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Abstract—Phase limitations of both continuous-time and
discrete-time Zames-Falb multipliers and their relation with
the Kalman conjecture are analysed. A phase limitation for
continuous-time multipliers given by Megretski is generalised
and its applicability is clarified; its relation to the Kalman
conjecture is illustrated with a classical example from the
literature. It is demonstrated that there exist fourth-order plants
where the existence of a suitable Zames-Falb multiplier can be
discarded and for which simulations show unstable behavior. A
novel phase-limitation for discrete-time Zames-Falb multipliers
is developed. Its application is demonstrated with a second-order
counterexample to the Kalman conjecture. Finally, the discrete-
time limitation is used to show that there can be no direct
counterpart of the off-axis circle criterion in the discrete-time
domain.

I. INTRODUCTION

The absolute stability of a negative feedback interconnection
between an LTI system G and a nonlinearity φ with a slope
restriction k has aroused the interests of many researchers. The
stability tests include the circle criterion, Popov criterion [1],
[2], and off-axis circle criterion [3], [4] in continuous time
and the circle criterion [5], Tsypkin criterion [6] and Jury-
Lee criterion [7], [8] in discrete time. For a recent discus-
sion, see [9] and [10]. Apart from these, loop transformation
and multiplier theory are both important tools to establish
the stability of feedback interconnections. The Zames-Falb
multipliers are a class of multipliers with the property of
preserving the positivity of monotone and bounded nonlin-
earities, and hence of slope-restricted nonlinearities after loop
transformation. The class of Zames-Falb multipliers can be
defined in either continuous time [11], [12] or discrete time
[13], [14]. Specifically, after loop transformation, the stability
of the negative interconnection between an LTI system G and
a nonlinearity φ with a slope restriction k is guaranteed if there
exists a Zames-Falb multiplier M such that

Re{M(1+ kG)}> 0, (1)

with M and G evaluated over all frequencies. That is to say, at
jω , ω ∈R for continuous-time systems and at e jω , ω ∈ [0,2π]
for discrete-time systems.

The Zames-Falb multipliers may be considered a classical
tool [15]. Nevertheless, there has been considerable recent in-
terest, largely sparked by the availability of numerical searches
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TABLE I
VARIOUS SLOPE RESTRICTIONS DISCUSSED IN THE TEXT.

k̂ZF Maximum slope for which a Zames-Falb multiplier is known
kZF Maximum slope for which there exists a Zames-Falb multiplier
kS Maximum slope for which the Lur’e system is absolutely stable
kPL Minimum slope for which phase limitation implies there is no

Zames-Falb multiplier
k̂C Minimum slope for which a counterexample to absolute

stability is known
kO Slope for direct discrete-time counterpart off-axis circle criterion

(which is false)
kRO Slope for Reduced Off-axis circle criterion in [42]
kN Nyquist value

([16], [17], [18], [19], [20], [21], [22], for continuous time;
[23], [24] for discrete time) and their encapsulation within
an IQC (integral quadratic constraint) framework [25], [26],
[27], [28]. There has also been interest in generalising the
class, both to MIMO (multi-input, multi-output) nonlinearities
[29], [30], [31], [32], [33] and to nonlinearities outside the
original classes considered by Zames and Falb [34], [35],
[28], [36]. In addition to determining stability conditions,
they can be used to analyse performance [37], [38]; further,
they can be used to obtain tighter versions of the Popov
criterion [39]. Applications of Zames-Falb multipliers range
from input-constrained model predictive control [40] to first
order numerical optimisation algorithms [41].

Although both continuous-time and discrete-time Zames-
Falb multipliers are defined with similar conditions, there
are clear distinctions between their properties. In discrete
time the Zames-Falb multipliers are the full set of multi-
pliers preserving the positivity of monotone and bounded
nonlinearities, besides direct phase substitutions [14], [43].
In continuous time matters are more nuanced, but the class
of Zames-Falb multipliers remains the widest known class
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Fig. 1. Relations between slope restrictions discussed in the text. Conjec-
ture I.2 is that kZF = kS and hence kS < kPL.
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Fig. 2. Lur’e problem



of multipliers preserving the positivitiy of monotone and
bounded nonlinearities, up to phase equivalence [39], [44]. For
a tutorial introduction to the phase properties of continuous-
time Zames-Falb multipliers, phase-equivalence results and the
issues associated with causality, see [45]. Phase properties are
essential to our understanding of Zames-Falb multipliers.

For example, if k < kN (see Table I for various slope
restrictions discussed in this paper), then the phase of (1+kG)
lies between −180◦ and 180◦. Meanwhile multipliers must be
positive so are restricted to lie between −90◦ and 90◦. But as
the Kalman conjecture is false, any set of suitable multipliers
must be restricted by some further fundamental limitations.
This follows from the obvious but important fact:

Fact I.1 If the system is not absolutely stable, there can be
no appropriate Zames-Falb multiplier.

However, only a few papers discuss such limitations. Megret-
ski [46] shows that there exists a phase limitation for
continuous-time Zames-Falb multipliers. Another phase lim-
itation of Zames-Falb multipliers is given by Jönsson and
Laiou [47], [48]. Such limitations are often ignored when new
searches for multipliers are presented (see for example [45]
and references therein). Often only kN is provided as an upper
limit for the slope restriction.

We discuss Megretski’s phase restriction [46] with respect
to a fourth-order continuous-time plant whose phase drops
from +180◦ to −180◦; similarly with k sufficiently big the
phase of 1+ kG drops from above +90◦ degrees to below
−90◦. The limitation cannot be applied to first, second or third-
order plants whose phase is in the range (−180,90) degrees
or (−90,180) degrees; this agrees with the well-known result
that the Kalman conjecture is true for such plants [49].

To the best of authors’ knowledge, no similar limitation has
been developed in the discrete-time domain. Since there exist
second-order discrete-time counterexamples to the Kalman
conjecture whose phase is in the range (−180,0) degrees [50],
[51] one might expect a simpler limitation for discrete-time
multipliers; this turns out to be indeed the case.

The contribution of this paper is for both continuous-time
and discrete-time multipliers. We generalise Megretski’s limi-
tation [46] for continuous-time multipliers to a wider choice of
frequency intervals. Further, we show that Megrestki’s limita-
tion [46] only applies for the class of Zames-Falb multipliers
which do not require the odd condition on the nonlinearity; we
provide the corresponding result when the nonliearity is odd.
We discuss the limitation’s numerical calculation and demon-
strate its application in the context of a classical example due
to O’Shea [11], [45]. In particular we demonstrate a fourth-
order counterexample of the Kalman conjecture for which the
constraint is active. A further contribution of the paper is the
development of a phase limitation for discrete-time Zames-
Falb multipliers. This limitation is fundamentally different to
Megrestki’s limitation as it only requires the phase of (1+kG)
to be either in the interval (90,180) degrees or in the interval
(−180,−90) degrees. The limitation is easy to compute, and is
active for a second-order discrete-time counterexample of the
Kalman conjecture. This close link between the preclusion of
a Zames-Falb multiplier and unstable behaviour leads us to the

following conjecture as the counterpart to Fact I.1; however
no proof (or counterexample) is offered in this paper:

Conjecture I.2 If there is no appropriate Zames-Falb multi-
plier, the system is not absolutely stable.

One direct application of the phase limitation is to show
there can be no direct discrete-time counterpart of the off-axis
circle criterion. The continuous-time off-axis circle criterion
is a useful graphical stability test and is shown to be a less
conservative criterion compared to the circle criterion [3], [4].
The derivation is based on the phase properties of RL/RC
multipliers. The direct discrete-time counterpart of the off-
axis circle criterion is sometimes assumed to be true in the
literature (e.g. [52], [53]). However only a highly restrictive
discrete-time version is proposed in [42], without discussion as
to whether the direct discrete-time counterpart off-axis circle
criterion is true or false. In this paper, we show that in some
cases there are no Zames-Falb multipliers with the requisite
phase properties for its derivation - i.e. the direct counterpart
off-axis circle criterion cannot be derived using multiplier
theory. The invalidation is completed by counterexample.

Some preliminary results related with Theorem IV.3 part (i)
were presented in [54].

II. NOTATION AND PRELIMINARY RESULTS

A. Signal spaces

For continuous-time signals let L2[0,∞) be the Hilbert
space of square integrable and Lebesgue measurable functions
f : [0,∞)→R and let L2 be defined similarly for f :R→R.
Let L2e[0,∞) be the extended space of L2[0,∞) [43].

For discrete-time signals let Z and Z+ be the set of
integer numbers and positive integer numbers including 0,
respectively. Let ` be the space of all real-valued sequences,
h :Z+→R and let `2 denote the Hilbert space of all square-
summable real sequences f :Z+→R (` is the extended space
of `2). Similarly, we can define the Hilbert space `2(Z) by
considering real sequences f :Z→R.

B. Lur’e problem and the Kalman conjecture

The feedback interconnection system is a Lur’e system
represented in Fig. 2 with both G and φ mapping L2e[0,∞)→
L2e[0,∞) (continuous time) or `→ ` (discrete time). The ob-
ject G is assumed LTI stable and the object φ memoryless and
slope-restricted (see below). The interconnection relationship
is {

v = f +Gw,
w =−(φv)+g.

(2)

The system (2) is well-posed if the map (v,w) 7→ (g, f ) has a
causal inverse on `× `, and this feedback interconnection is
`2-stable if for any f ,g ∈ `2, both w,v ∈ `2.

Definition II.1 (Memoryless slope-restricted nonlinearity)
The nonlinearity φ : L2e[0,∞)→ L2e[0,∞) or φ : `→ ` is
said to be memoryless and slope-restricted in S[0,k], if there



is a function N : R → R such that (φu)(t) = N(u(t)) or
(φu)(k) = N(u(k)), N(0) = 0, and

0≤ N(x1)−N(x2)

x1− x2
≤ k, ∀x1,x2 ∈R,x1 6= x2. (3)

In addition, φ is said to be odd if N is odd, i.e. N(x) =
−N(−x), for all x ∈R.

We define the Nyquist value and state the Kalman conjecture
for both continuous-time and discrete-time systems.

Definition II.2 (Nyquist value) Given a stable LTI system G,
the Nyquist value kN is the supremum of all the positive real
numbers k such that τkG satisfies the Nyquist Criterion for all
τ ∈ [0,1]. It can also be expressed as:

kN = sup{k > 0 : inf
ω
{|1+ τkG|}> 0),∀τ ∈ [0,1]}, (4)

with G evaluated over all frequencies (i.e. ω ∈ R for
continuous-time systems and ω ∈ [0,2π] for discrete-time
systems).

Conjecture II.3 (Kalman Conjecture, [55]) Let φ be a
memoryless slope-restricted nonlinearity such that there exists
a continuously differentiable N :R→R and S > 0 such that
φ(v)(t) = N(v(t)) (or φ(v)(k) = N(v(k))) and

0≤ dN(x)
dx

≤ S, ∀x ∈R. (5)

Then the negative feedback interconnection of the continuous-
time (or discrete-time) LTI systems G∼ [A,B,C,0] and φ (Fig
2) is globally asymptotically stable if A− BCk is Hurwitz
(Schur) for all k ∈ [0,S].

There exist fourth-order continuous-time counterexamples to
the Kalman conjecture [56], [49], [57] and second-order
discrete-time counterexamples [50], [51].

C. Zames-Falb multipliers

The characteristics of continuous-time Zames-Falb multipli-
ers is given in the following theorem that defines two different
classes of multipliers.

Theorem II.4 (Continuous-time Zames-Falb multipliers,
[12].) Consider the continuous-time feedback system in Fig. 2
with G a stable LTI system and φ memoryless and slope-
restricted in S[0,k]. Suppose that there exists an LTI multiplier
M : L2→L2 whose transfer function has the form

M(s) = 1−H(s) (6)

such that the impulse response h of H satisfies∫
∞

−∞

|h(t)|dt < 1. (7)

Moreover, let us assume that either φ is odd or h(t) > 0.
Suppose further there is some δ > 0 such that

Re{M( jω)(1+ kG( jω))} ≥ δ for all ω ∈ R. (8)

Then the feedback interconnection (2) is L2-stable.

Remark II.5 With some abuse of notation, we denote h(t) as
the addition of a real-valued function ha(t) and impulses at
different instants, i.e.

h(t) = ha(t)+
∞

∑
i=1

hiδ (ti). (9)

Definition II.6 The class of continuous-time Zames-Falb mul-
tipliers M c is defined as the LTI systems M : L2→L2 whose
transfer function has the form

M(s) = 1−H(s) (10)

such that the impulse response h of H satisfies that h(t) ≥ 0
for all t and ∫

∞

−∞

h(t)dt < 1. (11)

Definition II.7 The class of continuous-time “odd” Zames-
Falb multipliers M c

odd is defined as the LTI systems M : L2→
L2 whose transfer function has the form

M(s) = 1−H(s) (12)

such that the impulse response h of H satisfies∫
∞

−∞

|h(t)|dt < 1. (13)

By definition, M c ⊂M c
odd.

The counterpart result in discrete time is given in the
following theorem and it also defines two different classes
of multipliers:

Theorem II.8 (Discrete-time Zames-Falb multipliers, [14],
[43]) Consider the discrete-time feedback system in Fig. 2 with
G a stable LTI system and φ memoryless and slope-restricted
in S[0,k]. Suppose that there exists an LTI multiplier M : `2→
`2 whose transfer function has the form

M(z) = 1−H(z) (14)

such that the impulse response h of H satisfies that h0 = 0 and

∞

∑
i=−∞

|hi|< 1. (15)

Moreover, let us assume that either the nonlinearity is odd or
hi ≥ 0. Suppose further

Re{M(z)(1+ kG(z))}> 0, ∀|z|= 1. (16)

Then the feedback interconnection (2) is `2-stable.

Remark II.9 Inequality (8) is evaluated over ω ∈R whereas
inequality (16) is evaluated over the frequency interval ω ∈
[0,2π]. Hence, by the Extreme Value Theorem [58], it is unnec-
essary to define any δ > 0 for the discrete case corresponding
to that used in the continuous case.

Similarly to the previous definitions, we can define the
classes of multipliers M d and M d

odd.



D. Off-axis circle criterion

The continuous-time off-axis circle criterion is given.

Lemma II.10 (Off-axis circle criterion for continuous-time
systems, [3]) Consider the feedback system in Fig. 2 with G
LTI stable and φ is slope-restricted in S[0,k]. Suppose that
the Nyquist plot of the linear part of the system G( jω) lies
entirely to the right of a straight line passing through the point
(− 1

k + δ ,0) where δ > 0 and φ is monotonically increasing.
Then the feedback interconnection (2) is L2-stable.

For discrete time, only a highly restrictive version is pro-
posed.

Lemma II.11 (Reduced off-axis circle criterion for
discrete-time systems, [42]) Let the Nyquist plot of G(e jω)
for all 0 ≤ ω ≤ π lie entirely to the right of a straight line,
whose slope k is nonnegative passing through (− 1

K2
,0). Let

ω0 be such that Re G(e jω0) =− 1
K2

and Re G(e jω)≥− 1
K2

for
ω ≥ω0 and Im G(e jω)≤ 0 for ω0≥ω ≥ 0. Then the system is
asymptotically stable for all monotone φ with slope restriction
K2 in the feedback path if

θ ≤−1
2

ω0 +
π

2
, (17)

where θ is the angle made by the straight line and the imagi-
nary axis, i.e., θ = cot−1 k. If Im G(e jω)≥ 0 for ω0 ≥ ω ≥ 0,
the same argument can be used to prove the asymptotic
stability of the system with nonpositive k and

θ ≥ 1
2

ω0−
π

2
. (18)

E. Further mathematical notation

For the convenience of solving potential numerical issues,
the notation of O(·) is given.

Definition II.12 The condition

f (t) = g(t)+O(tn), as t→ 0. (19)

means that there exist M and t0 such that

| f (t)−g(t)| ≤Mtn on [0, t0]. (20)

The floor function, denoted by bνc, is defined by

bνc= max{m ∈ Z | m≤ ν}. (21)

III. CONTINUOUS PHASE LIMITATIONS AND THE KALMAN
CONJECTURE

Megretski presents in [46] a phase limitation for continuous-
time Zames-Falb multipliers. In this section we generalise the
result to a wider set of frequency intervals, and derive separate
results for both M c and M c

odd . Although it is stated in [46]
that the result there is valid for M c

odd (in the terminology of
this paper) we show by counterexample that it is in fact valid
for M c only. Finally, we bridge the limitation of [46] with
the Kalman conjecture; this is the key motivation to develop a
different set of phase limitations for the discrete-time Zames-
Falb multipliers.
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Fig. 3. Illustration of Theorem III.4 with the choice of interval from [46]:
κ = 1, c = ra and d = rb. The result is given in terms of ρ while the phase
of the multiplier M is tan−1 ρ .

A. Phase limitations

Definition III.1 Let 0 < a < b < c < d, κ > 0, λ > 0 and
µ > 0. Define

ρ
c = sup

t>0

|ψ(t)|
φ(t)

, (22)

and
ρ

c
odd = sup

t>0

|ψ(t)|
φ̃(t)

, (23)

where

ψ(t) =
λ cos(at)

t
− λ cos(bt)

t
− µ cos(ct)

t
+

µ cos(dt)
t

, (24)

φ(t) = λ (b−a)+κµ(d− c)+φ1(t), (25)

and

φ̃(t) = λ (b−a)+κµ(d− c)−|φ1(t)|, (26)

with

φ1(t) =
λ sin(at)

t
− λ sin(bt)

t
+

κµ sin(ct)
t

− κµ sin(dt)
t

.

(27)

Lemma III.2 If λ and µ are chosen such that

λ

µ
=

d2− c2

b2−a2 , (28)

then ρc and ρc
odd in Definition III.1 are well-defined; that is

to say ρc < ∞ and ρc
odd < ∞.

Proof: See Appendix.

Remark III.3 The direct calculation of the ratios ψ(t)/φ(t)
and ψ(t)/φ̃(t) is numerically ill-conditioned for small t since,
with the choice (28), we have ψ(t) = 0+O(t3), φ(t) = 0+
O(t2) and φ̃(t) = 0+O(t2), all as t → 0. Nevertheless, the
same construction ensures we can write

ψ(t)
φ(t)

= γt +O(t3) and
ψ(t)
φ̃(t)

= γt +O(t3) as t→ 0, (29)

with

γ =−1
4

λ (b4−a4)−µ(d4− c4)

λ (b3−a3)+κµ(d3− c3)
. (30)



We use this relation for small t in the numerical examples
below.

Theorem III.4 (Continuous-time phase limitations) Let M
be a continuous-time Zames-Falb multiplier. Suppose

Im(M( jω))> ρRe(M( jω)) for all ω ∈ [a,b], (31)

and

Im(M( jω))<−κρRe(M( jω)) for all ω ∈ [c,d], (32)

for some ρ > 0. Then under the conditions of Lemma III.2.
(i) ρ < ρc if M ∈M c,

(ii) ρ < ρc
odd if M ∈M c

odd .

Proof: See Appendix.
Lemma III.2 and Theorem III.4, with the choice κ = 1,

c = ra, d = rb and hence λ/µ = r2, are in [46]. An inter-
pretation of Theorem III.4 with these values is illustrated in
Fig. 3 (see also [45]). According to the constraints on the
coefficients of continuous Zames-Falb multipliers, if the phase
is simultaneously greater than tan−1 ρ on ω ∈ [a,b] (in Region
I) and smaller than − tan−1 ρ on ω ∈ [ra,rb] (in Region II),
then ρ < ρc if M ∈M c and ρ < ρc

odd if M ∈M c
odd .

Remark III.5 It is straightforward to produce the coun-
terpart of Theorem III.4 with (31) and (32) replaced
by Im(M( jω)) < −ρRe(M( jω)) for all ω ∈ [a,b] and
Im(M( jω))> κρRe(M( jω)) for all ω ∈ [c,d] respectively.

Remark III.6 In [46], Megretski uses a positive sign in the
exponential of the Laplace transform:

M( jω) = 1−
∫

∞

−∞

e jωth(t)dt. (33)

This is the standard convention in the Physics literature (see
for example [59]) but opposite to that used in [12]. The
apparent discrepancy has no significant consequence for the
analysis of phase limitations since if M(s), with impulse
response m(t), is a Zames-Falb multiplier then M(−s), with
impulse response m(−t), is also a Zames-Falb multiplier.

It is natural to ask whether a phase limitation over a single
frequency range can be constructed in a similar manner. This
is not possible in continuous time, as any corresponding
definition of ρc or ρc

odd would be unbounded as t approaches 0.
Loosely speaking, we can generate a multiplier in M c with
phase arbitrarially close to ±90◦ over an arbitrararily large
frequency inteterval by selecting h(t) = (1− ε)δ (t− t∗) with
ε > 0 arbitrarially close to 0 and t∗ arbitrarially close to
0. But we construct such phase limitations for discrete-time
multipliers below, in Section IV.

B. Numerical example

Here we illustrate Theorem III.4 with a numerical example.
Let a = 1.6 and b = 2.25. Let κ = 1, c = ra and d = rb with
r = 2.1. Then a sweep over time intervals followed by local
numerical search gives

ρ
c ≈ 0.6069, tan−1

ρ
c ≈ 31.25◦, (34)

and
ρ

c
odd ≈ 1.4928, tan−1

ρ
c
odd ≈ 56.18◦. (35)

Now consider the multiplier

M( jω) = 1−
∫

∞

−∞

e− jωth(t)dt (36)

with h(t) = −0.9δ (t + 1). Figure 4 shows that the relations
(31) and (32), or equivalently

∠M( jω)> tan−1
ρ over the interval [a,b], (37)

and

∠M( jω)<− tan−1
ρ over the interval [ra,rb], (38)

are satisfied simultaneously for ρ = ρc but not for ρ = ρc
odd .

This is consistent with Theorem III.4 as M ∈M c
odd but M /∈

M c. It is a counterexample to the false claim in [46] that the
phase limitation of Theorem III.4 part (i) is applicable to the
wider class M ∈M c

odd .

Remark III.7 Both in this numerical example and at the end
of Section III-A we consider multipliers where h takes the form
h(t) = (1− ε)δ (t− τ) for some τ . There is a close link with
Theorem III.4. Specifically if |ψ(τ)|/φ(τ)= ρc and ε→ 0 then∫

∞

−∞

ψ(t)h(t)dt = ρ
c[λ (b−a)+κµ(d−c)]+ρ

c
∫

∞

−∞

φ1h(t)dt.

(39)
Compare (80) in the proof of Theorem III.4. Similarly if
|ψ(τ)|/φ̃(τ) = ρc

odd then∫
∞

−∞

ψ(t)h(t)dt =

= ρ
c
odd [λ (b−a)+κµ(d− c)]+ρ

c
odd

∫
∞

−∞

φ1h(t)dt. (40)

We discuss the corresponding relations at greater length in
Section IV-B for the discrete-time case.
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C. Counterexamples to Kalman conjecture via phase limita-
tions

It is instructive to interpret the phase limitations of Theo-
rem III.4 in a manner consistent with known results about the
Kalman conjecture.

On the one hand, it is well-known that first, second and
third order plants hold the Kalman conjecture [49]. The phase
of such plants cannot reach both Regions I and II in Fig. 3.
So the phase limitations cannot apply to these plants. First-
order plants do not require a dynamic multiplier, second-order
plants require a dynamics multiplier with a tunable zero and
a pole at infinity, i.e. a Popov multiplier, and-third order plant
requires both a tunable pole and zero, i.e. first order RL/RC
multipliers. In all these cases, only a first-order multiplier is
required, and we know that there is no phase limitation in the
selection of such multipliers [39].

Remark III.8 Although the off-axis circle criterion is also
based on RL/RC multipliers, it is not sufficient to show all
third-order plants hold the Kalman conjecture. For example,
the off-axis circle criterion with the plant

G =
s2

s3 +1.002s2 + s+0.998
, (41)

guarantees stability with k < 3.928, whereas the multiplier
M = (s + 1)/(s + ε) guarantees stability for any positive k
with a sufficiently small value ε > 0.

On the other hand the phase limitations may be applied to
fourth-order plants, and these in turn may be counterexamples
to the Kalman conjecture by: a) showing numerically that a
phase limitation can be applied to a well-known plant, and
b) showing that the Lur’e system with this plant and a slope-
restricted nonlinearity may be unstable.

Specifically we will consider the phase limitation of The-
orem III.4 part (i) with κ = 1, c = ra, and d = rb; that is to
say the original result of [46] applied to M c. A particularly
suitable example to show this limitation is O’Shea example
[11], [45]:

G(s) =
s2

(s2 +2ξ s+1)2 , (42)

since the symmetry of the problem simplifies the selection of
the parameters. In this example, O’Shea showed that there is
a Zames-Falb multiplier for any k if ξ > 0.5. The following
result shows that it is not possible to reach an arbitrary large k
for any ξ ≤ 0.25. For the case ξ = 0.25, the phase of G(s) is
above 177.98◦ over the interval [a,b] where a = 0.02249 and
b = 0.03511; hence it is below −177.98◦ over the interval
[1/b,1/a] by using the symmetry of the plant. Then a suitable
Zames-Falb multiplier for this plant would require a phase
below −87.98◦ over the interval [a,b] and above 87.98◦ over
the interval [1/b,1/a]. The phase limitation ensures that there
is no Zames-Falb multiplier with such a phase characteristic,
since tan−1 ρc ≈ 87.79◦. Strictly speaking, we have used the
counterpart of Theorem III.4 mentioned in Remark III.5.

Although numerical reliability can be problematic in the
discussion of the Kalman conjecture [57], simulations of the
plant with asymmetrical saturation show a time evolution that

does not appear to settle to zero, supporting the validity of
Conjecture I.2. The simulation shown in Figure 5 has been run
in MATLAB R2013, using the solver ode45, with maximum
step size of 0.0001 s, and relative tolerance of 10−3. The
nonlinearity φ is described by the nonlinear function

N(x) =


−1000 x <−1;
1000x −1≤ x≤ 0;
0 x > 0;

(43)

the input g is given by

g(t) =

{
100 t ≤ 20s;
0 t > 20s;

(44)

and f (t) = 0. The relevance of this counterexample to the
Kalman conjecture is that we can show that there is no Zames-
Falb multiplier with h(t)≥ 0 for the system. The asymmetry of
the nonlinearity seems to be a key factor as simulations with
symmetric saturations show stable behaviour. The importance
of asymmetry in the stability of Lur’e systems with saturation
has been discussed recently [36], [60].
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Fig. 5. Amplitude of the signal ν in a simulation of the feedback interconnec-
tion depicted in Fig. 2 where G is given by (42) with ξ = 0.25, φ is described
by (43), g(t) is given by (44), and f (t) = 0.

Remark III.9 The magnitude of the response in Fig. 5 is
bounded. Since the plant G is stable and φ is sector-bounded
it follows that if g ∈L∞ then all signals must be in L∞.

IV. DISCRETE-TIME PHASE LIMITATION

In this section we develop phase limitations for discrete-
time Zames-Falb multipliers. Their derivation is in the spirit of
Megretski’s limitation [46] and Theorem III.4 for continuous-
time multipliers. However their properties are simpler and
consistent with the existence of second-order discrete-time
counterexamples to the Kalman conjecture [50], [51]. In
particular, and by contrast with their continuous-time counter-
parts, they are concerned with properties over a single interval
ω ∈ [a,b].

It is worth highlighting that if a discrete-time multiplier
preserves the positivity of all monotone and bounded non-
linearities then either it is a Zames-Falb multiplier or there
exists a Zames-Falb multiplier with the same phase [14], [43].
Hence any phase limitation on the discrete-time Zames-Falb
multipliers is also a limitation for any discrete-time multiplier.



A. Phase limitations

Definition IV.1 Let 0≤ a < b≤ π . Define

ρ
d = max

n∈Z+

|ψd(n)|
φd(n)

, (45)

and

ρ
d
odd = max

n∈Z+

|ψd(n)|
φ̃d(n)

, (46)

where

ψd(n) =
cos(an)

n
− cos(bn)

n
, (47)

φd(n) = (b−a)+φd,1(n), (48)

and

φ̃d(n) = (b−a)−|φd,1(n)|, (49)

with

φd,1(n) =
sin(an)

n
− sin(bn)

n
. (50)

Lemma IV.2 Both ρd and ρd
odd in Definition IV.1 are well-

defined; that is to say ρd < ∞ and ρd
odd < ∞.

Proof: See Appendix.

Theorem IV.3 (Discrete-time phase limitations) Let M be
a discrete-time Zames-Falb multiplier. Suppose

Im(M(e jω))> ρRe(M(e jω)) for all ω ∈ [a,b], (51)

for some ρ > 0. Then

(i) ρ < ρd if M ∈M d ,
(ii) ρ < ρd

odd if M ∈M d
odd .

Proof: See Appendix.
An interpretation of Theorem IV.3 is illustrated in Fig. 6.

According to the constraints on the coefficients of discrete-
time Zames-Falb multipliers, if the phase is greater than
tan−1 ρ on ω ∈ [a,b] (in Region A), then ρ < ρd if M ∈M d

and ρ < ρd
odd if M ∈M d

odd .

Remark IV.4 It is straightforward to produce the counterpart
of Theorem IV.3 with (51) replaced by

Im(M(e jω))<−ρRe(M(e jω)) for all ω ∈ [a,b]. (52)

An algorithm for finding the phase limitation in Theo-
rem IV.3 part (i) for a second order plant is given in [54]. For
a given stable plant G and a value of k such that 0 < k < kN
the phase of an ideal multiplier is obtained as

∠Md =


∠(G+1/k)−90 if ∠(G+1/k)> 90
∠(G+1/k)+90 if ∠(G+1/k)<−90
0 otherwise.

(53)

Then the algorithm increases k until the existence of such a
multiplier can be discarded by using the limitation presented
in Theorem IV.3.


a b

Region A

0

 

Fig. 6. Illustration of Theorem IV.3. The result is given in terms of ρ while
the phase of the multiplier M is tan−1 ρ ..

B. Integral bound and sparsely parametrized multipliers

Theorem IV.3 gives relative bounds on the real and imag-
inary parts of a Zames-Falb multiplier’s frequency response
over an interval [a,b]. It is straightforward to derive a closely
related result in terms of the integrals over the same interval.

Theorem IV.5 Let M be a discrete-time Zames-Falb multi-
plier. Suppose∫ b

a
Im(M(e jω))dω > ρ

∫ b

a
Re(M(e jω))dω (54)

for some ρ > 0. Then

(i) ρ < ρd if M ∈M d ,
(ii) ρ < ρd

odd if M ∈M d
odd .

Proof: See Appendix.

Remark IV.6 Theorem IV.5 is stronger than Theorem IV.3 in
the sense that condition (51) is sufficient for condition (54) but
not necessary. Theorem IV.3 may be derived as a Corollary of
Theorem IV.5 by applying the Mean Value Theorem [58].

Theorem IV.5 gives a tight phase limitation in the sense that
we can associate a set of sparsely parameterized multipliers
with Theorem IV.5 as follows.

Proposition IV.7
(i) For a given a and b, define the set N d ⊂Z as the set of

integers n such that ψd(n)/φd(n) = ρd . Then multipliers
of the form

M(z) = 1− ∑
n∈N d

hnz−n (55)

with

h0 = 0, hn ≥ 0 and ∑
n∈N ([a,b])

hn = 1− ε (56)

satisfy (54) with ρ arbitrarily close to ρd in the limit as
ε → 0.
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Fig. 7. Phases of the limiting cases M(z) = 1− z8, M(z) = 1− z−9 and linear
combinations of the form M(z) = 1−λ z8− (1−λ )z−9 with 0 < λ < 1. The
phase limitation tan−1 ρd ≈ 76.8◦ over the interval [a,b] = [0.7,0.77501] is
also shown. The top figure shows the phase over the frequency range from 0
to π radians, while the bottom figure shows the same data in the frequency
range from 0.68 to 0.8 radians.

(ii) For a given a and b, define the set N d
odd ⊂ Z as the

set of integers n such that ψd(n)/φ̃d(n) = ρd
odd . Then

multipliers of the form

M(z) = 1− ∑
n∈N d

hnz−n (57)

with
h0 = 0 and ∑

n∈N ([a,b])
hn = 1− ε (58)

satisfy (54) with ρ arbitrarily close to ρd
odd in the limit

as ε → 0.

Proof: See Appendix.

Remark IV.8 It is, once again, straightforward to produce
the counterpart of Theorem IV.5 with (54) replaced by∫ b

a
Im(M(e jω))dω <−ρ

∫ b

a
Re(M(e jω))dω. (59)

Similarly for Theorem IV.7 with (i) ψd(n)/φd(n) = −ρd and
(ii) ψd(n)/φ̃d(n) =−ρd

odd .

As an illustrative example, suppose a= 0.7 and b= 0.77501
(approx.). Then

tan−1
ρ

d ≈ 76.8◦, (60)

and
N d = {−8,9} . (61)

Fig 7 shows the phases of the limiting cases M(z) = 1− z8,
M(z) = 1− z−9 and linear combinations of the form M(z) =
1−λ z8− (1−λ )z−9 with 0 < λ < 1. It can be seen that the
phases are near to tan−1 ρd over the interval [a,b]. However
they always have values both above and below, indicating that
Theorem IV.3 is not tight in the same sense as Theorem IV.5.

Remark IV.9 A similar analysis is possible for continuous-
time multipliers. Compare Remark III.7.

C. Discrete-time counterparts of the off-axis circle criterion

The off-axis circle criterion [3] (Theorem II.10) is a useful
frequency-based graphical stability test for continuous-time
systems. It is sometimes assumed (e.g. in [52]) that its discrete-
time counterpart is true. We state this as a conjecture:

Conjecture IV.10 Consider the feedback system in Fig. 2 with
G ∈ RH∞, and φ is slope-restricted in S[0,k]. Suppose that
the Nyquist plot of the linear part of the system G(e jω) lies
entirely to the right of a straight line passing through the point
(− 1

k + δ ,0) where δ > 0 and φ is monotonically increasing.
Then the feedback interconnection (2) is `2-stable.

A geometrical interpretation of both Theorem II.10 for
continuous-time systems and Conjecture IV.10 for discrete-
time systems is given in Fig 8.

The phase-limitation on discrete-time Zames-Falb multipli-
ers carries the implication that there can be no multiplier
construction corresponding to that for RL/RC multipliers of
[42] used to prove Theorem II.10. We summarise the argument
as follows:

Re ( )jG e 

Im ( )jG e 

1

k


o

 

Fig. 8. Geometrical interpretation of the off-axis circle criterion considering
the plant G (Theorem II.10 for continuous-time systems and Conjecture IV.10
for discrete-time systems). The Theorem for continuous-time systems is true
but the Conjecture for discrete-time systems is false in general.

1) Under the conditions of Conjecture IV.10 there is some
θ in (−90,90) degrees such that the phase of 1+ kG
always lies in the interval (−90− θ ,90− θ) degrees.
Hence an ideal LTI multiplier with constant phase θ

would render the real part of M(1+ kG) positive over
all frequencies.

2) In their proof of the continuous off-axis circle crite-
rion Cho and Narendra [3] show that it is possible to
construct RL/RC multipliers whose phase is arbitrarily
close to some constant θ degrees over an arbitrarily large
interval. We show that for some values of θ this may
not be possible for any discrete-time LTI multiplier.

3) If a discrete-time LTI multiplier preserves the positivity
of a slope-restricted nonlinearity then there is a Zames-
Falb multiplier with the same phase [14], [43], so we can



limit our set of multipliers to the class of LTI Zames-
Falb multipliers.

4) If θ > tan−1(2/π) ≈ 32.48◦ then Theorem IV.3 pre-
cludes any such construction of a Zames-Falb multiplier
since if a→ 0+ and b→ π− then ρd → tan−1(−2/π).

Hence the phase limitation can be used to invalidate Con-
jecture IV.10 when θ > tan−1(2/π). Smaller values can be
obtained by using different values of a and b. It follows that
any counterpart of the off-axis circle criterion in discrete-time
must take into account specific information about frequency
intervals. This is true of the more limited result originally
derived by Narendra and Cho [42] (Theorem II.11). In fact
it can be shown that the counterexamples to the Kalman
conjecture of [50] and [51] are also counterexamples to
Conjecture IV.10.

D. Finite search in discrete-time domain

Here we provide a result which simplifies the numerical
implementation. Although the definitions of ρd and ρd

odd are
given with an infinite number of terms, they can be calculated
using a finite number n = nN given in Lemma IV.11.

Lemma IV.11 Let 0≤ a < b≤ π , then

ρ
d = max

1≤n≤nN

|ψd(n)|
φd(n)

, (62)

and

ρ
d
odd = max

1≤n≤nN

|ψd(n)|
φ̃d(n)

, (63)

with

nN = bνc, (64)

where

ν =
2(b−a)−2sinb+2sina−2cosb+2cosa

(a−b)(cosb− cosa)
. (65)

Proof: See Appendix.
Suppose we wish to find a phase limitation over the interval

ω ∈ [0.7,0.75]. Applying Lemma IV.11 we find ν = 55.2 and
hence |ψd(n)|/φd(n)< |ψd(1)|/φd(1) for all n > nN , with

nN = 55. (66)

Hence it is sufficient to search over the integers 1 ≤ n ≤ 55
for ρd . The numerical results shown in Fig. 9 demonstrate
that |ψd(n)|/φd(n)< |ψd(1)|/φd(1) for all n > 18. In fact the
maximum occurs at n =−9.

E. Numerical example

Let us consider the negative feedback interconnection be-
tween the plant

G(z) =
z

z2−1.8z+0.81
, (67)

and a slope-restricted nonlinearity. This second-order plant is
a counterexample to the discrete-time Kalman conjecture as
there is a periodic solution when k = 2.1 [50], and the Nyquist
value is kN = 3.61. Using the algorithm of [24] we find there
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Fig. 9. The value of fd(n) with different value of n

exists a Zames-Falb multiplier for non-odd nonlinearities when
k̂ZF = 1.3028.

Using the phase limitation result given in Theorem IV.3
part (i), it is possible to show that there is no Zames-Falb
multiplier for any k > kPL = 1.4603. Fig. 10 illustrates that the
phase limitation results indicate there can be no appropriate
Zames-Falb multiplier when k = 1.5. The phase limitation is
given by tan−1 ρd = 66.7137◦, where ρd is obtained using
Definition IV.1 with a = 0.7198 and b = 0.8996. By contrast,
Fig. 11 shows that this limitation is not active when k = k̂ZF ;
this is expected since we have been able to find a suitable
Zames-Falb multiplier for this value of the gain. A complete
list of slope restriction results of G(z) in (67) is given in
Table II. The result of the reduced off-axis circle criterion
kR shows conservativeness compared to all the other results
in the Table. The (false) result from the direct discrete-time
counterpart of the off-axis circle criterion is greater than
the slope obtained by phase limitation, i.e. kO > kPL; this
demonstrates that Conjecture IV.10 is false.

Finally, using combination of deadzone and saturation as
nonlinearity, we are able to find periodic solution with k̂C =
1.3666. These results are consistent with Conjecture I.2, i.e.
k̂ZF < k̂C < kPL.

TABLE II
RESULTS OF DIFFERENT SLOPE RESTRICTIONS (NON-ODD NONLINEARITY)

k kRO k̂ZF k̂C kPL kO kN
Result 0.8962 1.3028 1.3666 1.4603 3.61 3.61

V. CONCLUSIONS

In this paper we have demonstrated the connection between
phase limitations of Zames-Falb multipliers and the Kalman
conjecture.

In continuous time, we have generalised a limitation pro-
posed by Megretski, clarified its remit and illustrated its effect
with a numerical example. In particular we show it can be
applied to a fourth-order plant where the resulting numeri-
cal implementation shows instability. It remains open which
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Fig. 10. Phase of (1+1.5G), desired phase of the multiplier and the phase
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Fig. 11. Phase of (1+ 1.3028G), desired phase of the multiplier and the
phase limitation

choice of intervals [a,b] and [c,d] and scaling parameter κ in
Theorem III.4 provides most insight.

Motivated by this connection and recent results on the
Kalman conjecture in discrete time, we have derived a more
simple phase limitation for discrete-time Zames-Falb multipli-
ers. Numerical results in discrete time are easier to obtain and
we show that the slope restriction obtained by using phase lim-
itation theorems can be about 40% of the Nyquist value even
for some second-order examples. Thus the phase limitation
can be directly useful when forming benchmarks for searches
over Zames-Falb multipliers. Further, the phase limitation can
be used to show there can be no direct counterpart in discrete
time (Conjecture IV.10) to the off-axis circle criterion for
continuous-time systems (Theorem II.10).

Based on the results of this paper, we propose Conjec-
ture I.2, which seems to be compatible with current state-of-
the-art knowledge and results for both continuous and discrete-
time domains.

There is plenty of scope for future work. It seems possible
that the phase limitations might be used to provide a more
computationally efficient search fo appropriate multipliers.

Phase limitations for the class of Zames-Falb multipliers avail-
able when the nonlinearity is quasi-odd [36] require further
research.
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VII. APPENDIX

A. Proof of Lemma III.2

Both the functions

f1(ω) = ω− sinωt
t

(68)

and
f2(ω) = ω +

sinωt
t

(69)

are monotone non-decreasing in ω when t > 0. It follows that
φ(t)> 0 and φ̃(t)> 0 when t > 0. In addition

lim
t→∞

φ(t) = λ (b−a)+κµ(d− c)> 0, (70)

and
lim
t→∞

φ̃(t) = λ (b−a)+κµ(d− c)> 0. (71)

Finally

φ1(t) =−[λ (b−a)+κµ(d− c)]

+λ
(b3−a3)t2

6
+κµ

(d3− c3)t2

6
+O(t4) as t→ 0, (72)

and

ψ(t) = λ
(b2−a2)t

2
−µ

(d2− c2)t
2

−λ
(b4−a4)t3

24
+µ

(d4− c4)t3

24
+O(t5) as t→ 0, (73)

so the choice (28) ensures

lim
t→0

|ψ(t)|
φ(t)

= 0, (74)

and
lim
t→0

|ψ(t)|
φ̃(t)

= 0. (75)

B. Proof of Theorem III.4

Suppose (31) and (32) hold for some multiplier M( jω) =
1−H( jω). Then

Im(M( jω)) =
∫

∞

−∞

sin(ωt)h(t)dt, (76)

and
Re(M( jω)) = 1−

∫
∞

−∞

cos(ωt)h(t)dt, (77)

where h in the impulse response of H. Hence integrating (31)
and (32) over their respective intervals gives∫

∞

−∞

cos(at)− cos(bt)
t

h(t)dt >

ρ(b−a)+ρ

∫
∞

−∞

sin(at)− sin(bt)
t

h(t)dt, (78)



and∫
∞

−∞

cos(ct)− cos(dt)
t

h(t)dt <

−κρ(d− c)−κρ

∫
∞

−∞

sin(ct)− sin(dt)
t

h(t)dt. (79)

Summing the two inequalities, multiplied by λ and −µ

respectively, gives∫
∞

−∞

ψ(t)h(t)dt > ρ[λ (b−a)+κµ(d− c)]+ρ

∫
∞

−∞

φ1h(t)dt.

(80)

(i) If M ∈M c then ‖h‖1 < 1 and h(t)≥ 0 for all t. So

ρ[λ (b−a)+κµ(d− c)]>∫
∞

−∞

ρ[λ (b−a)+κµ(d− c)]h(t)dt. (81)

and hence we can write (80) as∫
∞

−∞

(ψ(t)−ρφ(t))h(t)dt > 0. (82)

But, since φ is an even function and ψ is an odd
function,

ψ(t)−ρ
c
φ(t)≤ 0 for all t. (83)

Further, since φ is non-negative,

ψ(t)−ρφ(t)≤ 0 for all t when ρ ≥ ρ
c. (84)

Hence ρ < ρc.
(ii) If M ∈M c

odd then we can only say ‖h‖1 < 1. Neverthe-
less,

ρ[λ (b−a)+κµ(d− c)]>∫
∞

−∞

ρ[λ (b−a)+κµ(d− c)]|h(t)|dt. (85)

and hence (80) leads to∫
∞

−∞

(|ψ(t)|−ρφ̃(t))|h(t)|dt > 0. (86)

But, since φ̃ is also an even function and (as before) ψ

is an odd function,

|ψ(t)|−ρ
c
odd φ̃(t)≤ 0 for all t. (87)

Further, since φ̃ is non-negative,

|ψ(t)|−ρφ̃(t)≤ 0 for all t when ρ ≥ ρ
c
odd . (88)

Hence ρ < ρc
odd .

C. Proof of Lemma IV.2

The result is immediate following a similar argument to the
proof of Lemma III.2. In particular, as φd and φ̃d are evaluated
for discrete values of n≥ 1, their limiting behaviour as n→ 0
need not be considered.

D. Proof of Theorem IV.3

Suppose (51) holds for some multiplier M(e jω) = 1 −
H(e jω). Then

Im(M(e jω)) =
∞

∑
n=−∞

sin(ωn)hn (89)

and

Re(M(e jω)) = 1−
∞

∑
n=−∞

cos(ωn)hn, (90)

where h is the impulse response of H. Hence integrating (51)
over the interval [a,b] gives

∞

∑
n=−∞

cos(an)− cos(bn)
n

hn >

ρ(b−a)+ρ

∞

∑
n=−∞

sin(an)− sin(bn)
n

hn. (91)

(i) If M ∈M d then h0 = 0, ‖h‖1 < 1 and hn ≥ 0 for all n.
So

ρ(b−a)>
∞

∑
n=−∞

ρ(b−a)hn, (92)

and hence we can write (91) as

∞

∑
n=−∞

(ψd(n)−ρφd(n))hn > 0. (93)

But, since φd is an even function and ψd is an odd
function,

ψd(n)−ρ
d
φd(n)≤ 0 for all n≥ 1. (94)

Further, since φd is non-negative,

ψd(n)−ρφd(n)≤ 0 for all n≥ 1 when ρ ≥ ρ
d . (95)

Hence ρ < ρd .
(ii) If M ∈M d

odd then we can only say h0 = 0 and ‖h‖1 < 1.
Nevertheless,

ρ(b−a)>
∞

∑
n=−∞

ρ(b−a)|hn|, (96)

and hence (91) leads to

∞

∑
n=−∞

(|ψd(n)|−ρφ̃d(n))|hn|> 0. (97)

But, since φ̃d is also an even function and (as before)
ψd is an odd function,

|ψd(n)|−ρ
d
odd φ̃d(n)≤ 0 for all n≥ 1. (98)

Further, since φ̃d is non-negative,

|ψd(n)|−ρφ̃d(n)≤ 0 for all n≥ 1 when ρ ≥ ρ
d
odd .

(99)
Hence ρ < ρd

odd .



E. Proof of Theorem IV.5

Substituting

Im(M(e jω)) =
∞

∑
n=−∞

sin(ωn)hn (100)

and
Re(M(e jω)) = 1−

∞

∑
n=−∞

cos(ωn)hn, (101)

into (54) leads to (91). The proof is then identical to that of
Theorem IV.3.

F. Proof of Proposition IV.7

(i) Let Mn(z) = 1− z−n with n ∈N ([a,b]). Then

Im(Mn(e jω)) = sin(ωn), (102)

Re(Mn(e jω)) = 1− cos(ωn). (103)

Integrating over the interval yields∫ b

a
Im(M(e jω))dω = ρ

c
∫ b

a
Re(M(e jω))dω. (104)

Furthermore, if

M(z) = 1− ∑
n∈N ([a,b])

λnz−n, (105)

with
λn ≥ 0 and ∑

n∈N ([a,b])
λn = 1, (106)

then we may write

M(z) = ∑
n∈N ([a,b])

Mn(z). (107)

The proof follows straightforwardly.
(ii) Similar.

G. Proof of Lemma IV.11

Let
ε =
|ψd(1)|
φd(1)

=
|cosa− cosb|

b−a− (sinb− sina)

=− cosb− cosa
b−a− (sinb− sina)

=−ψd(1)
φd(1)

,

(108)

where we have used that (x−sinx) is a monotonically increas-
ing function; and

ν =
2

(b−a)
1+ ε

ε
=

2−2ψd(1)/φd(1)
−(b−a)ψd(1)/φd(1)

=
2(b−a)−2sinb+2sina−2cosb+2cosa

(a−b)(cosb− cosa)
.

(109)

For n > ν , we know (b−a)n−2 > 0. In addition,

ε(b−a)n > 2+2ε, (110)

so
|ψd(n)|
φd(n)

=
|cos(bn)− cos(an)|

(b−a)n− [sin(bn)− sin(an)]
<

2
(b−a)n−2

< ε.

(111)

As a result,

|ψd(n)|
φd(n)

<
|ψd(1)|
φd(1)

∀n > ν . (112)

Finally, it is easy to check that

|ψd(1)|
φ̃d(1)

=
|ψd(1)|
φd(1)

(113)

and hence the same relation holds for |ψd(n)|/φ̃d(n).
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