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ABSTRACT
The study of input-output stability of reset control systems with time-varying delay
is addressed in this work. The time-varying function that defines the delay is assumed
to be bounded on magnitude and variation. This approach also covers the particular
case of constant time delay, but it is studied separately to obtain less conservative
results. After proposing a convenient loop transformation, the stability analysis is
performed by means of the integral quadratic constraint (IQC) framework. Then
by applying the Kalman–Yakubovich–Popov (KYP) Lemma, easily checkable con-
ditions in form of linear matrix inequalities (LMI) are obtained. To conclude, some
numerical examples are provided illustrating the proposed criteria.
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1. Introduction

A reset controller is a linear system whose states are set to zero (reset actions) when its
input equals zero, or more generally, when it satisfies a given condition. This control
technique was one of the first attempts to overcome fundamental limitations of linear
and time-invariant (LTI) control systems (Clegg, 1958; Horowitz & Rosenbaum, 1975;
Krishman & Horowitz, 1974). An example of a reset control system reaching specifi-
cations that are not achievable for any LTI controller is presented by Beker, Hollot,
and Chait (2001). Some intuition about its capabilities may be gained from the de-
scribing function approach. It shows that reset controllers are able to yield a similar
gain characteristic of a given LTI controller, but with significantly less phase lag. The
latter property makes reset control an attractive strategy to deal with time-delayed
systems.

A well-known caveat of this control strategy is that the mere addition of reset ac-
tions may destabilise a stable control system. This issue has motivated many works.
The problem of the internal stability of reset control systems with constant time delay
has been thoroughly studied, see, for example, (Baños & Barreiro, 2009; Barreiro &
Baños, 2010; Davó & Baños, 2013; Davó, Gouaisbaut, Baños, Tarbouriech, & Seuret,
2015; Mercader, Davó, & Baños, 2013). Nevertheless, the aspect of input-output sta-
bility and issues like time-varying delay and alternative reset laws remain virtually
unexplored. An inherent difficulty when studying the stability of time-delayed reset
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control systems is the presence of discontinuities in the state (or possibly some states)
of the reset controller (see Davó and Baños (2013)). That makes difficult to rigorously
study the stability by adopting a Lyapunov-Krasovskii approach, thus calling for an
input-output approach. Moreover, the problem becomes even harder to solve in the
case of time-varying delay and/or alternative reset laws. These facts motivate the use
of an alternative approach able to circumvent these difficulties. The approach adopted
here is the IQC framework exploiting input-output properties of reset controllers.

Concerning to IQC analysis, it should be noted that in the last two decades robust
control theory has been reformulated within the IQC framework (Megretski & Rantzer,
1997), which gives an unifying framework for problems in modern robust control. IQCs
are very useful in capturing a rich class of uncertainties. For the particular case of
time-delay, it has been considered as a type of structured uncertainty in a number of
works, see, e.g. (Kao & Rantzer, 2007; Pfifer & Seiler, 2015; Tugal, Carrasco, Falcon,
& Barreiro, 2016).

This work studies input-output stability problem of reset control systems with time-
varying delay using the IQC approach. We combine the reset controller and the delay
as a MIMO nonlinearity, and use the input-output properties of reset systems (Car-
rasco, Baños, & van der Schaft, 2010; Forni, Nešić, & Zaccarian, 2011). Applying then
the IQC theorem, stability conditions for this class of systems are obtained. Prelimi-
naries results were presented by Mercader, Carrasco, and Baños (2013). To the best
of our knowledge, this approach provides the first input-output stability conditions
for reset control systems with time-varying delay via IQC framework. We note that
discontinuity in the output signal is not a limitation in the IQC framework. Indeed,
passivity properties have been already shown by Carrasco et al. (2010) and Forni et
al. (2011). The IQC framework is used to combine these passivity properties with the
time delay properties developed in Kao and Rantzer (2007). Other authors, e.g. Fetzer
and Scherer (2016), use IQC framework for the sample and hold operator.

This work starts giving some preliminary background in Section 2. Section 3 presents
the time-delay reset control system. Stability criteria for time-delay reset control sys-
tems are presented in Section 4. Applications of the proposed criteria are given in
Section 5. Finally, some conclusions are drawn.

Notation: x ∈ Rn is a column vector, |x| stands for its euclidean norm. H∗ is
the conjugate transpose of the matrix H. Ln2 denotes the space of Rn-valued square
integrable functions defined on [0,∞), with norm ‖ · ‖, and Ln2e is the extended Ln2
space. Given a bounded system G on Ln2 , we use ‖G‖ to denote the induced norm
of G. RHl×m

∞ is used to denote the space of proper rational transfer matrices (of
dimension l × m, that will be dropped when there is no ambiguity) with no poles

in the closed right half plane. f̂(jω) is the Fourier transform of f(t). The truncation
operator PT is defined by PT f(t) = f(t) when t ≤ T and PT f(t) = 0 when t > T . If
necessary, we use “?” to denote the transpose of the corresponding symmetric block
in a matrix. Let Dh(t) denote the time-delay operator Dh(t)(v) := v(t − h(t)), for the
case of constant time-delay we will suppress the time dependency on h(t), i.e. Dh.
Analogously, we define Sh(t) = Dh(t) − 1. Finally, a minimal state-space realisation of

the transfer function G(s) = C(sI −A)−1B +D is denoted by G ∼
[
A B
C D

]
.
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Figure 1. Feedback system Σ(G,∆).

2. Preliminaries

This section serves to introduce some basic notions needed throughout this work. First
of all, the IQC framework is briefly presented. The system under consideration is the
feedback system Σ(G,∆) shown in Figure 1, which is given by the following equation

y = Gu + w,

u = ∆y + v,
(1)

where w ∈ Ll2e, v ∈ Lm2e are exogenous inputs, G ∈ RHl×m
∞ and ∆ is a bounded and

causal operator. An operator ∆ is causal if PT∆ = PT∆PT , and is bounded if its gain
‖∆‖ is finite.

Definition 2.1. The system Σ(G,∆) is well-posed if the map (y,u) 7→ (v,w) has a
causal inverse on Ll+m

2e . That is, for any w ∈ Ll2e and v ∈ Lm2e, there exists a solution
y ∈ Ll2e and u ∈ Lm2e, which depends causally on v and w.

Definition 2.2. The system Σ(G,∆) is stable if for any solution, there exists a con-
stant C > 0 such that∫ T

0

(
|y(t)|2 + |u(t)|2

)
dt ≤ C

∫ T

0

(
|v(t)|2 + |w(t)|2

)
dt, (2)

for all T ≥ 0.

Definition 2.3. Let Π : jR 7→ C(l+m)×(l+m) be a measurable Hermitian valued func-
tion. Two signals y ∈ Ll2 and u ∈ Lm2 are said to satisfy the IQC defined by Π if∫ ∞

−∞

[
ŷ(jω)
û(jω)

]∗
Π(jω)

[
ŷ(jω)
û(jω)

]
dω ≥ 0. (3)

Moreover, a bounded system ∆ : Ll2e 7→ Lm2e is said to satisfy the IQC defined by Π if
y and ∆y satisfy the IQC defined by Π for all y ∈ Ll2.

The main stability criterion, the so-called IQC Theorem is formulated as follows.

Theorem 2.4 (The IQC Theorem). (Megretski & Rantzer, 1997) Let G ∈ RHl×m
∞

and let ∆ be a bounded causal operator. Suppose

(1) for every τ ∈ [0, 1], the system Σ(G, τ∆) is well-posed;
(2) for every τ ∈ [0, 1], the IQC defined by Π is satisfied by τ∆;
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(3) there exists ε > 0 such that[
G(jω)
I

]∗
Π(jω)

[
G(jω)
I

]
≤ −εI, (4)

for all ω ∈ R.

Then, the system Σ(G,∆) is stable.

The multiplier Π is often block decomposed into the form

Π =

[
Π11 Π12

? Π22

]
, (5)

it is important to note that if Π11 ≥ 0 and Π22 ≤ 0 and ∆ satisfies the IQC defined
by Π, it implies that τ∆ satisfies the same IQC for all τ ∈ [0, 1].

Assume that ∆ is diagonally structured by n sub-systems ∆i, i = 1, . . . , n; i.e.

∆ = diag(∆1, . . . ,∆n), (6)

and each ∆i satisfies the IQC defined by

Πi =

[
Πi(11) Πi(12)

? Πi(22)

]
, (7)

where the block structures are consistent with the size of the sub-systems ∆i. Then
an IQC for ∆ can be easily defined by composing Πi appropriately by

Π =



Π1(11) Π1(12)

. . .
. . .

Πn(11) Πn(12)

? Π1(22)

. . .
. . .

? Πn(22)


. (8)

Note that (4) is a frequency-dependent inequality (FDI) condition over an infinite
range of frequencies. An effective method to check such a condition is to translate the
FDI condition into an LMI problem via KYP Lemma.

Lemma 2.5 (KYP Lemma). (Rantzer, 1996) Let Ω be a symmetric matrix. For the
system G(s) = C(sI−A)−1B+D, where det(jωI−A) 6= 0, ∀ω, the following inequal-
ities are equivalent:

• The following FDI holds:

G(jω)∗ΩG(jω) < 0, ∀ω ∈ R. (9)
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Figure 2. Reset control system setup.

• There exists a matrix P = P> ∈ Rn×n, where n = dim(A), such that A B
I 0
C D

>  0 P 0
P 0 0
0 0 Ω

 A B
I 0
C D

 < 0. (10)

Before closing this section, a definition about passivity is provided, since a passivity
property will be used to characterize the input-output behaviour of the reset controller.

Definition 2.6 (van der Schaft (2000)). A system H : L2e 7→ L2e, with input u and
output y = Hu is said to be output strictly passive (OSP) if there exist a constant
k1 > 0 (excess of output passivity) such that∫ T

0
u>(t)y(t)dt ≥ k1

∫ T

0
y>(t)y(t)dt (11)

for all functions u ∈ L2e and for all T ≥ 0.

Note that a system H, which is OSP, has a finite gain (Khalil, 2002).

3. Time-delay reset control systems

Consider a reset control system as shown in Figure 2, which is formed by a feedback
interconnection of a SISO LTI plant P , described as

ẋp(t) = Apxp(t) +Bpup(t),

yp(t) = Cpxp(t),
(12)

and a controller K, that is formed by a reset controller R in parallel with a linear
controller K1, both connected in series with another linear controller K2.

Remark 1. This structure of the controller K (see dotted box in Figure 2) encom-
passes different reset controller previously considered in the literature, see, for example,
the proportional integral plus Clegg integrator (PI+CI) (Baños & Barreiro, 2012) or
the approach of using a reset controller in series with an LTI controller (Horowitz &
Rosenbaum, 1975; Zheng, Chait, Hollot, Steinbuch, & Norg, 2000).

The considered reset controller R, consists of an LTI controller together with a reset
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action, it is described by the following impulsive differential equation (IDE)

δ̇(t) = 1, ẋr(t) = Arxr(t) +Brur(t), (yr, ur) ∈ SF or δ < δm,

δ(t+) = 0, xr(t
+) = 0, (yr, ur) ∈ SJ and δ ≥ δm,

yr(t) = Crxr(t) +Drur(t),

(13)

where SF and SJ are the flow and jump set, respectively. In addition, zero initial
conditions are considered, i.e. δ(0) = 0 and xr(0) = 0. Time regularisation is necessary
to avoid Zeno behaviour (see Nešić, Zaccarian, and Teel (2008) and the references
therein), that consists on switching off the reset mechanism for a time interval of
length δm > 0 after each reset time.

The two linear controllers K1 and K2, are given by the following equations

ẋ1(t) = A1x1(t) +B1u1(t),

y1(t) = C1x1(t) +D1u1(t),
(14)

and

ẋ2(t) = A2x2(t) +B2u2(t),

y2(t) = C2x2(t) +D2u2(t),
(15)

respectively. As can be seen from Figure 2, the connections between blocks of the reset
control system are as follows

up(t) = d(t− h(t)) + y2(t− h(t)),

u2(t) = yr(t) + y1(t),

u1(t) = ur(t) = e(t) = r(t)− yp(t).
(16)

Here, it is considered an unknown time-varying delay h(t) satisfying

0 ≤ h(t) ≤ h0, |ḣ(t)| ≤ h1, ∀t ≥ 0. (17)

Henceforward, we assume that the reset controller exhibits a certain passivity prop-
erty, this is stated as follows.

Assumption 1. The reset controller R is output strictly passive (OSP) with an excess
of output passivity k1.

Remark 2. This assumption is not very restrictive since it is easy to obtain an OSP
reset controller. OSP is a key property of reset controllers. The two previous works that
study input-output properties of reset systems provide procedures to obtain an OSP
reset controller. In Carrasco et al. (2010), it was stated that a linear OSP controller
remains OSP when reset actions are applied to it regardless the reset law, whenever
the system has a temporal regularisation. Alternatively, it is possible to obtain an
OSP reset controller by an adequate reset law and an extra feedforward loop from any
given linear controller (Forni et al., 2011).
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4. Stability analysis via IQC

The main purpose of this work is to derive input-output stability criteria for time-delay
reset control systems, to reach that goal we take advantage of the IQC framework.
This section is devoted to the presentation of a loop transformation, classes of IQCs,
and stability criteria.

4.1. Loop transformation

The IQC framework deals with a wide class of system, that consists of feedback con-
figurations as illustrated in Figure 1, where G is the transfer function of a known
LTI system and all uncertainties or nonlinearities affecting the system (the “trouble-
making” components, see shadow boxes in Figure 2) are regarded in the operator ∆.
In order to apply the IQC Theorem, the reset control system presented in the previous
section will be rewritten as a system Σ(G,∆), according to the setup of Figure 1. A
representation in the form Σ(G,∆) of the reset system presented in Section 3, with a
time-varying delay interconnection, is given by

Ḡ =

[
0 −P
K2 −K2K1P

]
,

∆̄ =

[
R 0

0 Dh(t)

]
.

(18)

An alternative (equivalent) representation in terms of the operator Sh(t) is more con-
venient to study this system. That is composed by the systems G and ∆ forming a
feedback system Σ(G,∆), where G and ∆ are given by

G =


− K2P

1 +K2K1P
− P

1 +K2K1P

K2

1 +K2K1P
− K2K1P

1 +K2K1P

 ,

∆ =

[
R 0

0 Sh(t)

]
.

(19)

This representation is illustrated in Figure 3.
The well-posedness of reset control systems has been analysed in Baños and Bar-

reiro (2012) and Baños, Mulero, Barreiro, and Davó (2016), and specifically for reset
control systems with time-delay in Cánovas, Mulero, and Baños (2016). Since the reset
controller R, given by (13), contains a time regularisation, then it directly follows that
reset instants are well-defined and distinct (that is usually referred to as well-posedness
of the reset instants). Thus, since the base system is well-posed, then well-posedness of
the reset control system directly follows from the well-posedness of the reset instants.
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Figure 3. Loop transformation for the considered reset control system.

4.2. Classes of IQCs

The IQC Theorem will be applied once the system ∆ is characterized by an appropriate
IQC. Different classes of multipliers will be presented ahead.

Definition 4.1. Given a reset controller R satisfying Assumption 1, Π belongs to the
class of multipliers Πr if there exist Υ(ω) = Υ(ω)∗ > 0 for all ω ∈ R such that

Π =

[
0 0.5Υ(ω)

0.5Υ(ω) −k1Υ(ω)

]
. (20)

Proposition 4.2. A reset controller R under Assumption 1 satisfies an IQC defined
by Π ∈ Πr.

Proof. By Assumption 1, the system R is OSP, then there exists k1 ≥ 0 that satisfies∫ T

0
u>r (t)yr(t)dt− k1

∫ T

0
y>r (t)yr(t)dt ≥ 0, (21)

for all functions ur ∈ L2e and all T ≥ 0. Then, by applying the Parserval’s theorem
and multiplying by Υ(ω) = Υ(ω)∗ > 0, it is obtained that R satisfies the IQC defined
by Π ∈ Πr.

Remark 3. One of the main concerns in the study of time-delay reset control systems
is the presence of discontinuities in the state (or possibly some states) of the reset
controller, and how to deal with them. Here, this issue is somehow circumvented using
input-output properties of the reset controllers.

Definition 4.3. Given an operator Sh(t) satisfying conditions (17) with h1 < 1, Π
belongs to the class of multipliers Πd if there exist D(ω) = D∗(ω) ≥ 0, Ω(ω) =
Ω∗(ω) ≤ 0, and a rational transfer function Wv(jω) satisfying

|Wv(jω)| > 1 + 1√
1− h1

, if h0 |ω| > 1 + 1√
1− h1

,

|Wv(jω)| > h0 |ω| , if h0 |ω| ≤ 1 + 1√
1− h1

,
(22)
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such that

Π =

[
Wv(jω)D(ω)Wv(jω)∗ + d

1− dΩ(ω) Ω(ω)

Ω(ω) −D(ω) + Ω(ω)

]
. (23)

In Kao and Rantzer (2007), an example of Wv(jω) that fulfills the latter property
is given as

Wd(jω) = k
h2

0(jω)2 + ch0(jω)

h2
0(jω)2 + ah0(jω) + kc

, (24)

where k = 1 + 1/
√

1− h1, a =
√

2kc, and c > 0.

Proposition 4.4 (Kao and Rantzer (2007)). The operator Sh(t) satisfying conditions
given in (17) with h1 < 1 satisfies an IQC defined by Π ∈ Πv

In the particular case of constant time delay operator, i.e. h1 = 0, less conservative
results could be obtained by using the following IQC.

Definition 4.5. Given an operator Sh satisfying conditions (17) with h1 = 0, Π
belongs to the class of multipliers Πc if there exist D(ω) = D∗(ω) ≥ 0, Ω(ω) =
Ω∗(ω) ≤ 0, and a rational transfer function Wc(jω) satisfying |Wc(jω)| ≥ |Sh(jω)|, for
all h ≤ h0 and ω ∈ R, such that

Π =

[
Wc(jω)D(ω)Wc(jω)∗ Ω(ω)

Ω(ω) −D(ω) + Ω(ω)

]
. (25)

Proposition 4.6 (Pfifer and Seiler (2015)). The operator Sh satisfying conditions
given in (17) with h1 = 0 satisfies an IQC defined by Π ∈ Πc

An example of Wc(jω) satisfying properties stated in Definition 4.5 was presented
in

Wc(jω) = 2
(jω)2h2

0 + 3.5jωh0 + 10−6

(jω)2h2
0 + 4.5jωh0 + 7.1

(26)

The frequency dependent functions that appear in the multipliers defined in the
previous section can be parameterised as

Υ(ω) = Λr(jω)∗Kr Λr(jω),

D(ω) = Λd(jω)∗Kd Λd(jω),

Ω(ω) = Λo(jω)∗Ko Λo(jω).

(27)

where

Λ•(jω) =
[

1 1
jω + α•

· · · 1
(jω + α•)

n•−1

]>
. (28)

for a given α• > 0 and n• ≥ 2. The bullet denotes r, d, or o.
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After presenting multipliers for the subsystems R, Sh(t), and Sh, we will present
multipliers for the overall system ∆, that is the system composed by R and Sh(t)

(time-varying delay) or Sh (constant delay).

Definition 4.7. Given a particular choice of Λr, Λd, and Λo, let Π1 the class of
multipliers with structure

Π = Ψ∗1K1Ψ1, (29)

where

K1 =



0 0 Kr 0 0 0 0 0
0 Kd 0 0 0 0 0 0
Kr 0 −k1Kr 0 0 0 0 0
0 0 0 −Kd 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 d
1− dKo 0 Ko

0 0 0 0 0 0 0 0
0 0 0 0 0 Ko 0 Ko


, (30)

and

Ψ1 =



Λr 0 0 0
0 ΛdWv 0 0
0 0 Λr 0
0 0 0 Λd

0 0 0 0
0 Λo 0 0
0 0 0 0
0 0 0 Λo


, (31)

where Kr, Kd, and Ko are defined by (27). Then, Π ∈ Π1 if[
A>r Pr + PrAr PrBr

B>r Pr 0

]
−
[
Cr Dr

]>
Kr

[
Cr Dr

]
≤ 0, (32)

[
A>d Pd + PdAd PdBd

B>d Pd 0

]
−
[
Cd Dd

]>
Kd

[
Cd Dd

]
≤ 0, (33)

[
A>o Po + PoAo PoBo

B>o Po 0

]
+
[
Co Do

]>
Ko

[
Co Do

]
≤ 0, (34)

where Aj , Bj , Cj , Dj are state-space matrices of the basis functions Λj for j = r, d, o.

Proposition 4.8. Given a system ∆ given by (19) satisfying Assumption 1 and con-
ditions (17) with h0 < 1 and Π ∈ Π1, then ∆ satisfies the IQC defined by Π.
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Proof. Using the composition rule (8), we can obtain a class of multipliers Π1 for the
system ∆ = diag(R,Sh(t)). This has the following structure

Π1 =


0 0 0.5Υ(ω) 0

0 Wv(jω)D(ω)Wv(jω)∗ + d
1− dΩ(ω) 0 Ω(ω)

0.5Υ(ω) 0 −k1Υ(ω) 0
0 Ω(ω) 0 −D(ω) + Ω(ω)

 .
(35)

This can be factored using (27) as (29). Conditions (32)–(34), are obtained by KYP
Lemma, and ensure that R and Sh(t) satisfy IQCs defined by Πr and Πv, respectively.

Definition 4.9. Given a particular choice of Λr, Λd, and Λo, let Π2 the class of
multipliers with structure

Π = Ψ∗2K2Ψ2, (36)

where

K2 =



0 0 Kr 0 0 0 0 0
0 Kd 0 0 0 0 0 0
Kr 0 −k1Kr 0 0 0 0 0
0 0 0 −Kd 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 Ko

0 0 0 0 0 0 0 0
0 0 0 0 0 Ko 0 Ko


(37)

and

Ψ2 =



Λr 0 0 0
0 ΛdWc 0 0
0 0 Λr 0
0 0 0 Λd

0 0 0 0
0 Λo 0 0
0 0 0 0
0 0 0 Λo


(38)

where Kr, Kd, and Ko are defined by (27). Then, Π ∈ Π2 if LMIs (32)–(34) are
satisfied.

Proposition 4.10. Given a system ∆ given by (19) satisfying Assumption 1 and
conditions (17) with h0 = 0 and Π ∈ Π2, then ∆ satisfies the IQC defined by Π.

Proof. This proof follows analogously to the proof of Proposition 4.8. Hence, it is
omitted here.

11



4.3. Stability conditions

Once the characteristics of ∆ = diag(R,Sh(t)) have been described through an IQC,
Theorem 2.4 (IQC Theorem) and Lemma 2.5 (KYP Lemma) are applied to the reset
control system Σ(G,∆). The following proposition provides a sufficient condition for
the stability of the considered system.

Proposition 4.11 (Stability criterion for time-varying delay case). Assume Σ(G, τ∆)
is well-posed for every τ ∈ [0, 1], with G ∈ RH∞ and ∆ given by (19) satisfying
conditions (17) with h0 < 1. Let us define a minimal state-space representation

Ψ1

[
G
I

]
∼
[
A1 B1

C1 D1

]
, (39)

where Ψ1 is defined in (31). Then, Σ(G,∆) is stable, if there exist symmetric ma-
trices P1 and K1, defined in (30), of adequate dimension such that there exists
Π = Ψ∗1K1Ψ1 ∈ Π1 and the following LMI holds[

A>1 P1 + P1A1 P1B1

B>1 P1 0

]
+
[
C1 D1

]>
K1

[
C1 D1

]
≤ 0. (40)

Proof. This proof is based on the application of Theorem 2.4. The system was as-
sumed to be well-posed, then the first condition of Theorem 2.4 is satisfied. The second
one is satisfied for τ = 1 since by assumption Π ∈ Π1 and for τ ∈ [0, 1) due to that
the lower right corner of Π ∈ Π1 is negative semi-definite. Finally, Lemma 2.5 states
that satisfying LMI (40) is equivalent to the last condition of Theorem 2.4 and can be
concluded that the interconnection is stable.

Proposition 4.12 (Stability criterion for constant time-delay case). Assume
Σ(G, τ∆) is well-posed for every τ ∈ [0, 1], with G ∈ RH∞ and ∆ given by (19)
satisfying conditions (17) with h0 = 0. Let us define a minimal state-space represen-
tation

Ψ2

[
G
I

]
∼
[
A2 B2

C2 D2

]
, (41)

where Ψ2 is defined in (38). Then, Σ(G,∆) is stable, if there exist symmetric ma-
trices P1 and K2, defined in (37), of adequate dimension such that there exists
Π = Ψ∗2K2Ψ2 ∈ Π2 and the following LMI holds[

A>2 P2 + P2A2 P2B2

B>2 P2 0

]
+
[
C2 D2

]>
K2

[
C2 D2

]
≤ 0. (42)

Proof. This proof is very similar to the proof of Proposition 4.11. Therefore, it is
omitted here.
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5. Examples

In this section, the interest of the presented conditions will be evaluated on some
numerical examples. For simplicity, the factorization of the multipliers has been done
using α = α• and n = n•. Recall that the bullet denotes r, d, or o. The resulting LMIs
have been formulated and solved using CVX (Grant & Boyd, 2015).

Example 5.1. This example analyses the stability of a reset system with uncertain
time-varying delay. Let us consider the following plant and linear controllers

P (s) = 1
s+ 1 , K1 = 0.5, K2(s) = s+ 0.6

0.6s2 + 1.2s
. (43)

On the other hand, it is considered the following reset controller R

δ̇(t) = 1, ẋr(t) = −0.6xr(t) + e(t), (yr, e) ∈ SF or δ < δm,
δ(t+) = 0, xr(t

+) = 0, (yr, e) ∈ SJ and δ ≥ δm,
yr(t) = 0.6xr(t).

(44)

The reset controller R is a first-order reset element (FORE) (whose associated base
system has a stable pole), then it is OSP with k1 = 1 since its base is OSP with k1 = 1
Carrasco et al. (2010). This property is hold for any reset law, whenever the system has
a temporal regularisation. The considered time-varying delay h(t) satisfies (17) with
h0 = 0.45 and h1 = 0.45. Proposition 4.11 guarantees input-output stability for this
system using a factorization of the multipliers with n = 3 and α = 2. Optimal design
of basis functions is still an open question (Veenman, Scherer, & Köroğlu, 2016). In
(Tugal et al., 2016) the authors propose that the selection of the poles can be done by
exploring the behaviour of equation (4) for constant multipliers. Then the poles can
be included by the range of frequencies where the inequality is not satisfied.

To conclude this example a numerical simulation is performed. For the reset con-
troller R, two reset laws are considered:

• Zero-crossing (Z-C). The reset action occurs when the input of the controller is
zero, i.e., e(t) = 0. That is modelled by

SF = {(yr, e) : e 6= 0} ,
SJ = {(yr, e) : e = 0} . (45)

• Variable reset band (VRB). The reset action occurs when h̄ė(t) + e(t) = 0, for a
given h̄. That is defined by

SF =
{

(yr, e) : h̄ė+ e 6= 0
}
,

SJ =
{

(yr, e) : h̄ė+ e = 0
}
.

(46)

Here, a value of h̄ = 0.4 has been selected, motivated by a time-varying delay
h(t) = 0.4 + 0.1 sin(t) that is used in the simulation.

Time regularisation is considered in both cases. Figure 4 shows the step responses for
this control system with reset (Z-C and VRB are considered as reset laws) and without
reset action (base). Note how the reset actions improve the performance of this control
system, in particular, variable reset band yields the best performance.
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Figure 4. Step reference response in Example 5.1.

Example 5.2. This example consider an unstable base system with constant time
delay and a reset strategy that is able to stabilise it. The considered base controller
is not OSP, but an adequate reset law and an extra feedforward loop will enforce the
OSP property in the reset controller (the procedure presented in Forni et al. (2011) is
used here).

We consider a time-delay reset control system according to the setup in Figure 2,
with a plant P given by

ẋp(t) = up(t),

yp(t) = xp(t),
(47)

a linear controller K1 given by y1(t) = u1(t), a linear controller K2 given by y2(t) =
u2(t), and a reset controller R described by

δ̇(t) = 1, ẋr(t) = xr(t) + e(t), (yr, e) ∈ SF or δ < δm,

δ(t+) = 0, xr(t
+) = 0, (yr, e) ∈ SJ and δ ≥ δm,

yr(t) = xr(t) + ε3e(t),

(48)

where

SF = {(yr, e) : (e+ ε1yr)(yr − ε2e) ≥ 0} ,
SJ = {(yr, e) : (e+ ε1yr)(yr − ε2e) ≤ 0} . (49)

This controller has a shortage of input passivity proportional to ε1 and δm when
ε3 = 0 (Forni et al., 2011). In this particular case, taking the values ε1 = 0.01, ε2 = 1.5
and δm = 0.01, for a value of ε3 = 0.031, it is obtained that it is OSP with k1 = 1.37.
Proposition 4.12 guarantees input-output stability for this control system until a value
of time delay equal to 0.577, 0.579, and 0.581, by using α = 2 and n = 3, 4, and 5,
respectively. Figure 5 shows the step reference response for this control system with
reset and without reset action (base), this simulation was carried out for a time-delay
h = 0.40.

14
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Figure 5. Step reference response in Example 5.2. Note that the unstable response of the base system has

been truncated.

6. Conclusion

This work presents stability criteria for reset control systems in presence of time-
varying delay. The obtained criteria are expressed in the form of LMIs. An appealing
feature of this approach is that the presence of discontinuities in the state (or possibly
some states) of the reset controller is somehow circumvented, by using input-output
properties of the reset controllers. In addition, these criteria holds under more general
conditions than those imposed by previous works. Various examples illustrate the
effectiveness of the approach, in particular, an example shows that reset actions can
stabilise an unstable base system. Finally, it should be noted that the approach used
in this work may be extended to include uncertain and nonlinear elements.
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