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Abstract—Graphical methods are a key tool to analyse Lur’e
systems with time delay. In this paper we revisit clockwise
properties of the Nyquist plot and extend results in the literature
to critically stable systems and time-delayed systems. It is known
that rational transfer functions with no resonant poles and no
zeros satisfy the Kalman conjecture. We show that the same class
of transfer functions in series with a time delay also satisfies
the Kalman conjecture. Furthermore the same class of transfer
functions in series with an integrator and delay (which may be
zero) satisfies a suitably relaxed form of the Kalman conjecture.
Useful results are also obtained where the delay is constant but
unknown. Results in this paper can be used as benchmarks to
test sufficient stability conditions for the Lur’e problem with
time-delay systems.

Index Terms—Stability of nonlinear systems; Delay systems.

I. INTRODUCTION

THE Lur’e problem [1] consists of analysing the stability
of the feedback interconnection between an LTI system

and any nonlinearity within a class of systems. To highlight
that stability is guaranteed for a class of system, the term
absolute stabilty was coined; see [2] for an early review of the
topic. Although originally the Lur’e problem was established
using asymptotic stability of the origin, the definition of the
Lur’e problem has evolved to accommodate different stability
definitions as they have been proposed [3]. In this paper, we
focus on input-output stability as defined in [4]–[6].

The exploration of sufficient stability conditions has become
a core topic in control theory. The Lur’e system is shown in
Fig. 1, which is the negative feedback interconnection between
an LTI plant and a nonlinearity that belongs to a class of
nonlinearities, and where the injected signal f can be treated as
a disturbance or a signal that generates the initial condition of
the plant [7]. One of the classical problems is to find frequency
domain conditions on the LTI stable plant G such that the
feedback interconnection between G and any nonlinearity ψ

within a slope-restricted sector [0,k] is stable, e.g. [8].
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Fig. 1: Input-output version for the Lur’e system to consider
crically stable systems [7]. When G stable, it is straightforward
to show that this is the most general input-output configuration.

An early solution to the Lur’e problem for some plants
was given by Popov [9]. Although the Popov criterion was
developed for finite dimensional systems, Răsvan extended
Popov’s method to time-delay and critical plants, e.g. [10],
[11] and references therein. Recently, there has been some
attention to the case when G is a plant with an unknown but
constant time delay. Several different techniques can be used
to determine stability such as Lyapunov-Krasovskii functionals
[12], quadratic separation, and integral quadratic constraints
(IQC) [13], [14]. In addition, IQC stability conditions for Lur’e
systems with critically stable plants have been explored in [7],
[15]–[18]. These are of practical significance because such
systems are common in applications such as servo systems
with saturating PID control and phase-locked loops with
nonlinear phase detectors [19]. However, the performance of
these stability techniques are unclear, due to the lack of bench-
mark examples where necessary and sufficient conditions for
absolute stability can be determined.

In this paper, we are concerned with the development of a
class of systems where such necessary and sufficient condi-
tions can be obtained. In particular, we focus on Lur’e systems
where the linear plant takes the form G(s) = Gn(s)e−sTd and
G(s) = Gn(s)

s e−sTd (Fig. 2), and we will propose conditions on
Gn that allow us to ensure that G satisfies either the Kalman
conjecture or a suitably relaxed version of the Kalman conjec-
ture in the case where G is critically stable. We propose such
plants as benchmarks to judge the performance of sufficient
conditions developed by other stability methods.
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Fig. 2: Lur’e system with integrator and time delay.
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For time delayed systems, analytic methods have been used
by [20] and [21], but their feedback structure is different from
this paper. Some analytic tools are also available for some
low order unstable systems [22]. Graphical methods provide
a significant advantage for the structure in Fig. 2 as it is
not possible to obtain a closed-form for the Nyquist value in
general. Therefore, we will deliberate the clockwise properties
of the Nyquist plot, which have been studied in [23]–[28].
Particularly, in [26], a class of rational plants are proved
that satisfy the Kalman conjecture. The main contribution of
this paper is to show that this set of plants together with
an integrator and/or time delay also satisfies the Kalman
conjecture (or relaxed version).

There are several conventional methods to design compen-
sators for linear time-delayed plants such as the Smith pre-
dictor [29] and the Dahlin controller [30]. These conventional
methods cannot guarantee stability and robustness with respect
to actuator saturation. The method presented in this paper can
guarantee stability and robustness for plants with time-delays
and saturation, and does not require a perfect knowledge of
the delay as in the Smith predictor. Initial design results are
presented in [31].

Similar properties have been used to develop classes of
plants satisfying the Kalman conjecture in [23], [32] and
references therein. In [23], critically stable systems were
considered, but the second order derivative of the phase was
missed in the proof, which led to incorrect results. In [32]
time-delayed plants were introduced; here we provide results
for a wider class of plants.

II. NOTATION AND PRELIMINARY RESULTS

A. Lur’e system and off-axis circle criterion (OACC)

Let RH∞ be the space consisting of proper real rational
transfer functions with no pole in the closed right-half complex
plane. A minimal state space realisation of the transfer func-
tion is G(s) = C(sI−A)−1B+D. We use the notation ℜ{s}
and ℑ{s} represent the real part and imaginary part of the
complex number s, respectively.

Let R+ be the set of non-negative real numbers, and
L2(R+) be the Hilbert space of all square integrable and
Lebesgue measurable functions f : R+ 7→ R. A truncation of
the function f at T ∈ R is given by fT (t) = f (t), ∀t ≤ T ;
fT (t) = 0, ∀t > T . The function f belongs to the extended
space L2e(R+) if fT ∈L2(R+) for all T > 0.

A nonlinearity ψ : L2e(R+) 7→ L2e(R+) is said to be
memoryless if there exists a map N : R → R such that
(ψ(υ))(t) = N(υ(t)), ∀t ∈ R. The nonlinearity ψ is said to
be slope restricted, denoted by ψ ∈ S[0,k], if

0≤ N(x1)−N(x2)

x1− x2
≤ k, ∀x1,x2 ∈ R,x1 6= x2. (1)

A slope restricted nonlinearity is also sector bounded, but the
reverse is not necessarily true.

The Lur’e system in Fig. 1 is given by

v = f +Gw,

w = −ψ(v)

where the signals are in the extended space L2e(R+). The
feedback interconnection is said to be well-posed if the map
(v,w) 7→ (0, f ) has a causal inverse on L2e(R+). Additionally,
the interconnection is said to be L2-stable if the inverse
operation is bounded, i.e. ||wT || + ||vT || < γ|| fT || with a
positive γ . For the system with an integrator, L2-stability
only implies that the output from the critically stable plant
converges to any feasible equilibrium point of the nonlinearity
when t → ∞ (see [7]). Henceforth, we use the term weakly
L2-stable for this case.

The Kalman conjecture and the off-axis circle criterion are
given as follows.

Definition 1: (Nyquist value, kN) The Nyquist value of a
stable transfer function G(s) is

kN = sup
k
{k > 0 : (1+ τkG(s))−1 is stable ∀τ ∈ [0,1]}.

Conjecture 1 (Kalman conjecture [34]): Let ψ be a mem-
oryless nonlinearity, and ψ ∈ S[0,k]. The feedback intercon-
nection between G and ψ is asymptotically stable if k < kN .

Theorem 1 (Off-axis circle criterion (OACC) [35]): Let G∈
RH∞ be a nominal system in a feedback interconnection with a
slope restricted nonlinearity ψ ∈ S[0,k]. If the Nyquist curve of
the nominal system G( jω) lies entirely to the right of a straight
line with non-zero slope passing through the point (− 1

k −ε,0)
with ε > 0, then the proposed feedback interconnection is L2-
stable.

B. Clockwise properties

Following [36], let the magnitude and phase of a transfer
function G at frequency ω be M(ω) and Φ(ω) respectively.
Let Γ be the Nyquist curve of G in the complex plane, defined
by two parametric equations

X(ω) = ℜ{G( jω)}= cosφ(ω)

m(ω)
(2)

Y (ω) = ℑ{G( jω)}= −sinφ(ω)

m(ω)
, (3)

where φ(ω) =−arg[G( jω)] =−Φ(ω), m(ω) = |G( jω)|−1 =
M(ω)−1. The curvature of Γ is defined as

C (ω) =
XωYωω −XωωYω

(X2
ω +Y 2

ω)
3
2

=
−
(

cosφ

m

)
ω

(
sinφ

m

)
ωω

+
(

cosφ

m

)
ωω

(
sinφ

m

)
ω[(

cosφ

m

)2

ω

+
(

sinφ

m

)2

ω

] 3
2

. (4)

It can be simplified as

C (ω) =−φ 3
ω +φω m̃ωω −φωω m̃ω

(φ 2
ω + m̃2

ω)
3
2

m (5)

where m̃ω = mω

m , m̃ωω = mωω

m .
The Nyquist plot at a frequency ω is clockwise if C (ω)< 0.

A system is said to have a clockwise Nyquist plot if it is
clockwise at all frequencies. The sign of the curvature can be
derived by analysing the numerator in (5), i.e.

n(ω) = φ
3
ω +φω m̃ωω −φωω m̃ω . (6)



Its terms can be expressed as the sums

m̃ω = ∑i m̃iω , m̃ωω = ∑i m̃iωω +∑
i6= j
i, j m̃iω m̃ jω ;

φω = ∑i φiω , φωω = ∑i φiωω ,
(7)

where i, j indicates the real or complex link in G, see [26]
for definition of link. Assume the plant G is comprised by nr
real links and nc complex links as

Gi(s) =
1

s+ ri
(i = 1, · · · ,nr),

Gi(s) =
1

s2 +2ζi−nr ωi−nr ω +ω2
i−nr

(i = nr +1, · · · ,nr +nc).

The related functions are listed in Table 1 in [26].
Definition 2: Let G be a rational transfer function. G is said

to belong to the subset Gc if
1) the poles of G are either real or complex conjugate with

damping factor greater than 1√
2
;

2) G has no zero.
Lemma 1 ( [26]): If G ∈ Gc, then the Nyquist plot of G

is clockwise at all frequencies, and G satisfies the Kalman
conjecture.

C. Stability for systems with an integrator

In Theorem 1, G is required to be bounded, but if G has
a pole at 0 then G /∈ RH∞. In the following part, we revisit
stability results in [7], [16] for Lur’e systems with critically
stable plants.

First, the integrator should be encapsulated in the nonlin-
earity by the loop transformation from Fig. 1 to Fig. 3 [7].
In Fig. 3, Gn0 and κ are obtained from the partial fractional
expansion−Gn

s = κ(Gn0− 1
s ), where κ = Gn(0)> 0.

Then, following [7], the operator ∆ψ is bounded on L2(R+)
with the maximum gain kκ , and a class of modified Zames-
Falb multiplier is given to preserve its positivity. For a proper
definition of the class of Zames-Falb multipliers M , see [6],
[37]. Following [7], the stability condition can be expressed
in terms of the slope of the nonlinearity as follows:

Theorem 2 ( [7]): For the Lur’e system with the plant Gn
s

where Gn ∈ RH∞ and the nonlinearity ψ ∈ S[0,k], if
1) Gn(0)> 0;
2) there exist ε > 0 and a Zames-Falb multiplier M( jω) ∈

M , such that

ℜ

{(
Gn( jω)

jω
+

1
k

)
M( jω)

}
≥ ε ∀ω 6= 0,

then the system is weakly L2-stable.
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Fig. 3: Encapsulation of the integrator

The Nyquist value can be trivially modified so stability is
not required for k = 0.

Definition 3 (Modified Nyquist value, k̃N): The Nyquist
value of a critically stable transfer function G(s) is k̃N =
supk{k > 0 : (1+ τkG(s))−1 is stable ∀τ ∈ (0,1]}.

Although it is not explicitly mentioned in [7], the condition
Gn(0) > 0 can be taken without loss of generality for SISO
systems; see Theorem 2 in [38]. In short, if Gn(0) < 0, then
k̃N = 0.

Corollary 1: For a plant Gn
s where Gn ∈RH∞ and Gn(0)>

0, the negative feedback interconnection between G and any
nonlinearity ψ ∈ S[0,k] is weakly L2-stable if the Nyquist plot
of G( jω) is clockwise for all ω > 0.

Proof: The proof follows the same arguments as the
original proof in [35], but the multiplier may require some
further positive phase as ω → 0. Nonetheless as Gn ∈ RH∞

then it is always possible to choose the first zero of the RL
multiplier low enough to compensate the phase of the slowest
poles of the system as the phase of 1 + kG will approach
−π/2− rω for some finite value of r as ω → 0.

Remark 1: This simple result provides a significant insight
to the class of multipliers required for absolute stability of
critically stable systems. The properties as ω → 0 restrict us
to RL multipliers (with positive phase) in the construction of
the off-axis circle criterion.

This analysis suggests a suitable modification of the Kalman
conjecture appropriate for critically stable systems:

Conjecture 2 (Relaxed Kalman conjecture): Let ψ be a
memoryless nonlinearity, and ψ ∈ S[0,k] with ψ(x) 6= 0 if
x 6= 0. The feedback interconnection between G = Gn

s and ψ

is stable if k < k̃N .
Remark 2: The classical literature [39], [40] considers other

relaxations where strict inequalities in (1) are used. Such a
relaxation may accommodate the critical case, however they
may lead to pathological cases (see [40] for a discussion of
the Aizerman conjecture).

III. ABSOLUTE STABILITY OF SYSTEMS WITH TIME DELAY

In this section, the clockwise properties are extended to
systems with constant time delays. Next, the absolute stability
of time-delayed systems is discussed.

A. Clockwise properties of systems with time delay

Lemma 2: The set of time-delayed systems G(s) =
Gn(s)e−sTd (Td ∈ R+) have clockwise Nyquist plots when
Gn ∈ Gc.

Proof: For any given Td ≥ 0, the real and complex parts
of G( jω) are given by

X(ω) =
cos(φ +ωTd)

m
, Y (ω) =

−sin(φ +ωTd)

m
.

where φ(ω) = −arg[Gn( jω)] and m(ω) = |G( jω)|−1 =
|Gn( jω)|−1.



By straightforward calculation using (4), the curvature of a
time delayed system is

C (ω) =−
(
φ 3

ω +φω m̃ωω −φωω m̃ω

)
(
φ 2

ω + m̃2
ω +T 2

d +2Tdφω

) 3
2

m

−
(
T 3

d +Tdm̃ωω

)
+
(
3Tdφ 2

ω +3T 2
d φω

)
(
φ 2

ω + m̃2
ω +T 2

d +2Tdφω

) 3
2

m.

(8)

The plant G has a clockwise Nyquist curve if its curvature is
less than zero, or equivalently the numerator in (8) is positive,
i.e.

n(ω) =
(
φ

3
ω +φω m̃ωω −φωω m̃ω

)
+
(
T 3

d +Tdm̃ωω

)
+
(
3Tdφ

2
ω +3T 2

d φω

)
> 0 ∀ω ≥ 0. (9)

It is clear the term in the first bracket corresponds to the
curvature of the nominal system, which is positive. Meanwhile,
according to (7) and Table 1 in [26], φω and m̃ωω are both
positive for G∈ Gc. Hence, the Nyquist plot of G is clockwise.

B. OACC of systems with time delay

With the geometrical properties of time-delayed systems
where Gn ∈ Gc, the absolute stability problem is extended to
this set of plants with a range of time delays using the OACC
in Theorem 1.

Theorem 3: Let G = Gne−sTd with Gn ∈ Gc and Td ∈ R+;
then G satisfies the Kalman conjecture.

Proof: The theorem follows the same arguments that were
used in Theorem 2 in [26].

A few numerical examples are provided in Appendix, where
the feedback interconnections with the strictly stable plant G=

e−3s

(s+1)(s2+1.5s+1)2 with four nonlinearities ψ ∈ S[0,kN−0.0001]
are shown to be L2-stable respectively.

Moreover, we can show that the same multiplier which is
used for a delay Td is also valid for any delay τTd (0 < τ ≤ 1).

Lemma 3: Consider a feedback interconnection with a time-
delayed plant G1( jω) = Gn( jω)e− jωTd (Gn ∈ Gc) and a slope-
restricted nonlinearity ψ ∈ S[0,k]. Assume the Nyquist plot of
G1( jω) is on the right of a straight line, L, with non-zero
slope passing through the point (1/kε,0) with ε > 0. Then,
any G2( jω) = Gn( jω)e− jωτTd (τ ∈ [0,1)) is also on the right
of L.
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Fig. 4: Nyquist plots of G1 = e−3s

(s+1)(s2+1.5s+1)2 and G2 =
e−s

(s+1)(s2+1.5s+1)2 .

Proof: As stated, the Nyquist plot of G1, denoted by
Γ1, is entirely on the right side of the non-horizontal line,
say L, which goes through (− 1

k − ε,0), where ε > 0. Hence,
the Nyquist plot of G2, denoted by Γ2, should not cross L.
Alternatively, at the same phase, if the magnitude of G2 is
smaller than that of G1, Γ2 will be inside Γ1, and will not
cross L (see an example in Fig. 4).

Firstly, let ω1 and ω2 be frequencies such that the phase
of G1 at ω1 is equal to the phase of G2 at ω2, i.e. φ̄ =
−arg[G1( jω1)] =−arg[G2( jω2)]. Equivalently,

φ̄ = φ(ω1)+Tdω1 = φ(ω2)+ τTdω2. (10)

The special case is at ω1 = ω2 = 0, where the magnitude
of both systems are the same. For general cases, ω1 6= ω2.
Subtracting τTdω1 from both sides of (10), and rearranging
the terms,

φ(ω2)−φ(ω1)+ τTd(ω2−ω1) = (Td− τTd)ω1. (11)

Dividing (ω2−ω1) on both sides,

φ(ω2)−φ(ω1)

ω2−ω1
+ τTd =

Td− τTd

ω2−ω1
ω1. (12)

According to Table 1 in [26] and (7), φ(ω) is monotonically
increasing with respect to ω , then φ(ω2)−φ(ω1)

ω2−ω1
> 0. Hence,

Td−τTd
ω2−ω1

> 0, then ω2 > ω1. Finally, because M(ω) is mono-
tonically decreasing with respect to ω , M(ω1)> M(ω2), and
Γ2 is ‘inside’ Γ1. Therefore, the interconnection with G2 and
ψ ∈ S[0,k] is stable by the OACC.

With the above lemma, now we can establish a straightfor-
ward condition for absolute stability:

Corollary 2: Let G = Gne−sTd with Gn ∈ Gc and Td ∈ R+.
Let kN be the Nyquist value of G. Then for any τ ∈ [0,1],
the feedback interconnection Gτ = Gne−sτTd and ψ ∈ S[0,k] is
absolutely stable if and only if k < kN .

IV. ABSOLUTE STABILITY OF SYSTEMS WITH INTEGRATOR
AND TIME DELAY

As discussed in Section II Part B, the OACC is also available
for critically stable plants. Hence, the clockwise properties are
also important for this class of plants. Similar to Section III,
the clockwise properties are studied first, and then the absolute
stability is discussed.

A. Clockwise properties of systems with integrator and time
delay

In this section, the clockwise properties of critically stable
systems are proved first, and then the delay is added.

Lemma 4: The set of critically stable systems G(s) = Gn(s)
s

have clockwise Nyquist plots when Gn ∈ Gc.
Proof: By the same method and notations, the real and

complex parts of G( jω) are

X(ω) =
cos(φ + π

2 )

mω
=
−sin(φ)

mω
, (13)

Y (ω) =
−sin(φ + π

2 )

mω
=
−cos(φ)

mω
. (14)



The curvature of Gn(s)
s is

C (ω) =−
ω
(
φ 3

ω +φω m̃ωω −φωω m̃ω

)
+2m̃ω φω −φωω(

φ 2
ω +m2

ω +2 m̃ω

ω
+ 1

ω2

) 3
2

m. (15)

Then, the curvature C (ω) is negative for all frequencies if
the numerator in (15) is positive, i.e.

n(ω) = ω

(
φ

3
ω +φω m̃ωω −φωω m̃ω

)
+2m̃ω φω −φωω > 0. (16)

for all ω > 0. The first term corresponds to the curvature of the
nominal system Gn, which is positive. However, the remaining
parts are positive when ζ >

√
5/8 [26], which is larger than

1√
2
. Hence, n(ω) should be expressed in detail as

n(ω) = ω

[(
∑

j
φ jω

)3

+

(
∑

i
φ jω

)(
∑

j
m̃ jωω +

j 6=k

∑
j,k

m̃ jω m̃kω

)

−

(
∑

i
m̃iω

)(
∑

j
φ jωω

)]
+2

(
∑

i
m̃iω

)(
∑

j
φ jω

)
−

(
∑

j
φ jωω

)
,

which can be simplified as

n(ω) = ∑
i

ni(ω)+
i< j

∑
i, j

Λi j(ω)

+ω

i 6= j 6=k

∑
i, j,k

(m̃iω m̃ jω φkω +φiω φ jω φkω) , (17)

where

ni(ω) = ω
(
φ

3
iω +φiω m̃iωω −φiωω m̃iω

)
+2m̃iω φiω−φiωω ,

(18)

Λi j(ω) = 3ωφiω φ jω (φiω +φ jω)+ωm̃iω (2φ jω m̃ jω −φ jωω)

+ωm̃ jω (2φiω m̃iω −φiωω)+ωm̃iωω φ jω

+ωm̃ jωω φiω +2m̃iω φ jω +2m̃ jω φiω . (19)

Firstly, we are concerned with the term ni(ω) in (18). Accord-
ing to Table 1 in [26], assume Gi is a real link,

ni(ω) = 6ωrim−4
i ,

which is positive for any ri; assume Gi is a complex link,

ni(ω) = 8ζiωiω
[
3ω

4
i

(
2ζ

2
i −1

)
+2ω

2
i ω

2
(

ζ
2
i +2

)
+3ω

4
]

m−4
i ,

which is positive for ζi >
1√
2
.

Secondly, for the term Λi j(ω) in (19), it rewrites as

Λi j(ω) = ωΛ
∗
i j(ω)+2m̃ jω φiω +2m̃iω φ jω , (20)

where the properties of Λ∗i j(ω) are studied in [26] for Gn ∈ Gc.
Here, the possible terms to break the clockwise properties are
those with φi( j)ωω that is negative when ζi >

√
3

2 .
Assume Gi and G j are both real links; it is straightforward

that Λi j(ω) is positive, because φi( j)ωω is negative as shown
in Table 1 in [26].

Assume Gi and G j are both complex links with ζi >
1√
2

and ζ j >
1√
2
. Via Lemma 3 in [26], the term Λ∗i j(ω)> 0. The

remaining terms are also positive as shown in Table 1 in [26].
Hence, Λi j(ω) is positive for two complex links.

Assume Gi is a complex link with ζi >
1√
2

and G j is a real
link. According to Lemma 4 in [26],

Λ
∗
i j(ω)+2m̃2

jω φiω > 0. (21)

Multiplying ω > 0 on both sides, and rearranging,

ωΛ
∗
i j(ω)+2m̃ jω φiω(m̃ jω ω)> 0, (22)

where m̃ jω ω = ω2

m2
j
= ω2

r2
i +ω2 < 1. Therefore,

2m̃ jω φiω > 2m̃ jω φiω(m̃ jω ω), or ωΛ
∗
i j(ω)+2m̃ jω φiω > 0.

(23)
As a result, since the remaining terms in (19) are positive

for Gn ∈ Gc, Λi j(ω) is positive for all positive frequencies.
Finally, in (17), all the three terms are positive when ω > 0

for Gn ∈ Gc. The Nyquist plot of G = Gn
s is clockwise for

positive frequencies.
With the curvature of the delay-free plant, the time delay

can be added by the same method as in Section III.
Lemma 5: The set of time delayed systems G(s) =

Gn(s)
s e−sTd (Td ∈R+) have clockwise Nyquist plots if Gn ∈ Gc.

Proof: Similarly, the real part and imaginary part of G =
Gn
s e−sTd (Td ∈ R+) are

X(ω) =
cos(φ + π

2 +Tdω)

mω
=
−sin(φ +Tdω)

mω
,

Y (ω) =
−sin(φ + π

2 +Tdω)

mω
=
−cos(φ +Tdω)

mω
.

The curvature of Gn(s)
s e−sTd is

C (ω) =−
ω
(
φ 3

ω +φω m̃ωω −φωω m̃ω

)
+2m̃ω φω −φωω(

(φω +Td)2 +m2
ω +2 m̃ω

ω
+ 1

ω2

) 3
2

m

−
ω
(
T 3

d +Tdm̃ωω +3Tdφ 2
ω +3T 2

d φω

)
+2m̃ω Td(

(φω +Td)2 +m2
ω +2 m̃ω

ω
+ 1

ω2

) 3
2

m. (24)

Similar to Section III, the first term in (24) is negative
according to Lemma 4; the second term is negative by (7)
and Table 1 in [26]. As a result, G has a clockwise Nyquist
plot when ω > 0 with Gn ∈ Gc.

B. OACC of systems with integrator and time delay

Similarly, the OACC can be extended to time delay case for
critical stable plants.

Theorem 4: Let G = Gn
s e−sTd with Gn ∈ Gc; then G satisfies

the relaxed Kalman conjecture.
Remark 3: The case Td = 0 establishes the counterpart of

the result of Theorem 2 in [26] for critically stable systems.
Proof: By Lemma 4, G has a clockwise Nyquist plot

when Gn ∈ Gc. Meanwhile, both the magnitudes of Gn and 1
s

are decreasing with respect to frequency. Hence, the geometri-
cal properties satisfy the condition in [26]. On the other hand,
Gn(s)> 0, which satisfies the condition in Theorem 2, so the
multiplier theory is valid for this class of plants. Finally, by
the same argument in [26], G satisfies the Kalman conjecture.

Similarly, a few numerical examples are provided in Ap-
pendix with the critically stable plant G = e−3s

s(s+1)(s2+1.5s+1)2 .



The simulation results indicates the feedback interconnections
are weakly L2-stable.

Lemma 6: Consider a feedback interconnection with a time
delayed plant G1( jω) = Gn( jω)

jω e− jωTd (Gn ∈ Gc) and a slope
restricted nonlinearity ψ ∈ S[0,k]. Assume the Nyquist plot of
G1( jω) is on the right of a straight line, L, with non-zero
slope passing through the point (1/kε,0) with ε > 0. Then,
any G2( jω) = Gn( jω)

jω e− jωτTd (τ ∈ [0,1)) is also on the right
of L (see an example in Fig. 5.
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Fig. 5: Nyquist plots of G1 = e−3s

s(s+1)(s2+1.5s+1)2 and G2 =
e−s

s(s+1)(s2+1.5s+1)2 .

Similarly, we can establish the straightforward condition for
absolute stability:

Corollary 3: Let G = Gn
s e−sTd with Gn ∈ Gc and Td ∈ R+.

Let k̃N be the Nyquist value of G. Then for any τ ∈ [0,1],
the feedback interconnection Gτ =

Gn
s e−sτTd and ψ ∈ S[0,k] is

absolutely stable if and only if k < k̃N .

V. CONCLUSION

This paper develops a class of time-delayed stable transfer
functions and a class of time-delayed critically stable trans-
fer functions that satisfy the Kalman conjecture. Firstly, the
clockwise properties have been extended to the time delayed
case. Then, the stability issues of the time-delayed plants have
been analysed based on the clockwise Nyquist plots, and the
Kalman conjecture is proved to be satisfied via the OACC.
In addition, the result is further extended to the system with
bounded and constant time delay. The same process is applied
to the critical stable plants, and the conclusions are consistent.
Following [7], we have shown that the OACC can be applied
to critically stable systems.

The particular geometrical properties of the forward path
systems can be used to design the feedback system where
saturation and time delay are considered. Corollaries 2 and 3
provide a wide class of plants which can be used as bench-
marks to judge the performance of stability conditions in the
literature; for example they correspond directly to the LMI
conditions given in [14] and [18] respectively.

It remains open whether similar results could be obtained
using the Popov criterion. Hence it also remains open whether
the same class of time-delayed stable transfer functions and/or
time-delayed critically stable transfer functions also satisfy the
Aizerman conjecture.
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APPENDIX

A. Selected nonlinearities and input

We have selected 4 different nonlinearities:
• Saturation with a gain:

ψ1(u)(t) = sat(ku(t)), (25)

where

sat(x) =


0.5 if 0.5 < x,
x if −0.5≤ x≤ 0.5,
−0.5 if x <−0.5.

• Deadzone with a gain:

ψ2(u)(t) = dz(ku(t)), (26)

where

dz(x) =


x−0.5 if 0.5 < x,
0 if −0.5≤ x≤ 0.5,
x+0.5 if x <−0.5.

• Deadzone combined with saturation:

ψ3(u)(t) = sat(k dz(u(t))). (27)

• Arctangent with gain:

ψ4(u)(t) = arctan(ku(t)). (28)

As a result, all the above nonlinearities belong to S[0,k].
The input f ∈L2 is defined as

f (t) =

{
10 if t < 10,
0 if t ≥ 10.

(29)

B. LTI plant

1) Strictly stable: Let us consider the time delayed plant
given by

G1(s) =
e−3s

(s+1)(s2 +1.5s+1)2 . (30)

Its Nyquist gain is kN < 1.1916. Figure 6 shows four simula-
tions of the feedback interconnection between G and the four
nonlinear memoryless operators defined in Appendix A with
k = 1.1915. As expected, all simulations have stable behaviour.

2) Marginally stable: Let us consider the time delayed
plant with an integrator given by

G2(s) =
e−3s

s(s+1)(s2 +1.5s+1)2 . (31)

Its Nyquist gain is kN < 0.2328. Figure 7 shows four simula-
tions of the feedback interconnection between G and the four
nonlinear memoryless operators defined in Appendix A with
k = 0.2327. As expected, all simulations have stable behaviour
using the weaker L2-stability definition.
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(d) Feedback interconnection between G1 and ψ4

Fig. 6: Examples of simulations of feedback interconnections
between G1 and slope-restricted nonlinearities.
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(c) Feedback interconnection between G2 and ψ3
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Fig. 7: Examples of simulations of feedback interconnections
between G2 and slope-restricted nonlinearities.
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