 0.8639460.8639460.863946
3 0.942971 0.986340 0.991168 0.9824780.9824780.982478
3odd 0.942971 0.971305 0.970435 0.9696810.9696810.969681
4 0.977129 invalid 0.985964 0.9857850.9857850.985785
4odd 0.977129 0.998126 0.985792 0.9857240.9857240.985724
5 0.975367 0.9753680.9753680.975368 invalid 0.9753680.9753680.975368
5odd 0.975367 0.9753680.9753680.975368 0.977501 0.9753680.9753680.975368

Table 2. Best bounds of ρ∗{G,K} by causal, anticausal and noncausal multipliers compared with ρ∗{G,K}

In addition, the best estimated convergence rates with odd uncertainties are no greater than
those with non-odd uncertainties, which is reflected by the more strict condition on multiplier
parameters in the non-odd case. As for different multipliers, the introduction of anticausal
steps are efficient to reduce the conservatism (also see (Freeman, 2018, Fig.2)). As a result,
noncausal multipliers are less conservative in general, especially for Ex. 1,4,5, where the
search on causal and anticausal multipliers fails in some cases.

The similar conclusions are also inflected by the convergence rates with uncertainties that
have different maximum slopes in Figure 6 and 7, where K starts from 0.01. In the figures,
solid lines are for non-odd uncertainties, while dotted lines are for odd uncertainties. Mean-
while, the results by causal, anticausal and noncausal multipliers are in blue, green and red,
respectively. In Figure 6, anticausal multipliers are seriously conservative, while causal and
noncausal multipliers lead to similar less-conservative results. In Figure 7, all of the multi-
pliers have satisfactory results with small K, but causal and anticausal multipliers become
conservative for large K. In summary, noncausal multipliers are less conservative in both odd
and non-odd cases. On the other hand, causal multipliers are more reliable than anticausal
multipliers in general.

0 2 4 6 8 10 12
K

0.9

0.92

0.94

0.96

0.98

1

Figure 6. Best bounds of ρ∗{G,K} with different K and multipliers compared with ρ∗{G,K} of Ex.1
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Figure 7. Best bounds of ρ∗{G,K} with different K and multipliers compared with ρ∗{G,K} of Ex.3

In short, for an arbitrary plant whose properties are unknown, it is less conservative to
use noncausal multipliers to obtain its bounds of the convergence rates. If the given plant
verifies the Kalman conjecture, the lower bound in Conjecture 2.7 is tight, and the multiplier
techniques are not needed. However, it is an open question to determine whether a plant
satisfies the Kalman conjecture or not.

We must highlight that we have found no counterexample of the Kalman conjecture for
convergence rate with odd nonlinearities. However, numerical results do not achieve the value
of the Kalman conjecture, hence it remains open whether the converge analysis for odd non-
linearities is tight or not. Further research is required to clarify this question.

6. Conclusion

In this technical note, we provide novel insights in the convergence analysis of Lur’e systems.
On one hand, we provide the first counterexample of the extension of the Kalman conjecture
to the analysis of convergence rates, showing the significance of the existing techniques to
bound the convergence rate. On the other hand, we have developed a convex search over the
set of noncausal multipliers. Finally, the numerical examples indicate that noncausal multi-
pliers are efficient to achieve less-conservative estimation of the upper bound convergence
rates.
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Appendix A. Proof of Theorem 2.4 (Outline)

The proof follows (Vidyasagar, 2002, Theorem 6.3.46) and the theorems therein, which link
internal stability to input-output `-stability in continuous time. Here we relate the relations
with the convergence rate in discrete time. The argument in continuous time can be converted
to discrete time trivially, which is not stressed here.

In order to keep consistent with the notations in Vidyasagar (2002), we consider the sys-
tem−G∼

[
A B; −C 0

]
. The minus signs indicate negative feedback structure in (Vidyasagar,

2002, Fig.6.4), and the D matrix can be set to 0 without loss of generality. Moreover, because
G is linear and stable, the disturbance signal f in Figure 1 is assumed to be zero without loss
of generality. Then, the feedback interconnection in Figure 1 can be expressed as

xk+1 = Axk +Bgk +B∆(vk), yk =−Cxk. (A1)

Necessity: The expression (A1) satisfies the general form (6.3.7) in Vidyasagar (2002). In
addition, the conditions (6.3.16, 17) are satisfied, because the state-space matrices of G are
finite and ∆ is slope-restricted.

Following the proof and notations in (Vidyasagar, 2002, Theorem 6.3.15), (6.3.19) implies
the exponentially stability condition (4) of the unforced system where c = β

α
, ρ = 1

2β 2 (0 <

α < β are constant). Then, in (6.3.32), ‖xk‖ ≤ Wk
α

, where Wk ≤ hk, and hk is the output of a
first order system with input ‖gk‖ and pole −1

2β 2 . In other words, the exponential rate limited

by this transfer function is ρ = 1
2β 2 . Henceforth, let the input to this transfer function is g∈ `ρ

2 ,

then the solution h ∈ `ρ

2 , thus W ∈ `ρ

2 and x ∈ `ρ

2 . Moreover, according to (6.3.33), v≡ y ∈ `ρ

2 .
Next, because ∆ is memoryless and slope-restricted, and g∈ `ρ

2 , the signal w∈ `ρ

2 . This proves
that the forced system is `ρ

2 -stable.
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