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A B S T R A C T   

Dissimilarity measure between basic probability assignments (BPAs) in the Dempster-Shafer ev-
idence structure is a vibrant research topic in artificial intelligence. However, there are flaws in 
the existing measurements. In particular, it is insufficient to characterize dissimilarity only from 
either evidential distance or conflict belief for a BPA. As such, we propose a new dissimilarity 
measure which takes into consideration both distance measure and conflict belief among betting 
commitments. These two factors complement with each other. Distance measure reflects diversity 
between the focal elements of two pieces of evidence. That is to say, the more intersections be-
tween the bodies of evidence (BOE) of two data sources, the more reliable it acts as a dissimilarity 
measure. Conversely, the conflict belief which is created based on the transformed Pignistic 
probability characterizes the product of singleton’s belief from two pieces of evidence whose 
intersection is empty. It quantifies dissimilarity measure more efficiently when the focal elements 
of two pieces of evidence have small intersect. Theoretically, the new dissimilarity measure 
satisfies reflexivity, symmetry, nonnegativity, nondegeneracy and some other properties. 
Comparative analysis is provided with some cases to demonstrate the applicability and validity of 
the proposed dissimilarity measure. To determine the weight and reliability of evidence, the new 
dissimilarity measure among evidence and uncertainty of BPA are used. The dissimilarity metric 
is further applied for multi-source data fusion together with uncertainty measure of belief 
structure. The application of large-scale group decision making (LSGDM) problem is given to 
illustrate the effectiveness of the proposed multi-source data fusion process.   

1. Introduction 

Multi-source data fusion is very common in real word. It has been applied in many fields, such as sensor data fusion [1,2], target 
recognition [3,4], fault diagnosis [5], multiple attribute decision making [6,7] and group decision making [8–11]. It is important to 
investigate how to extract useful information from multiple sources of data and eliminate disturbing or useless information. Two main 
issues must be tackled in a proper way in multi-source data fusion. One is the determination of weights or reliabilities for different data 
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sources or evidence before the fusion of information [12–14]. Inappropriate weight or reliability assignment will result in an inef-
fective data fusion process. The other one is conflict among different pieces of evidence to be dealt with in combination of data [3,13, 
15]. When conflict occurs among evidence, counter-intuitive results may be generated, which can lead to distorted fusion outcomes. 

Dissimilarity/distance measure is an indispensable part of investigation in addressing the above two issues. How to measure 
dissimilarity and manage it in combination of evidence is an open question in muti-source data fusion. The weight of one data source 
can be generated by the average divergence between it and all other data sources [16,17]. The larger the divergence of a data source, 
the smaller weight it should be assigned. This is in accordance with the perspective of objective weight assignment methods [18–20]. 
As for the second issue, conflict between each pair of sources can also be computed by dissimilarity between them. Due to complex 
environments and dynamic decision-making situations, uncertainty is inevitably included in multi-source data fusion. This will lead to 
difficulty in measuring dissimilarity between pairs of data sources. Dempster-Shafer (D-S) evidence theory [21,22] can be applied to 
model uncertain information which is an extension of probability theory. It was developed from the probability theory and has been 
applied broadly in many fields, such as classification [23], belief rule-based reasoning [24,25], multi-sensor data fusion [18,26] and 
environmental impact assessment [27]. To date, some generalized or developed theories were also proposed including 
Dezert-Smarandache theory [28] and evidential reasoning rule [14]. For a long time, the conflict belief k which is the normalization 
factor in Dempster’s rule [21,22] is considered to be the distance metric between two evidences. But it has been proved that k is not 
appropriate to quantify the dissimilarity, especially when the intersection of the cores of two BPAs contains a large proportion of 
elements. Because of this, some alternative measures have been produced, such as Tessem’s distance [29], Tanimoto’s similarity [30], 
Minkowski’s distance [31], Cosine similarity [32], Jousselme’s distance [33,34] correlation coefficient [35], PSD pignistic probability 
based distance [36], Liu’s distance [13], Jiang’s distance [37], Yu’s distance [38], Xiao’s distance [39] and so on. Different classifi-
cations of distance between BPAs have also been proposed by some researchers. Liu [31] classified some commonly used distances into 
two categories: Jousselme’s distance & Bhattacharyya’s distance and probabilistic-based distance. Jousselme made a more detailed 
classification in [33] which classified evidential distances into the composite distances [40], the Minkowski family [41], the inner 
product family [32], the fidelity family [42], the information-based distances [43] and two-dimensional distances [13,36,44]. The 
comparison of the above-mentioned dissimilarity measures is shown in Table 1. 

Up to now, although a plethora of dissimilarity measures have been defined under the D-S structure [13,30-39,42,43], we are still 
confronted with the problem of selecting a rational dissimilarity metric because many of them more or less have defects. First, the 
property of reflexivity, symmetry, nondegeneracy and transitivity should be satisfied for a strict dissimilarity metric. All the listed 
distance or dissimilarity measures satisfy the property of ‘symmetry’ and ‘nonnegativity’. But not all of them meet the conditions of 
‘reflexivity’ and ‘nondegeneracy’. For instance, the conflict belief and Jiang’s distance don’t satisfy ‘reflexivity’ unless evidence is a 
categorical belief function. The conflict belief and Tessem’s distance don’t satisfy ‘nondegeneracy’. Even if two pieces of evidence are 
completely identical, the conflict belief between them may be positive provided that two or more focal elements are included. Since 
Tessem’s distance is calculated based on the transformed Pignistic probability, dissimilarity between two pieces of evidence may be 
0 although they are different. If the above four properties are not satisfied, it is not a strict dissimilarity metric. Second, due to the fact 
that some dissimilarity measures are derived from probability scheme, they’re only applicable in the situation of Bayesian belief 
structure. In other words, these dissimilarity measures are valid when they’re defined on the base set rather than the power set. Cosine 

Table 1 
Comparison of different distance/dissimilarity measures in the belief structure  

Name Symbol Reflexivity Nondegeneracy BOEs of two 
masses don’t 
intersect ⇔ 
distance is 1 

BOEs of two 
masses intersect 
⇔ distance is 
less than 1 

Characteristics 
Definiteness (two 
BPAs are identical 
⇐ distance is 0) 

Separability (two 
BPAs are identical 
⇒ distance is 0) 

Conflict belief [21] k × × × √ √ Reflects the non-mutual 
inclusion relationship 
of two BPAs 

Minkowski’s 
distance(t=1)  
[31] 

DisP1 √ × √ √ √ Based on the 
transformed Pignistic 
probability and has 
information loss Minkowski’s 

distance(t>1)  
[31] 

DisPt √ × √ × ×

Tessem’s distance  
[29] 

difBetP √ × √ √ √ 

Tanimoto’s 
dissimilarity  
[30] 

1 −

simTa 
√ × √ √ √ 

Jousselme’s 
distance [34] 

dBPA √ √ √ × × Embodies BPAs and 
similarity between sets 

Cosine-based 
dissimilarity  
[32] 

1 − cos √ √ √ × × Applicable in Bayesian 
belief structure 

Liu’s distance [13] dL √ × √ × √ Employs both conflict 
belief and Jousselme’s 
distance 

Jiang’s distance  
[37] 

dJ × √ × × √  
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similarity is just one of them because it is effective only when the cardinality of each focal element is 1. Third, some developed 
dissimilarity measures [13,37] regard the conflict belief and Jousselme’s distance measure as two basic metrics and combine them 
jointly. Theoretically, these two-dimensional measures ought to be more valid because they take the advantages of both the conflict 
belief and evidential distance. The characteristic of conflict belief lies in that it has higher ability to discriminate the divergence 
between two pieces of evidence when the intersection of focal elements for two BPAs decreases. Jousselme’s distance measure is a 
popular distance metric, and the rationality of the measurement will be enhanced when the similarity of the cores for two pieces of 
evidence increases. Since either of the two basic metrics is satisfactory for complex circumstances, the measures in [13] and [36] also 
have their own defects although Jousselme’s distance measure is a strict measure. 

In this paper, the definition of conflict belief between betting commitments is first given. Then, a new dissimilarity measure under 
the D-S evidence structure is proposed which embodies both the conflict belief of transferable Pignistic probability and evidential 
distance. The former factor takes into consideration the non-intersection between the focal elements of two pieces of evidence, while 
the latter one quantifies the divergence between them. They are combined with discounting factors termed as dissimilarity/similarity 
coefficient derived from the betting commitments of two pieces of evidence. It is defined on the power set rather than the base set, and 
it utilizes sufficient information in the original BPAs. Conflict belief between betting commitments is used here to replace conflict belief 
between BPAs to overcome irrational results generated in specific situations which is illustrated in the paper. The proposed measure is 
especially applicable to muti-source data fusion under uncertain circumstance when the weights and reliabilities of evidence are 
unknown in advance. It satisfies the basic properties for a distance metric, i.e., reflexivity, symmetry, nondegeneracy, transitivity, 
whereas a large amount of existent dissimilarity measures do not meet. The advantage of the new measure lies in that it not only 
characterizes the contradiction between the mass of incompatible focal elements, but also reflects the discrepancy between the BPAs of 
compatible focal elements. The properties of the new dissimilarity measure are proved theoretically. It is finally combined with un-
certainty measure of belief structure for the application in muti-source data fusion problem. The weight and reliability of evidence are 
automatically generated by the dissimilarity metric and uncertainty measure [12,45] of belief structure. 

The rest of the paper is organized as follows: Section 2 briefly introduces some basic concepts in D-S evidence theory. In Section 3, 
some typical dissimilarity/distance measures are presented, and the flaws of them are discussed with some examples. Section 4 
proposes a new dissimilarity measure considering both the conflict belief between betting commitments and evidential distance. The 
properties of the new dissimilarity measure are shown with theoretical proofs. In Section 5, comparative analysis of the proposed 
dissimilarity measure against some typical measures is conducted. Section 6 provides a multi-source data fusion method based on the 
new dissimilarity metric and the application in large-scale group decision making problem. This paper is concluded in Section 7. 

2. Preliminary preparation and theoretical basis 

2.1. D-S evidence theory 

D-S evidence theory is well suited for dealing with uncertain and incomplete information. It was introduced by Dempster [21], and 
then refined by Shafer [22]. It belongs to the information fusion technique which has been widely applied in many fields. 

Definition 1. (The frame of discernment) Let θn (n= 1,2,⋯,N) be N distinct basic hypotheses (propositions). All the N hypotheses 
constitute the frame of discernment which is denoted as: 

Ω = {θ1, θ2,⋯, θN} (1)  

The N hypotheses in Ω are mutually exclusive and collectively exhaustive. The power set of Ω, represented by 2Ω, is all the subsets 
of Ω indicated as: 

2Ω = {∅, {θ1},⋯, {θN}, {θ1, θ2},⋯, {θ1, θ2,⋯, θn},⋯,Ω} (2) 

Definition 2. (Basic probability assignment) Suppose there’re L pieces of evidence e = {e1, e2,⋯, eL}. Basic probability assignment 
(BPA) is the measurement of the extent to which the ith evidence ei (i= 1,2,…, L) supports the subset A of Ω, formally signified by 
mi(A)(A ⊆ 2Ω). It is called a mass function denoted by mi that is a mapping from 2Ω to [0,1]. 

mi : 2Ω→[0, 1] (3)  

mi(A) is also coined as the degree of support for A from ei or basic probability mass. A is called a focal element if it is given a positive 
mass such that mi(A) > 0, and the union of focal elements for ei is termed as the core of Ω, represented by C i =

⋃

mi(A)>0,A⊆2Ω
A. mi(A)

quantifies the probability mass exactly distributed to A but not to any subset of A. Let |A| be the cardinality of A. If |A| ≥ 2, we call mi(A)
the mass of ignorance or incompleteness. Specifically, when 2 ≤ |A| ≤ N − 1, mi(A) is the measurement of local ignorance on ei; the 
probability assigned to Ω on ei dented by mi(Ω) is called global ignorance. 

Definition 3. [34] (Body of evidence). Let A be the focal element of 2Ω such that mi(A) > 0(A ⊆ 2Ω). The set of all the focal elements is 
called a body of evidence (BOE) as follows: 

Bi = (B,mi) =
{

A|mi(A)〉0,A ⊆ 2Ω} (4) 
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It is obvious that 
⋃

A⊆Bi

A = C i. If ∀ A ⊆ Bi,|A| = 1, then the mass function on ei degenerates to the Bayesian belief structure. It is clear 

that a Bayesian belief structure doesn’t contain ignorance although it may include uncertainty if |Bi| ≥ 2. 

Definition 4. [46] (Categorical mass function). Given a BPA mi defined on 2Ω, if it owns only a sole focal element such that |Bi| = 1, it 
is called a categorical mass function. Otherwise, it is called a non-categorical mass function (|Bi| ≥ 2). 

The definition of categorical mass function shows that it doesn’t involve uncertainty although local or global ignorance may be 
embodied. A special case of categorical mass function is that the unique focal element is a singleton such that |A| = 1(A = Bi,|Bi| = 1), 
which means the information contains no uncertainty or incompleteness. On the contrary, a categorical mass function where the mass 
is attributed to the whole frame of discernment includes the largest global ignorance (|A| = N(A = Bi, |Bi| = 1)). In addition to the 
above two cases, a categorical mass function contains local ignorance when 2 ≤ |A| ≤ N − 1(A = Bi, |Bi| = 1). 

Definition 5. [21] (Dempster’s combination rule) Let m1 and m2 be two BPAs defined on 2Ω. The Dempster’s combination rule is an 
orthogonal sum formulated as: 

m12(A) =

⎧
⎪⎪⎨

⎪⎪⎩

0 A = ∅

1
1 − k12

∑

B∩C=A
m1(B)m2(C) A ∕= ∅

(5)  

where 

k12 =
∑

B∩C=∅
m1(B)m2(C) (6)  

k12 is called the normalization factor or conflict belief between m1 and m2. The Dempster’s rule which can be used to combine different 
sources of evidence is the kernel of the D-S evidence theory. It assumes that information sources are independent, and satisfies 
commutativity and associativity of multiplication. So the combination results remain the same regardless of the order in which the 
multiple pieces of evidence are fused. Conflict belief reflects a non-mutual inclusion relationship between focal elements. Only two 
basic probabilities assigned to an empty set can be multiplied and accumulated to compute the conflict value, i.e. the belief assigned to 
empty intersections in the evidence fusion results. 

There are two main reasons for the conflict of evidence. One is the incompleteness of the base set, or interpreted as the ‘open-world 
assumption’ from the perspective of Smets [47]. In this paper, the ‘closed-world assumption’ is employed because no potential object 
will be identified in our multi-source data fusion problem. The other one is the reliability of information source, which is especially 
applicable in the case such as target identification. By natural factors (e.g. atrocious weather) or human interference, a sensor’s 
feedback may be inconsistent with another one. 

In Dempster’s rule, the mass to the non-intersections is evenly attributed to all focal elements to guarantee that the total mass sums 
to one. Counterintuitive results may be generated from aggregating high contradictory evidences as pointed out by Zadeh [48]. 
Nevertheless, the conflict belief is not effective to characterize the dissimilarity between BPAs, especially when two BPAs are identical 
[44] and are not categorical mass function. For example, m1(θ1) = 0.5, m1(θ2) = 0.5, m2(θ1) = 0.5, m2(θ2) = 0.5, then k12 = 0.5 
which is irrational to assume that the dissimilarity between m1 and m2 is 0.5 because they’re absolutely the same. 

2.2. Typical dissimilarity/distance measures in evidence theory 

In this subsection, the current dissimilarity/distance measures are categorized. 

Definition 6. (Distance measure function). Suppose X and Y are two vectors of Rn, d(⋅) : X × Y→[0, 1] is called a distance metric if it 
satisfies the following conditions: 

(d1) Reflexivity: d(X,X) = 0; 
(d2) Symmetry: d(X,Y) = d(Y,X); 
(d3) Nondegeneracy: d(X,Y) = 0 ⇔ X = Y; 
(d4) Nonnegativity: d(X,Y) ≥ 0; 
(d5) Transitivity: Y = Z ⇒ d(X,Y) = d(X,Z); 
(d6) Triangle inequality: d(X,Y) ≤ d(X,Z)+ d(Z,Y). 

Basically, a full distance metric between BPAs should satisfy all the six properties in Def. 6. Nondegeneracy (d3) is also called 
‘definiteness’ in [33], and the inference that d(X,Y) = 0 ⇒ X = Y is called ‘separability’. If d(X,Y) ≤ 1, then it is normed. The tran-
sitivity property (d5) is obvious, but the converse of it d(X,Y) = d(X, Z) ⇒ Y = Z is not necessarily true. For instance, given the base set 
Ω = {θ1, θ2, θ3}, three BPAs are m1({θ1, θ2}) = 1, m2({θ1, θ3}) = 1, m3({θ2, θ3}) = 1. Intuitively, d(m1,m2) is equal to d(m1,m3)

because the number of elements contained in the intersection of m1 and m2 equals to that of m1 and m3 even though m2 ∕= m3. The 
triangle inequality (d6) ensures that the direct path between two belief functions is always shorter than the path when a third belief 
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function is involved. Jousselme [33] classified the dissimilarity metric into other five categories if only some of the properties in Def. 6 
are satisfied, i.e., semi-metric, quasi-metric, pseudo-metric, semi-pseudo-metric and pre-metric. For instance, if a dissimilarity satisfies 
(d1) to (d5), it is a semi-metric; whereas a pre-metric only satisfies (d1) and (d4). 

2.2.1. Probability-based distance 

Definition 7. [49,50] (Pignistic probability function) Given the frame of discernment Ω = {θ1,θ2,⋯,θN}, where θn is a singleton such 
that |θn| = 1 and θn ∩ θm = ∅(1 ≤ n,m ≤ N). The BPA attributed to the subset A of Ω is denoted by m. The Pignistic probability function in 
the transferable belief model is defined as: 

BetPm(θn) =
∑

θn∈A,A⊆Ω

1
|A|

m(A)
1 − m(∅)

(7)  

The Pignistic probability function can also be defined on 2Ω as follows: 

BetPm(B) =
∑

A⊆Ω
m(A)

|B ∩ A|
|A|

=
∑

θn∈B,B⊆Ω
BetPm(θn) (8) 

The transformation from mass function to Pignistic probability function is called Pignistic transformation.  

(1) Tessem’s distance [29,44] 

Suppose mi and mj are two independent BPAs on Ω, the associated Pignistic probability functions on them are BetPmi and BetPmj 

respectively. Then the distance between betting commitments of the two BPAs is defined as follows: 

difBetPmj
mi

= max
A⊆Ω

( ⃒
⃒BetPmi (A) − BetPmj (A)

⃒
⃒
)

(9) 

Eq.(9) reflects the maximum difference of the sum of BPAs on any union of singletons between two BPAs. Because the trans-
formation changes the base set from the power set of atomic elements to singletons, the original information contained in the BPAs is 
altered, especially for the case where mass are mostly attributed to local or global ignorance.  

(1) Tanimoto’s similarity [30] 

Bi [30] introduced the similarity measure based on the Pignistic probability function as follows: 

Sim
(
m′

i,m′
j
)
=

∑N

n=1
m′

i(θn) ⋅ m′
j(θn)

∑N

n=1
m′

i(θn)
2
+
∑N

n=1
m′

j(θn)
2
−
∑N

n=1
m′

i(θn) ⋅ m′
j(θn)

(10)  

m′
k(k = i, j) =

(
BetPmk (θ1),BetPmk (θ2),⋯,BetPmk (θN)

)
= (m′

k(θ1),m′
k(θ2),⋯,m′

k(θN)) (11)  

Eq. (10) does not satisfy nondegeneracy (d3) because 1 − Sim(m′
i,m′

j) = 0 cannot infer that the original two BPAs are identical. The 
reason for this deficiency lies in that the original information is lost when the mass function is transferred to Pignistic probability 
function.  

(1) Minkowski’s distance [31] 

Given two masses mi and mj defined on the power set of Ω, the Minkowski’s distance between them is defined as 

DisPt
(
mi,mj

)
=

(
1
2
∑

θn∈Ω

⃒
⃒BetPmi (θn) − BetPmj (θn)

⃒
⃒t
)1

t

(12)  

When t = 1, it characterizes the divergence by calculating the additive distance between the probabilities of the same singletons. If mi 
= mj, it can be easily inferred that DisP1(mi,mj) = 0. But the converse of the statement is not true. In Example 1, although the BPAs of 
mi and mj are different, DisPt(mi,mj) = 0 because the transformed Pignistic probability of the two evidences are identical. 

2.2.2. Mass-based distance  

(1) Cosine similarity [32] 

Cosine similarity measure between mi and mj is defined as 

M. Zhou et al.                                                                                                                                                                                                          
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Sim
(
mi,mj

)
= cos(θ) =

mi.mT
j

||mi|| ⋅
⃒
⃒
⃒
⃒mj
⃒
⃒
⃒
⃒

(13)  

where mi(i= 1, 2) is a 2Ω dimensional vector. The numerator represents the inner product of the two BPAs. || ⋅ || signifies the norm of 

vector such that ||mi|| =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

A∈2Ω
(mi(A))2

√

. 

If the mass is a Bayesian belief structure, or in other words, the focal elements are confined to singletons, the generated Cosine 
similarity measure seems interpretable. However, when it is defined on the power set 2Ω, the generated value will be unreasonable. So 
it is applicable only in the situation of Bayesian belief structure.  

(1) Jousselme’s distance [33,34] 

Jousselme’s distance employs two factors to generate a metric, i.e., the BPAs and the similarity between sets. It is defined as 

dBPAij = dBPA
(
mi,mj

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
2

(

m→i − m→j

)T

D⏟⏞⏞⏟
⏟⏞⏞⏟

(

m→i − m→j

)
√
√
√
√ (14)  

where m→ is a 2Ω × 1 dimensional matrix with {m(A)
⃒
⃒A ⊆ 2Ω} as its elements, and (m→i − m→j) denotes the subtraction of the two vectors. 

D⏟⏞⏞⏟
⏟⏞⏞⏟

= (dij)2Ω×2Ω stands for a 2Ω × 2Ω dimensional matrix where dij =
|A∩B|
|A∪B|, and |∅∩∅|

|∅∪∅|
= 0 (A and B are any subsets of 2Ω). Another form 

of dBPA(mi,mj) is shown as 

dBPAij = dBPA
(
mi,mj

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2

(

m→2
i + m→2

j − 2m→i, m→j

)√

(15)  

where m→i, m→j is the product of each element in m→i with that in m→j. And m→2
i represents the square norm of m→i such that m→2

i = m→i,m→i. 

m→i, m→j =
∑

A⊆2Ω

∑

B⊆2Ω

mi(A) ⋅ mj(B) ⋅
|A ∩ B|
|A ∪ B| (16)    

(1) Correlation coefficient based conflict [35] 

In [35], Jiang defined a correlation coefficient between two pieces of evidence denoted by rBPA(mi,mj) as follows: 

rBPA
(
mi,mj

)
=

c
(
mi,mj

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

c(mi,mi) ⋅ c
(
mj,mj

)√ (17)  

where c(mi,mj) is calculated by 

c
(
mi,mj

)
=
∑

A⊆2Ω

∑

B⊆2Ω

mi(A) ⋅ mj(B) ⋅
|A ∩ B|
|A ∪ B| (18)  

Then, a conflict coefficient between mi and mj is measured by kr(mi,mj) = 1 − rBPA(mi,mj). Here, we call it the C-C based dissimilarity 
measure.  

(1) PSD Pignistic probability based distance [36] 

In [36], the power-set-distribution (PSD) Pignistic probability function PBetPm : 2Ω→[0, 1] of m is defined as 

PBetPm(B) =
∑

A⊆Ω
m(A)

2|B∩A| − 1
2|A| − 1

(19)  

where B denotes a subset of Ω, A ∕= ∅. 
Suppose PBetPmi and PBetPmj are the corresponding PSD Pignistic probability functions of mi and mj. Then the distance between 

PSD betting commitments is defined as 

difPBetPmj
mi

= max
A⊆Ω

( ⃒
⃒PBetPmi(A) − PBetPmj(A)

⃒
⃒
)

(20)  
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2.2.3. Distance considering two dimensions  

(1) Liu’s distance measure [13] 

Suppose the conflict belief and distance measure are quantified by Eqs.(6) and (14) respectively. Then, the conflict coefficient 
between mi and mj is evaluated by the product of Jousselme’s distance measure and conflict belief as follows: 

dL
ij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
kij ⋅ dBPAij

√
(21) 

The drawback of this measure lies in that dL
ij = 0 if the value of conflict belief equals to zero, especially under the non-Bayesian 

belief structure. In other words, if any pair of focal elements from two masses has intersection, the scalar of dL
ij will be 0 although 

the BPAs of mi and mj may be quite different.  

(1) Jiang’s distance measure [37] 

The average of Jousselme’s distance measure and conflict belief is conducted to produce the distance between two masses as 
follows: 

dJ
ij =

1
2
(
kij + dBPAij

)
(22) 

The deficiency of this distance measure is that the value of dJ
ij is large if and only if both kij and dBPAij are large. Let the base set be Θ =

{θ1,θ2,⋯,θ100 }, with the mass on mi evenly attributed to θ1, θ2,⋯, θ50 such that mi(θn) = 0.02(n = 1,2,⋯,50), while mj is assigned on 
θ51, θ52,⋯, θ100 with equal probability such that mj(θn) = 0.02(n = 51,52,⋯,100). The scalar of distance should be 1 because the BOEs 
of the two masses have no intersections. Unfortunately, the distance of dBPAij in this case is 0.141, which leads to the value of dJ

ij be 0.571 
although kij = 1. Apparently, the value of dJ

ij is lowered by dBPAij which is affected by the dispersity of the mass attributed on the power 
set. 

3. Illustrative examples 

In this section, several examples are presented to illustrate the characteristics of the above-mentioned dissimilarity/distance 
measures. The advantages and disadvantages of these measures are then discussed. 

3.1. Illustrative examples 

Example 1. 
Given the frame of discernment Ω = {θ1,θ2,θ3}, the BPAs of two pieces of evidence are shown in Table 2. 
The distance measures by different methods are shown in Table 3. 
k12 = 0 because there is no pair of focal elements that doesn’t intersect respect to m1 and m2. So the conflict belief is not appropriate 

to be taken as the dissimilarity measure between two evidences, especially in the case that the mass function of one piece of evidence is 
a non-Bayesian belief structure. Since the Tanimoto based similarity measure depends on the Pignistic probability function, if the 
transformed Pignistic probabilities of two pieces of evidence are identical, the distance calculated by Eq. (10) will be zero even though 
the two BPAs may be quite different. In Example 1, m2 is a categorical belief function that the mass value is awarded to the whole base 
set; comparatively, the BPA is equally attributed to the three singletons in the frame for m1. Clearly, m2 contains the maximum am-
biguity which is named as global ignorance, whereas m1 only has uncertainty that no ignorance exists. The distance between betting 
commitments by Eq. (9) has the same drawback which leads to difBetPm2

m1
= 0. The Cosine similarity measure equals to 0 because there 

is no identical focal element between the two masses. 
Example 2. 

Table 2 
The BPAs of two pieces of evidence   

θ1 θ2 θ3 {θ1, θ2, θ3} 

m1 1/3 1/3 1/3 0 
m 2 0 0 0 1  

Table 3 
The distance measures by different methods   

1 − rBPA(m1,m2) k12 1 − Sim(m′
1 ,m′

2) 1 − cos(m1,m2) difBetPm2
m1 

dBPA12 dL
12 dJ

12 

d12 0.423 0 0 1 0 0.577 0 0.288  
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The BPAs of two pieces of evidence are shown in Table 4. 
The results of some distance measures are shown in Table 5. 
Example 2 shows the same problem with Example 1 in that the Pignistic probability allocated to each singleton is identical for m1 

and m2. Hence, either the distance measure based on Tanimoto metric or betting commitments is 0. The Cosine similarity measure still 
equals to 0 in Example 2 because there is no same focal element between the two BPAs. The difference between Example 1 and 2 lies in 
that the BPAs on m1 contains local ignorance in Example 2, while the mass of m1 is evenly attributed to the three singletons in Example 
1, which means it does not embody either local or global ignorance. Intuitively, the distance between m1 and m2 decreases from 
Example 1 to 2 because either max

A⊆B1 ,B⊆B2

|A∩B|
|A∪B| or 

∑

A⊆B1 ,B⊆B2

|A∩B|
|A∪B| increases. 

Example 3. 
Given the BPAs of a hundred pieces of evidence as shown in Table 6. Obviously, ∪

A⊆B1
A ∩ ∪

B⊆Bj
B = ∅(j= 2, 3,⋯, 100) where A and B 

refer to the focal elements for m1 and mj (j = 2,3,⋯,100). All the pieces of evidence contain uncertainty except m2, and the uncertainty 
degree of mass increases from m3 to m100. 

The distances calculated by some methods are shown in Table 7. 
Intuitively, the distance between m1 and any other evidence should be one because the intersection of focal elements for m1 and mj 

(j = 2,3,⋯,100) is ∅. It can be seen that with the mass becoming more scattered from m2 to m100, the scalar of Jousselme’s distance 
decreases gradually. Especially, dBPA(m1,m2) < 1 although m2 contains neither uncertainty nor ignorance. Thus, from this point of 
view, Jousselme’s distance metric not only partially quantifies the distance between two pieces of evidence, but also reflects the 
uncertainty of individual evidence to some extent. dBPA(m1,m2) equals to 1 if and only if m1 and m2 definitely point to two subsets of 2Ω 

with no intersection, i.e., dBPA(m1,m2) = 1 iff m1(A) = 1, m2(B) = 1, A ∩ B = ∅, A,B ∈ 2Ω. From another point of view, dBPA(m1,m2)

< 1 if the mass of either m1 or m2 is attributed to more than one subset of 2Ω. So dBPA(m1,m2) does not satisfy Lemma 1 (see Section 
4.1). The value of kij in this case still equals to 1. So if the focal elements of two pieces of evidence have no intersection, the conflict 
belief is definitely appropriate to measure the dissimilarity between them. With the increase of the number of elements included in the 
intersection between the cores of two pieces of evidence, the conflict belief becomes more invalid as a dissimilarity metric. 

Example 4. 

Table 4 
The BPAs of two pieces of evidence   

{θ1, θ2} {θ1, θ3} {θ2, θ3} {θ1, θ2, θ3} 

m1 1/3 1/3 1/3 0 
m 2 0 0 0 1  

Table 5 
The distance measures by different methods   

1 − rBPA(m1,m2) k12 1 − Sim(m′
1,m′

2) 1 − cos(m1,m2) difBetPm2
m1 

dBPA12 dL
12 dJ

12 

d12 0.1056 0 0 1 0 0.333 0 0167  

Table 6 
The BPAs of a hundred pieces of evidence   

θ1 θ2 θ3 θ4 θ5 θ6 … θ101 θ102 

m1 0.2 0.8 0 0 0 0    
m2 0 0 1 0 0 0    
m3 0 0 1/2 1/2 0 0    
m4 0 0 1/3 1/3 1/3 0    
m5 0 0 1/4 1/4 1/4 1/4    
... 
m100 0 0 1/100 1/100 1/100 1/100 … 1/100 1/100  

Table 7 
The distance measures by different methods   

k1j 1 − Sim(m′
1,m′

j)
1 − cos(m1,m2) difBetPm2

m1 
dBPA12 

d12 1 1 1 1 0.917 
d13 1 1 1 0.8 0.768 
d14 1 1 1 0.8 0.712 
d15 1 1 1 0.8 0.682 
…… 
d1 100 1 1 1 0.8 0.587  
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Let Ω = {θ1, θ2,⋯, θ10} be the frame of discernment, and there are eleven pairs of BPAs, and SimC 12 =
|

(
∪

A⊆B1
A
)
∩

(
∪

B⊆B2
B
)
|

|

(
∪

A⊆B1
A
)
∪

(
∪

B⊆B2
B
)
|

. The first 

pair is shown as follows: 
For the 2nd to the 6th pair of BPAs, m2 is assumed to be fixed, while m1 is changed from the probability assignment evenly attributed 

to θ1, θ2,⋯, θ5 to θ1,θ2,⋯,θ10. So, in the 6th pair of BPAs, m1(θn) = 0.1 (n = 1,2,…, 10). For the 7th to the 11th pair of BPAs, the mass of 
m1 equals to the assignment in the 6th pair and fixed, while m2 is changed from the probability assignment averagely allocated to θ5,

θ6,⋯, θ10 to θ1,θ2,⋯,θ10. Then, in the 11th pair, m2(θn) = 0.1 (n = 1,2,…, 10). Intuitively, the dissimilarity between the first pair of 
BPAs should be one because they are definitely contradictory. Comparatively, the masses of the 11th pair of evidence are identical 
which will lead to the dissimilarity being zero. Fig. 1 shows the conflict belief and Jousselme’s distance between m1 and m2 in the 
eleven pairs of BPAs. Here, the horizontal and vertical axes refer to the serial number of pair and conflict/distance measure. Obviously, 
the conflict belief k12 is valid for the first pair of evidence, whereas Jousselme’s distance dBPA12 is effective for the last pair of evidence. 
Fig. 1 also shows the value of 1/2

∑10
n=1|m1(θn) − m2(θn)| and 1 − SimC 12 for all the eleven pairs of evidence. Obviously, with the value 

of 1/2
∑10

n=1|m1(θn) − m2(θn)| or 1 − SimC 12 decreasing, Jousselme’s distance becomes more valid, especially when the BOEs of the two 
pieces of evidence are identical, i.e. the 11th pair. Conversely, with the value of 1/2

∑10
n=1|m1(θn) − m2(θn)| or 1 − SimC 12 increasing, the 

discrepancy between the focal elements of the two pieces of evidence becomes larger, which leads to the conflict belief k12 being more 
effective to represent the dissimilarity measure. The 1st pair of evidence is just the case that the BOEs of the two pieces of evidence have 
no intersection. 

3.2. Discussion 

With regard to ‘nondegeneracy’ (d(X,Y) = 0 ⇔ X = Y), conflict belief kij equals to zero if any pair of focal elements from two pieces 
of evidence have intersection, so kij = 0 ∕=> mi = mj. Conversely, when the BPAs of two pieces of evidence are identical, conflict belief 
is not necessarily equal to 0 if there are two focal elements that are mutually exclusive. For example, given that mi({θ1}) = mj({θ1}) =

0.2, mi({θ2,θ3}) = mj({θ2,θ3}) = 0.8, then kij = 0.32. Particularly, if two masses are Bayesian belief functions, kij > 0 occurs provided 
that one piece of evidence contains at least two focal elements. So one gets mi = mj ∕=> kij = 0. Since kij is a component in Liu’s and 
Jiang’s distances, nor do they satisfy ‘nondegeneracy’. Specifically, Jiang’s distance doesn’t satisfy mi = mj ⇒ dij = 0 because kij may 
be greater than zero even if mi = mj, while Liu’s distance doesn’t meet dij = 0 ⇒ mi = mj since kij may equal to zero even though 
mi ∕= mj. Moreover, Jiang’s distance equals to zero if and only if the two pieces of evidence are identical and any pair of two focal 
elements does intersect. Hence, conflict belief and Jousselme’s distance cannot be simply combined by either multiplication or 
addition. Otherwise, unreasonable results will be generated. Neither Tessem’s distance nor Tanimoto’s similarity satisfy 

Fig. 1. Conflict or distance between two BPAs  

Table 8 
The BPAs of two pieces of evidence   

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 

m1 0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 
m2 0 0 0 0 0 0.2 0.2 0.2 0.2 0.2  
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‘nondegeneracy’ because they are both defined based on the transferable Pignisitic probability. So we have difBetPmj
mi = 0 or 1 −

Sim(m′
i,m′

j) = 0 ∕=> mi = mj although mi = mj can infer difBetPmj
mi = 0 and 1 − Sim(m′

i,m′
j) = 0. Examples 1 and 2 are just the cases 

used to explain it. 
Cosine similarity satisfies the property that 1 − cos(θ) = 0 ⇔ mi = mj. Nevertheless, it doesn’t satisfy Lemma 1 (see Section 4.1) 

(
(

∪
A⊆Bi

A
)

∩

(

∪
B⊆Bj

B
)

= ∅ ⇔ dij = 1) in Section 4 because 1 − cos(θ) = 1 occurs when there is no identical focal element between mi 

and mj even though 
⋃

A⊆F i

A and 
⋃

B⊆F j

B may have intersection. With regard to Jousselme’s distance, although we have dBPA(mi,mj) =

1 ⇒ ∪
A⊆Bi

A ∩ ∪
B⊆Bj

B = ∅, the inverse proposition is invalid which is illustrated in Example 4. Nor do Liu’s and Jiang’s distances satisfy 

Lemma 1 (see Section 4.1) for the reason that Jousselme’s distance is a component simply multiplied or added in their measures. They 
equal to one if and only if kij = 1 and dBPA(mi,mj) = 1. It happens when the two masses each contain a sole focal element whose 

intersection is ∅. Otherwise, dL
ij or dJ

ij is less than one. So we cannot infer dL
ij = 1 or dJ

ij = 1 only from 
(

∪
A⊆Bi

A
)

∩

(

∪
B⊆Bj

B
)

= ∅. 

Minkowski’s distance (t>1) is less than one if one piece of evidence contains more than one focal element such that ∃k ∈ {i,j},|Bk| ≥ 2. 

Jousselme’s distance doesn’t satisfy Lemma 3 (see Section 4.1) because dBPA(mi,mj) < 1 cannot infer 
(

∪
A⊆Bi

A
)

∩

(

∪
B⊆Bj

B
)

∕= ∅ 

although 
(

∪
A⊆Bi

A
)

∩

(

∪
B⊆Bj

B
)

∕= ∅ ⇒ dBPA(mi,mj) < 1. Nor does Cosine similarity satisfy Lemma 3 (see Section 4.1) since 
(

∪
A⊆Bi

A
)

∩

(

∪
B⊆Bj

B
)

∕= ∅ may infer 1 − cos(θ) = 1 in some cases although 1 − cos(θ) < 1 ⇒
(

∪
A⊆Bi

A
)

∩

(

∪
B⊆Bj

B
)

∕= ∅. Example 1 is just the case of 

it. Comparatively, the following proposed dissimilarity measure satisfies all the listed properties. 

4. New dissimilarity measure between two BPAs 

The former section shows that terminologies such as distance, conflict, dissimilarity/similarity have all been used to represent the 
divergence or proximity between two bodies of evidence. In this paper, we employ the term ‘dissimilarity’ to denote the concept of 
distance or discrepancy between two BPAs. The key point for measuring the dissimilarity between two BPAs rests with the relevance of 
their focal elements. Generally speaking, if the intersection between the cores of two pieces of evidence consists of more elements, the 
dissimilarity will be smaller; and vice versa. This section is dedicated to discussing our proposed new dissimilarity measure with 
theoretical proofs. 

4.1. Basic properties for a dissimilarity measure 

Lemma 1. (Maximum dissimilarity between two BPAs) Let Bi = {A|mi(A)〉0)} and Bj = {B|mj(B)〉0)} be the set of focal elements in 
the ith and jth evidence with mi and mj as their corresponding BPAs respectively. If the intersection of focal elements for mi and mj is ∅ 

such that 
(

∪
A⊆Bi

A
)

∩

(

∪
B⊆Bj

B
)

= ∅, then the dissimilarity between mi and mj ought to be 1, and vice versa. 

Lemma 1 can be interpreted as a necessary and sufficient condition such that ∪
A⊆Bi

A ∩ ∪
B⊆Bj

B = ∅ ⇔ dij = 1. It indicates that the 

maximum contradiction occurs when two mass functions have no intersection between their focal elements, which will lead to the 
scalar of a rational dissimilarity measure between two BPAs being 1. Although this is a simple and basic property that a dissimilarity 
measure should satisfy, some metrics don’t meet the condition. 

Lemma 2. (Minimum dissimilarity between two BPAs) If BPAs mi and mj from two independent pieces of evidence ei and ej are 
identical such that mi =mj, then the dissimilarity between them should be zero. The converse of the statement should also be satisfied. 
That is to say, mi = mj ⇔ Diss(mi,mj) = 0. 

Lemma 2 may have three situations. (1) The belief of a same singleton for mi and mj is 1; (2) The mass functions of mi and mj 
definitely point to a same subset A (|A| ≥ 2) of Ω; (3) The BPAs of ei and ej are identical, and the BOEs of mi or mj contains at least two 
subsets of 2Ω. mi and mj in situations (1) and (2) are both the case of categorical belief functions. The only difference lies in that the two 
pieces of evidence in situation (1) contains no uncertainty or ignorance, while situation (2) contains ignorance. Situation (3) at least 
involves uncertainty because the number of focal elements for any of the two pieces of evidence is more than one. In general, if the 
BPAs of two pieces of evidence are identical, the dissimilarity between them ought to be zero no matter how uncertain or ignorant the 
two pieces of evidence are. Although Lemma 2 is a comprehensible requirement to be met for a dissimilarity measure, some metrics 
don’t satisfy, e.g., the conflict belief kij. 

Lemma 3. Given two pieces of evidence with mi and mj being their mass functions respectively, the dissimilarity between mi and mj 
should be less than one if and only if the BOEs of the two masses have intersections. In terms of formula, dij < 1 if 
(

∪
A⊆Bi

A
)

∩

(

∪
B⊆Bj

B
)

∕= ∅, and vise versa. 
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Lemma 3 is a fundamental property that a dissimilarity measure between BPAs under the Dempster-Shafer’s evidence structure 
should satisfy. It can be easily interpreted because if two subsets from mi and mj with positive BPAs have at least one identical element, 
the two pieces of evidence may have similarity to some extent. In other words, the more belief assigned to compatible or same subsets 
from two sources of evidence, the less dissimilarity between them. Nevertheless, not all dissimilarity metrics meet the requirement of 
Lemma 3, e.g., the Cosine-based dissimilarity measure. 

4.2. Dissimilarity coefficient between betting commitments 

From the above analysis, it can be seen that with the increase of elements contained in the intersection of cores for two pieces of 
evidence, conflict belief is less valid to quantify dissimilarity between them, while Jousselme’s distance seems more effective to 
measure divergence between pieces of evidences. Especially in the situation that two pieces of evidence are identical, conflict belief can 
no longer be a metric for dissimilarity because it just accumulates the incompatible belief of two BPAs. Conversely, when intersection 
between the cores of two pieces of evidence contains fewer elements, conflict belief will be more effective to characterize dissimilarity, 
whereas Jousselme’s distance is less valid comparatively. Example 3 is just the case of the counter-intuitive results generated by 

Jousselme’s distance when 
(

∪
A⊆Bi

A
)

∩

(

∪
B⊆Bj

B
)

= ∅. So neither conflict belief nor Jousselme’s distance can independently measure 

the dissimilarity between two BPAs in all possible scenarios. Nor does any other existing dissimilarity/distance measure defined on 2Ω 

can tackle with all situations. Inspired by the previously mentioned two-dimensional dissimilarity measure for belief structure, we 
propose a two-tuple dissimilarity measure which takes into consideration both the conflict belief between betting commitments and 

Jousselme’s distance. Since Jousselme’s distance measure is more valid with the increase of elements included in 
(

∪
A⊆Bi

A
)

∩

(

∪
B⊆Bj

B
)

, 

a weighting factor which is positively correlated with it should be computed to discount it. 

Definition 8. (Conflict belief between betting commitments) Let Ω = {θ1, θ2,⋯, θN} be the frame of discernment. mi and mj are two BPAs 
defined on 2Ω. BetPml (θn) (n= 1, 2,…,N) is the Pignistic probability transformed from evidence ml(l = i, j). Then, the conflict belief 
between betting commitments of mi and mj is computed as follows: 

k′
ij =

∑

θn∩θ
n′=∅

BetPmi (θn) ⋅ BetPmj (θn′) (23)  

k′
ij is different from kij in Eq. (6) for the reason that it is defined on the transformed Pignistic probability rather than the original 

mass function. Theoretically, we have kij < k′
ij. 

Definition 9. (Similarity coefficient between the cores of two pieces of evidence) Suppose the intersection and union of the cores for mi 

and mj are denoted by 
(

∪
A⊆Bi

A
)

∩

(

∪
B⊆Bj

B
)

and 
(

∪
A⊆Bi

A
)

∪

(

∪
B⊆Bj

B
)

respectively. Then, the similarity coefficient between the cores of mi 

and mj is generated as follows: 

SimC ij =

⃒
⃒
⃒
⃒

(

∪
A⊆Bi

A
)

∩

(

∪
B⊆Bj

B
)⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒

(

∪
A⊆Bi

A
)

∪

(

∪
B⊆Bj

B
)⃒
⃒
⃒
⃒

(24)  

So 1 − SimC ij represents the dissimilarity coefficient between the cores of mi and mj represented by DissC ij . If we only use SimC ij to 
discount dBPAij and αk′ij = 1 − SimC ij to be the weight of conflict belief, irrational results may be generated in some situations. 

Example 5. 
Suppose the frame of discernment is Ω = {θ1,θ2,⋯,θ8}, four BPAs are shown in Table 9. 

In this example, k′
12 = 0.9975, dBPA12 = 0.4951. If we use αdBPA12

=
|

(
∪

A⊆B1
A
)
∩

(
∪

B⊆B2
B
)
|

|

(
∪

A⊆B1
A
)
∪

(
∪

B⊆B2
B
)
|

= 1
8 as the weight of dBPA12 , then αk′

12 
= 1 −

αdBPA12
= 7

8, and we will have Diss(m1,m2) = 0.9347 (See Def. 12). It is obvious that m1 and m3 are very similar, and m2 and m4 are also 

Table 9 
The BPAs of four pieces of evidence   

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 

m1 0.25 0.25 0.25 0.25 0 0 0 0 
m2 0 0 0 0.01 0.24 0.25 0.25 0.25 
m3 0.24 0.24 0.24 0.24 0.01 0.01 0.01 0.01 
m4 0.01 0.01 0.01 0.01 0.24 0.24 0.24 0.24  
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alike. k′
34 = 0.9808, dBPA34 = 0.46. But for the latter two pieces of evidence, αdBPA34

=

|

(

∪
A⊆B3

A

)

∩

(
∪

B⊆B4
B
)
|

|

(

∪
A⊆B3

A

)

∪

(
∪

B⊆B4
B
)
|

= 1 although m3 and m4 have 

taken minor changes from m1 and m2 respectively. If αdBPA34 
is used to discount dBPA34 and αk′34

= 1 − αdBPA34
= 0 is the weight allocated 

to k′
34, then Diss(m3, m4) = 0.46. It is irrational because the dissimilarity changes a lot although the two pieces of evidence have 

changed slightly. 

Definition 10. (Dissimilarity coefficient between the betting commitment of two pieces of evidence) Given two pieces of evidence mi and 
mj defined on 2Ω, then the dissimilarity coefficient between the betting commitments of mi and mj is generated as follows: 

DissBetPmij
=

1
2
∑N

n=1

⃒
⃒BetPmi (θn) − BetPmj (θn)

⃒
⃒ (25)  

Correspondingly, SimBetPmij
= 1 − DissBetPmij 

is called the similarity coefficient between the betting commitments of mi and mj. Def. 10 
is a special case of Minkowski’s distance when t = 1. 

As we know, the conflict belief kij reveals the cumulative value of the product between incompatible focal elements associated with 
mi and mj. So the larger the value of DissBetPmij

, the more contradiction between two pieces of evidence which will lead to kij being more 
important in the dissimilarity measure. Especially, if DissBetPmij

= 1, then DissC ij = 1, the two pieces of evidence are absolutely 
incompatible. As such, kij = 1 completely reflect the dissimilarity of two pieces of evidence in this situation. Comparatively, Jous-
selme’s distance reflects the difference of BPA on consistent focal elements between pieces of evidence. So the smaller the value of 
DissBetPmij

, the more consistent between two pieces of evidence. Thus, dBPAij is to be given more importance in the dissimilarity measure. 
Particularly, when DissBetPmij

= 0, then DissC ij = 0, and dBPAij = 0. Since the two pieces of evidence are completely compatible in this 
situation, dBPAij can be employed to determine their dissimilarity with the weight of 1. 

The dissimilarity (or similarity) coefficient between betting commitments and the cores of pieces of evidence have the following 
properties: 

Properties:  

(1) 0 ≤ SimBetPmij
≤ 1, 0 ≤ DissBetPmij

≤ 1;  
(2) DissBetPmij

= 0 iff BetPmi = BetPmj ;  
(3) DissBetPmij

= 1 iff C i ∩ C j = ∅;  
(4) SimBetPmij

+ DissBetPmij
= 1;  

(5) DissBetPmij
= 1 iff DissC ij = 1;  

(6) DissBetPmij
= 0 ⇒ DissC ij = 0. 

Property (2) implies that the dissimilarity coefficient attains the minimum value when the Pignistic probability functions of two 
pieces of evidence are identical. Nevertheless, it doesn’t mean the two BPAs must be the same because the betting commitments of two 
BPAs may be identical even though the two BPAs are different. Property (6) indicates that if BetPmi = BetPmj , the cores of mi and mj 
must be the same, and then DissC ij = 0. But the converse of Property (6) is not true. 

4.3. New two-tuple dissimilarity measure between pieces of evidence 

Based on the discussion in Section 4.2, a two-tuple dissimilarity measure in the D-S evidence structure is proposed. It is a strict 
dissimilarity metric because it satisfies the properties presented in Def. 6 and Lemmas 1 to 3. 

Definition 11. (Two-tuple dissimilarity measure between pieces of evidence) Given two pieces of evidence mi and mj defined on 2Ω. A 
two-tuple dissimilarity measure is represented as 

Diss
(
mi,mj

)
=
〈
k′

ij, dBPij

〉
. (26)  

where k′
ij denotes the conflict belief derived from the Pignistic probability functions of mi and mj, dBPAij represents Jousselme’s distance 

measure between mi and mj. 

Definition 12. (A new weighted dissimilarity measure) Let Ω be the frame of discernment, and the mass of two pieces of evidence is 
denoted by mi and mj. The dissimilarity measure between the two pieces of evidence Diss(mi,mj) is defined as: 

Diss
(
mi,mj

)
= α

k′
ij

⋅ k′
ij + αdBPAij

⋅ dBPAij (27)  

where αk′
ij 

and αdBPAij 
are the discounting coefficient or weighting factor for k′

ij and dBPAij . They are determined by 
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αk′ij = DissBetPmij
, αdBPAij

= SimBetPmij
= 1 − αk′ij (28)  

The dissimilarity measure Diss(mi,mj) in Def.12 is a weighted average of conflict belief between betting commitments and Jous-
selme’s distance. As the value of similarity coefficient increases, the distance metric will occupy a larger proportion in the dissimilarity 
measure, and the effect of conflict belief will decrease gradually. On the contrary, when dissimilarity coefficient increases, the dif-
ference between betting commitments of mi and mj increases, which will lead to the dissimilarity measure being more dependent upon 
the conflict belief compared with the distance metric. 

Properties:  

(1) Ifαk′ij = 0,Diss(mi,mj) = dBPAij ;  
(2) If;αk′ij = 0.5,Diss(mi,mj) = 1

2 (k
′
ij + dBPAij )

(3) If αk′ij = 1,Diss(mi,mj) = k′
ij. 

Here, the conflict belief k′
ij is produced from the Pignistic probability function transferred from the mass function rather than the 

original two BPAs. If kij (the conflict measure generated by the product of the mass of subsets between two pieces of evidence that don’t 
intersect with each other) is used to determine the conflict belief between two pieces of evidence, some irrational results may be 
generated. 

Example 6. 
Given the frame of discernment Ω = {θ1,θ2,⋯,θ50}, the BPAs of fifty pieces of evidence are shown as follows: 
Each piece of evidence in this example is a categorical belief function which owns only one focal element. From m1 to m50, the 

hypotheses included in the focal element increases gradually such that |C i| = i. Since the intersection between the sole focal elements 
for any pair of evidence is a nonempty set, the conflict belief associated with mi and mj (i, j = 1,2,…50; i ∕= j) is zero such that kij = 0. 
Taking m1, m3 and m50 for example, if we use the conflict belief kij which is generated from the original BPAs to replace k′

ij in Eq. (27), 
then the result may be controversial. 

Diss(m1,m3) = αk13 ⋅ k13 + αdBPA13
⋅ dBPA13 =

2
3
× 0 +

1
3
× 0.8165 = 0.2722  

Diss(m1,m50) = αk1,50 ⋅ k1,50 + αdBPA1,50
⋅ dBPA1,50 =

49
50

× 0 +
1
50

× 0.9899 = 0.0198 

Intuitively, the dissimilarity between m1 and m3 ought to be less than that between m1 and m50 because m50 is more uncertain than 
m3. From another aspect, the similarity coefficient associated with m1 and m3 (αdBPA13

) is much larger than that of m1 and m50 (αdBPA1,50
). 

So the dissimilarity generated above is abnormal. Moreover, the above two dissimilarity values are less than the normal level because 
Jousselme’s distance is discounted by the similarity coefficient, while the first part in the equation doesn’t contribute to the final 
dissimilarity because of the misuse of kij. When k′

ij is utilized to calculate the conflict belief between mi and mj, we have: 

Diss(m1,m3) = αk′13
⋅ k′

13 + αdBPA13
⋅ dBPA13 =

2
3
×

2
3
+

1
3
× 0.8165 = 0.7166  

Diss(m1,m50) = αk′1,50
⋅ k′

1,50 + αdBPA1,50
⋅ dBPA1,50 =

49
50

×
49
50

+
1
50

× 0.9899 = 0.9802  

It is rational because Diss(m1, m50) > Diss(m1, m3), and the dissimilarity incorporates both the conflict belief associated with 
Pignistic probability and evidential distance between two masses. If we only consider Jousselme’s distance, the difference between 
Diss(m1,m3) and Diss(m1,m50) is not obvious because the total ignorance is only restricted to θ1, θ2 and θ3 for m3, while it is attributed 
to fifty elements for m50. So the dissimilarity between m1 and m50 should be much larger than that between m1 and m3 compared with 
the value of |dBPA1,50 − dBPA13 |. The new dissimilarity measure just consists with our intuition. 

Theorem 1. Suppose mi and mj are two BPAs defined on the same frame of discernment Ω, Diss(mi,mj) is the proposed dissimilarity 

measure in Def.12. Then properties (d1) - (d5) in Def. 6 are satisfied. Additionally, Lemma 1 (Diss(mi,mj) = 1 iff 
(

∪
A⊆Bi

A
)

∩

(

∪
B⊆Bj

B
)

= ∅) to Lemma 3 (0 < Diss(mi,mj) < 1 iff 
(

∪
A⊆Bi

A
)

∩

(

∪
B⊆Bj

B
)

∕= ∅ and mi ∕= mj) are also satisfied. 

Property (d3) and Lemma 1 together are called ‘Extreme consistency’ in [15]. It means that the dissimilarity reaches the minimum 
value iff the two BPAs are absolutely non-conflicting, while attains the maximum value iff the two BPAs are totally conflicting. 

Proof of Theorem 1. 
(d1) Reflexivity: Diss(mi,mi) = 0 
From Eq. (25), we have 
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DissBetPmii
= 0  

Then from Eq. (28), we have 

αk′ii = DissBetPmii
= 0,αdBPAii

= 1 − αk′ii = 1  

From Eq. (27), we have 

Diss(mi,mi) = αk′ii ⋅ k′
ii + αdBPAii

⋅ dBPAii = 0 ⋅ k′
ii + 1 ⋅ dBPAii  

Since dBPAii = 0 can be inferred from Eq. (14), so 

Diss(mi,mi) = 0 

(d2) Symmetry: Diss(mi,mj) = Diss(mj,mi)

From Eq. (27), we have 

Diss
(
mi,mj

)
= αk′ij ⋅ k′

ij + αdBPAij
⋅ dBPAij  

Diss
(
mj,mi

)
= αk′ji ⋅ k′

ji + αdBPAji
⋅ dBPAji  

According to Eqs. (14), (23) and (28), we can infer that 

dBPAij = dBPAji , k
′
ji = k′

ji,αdBPAij
= αdBPAji

,αk′ji = αk′ji  

So 

Diss
(
mi,mj

)
= Diss

(
mj,mi

)

(d3) Nondegeneracy: Diss(mi,mj) = 0 iff mi = mj 

Proof of Sufficiency: 
If mi = mj, from Property (1) in Theorem 1, we have 

Diss
(
mi,mj

)
= 0  

So 

mi = mj ⇒ Diss
(
mi,mj

)

Proof of Necessity: 
If Diss(mi,mj) = 0, from Def. 12, we have αk′ij ⋅ k′

ij = 0 and αdBPAij
⋅ dBPAij = 0 because αk′ij ≥ 0, k′

ij ≥ 0, αdBPAij
≥ 0, dBPAij ≥ 0.  

a) If αk′ij = 0, then αdBPAij
= 1, dBPAij must be equal to 0. 

In this case, mi = mj because dBPAij = 0 ⇒ mi = mj.  

a) If 0 < αk′ij < 1, then 0 < αdBPAij
< 1, k′

ij and dBPAij must be zero to guarantee Diss(mi,mj) equals to 0. This will not occur because if 
αdBPAij

< 1, then there exist some discrepancies between the focal elements of mi and mj, which deduces the result that dBPAij > 0. So, 
we have Diss(mi,mj) > 0 in this situation.  

b) If αk′
ij
= 1, then αdBPAij

= 0, k′
ij equals to 1 because the focal elements of the two pieces of evidence have no intersection. In this case, 

Diss(mi,mj) = 1. 

In summary, we can infer that Diss(mi,mj) = 0 iff αdBPAij
= 1 and dBPAij = 0 which occurs when mi = mj. 

Therefore, the proposed dissimilarity measure has the minimum value if and only if the two pieces of evidence are completely 
consistent. Hence, Diss(mi,mj) = 0 ⇒ mi = mj. 

(d4) Nonnegativity: Diss(mi,mj) ≥ 0; 
Because αk′

ij
, k′

ij, αdBPAij 
and dBPAij are all non-negative and bounded within [0,1], it is easy to infer that 

Diss
(
mi,mj

)
= αk′

ij
⋅ k′

ij + αdBPAij
⋅ dBPAij ≥ 0  

Lemma 1: Diss(mi,mj) = 1 iff 
(

∪
A⊆Bi

A
)

∩

(

∪
B⊆Bj

B
)

= ∅ 
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If 
(

∪
A⊆Bi

A
)

∩

(

∪
B⊆Bj

B
)

= ∅, then 

DissC ij = DissBetPmij
= 1  

From Def. 12, we have 

αk′ij = 1, αdBPAij
= 0  

From Def. 8, we get 

k′
ij = 1  

As such, Diss(mi,mj) = αk′ij ⋅ k′
ij + αdBPAij

⋅ dBPAij = k′
ij = 1. 

(d5) Transitivity: mi = mi ⇒ Diss(mk,mi) = Diss(mk,mj); 
From Eq. (27), we have 

Diss
(
mg,mi

)
= αk′gi

⋅ k′
gi + αdBPAgi

⋅ dBPAgi  

Diss
(
mg,mj

)
= αk′gj

⋅ k′
gj + αdBPAgj

⋅ dBPAgj  

Because mi = mj, according to Eqs. (14), (23) and (28), we can infer that 

dBPAgi = dBPAgj , k′
gi = k′

gi, αk′gi
= αk′

gi,αdBPAgi
= αdBPAgj  

So, we have Diss(mg,mi) = Diss(mg,mj). 
To illustrate (d6), simulation is conducted in Supplementary Material. Obviously, the proposed dissimilarity measure satisfies 

Theorem 1. Based on this, a similarity measure can be defined below. 

Definition 13. (Similarity measure between pieces of evidence) Given the frame of discernment Ω, the mass of two pieces of evidence is 
denoted by mi and mj. The dissimilarity measure between mi and mj is computed by Eqs. (27), (28). Then, the similarity measure be-
tween mi and mj profiled by Sim(mi,mj) is defined as: 

Sim
(
mi,mj

)
= 1 − Diss

(
mi,mj

)
= 1 − k′

ij + αdBPAij
⋅
(
k′

ij − dBPAij

)
(29)   

5. A multi-source data fusion approach based on uncertainty measure and the new dissimilarity metric 

In data fusion procedure, the weight and reliability of each piece of evidence may be different. As mentioned by Smarandache et al. 
[21], reliability reveals the capability to provide the correct information of the given problem which ought to be determined from 
statistical data or other ways. Weight can be interpreted as the relative importance of a piece of evidence compared with other evi-
dence. Due to the fact that reliability and weight don’t have the same explanation, they should be discriminated in data fusion process 
and tackled indifferently. Since Dempster’s rule doesn’t differentiate the reliability and weight of evidence clearly and assumes both of 
them to be 1, counter-intuitive combination results will be generated provided that pieces of evidence are contradictory. Yang’s ER 
rule [14] distinguished the concept of reliability and weight of evidence and combined them comprehensively in the aggregation of 
evidence. But how to generate the values of these two parameters still needs to be discussed. 

5.1. Weight assignment based on dissimilarity among evidence 

The main purpose of this subsection is to assign rational weighting factors to evidence to make a valid combination procedure. As 
mentioned by Deng [52], if a piece of evidence is supported by a majority of evidence greatly, it should be automatically given more 
importance in data fusion. Otherwise, the evidence should play less important role in the aggregation provided that its cumulative 
dissimilarity is large. That is to say, the truth is generally held by the majority. 

Suppose there are L pieces of evidence denoted as e = {e1,e2,…,eL}. Let the dissimilarity between two pieces of evidence ei and ej 

(i, j= 1,2,…, L) be generated by Def. 12, and the similarity measure is calculated by Def. 13. When the similarity measures between all 
pairs of evidence are computed, an L dimensional similarity measure matrix is constructed as follows: 
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e1 ⋯ ej ⋯ eL

[
Simij

]

L×L =

e1

⋯

ei

⋯
eL

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 ⋯ Sim1j ⋯ Sim1L

⋯ ⋯ ⋯ ⋯ ⋯

Simi1 ⋯ Simij ⋯ SimiL

⋯ ⋯ ⋯ ⋯ ⋯

SimL1 ⋯ SimLj ⋯ 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

L×L

(30)  

where Simij is the abbreviation of Sim(mi,mj). As such, the cumulative similarity measure for ei is 
∑

j=1 j∕=i
L Simij. The degree of support for 

ei can then be calculated by the average similarity measure between ei and other L-1 pieces of evidence as follows: 

Simi =
1

L − 1
∑

j=1 j∕=i

L

Simij (31) 

After the normalization, the weight of ei can be calculated as: 

wi =
Simi

∑L

i=1
Simi

(32)  

where 
∑T

i=1wi = 1. Then the weighting vector of evidence is generated as w = {w1, w2,…,wL}. 

5.2. Determination of evidence reliability 

Since reliability reflects the ability to provide correct information, it should be computed objectively by digging out the information 
contained in data source other than the comparison among different pieces of evidence. 

Remark 1. The more uncertainty contained in the BPA of a piece of evidence, the less reliability should be allocated to the evidence 
in the combination of multi-source data, and vice versa. 

The uncertainty mentioned in Remark 1 consists of two implications. One is the dispersity of a BPA, which means how scattered 
belief degrees are allocated to the power set of discernment framework. It reflects the randomness of a BPA. For example, two BPAs are 
given as m1({θ1}) = 0.2, m1({θ2}) = 0.8, m2({θ1}) = 0.2, m2({θ2}) = 0.6, m2({θ3}) = 0.2. Obviously, m2 is more uncertain than m1 
because m2 has three focal elements. Hence, the reliability of m1 is assumed to be larger than m2. The other component is the un-
certainty measure of nonspecificity [12]. It refers to the uncertainty that the basic probability of singleton element is not specified 
provided that the cardinality of focal element is larger than 1. Suppose two BPAs are given as m1({θ1}) = 0.2, m1({θ2}) = 0.8, 
m2({θ1}) = 0.2, m2({θ1, θ2}) = 0.8. Since |θ1, θ2| > |θ2|, the uncertainty of m2 is larger than m1. |θ1, θ2| is also interpreted as local 
ignorance if |Ω| > 2, or global ignorance when Ω = {θ1,θ2}. The above two components jointly constitute a total uncertainty measure 
which should reflect both the randomness and non-specificity of a BPA. Here, we use the uncertainty measure proposed by Zhou et al. 
[12] because it satisfies probabilistic consistency, non-negativity, monotonicity and other basic properties that an uncertainty measure 
should satisfy. 

Let Ω = {θ1, θ2,⋯, θN} be the frame of discernment. The BPA of evidence ei is represented as mi = {(A,mi(A))|mi(A)〉0,A ⊆ Ω}, and 
the BOE is denoted by Bi = {A|mi(A)〉0,A ⊆ Ω}. Then the total uncertainty measure of mi is computed as: 

Ẽ(mi) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
2(|Bi| − 1)

∑

Al⊆Ω

∑

Ah⊆Ω
SCAl ,Ah ⋅

[

− m(Al)log2
m(Al)

2|Al | − 1
− m(Ah)log2

m(Ah)

2|Ah | − 1

]

, |Bi| ≥ 2

− m(A)log2
m(A)

2|A| − 1
, |Bi| = 1

(33)  

(Al,Ah ∈ Bi;A ∈ Bi)

Al and Ah (l, h= 1, 2,…, |Bi|; l ∕= h) refer to the lth and hth focal elements in Bi. 
log2

∑

l
(2|Al | − 1) is the maximum value of Deng’s uncertainty measure [45] and Zhou et al’s uncertainty measure is no larger than 

that of Deng’s. Therefore, we use the following equation to quantify the reliability of evidence ei. 

ri = 1 −
Ẽ(mi)

log2

∑

l

(
2|Al | − 1

) (34) 

Remark 2. ri is bounded within [0,1]. When Ẽ(mi) = 0, ei expresses determinate information and it is assumed to be completely 
reliable. This situation occurs when there is only one focal element whose cardinality is 1. On the contrary, when ̃E(mi) = log2

∑

l
(2|Al | −
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1), it attains the maximum uncertainty value. This case means that the data source expresses worthless information. 

5.3. Multi-source data fusion based on uncertainty measure and the new dissimilarity metric 

In a multi-source data fusion problem including L pieces of evidence, let mi be the BPA of evidence ei (i= 1, 2,⋯, L) such that mi =

{(A,mi(A))|mi(A)〉0,A ⊆ 2Ω}, 
∑

A⊆Ω
mi(A) = 1. Based on the weights and reliabilities generated by Eqs. (31)-(34), the ER rule can then be 

used to generate the aggregated BPA. 
The discounted BPA for ei defined in the ER rule with evidence weight and reliability [14] is profiled as: 

m̃i(A) =

⎧
⎪⎪⎨

⎪⎪⎩

w̃i ⋅ mi(A) A ⊆ 2Ω, A ∕= ∅

0 A = ∅

1 − w̃i A = P(Ω)

(35)  

where w̃i = wi
1+wi − ri

. 1 − w̃i signifies the residual support for ei from wi and ri. A weighted BPA is then constructed as follows: 

m̃i =
{
(A, m̃i(A))|m̃i(A)〉0,A ⊆ 2Ω;

(
P(Ω),mP(Ω),i

)}
(36) 

The combination of multiple pieces of evidence is conducted as follows: 

m̂A,e(i) =
[
(1 − w̃i)m̃A,e(i− 1) + m̃P(Ω),e(i− 1)m̃A,i

]
+
∑

B∩C=A
m̃B,e(i− 1)m̃C,i, ∀A ⊆ 2Ω

(37)  

m̂P(Ω),e(i) = (1 − w̃i)m̃P(Ω),e(i− 1) (38)  

m̃A,e(i) = k ⋅ m̂A,e(i) =
m̂A,e(i)∑

D⊆Ω
m̂D,e(i) + m̂P(Ω),e(i)

,∀A ⊆ 2Ω
(39)  

Fig. 2. The architecture of data fusion process based on the proposed dissimilarity measure  
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m̃P(Ω),e(i) = k ⋅ m̂P(Ω),e(i) =
m̂P(Ω),e(i)∑

D⊆Ω
m̂D,e(i) + m̂P(Ω),e(i)

(40) 

1 − w̃i is allocated to the power set of the discernment framework instead of any single subset. So 1 − w̃i is attached to P(Ω) that 
allows it to be redistributed to all propositions in the power set of the frame of discernment because A ∩ P(Ω) = A.e(i) represents the 
combination result of the first i pieces of evidence. 

After L − 1 times of iteration, the combined probability mass can be obtained as m̃A,e(L)(A ⊆ 2Ω), and the combined residual support 
for e(L) is generated as m̃P(Ω),e(L). The final combined BPA for A is then generated as: 

mA,e(L) =
m̃A,e(L)

1 − m̃P(Ω),e(L)
=

m̂A,e(L)∑

D⊆Ω
m̂D,e(i)

(
A ⊆ 2Ω)

(41) 

So the distribution after the fusion of L data sources is obtained as: 

m =
{
(A,m(A))|m(A)〉0,A ⊆ 2Ω} (42) 

The generalized dissimilarity measure and its application in muti-source data fusion is depicted in Fig. 2. 

5.4. Illustrative example 

In this subsection, we use the numerical example in [52] to verify the rationality and validity of the proposed multi-source data 
fusion method based on uncertainty measure and the new dissimilarity metric. The detailed calculation steps of the proposed method 
are described as follows. 

Step 1. Obtain multisource data. 

There are five different sensors used in a multisensor-based automatic target recognition system, and suppose the real target is A. 
The frame of discernment is Θ = {A,B,C}. Five bodies of evidence have been collected as follows: 

S1 : m1(A) = 0.5,m1(B) = 0.2,m1(C) = 0.3  

S2 : m2(A) = 0, m2(B) = 0.9, m2(C) = 0.1  

S3 : m3(A) = 0.55,m3(B) = 0.1,m3(A,C) = 0.35  

S4 : m4(A) = 0.55,m4(B) = 0.1, m4(A,C) = 0.35  

S5 : m5(A) = 0.6, m5(B) = 0.1, m5(A,C) = 0.3 

Step 2. Determination of evidence weight. 

Step 2.1: Transforming the original mass function to Pignistic probability function by applying Eq.(7); 
Step 2.2: Calculating the dissimilarity coefficient between the betting commitments DissBetPmij 

by using Eq.(25); 
Step 2.3: Computing Jousselme’s distance dBPAij by Eq.(14) and its discounting coefficient αdBPAij

by Eq.(28); 
Step 2.4: Computing conflict belief between betting commitments k′

ij by Eq.(23) and its discounting coefficient αk′ij by Eq.(28); 
Step 2.5: Obtaining the final dissimilarity measure between the two pieces of evidence Diss(mi,mj) by Def.12. 
Step 2.6: By applying Eqs.(29)-(32), the weight wi of evidence ei can be calculated. The results of weight vector are calculated as w 
= {0.2226, 0.0653, 0.2381, 0.2381, 0.2359}. 

Step 3. Determination of evidence reliability. 

Step 3.1: Computing the total uncertainty Ẽ(mi) of evidence ei by using Eq.(33); 
Step 3.2: Using Eq.(34) to quantify the reliability ri of evidence ei. The result of reliability vector is calculated as r = {0.5314, 
0.8828, 0.7529, 0.7529, 0.7676}. 

Table 10 
The BPAs of two pieces of evidence   

θ1 {θ1, θ2} {θ1, θ2, θ3} … {θ1, θ2, …, θ50} 

m1 1 0 0  0 
m2 0 1 0  0 
m3 0 0 1  0 
… 
m50 0 0 0  1  

M. Zhou et al.                                                                                                                                                                                                          



Fuzzy Sets and Systems 475 (2024) 108719

19

Step 4. Multi-source data fusion based on uncertainty measure and the new dissimilarity metric. 

After implementing Steps 1-3, the weight and reliability of evidence ei are both generated. And ER rule can then be used to generate 
the aggregated BPA m = {(A,m(A))

⃒
⃒m(A)> 0,A ⊆ 2Ω}. 

The results by applying the proposed data fusion methods and other methods in [52] are shown in Table 11 and Fig. 3. Next, the 
calculation results of different methods will be analyzed from the following two aspects. 

One is in terms of their ability to correctly identify the real target A. From Table 11 and Fig. 3, it can be intuitively seen that the D-S 
combination rule is counter-intuitive regardless of the amount of evidence, which is caused by the conflict between S2 and other 
sensors. Besides, Murphy’s method, Deng’s method and the proposed method can effectively avoid the irrationality of D-S combination 
rule, especially as the evidence grows. However, from Fig. 3 (b) we can figure that Murphy’s method cannot recognize the correct 
target when there are only three sensors S1,S2,S3. Furthermore, from Fig. 3 (b)-(d), it can be seen that except for our proposed method, 

Table 11 
Results of different data fusion methods   

m1, m2 m1, m2, m3 m1, m2, m3, m4 m1, m2, m3, m4, m5 

Dempster- Shafer’s combination rule m(A)=0 
m(B)=0.8571 
m(C)=0.1429 

m(A)=0 
m(B)=0.6316 
m(C)=0.3684 

m(A)=0 
m(B)=0.3288 
m(C)=0.6712 

m(A)=0 
m(B)=0.1228 
m(C)=0.8772 

Murphy’s combination rule m(A)=0.1543 
m(B)=0.7469 
m(C)=0.0988 

m(A)=0.3500 
m(B)=0.5224 
m(C)=0.1276 

m(A)=0.6027 
m(B)=0.2627 
m(C)=0.1346 

m(A)=0.7958 
m(B)=0.0932 
m(C)=0.1110 

Deng’s combination rule m(A)=0.1543 
m(B)=0.7469 
m(C)=0.0988 

m(A)=0.4861 
m(B)=0.3481 
m(C)=0.1657 

m(A)=0.7773 
m(B)=0.0628 
m(C)=0.1600 

m(A)=0.8909 
m(B)=0.0086 
m(C)=0.1005 

Proposed m(A)¼0.3040 
m(B)¼0.4729 
m(C)¼0.2231 

m(A)¼0.4278 
m(B)¼0.2794 
m(C)¼0.1048 
m(A,C)¼0.1880 

m(A)¼0.5965 
m(B)¼0.1467 
m(C)¼0.0448 
m(A,C)¼0.2120 

m(A)¼0.6925 
m(B)¼0.0920 
m(C)¼0.0230 
m(A,C)¼0.1925  

Fig. 3. Comparison of different data fusion methods  
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none of the other methods assign probability to {A,C} which represents local ignorance. From the point of view in practical appli-
cation, it is important to provide basis for failure mode and effect analysis (FMEA), fault diagnosis and so on. 

The other is in terms of their evidence aggregation methods. By further analysis, we can infer that different ways for the aggregation 
of evidence lead to different results from Deng’s method. On the one hand, from the original data, it is obvious that the second sensor S2 
has the biggest dissimilarity from other sensors, which is reflected in the smallest weight such that w = {0.2226, 0.0653, 0.2381, 
0.2381, 0.2359}. On the other hand, if evidence has greater ability to provide determinate information, it should have larger reliability 
such that r= {0.5314, 0.8828, 0.7529, 0.7529, 0.7676}. By considering the weight and reliability simultaneously, the pieces of ev-
idence can be aggregated by applying ER rule in the proposed method. Comparatively, D-S rule and Murphy’s rule don’t consider 
weight and reliability simultaneously. Specifically, D-S rule assumes the reliability of evidence equals to weight with the value of 1. 
This is irrational because the two concepts really have different meanings. In [52], the reliability of evidence is calculated by the 
similarity between the evidence and other evidences. It also doesn’t distinguish weight and reliability. Therefore, the proposed method 
can not only recognize the correct target, but also has higher practicability and rationality in tackling with real-world problems. 

5.5. Application in large-scale group decision making (LSGDM) process 

In this study, a multi-source data fusion approach based on uncertainty measure and the new dissimilarity metric has been pro-
posed. To demonstrate the practicality of the proposed method in real-world scenarios, we applied our multi-source data fusion 
method to a LSGDM scenario. In the context of GDM, the integration of multiple data sources is essential for attribute and expert 
aggregation. Typically, multi-source data in LSGDM is derived from a range of channels, including surveys, interviews and social media 
platforms, to capture diverse perspectives and opinions within the group. In this paper, we examine the multi-source data gathered 
from diverse decision makers (DMs). The proposed approach enables the integration of these disparate sources by simultaneously 
considering their relative weights and reliabilities. 

In this section, we implement the proposed methodology to address the issue of selecting a Software-as-a-Service (SaaS) suite, as 
presented in [53], which is useful for assisting electric vehicle (EV) companies in making strategic decisions. There are 21 experts or 
managers denoted as = {e1,…,e21}, tasked with selecting the optimal carbon footprint SaaS provider from alternative set A = {a1,a2,

a3,a4}. Due to differences in expertise and knowledge background among DMs, each DM has their own evaluation criteria and ulti-
mately provides a complete decision-making process report based on evaluation grades Ω = {H1, H2, H3, H4, H5, H6, H7} =

{absolutely worse, worse, slightly worse, indifference, slightly better, better, absolutely better}. The score values of seven evaluation 
grades are set as S = {s(H1), s(H2),s(H3), s(H4), s(H5),s(H6),s(H7)} = { − 1, − 0.7, − 0.3,0,0.3,0.7,1}. By following the step-by-step 
approach proposed in Section 5, we are able to aggregate 21 decision matrices into a coactive one and compare it with the results 
presented in [53], as shown in Table 12. 

The application of the proposed method in this scenario shows its ability to simultaneously consider the relative importance and 
reliability of decision makers (information sources). This approach enhanced the scientific rigor and persuasiveness of the decision- 
making process in real-world applications. Notably, our method is not only applicable to traditional belief function assignments 
(BPA), but also to preference relations based on pairwise comparisons, making it versatile and applicable to various decision-making 
contexts. 

The results obtained from the application of our method in the SaaS selection scenario demonstrated its effectiveness and uni-
versality. The approach provided a comprehensive and robust framework for integrating and analyzing multiple data sources, facil-
itating informed decision-making in complex and dynamic situations. Another strength of the proposed method is its scalability. It is 
designed to handle both small-scale and large-scale data, ensuring its applicability in various scenarios and accommodating the diverse 
needs of decision-making processes. 

In summary, the application of the proposed method in real-world scenario shows its effectiveness in facilitating decision-making 
processes. By simultaneously considering the importance and reliability of decision-makers, our method measures these two pa-
rameters automatically by the given assessment information. Furthermore, its applicability to different data scales and its versatility in 
accommodating various analysis approaches make it a valuable tool in decision support systems. 

6. Comparative analysis 

Here, three cases are selected to analyze the validity and rationality of the proposed dissimilarity measure. Among them, Case 2 is a 
common example used for comparative analysis, such as in [31,35,36] and [51]. Then the comparison of some typical distance or 
dissimilarity measures with the proposed measure is conducted. 

Case 1. 
Suppose the frame of discernment is Ω = {θ1,θ2,θ3}. Three BPAs are constructed as shown in Table 13. The dissimilarity measures 

between m1 and mj(j= 1, 2) are presented in Table 14. 
From the correlation coefficient defined in [35], we can get that 1 − rBPA(m1,m2) = 1 − rBPA(m1,m3) = 0.4227. The result is ir-

rational because m1 and m2 are more contradictory with each other than m1 and m3. Specifically, m2 is a piece of certain evidence that 
definitely points to θ1, while m3 is assigned with the largest ignorance. So the dissimilarity between m1 and m2 should be undoubtedly 
different with that between m1 and m3. dBPA12 = dBPA13 = 0.5774 is also unreasonable for the same reason. The value of difBetPmj

m1 and 1 
− Sim(m′

1,m′
j) decreases excessively from 0.6667 to 0. Since m1 and m3 are two different BPAs, the dissimilarity between them should 

be positive. The PSD pignistic probability-based dissimilarity also decreases too much. 
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Table 12 
Comparison analysis in the LSGDM application  

Comparisons The proposed method Model in [53] 

The aggregation 
result  

a1 a2 a3 a4  a1 a2 a3 a4 

a1 - {(H1, 0.05), (H2, 
0.03), (H3, 0.04), (H4, 
0.32), (H5, 0.04), (H6, 
0.03), (Ω, 0.49)} 

{(H1, 0.02), (H2, 
0.07), (H3, 0.05), (H4, 
0.22), (H5, 0.11), (H6, 
0.04), (Ω, 0.48)} 

{(H2, 0.08), (H3, 
0.10), (H4, 0.16), (H5, 
0.04), (H6, 0.11), (Ω, 
0.57)} 

a1 - {(H1, 0.05), (H2, 
0.01), (H3, 0.04), (H4, 
0.03), (H5, 0.19), (H6, 
0.09), (H7, 0.16), (Ω, 
0.44)} 

{(H1, 0.01), (H2, 
0.01), (H3, 0.03), (H4, 
0.04), (H5, 0.06), (H6, 
0.11), (H7, 0.32), (Ω, 
0.42)} 

{(H1, 0.01), (H2, 
0.05), (H3, 0.10), (H4, 
0.16), (H5, 0.04), (H6, 
0.11), (H7, 0.05), (Ω, 
0.49)} 

a2 {(H2, 0.03), (H3, 
0.04), (H4, 0.32), 
(H5, 0.04), (H6, 
0.03), (H7, 0.05), 
(Ω, 0.49)} 

- {(H1, 0.02), (H2, 
0.03), (H3, 0.08), (H4, 
0.25), (H5, 0.09), (H6, 
0.07), (H7, 0.03), (Ω, 
0.42)} 

{(H1, 0.03), (H2, 
0.01), (H3, 0.07), (H4, 
0.14), (H5, 0.12), (H6, 
0.03), (H7, 0.03), (Ω, 
0.57} 

a2 {(H1, 0.15), (H2, 
0.09), (H3, 0.19), (H4, 
0.03), (H5, 0.04), (H6, 
0.01), (H7, 0.05), (Ω, 
0.44)} 

- {(H1, 0.04), (H2, 
0.02), (H3, 0.13), (H4, 
0.16), (H5, 0.08), (H6, 
0.10), (H7, 0.03), (Ω, 
0.44)} 

{(H1, 0.01), (H2, 
0.03), (H3, 0.10), (H4, 
0.19), (H5, 0.07), (H6, 
0.08), (H7, 0.05), (Ω, 
0.48)} 

a3 {(H2, 0.03), (H3, 
0.11), (H4, 0.21), 
(H5, 0.05), (H6, 
0.07), (H7, 0.02), 
(Ω, 0.50)} 

{(H1, 0.04), (H2, 
0.06), (H3, 0.09), (H4, 
0.25), (H5, 0.08), (H6, 
0.03), (H7, 0.02), (Ω, 
0.44)} 

- {(H1, 0.01), (H2, 
0.06), (H3, 0.12), (H4, 
0.15), (H5, 0.04), (H6, 
0.04), (Ω, 0.60)} 

a3 {(H1, 0.32), (H2, 
0.11), (H3, 0.06), (H4, 
0.04), (H5, 0.03), (H6, 
0.01), (H7, 0.01), (Ω, 
0.42)} 

{(H1, 0.03), (H2, 
0.10), (H3, 0.08), (H4, 
0.16), (H5, 0.13), (H6, 
0.02), (H7, 0.04), (Ω, 
0.44)} 

- {(H3, 0.03), (H4, 
0.07), (H5, 0.05), (H6, 
0.05), (H7, 0.33), (Ω, 
0.46)} 

a4 {(H2, 0.14), (H3, 
0.08), (H4, 0.08), 
(H5, 0.12), (H6, 
0.09), (Ω, 0.49)} 

{(H1, 0.04, (H2, 0.03), 
(H3, 0.14), (H4, 0.16), 
(H5, 0.08), (H6, 0.02), 
(H7, 0.04), (Ω, 0.49)} 

{(H2, 0.04), (H3, 
0.04), (H4, 0.18), (H5, 
0.15), (H6, 0.07), (H7, 
0.01), (Ω, 0.50)}  

a4 {(H1, 0.05), (H2, 
0.11), (H3, 0.04), (H4, 
0.16), (H5, 0.10), (H6, 
0.05), (H7, 0.01), (Ω, 
0.49)} 

{(H1, 0.05, (H2, 0.08), 
(H3, 0.07), (H4, 0.19), 
(H5, 0.10), (H6, 0.03), 
(H7, 0.01), (Ω, 0.48)} 

{(H1, 0.33), (H2, 
0.05), (H3, 0.05), (H4, 
0.07), (H5, 0.03), (Ω, 
0.46)}  

The comparison 
result 

a2 ≻ a4 ≻ a3 ≻ a1 a1 ≻ a2 ≻ a3 ≻ a4  
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Case 2. 
Suppose the frame of discernment is given as Ω = {θ1,θ2,⋯,θ20}. Two pieces of evidence are constructed below: 
Suppose set A is changing as {θ1}, {θ1, θ2}, {θ1, θ2, θ3}, …, {θ1, θ2,⋯, θ20} respectively. Then there will be 20 pairs of BPAs. 

Intuitively, the dissimilarity between m1 and m2 attains to the minimum value when A = {θ1,θ2,⋯,θ5}, and the greater the discrepancy 
between A and {θ1,θ2,⋯,θ5}, the larger the dissimilarity. The comparisons of different dissimilarity measures between m1 and m2 are 
shown in Table 16 and Fig. 4. 

It can be seen that the core of m2 is {θ1, θ2,⋯, θ5} for all the twenty groups of evidence. The Cosine-based dissimilarity (symbol ‘1- 
cos’ in Fig. 4) always equals to 1 because there is no identical focal element between the two pieces of evidence although the inter-
section of the cores for m1 and m2 is nonempty. The conflict belief k12 (symbol ‘K’ in Fig. 4) equals to 0.05 because only m1({θ7}) and 
m2({θ1, θ2,⋯, θ5}) do not intersect with each other from the focal elements of the two pieces of evidence. The value of correlation 
coefficient [35] (symbol ‘1-rBPA’ in Fig. 4) is 0.0094 when A is {θ1,θ2,⋯,θ5}. It is less than our intuition because the mass on A is only 
0.8, while the rest 0.2 is attributed to other three focal elements. It is the same problem for Tanimoto’s similarity [30] (symbol 
‘1-simTa’ in Fig. 4). So the dissimilarity which is approaching to 0 in this situation is irrational. The curves of Liu’s distance measure 
[13] (symbol ‘

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k ⋅ dBPA

√
’ in Fig. 4) and Jiang’s distance measure [37] (symbol ‘12 (k ⋅ dBPA)’ in Fig. 4) are also controversial because the 

twentieth pair of evidence does conflict with each other to a great extent. In this case, the proposed dissimilarity, Jousselme’s distance 
[34] (symbol ‘dBPA’ in Fig. 4) and Tessem’s distance [29] (symbol ‘difBetP’ in Fig. 4) are relatively valid. 

Case 3. 

Table 13 
The BPAs of three pieces of evidence   

θ1 θ2 θ3 {θ1, θ2, θ3} 

m1 1/3 1/3 1/3 0 
m2 1 0 0 0 
m3 0 0 0 1  

Table 14 
The dissimilarity computed by different methods   

1 − rBPA(m1,mj) difBetPmj
m1 

1-cos 1 − Sim(m′
1 ,m′

j)
dBPA1j difPBetPmj

m1 
Proposed 

d12 0.4227 0.6667 0.4227 0.6667 0.5774 0.6667 0.6369 
d13 0.4227 0 1 0 0.5774 0.2381 0.5774  

Table 15 
BPAs of two pieces of evidence   

{θ2, θ3, θ4} {θ7} Ω A {θ1, θ2, θ3, θ4, θ5} 

m1 0.05 0.05 0.1 0.8 0 
m2 0 0 0 0 1  

Table 16 
Comparisons between typical dissimilarity measures and the proposed one in Case 2   

dBPA k k’ 1-simTa 1-cos 1-rBPA difBetP (k*dBPA)0.5 0.5(k+dBPA) Proposed 

1 0.7858 0.05 0.825 0.7418 1 0.7348 0.605 0.1982 0.4179 0.8144 
2 0.6867 0.05 0.825 0.5285 1 0.5483 0.5285 0.1853 0.3683 0.763 
3 0.5705 0.05 0.825 0.3493 1 0.369 0.2483 0.1689 0.3103 0.6655 
4 0.4237 0.05 0.825 0.1966 1 0.1964 0.125 0.1455 0.2368 0.5019 
5 0.1323 0.05 0.825 0.0376 1 0.0094 0.125 0.0813 0.0911 0.2189 
6 0.3884 0.05 0.8517 0.196 1 0.1639 0.2583 0.1394 0.2192 0.5081 
7 0.5029 0.05 0.8707 0.3465 1 0.2808 0.3536 0.1586 0.2765 0.633 
8 0.5705 0.05 0.885 0.4187 1 0.3637 0.425 0.1689 0.3103 0.7042 
9 0.6187 0.05 0.8961 0.4749 1 0.4288 0.4806 0.1759 0.3344 0.752 
10 0.6554 0.05 0.905 0.5198 1 0.477 0.525 0.181 0.3527 0.7864 
11 0.6844 0.05 0.9123 0.5566 1 0.5202 0.5614 0.185 0.3672 0.8123 
12 0.7082 0.05 0.9183 0.5872 1 0.5565 0.5917 0.1882 0.3791 0.8325 
13 0.7281 0.05 0.9235 0.6131 1 0.5872 0.6173 0.1908 0.389 0.8487 
14 0.7451 0.05 0.9279 0.6353 1 0.6137 0.6393 0.193 0.3976 0.8619 
15 0.7599 0.05 0.9317 0.6546 1 0.6367 0.6583 0.1949 0.405 0.873 
16 0.773 0.05 0.935 0.6714 1 0.6569 0.675 0.1966 0.4115 0.8823 
17 0.7846 0.05 0.9379 0.6863 1 0.6748 0.6897 0.1981 0.4173 0.8904 
18 0.7951 0.05 0.9406 0.6995 1 0.6907 0.7028 0.1994 0.4225 0.8973 
19 0.8046 0.05 0.9429 0.7113 1 0.705 0.7145 0.2006 0.4273 0.9034 
20 0.8133 0.05 0.945 0.722 1 0.7178 0.725 0.2017 0.4317 0.9088  
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We take another example in [36] to illustrate the validity of our proposed method. Given two BBAs m1 and m2 be defined on the 
frame of discernment Ω = {θ1, θ2, θ3}. m1{θ3} is set to be 1 and kept stable. m2 is constantly changing from situation 1 to 20. In 
situation 1, m2 is evenly attributed to the seven elements in the power set of Ω such that m2{A} = 1

7 (∀A ∈ 2Ω,A ∕∈ Ω). From situation 2 
to 20, each step has an increase of 6

133 for m2({θ1, θ2, θ3}) together with a decrease of 1
133 for other 6 elements. So in situation 20, m2({θ1,

θ2, θ3}) = 1 and m2{A} = 0(∀A ∈ 2Ω,A ∕∈ Ω). The comparison of dBPA, difBetP, 1 − cos, 1 − simTa, 1 − rBPA, difP BetP and the proposed 
measure for all the 20 situations are presented in Table 17 and depicted in Fig. 5. 

It can be seen that both the proposed dissimilarity and difP BetP increase gradually from situation 1 to 20. Although the value of 1 
− cos increases from 0.622 to 1, it is irrational because the last couple of evidence is not in complete conflict. 

The reason that 1 − simTa and difBetP remain the same value lies in that the transformed Pignistic probabilities for all the 20 groups 
of evidence are identical even though the original BPA changes gradually. And these two measures are only derived from the trans-
formed Pignistic probability. 

7. Conclusions 

This paper proposes a novel dissimilarity measure defined on the Dempster-Shafer’s belief structure which employs both the 
conflict belief on transformed Pignistic probability and Jousselme’s distance measure. The concept of dissimilarity coefficient between 
betting commitments is defined. The first advantage of the new dissimilarity measure lies in that two dimensions are jointly 

Fig. 4. Comparisons between different dissimilarity measures and the proposed one in Case 2  

Table 17 
Comparisons of the seven dissimilarity measures in Case 3   

dBPA difBetP 1-cos 1-simTa 1-rBPA difP BetP Proposed 

1 0.6172 0.6667 0.622 0.6667 0.4908 0.7415 0.6502 
2 0.6236 0.6667 0.6449 0.6667 0.5 0.7476 0.6523 
3 0.6305 0.6667 0.6725 0.6667 0.5095 0.7537 0.6546 
4 0.638 0.6667 0.7031 0.6667 0.5193 0.7598 0.6571 
5 0.646 0.6667 0.7348 0.6667 0.5292 0.7658 0.6598 
6 0.6546 0.6667 0.7659 0.6667 0.5393 0.7719 0.6626 
7 0.6636 0.6667 0.7954 0.6667 0.5494 0.778 0.6656 
8 0.673 0.6667 0.8228 0.6667 0.5595 0.7841 0.6688 
9 0.683 0.6667 0.8477 0.6667 0.5695 0.7902 0.6721 
10 0.6933 0.6667 0.8701 0.6667 0.5794 0.7963 0.6755 
11 0.7041 0.6667 0.8903 0.6667 0.5891 0.8024 0.6791 
12 0.7152 0.6667 0.9083 0.6667 0.5986 0.8084 0.6829 
13 0.7267 0.6667 0.9244 0.6667 0.608 0.8145 0.6867 
14 0.7386 0.6667 0.9388 0.6667 0.6171 0.8206 0.6907 
15 0.7509 0.6667 0.9518 0.6667 0.626 0.8267 0.6947 
16 0.7634 0.6667 0.9635 0.6667 0.6346 0.8328 0.6989 
17 0.7762 0.6667 0.974 0.6667 0.643 0.8389 0.7032 
18 0.7894 0.6667 0.9835 0.6667 0.6511 0.845 0.7076 
19 0.8028 0.6667 0.9921 0.6667 0.659 0.8511 0.712 
20 0.8165 0.6667 1 0.6667 0.6667 0.8571 0.7166  
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considered. One is the contradiction between incompatible focal elements, the other one is the discrepancy of BPAs between 
compatible portions. So it can not only tackle with the situation that two pieces of evidence have small intersections, but also deal with 
the case where two BPAs intersect much. The proposed dissimilarity measure satisfies the basic properties of a distance metric. The 
second advantage of the new dissimilarity measure is that it is not originated from Pignistic probability. So it will not generate counter- 
intuitive results by some probability-based distance. A method of determining evidence reliabilities and weights is also presented 
based on uncertainty measure and the new dissimilarity metric when no prior knowledge is acquired. The new dissimilarity metric can 
be effectively used for multi-source data fusion under uncertain and complex environment, such as large-scale group decision making 
problem. The case presented in this paper illustrates the applicability of the proposed measure. Future research may be focused on how 
to fuse conflict data sources under complex environments based on the new dissimilarity measure. And the effectiveness of generating 
evidence weights and reliabilities also needs to be validated with the increasing number of evidence. 
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