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A B S T R A C T

In multi-attribute group decision making (MAGDM), capturing user preferences and accurately building 
consensus among different stakeholders is critical. This paper introduces a new data-driven framework that 
utilizes user-generated content (UGC) to extract and refine user experience systematically attributes to improve 
decision accuracy. This user experience-oriented attribute system generation method involves the implementa
tion of text mining and natural language processing. This system efficiently processes large-scale data, optimizing 
attribute discovery and aggregation to represent user preferences accurately. Furthermore, an Interest-Expertise 
matrix is proposed that classifies decision-makers (DMs) based on their interests and expertise. A novel pairwise 
comparison method as a multi-granularity distributed preference relation (DPR) is developed to align decision 
granularity with their capabilities. A decentralized multipartite feedback mechanism caters to varied stakeholder 
groups, facilitating a robust consensus reaching process (CRP). Different optimal models are designed for cor
responding decision-making participants in this mechanism. A case study for selecting the optimal research and 
development (R&D) alternative for a new energy vehicle (NEV) company is presented to demonstrate the 
application of our framework in a realistic scenario, highlighting its effectiveness in enhancing strategic decision- 
making processes within the organization. This study contributes to the field of MAGDM by providing a fusion- 
based approach to integrate user-centric data into organizational decision-making frameworks, aiming for more 
targeted and effective outcomes.

1. Introduction

Multi-attribute group decision making (MAGDM) is an essential 
methodology within decision science, facilitating the evaluation and 
prioritization of options across various fields, from government (Liu 
et al., 2023; Ma et al., 2020), engineering (Kumar & Chen, 2022; Xing 
et al., 2022), medical (Tang et al., 2023b) to business (Tang et al., 
2023a; Wu et al., 2022; Xue et al., 2021) management. This method 
allows for systematic decision-making by considering multiple attributes 
simultaneously, which is crucial in scenarios where complex, multi- 
faceted challenges need balanced solutions (Bai et al., 2024). The 
complexity of MAGDM stems from the need to accommodate diverse 
preferences among multiple decision makers (DMs) and the necessity to 
consider a wide array of attributes. Traditional approaches often fall 

short of capturing the full spectrum of user preferences, which leads to 
decisions that are less than ideal. Therefore, leveraging data-driven and 
knowledge-based analytics to enhance the robustness and accuracy of 
decision models is a key challenge in research. However, rapid changes 
in technology and consumer behaviors require MAGDM approaches that 
continuously adapt to evolving markets. Static attribute systems may 
overlook valuable emerging data, especially user-generated content 
(UGC), limiting decision quality and relevance.

With the rapid development of the new generation of information 
technology, the decision environment is becoming increasingly dynamic 
and complex. Traditional MAGDM approaches, which often rely on the 
same set of predefined attributes (Dong et al., 2016; Liu et al., 2023; Ma 
et al., 2020), may not reflect real-time decision environments or 
evolving market dynamics. In contrast, inspired by data-driven decision 
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making analytics method, user-generated content (UGC) offers a dy
namic and continuously updated source of data that can better capture 
consumer preferences and trends (Liu et al., 2023). It includes online 
reviews (He et al., 2022), social media (Liu et al., 2023), and user 
feedback (Ji et al., 2023a), which directly informs MAGDM models by 
incorporating real-time consumer sentiments into attribute generation. 
It provides direct insights into consumer behaviors and preferences, 
making it a valuable resource for tailoring products and services to meet 
user demands. Therefore, integrating UGC into MAGDM using data- 
driven methods to generate user experience-oriented (UXO) attribute 
sets is a crucial challenge.

DM’s preference expression scheme is another crucial problem based 
on the constructed attribute set. In the realm of MAGDM, the preference 
schemes given by DMs may be homogeneous or heterogeneous. The 
former often entails the uniform evaluation of attributes using a 
consistent format (Zhou et al., 2022a; Zhou et al., 2024), whereas the 
latter allows for the use of diverse preference schemes such as real 
numbers, interval values, fuzzy numbers, and linguistic term sets (LTS) 
due to the complexity and variability of decision scenarios (Tang et al., 
2019; B. Zhang, Liang, Zhang, & Xu, 2018; H. Zhang, Dong, & Herrera- 
Viedma, 2018). These schemes have evolved to handle both homoge
neous and heterogeneous preferences effectively within MAGDM 
frameworks. However, a significant challenge remains in accommoda
ting the varying information granularity perceptions of DMs (Tang et al., 
2022; Wang and Liang, 2020; Zhang et al., 2021). Despite using the same 
preference expression method with a pairwise comparison structure (Fu 
et al., 2019; Zhang et al., 2016), DMs may perceive and express decision 
attributes differently due to their diverse expertise backgrounds. This 
variation in information granularity can significantly impact the eval
uation system or rating scales. Therefore, handling the diverse granu
larity perceptions in DM’s preference expression remains challenging in 
MAGDM.

Consensus reaching process (CRP) in MAGDM has evolved to address 
the complex dynamic situations (Li et al., 2022; Zhou et al., 2022c) and 
conflicting stakeholder groups (Xu et al., 2015). While traditional 
models strive for unanimous decisions, it is impractical and inefficient in 
real-world scenarios, where speed and adaptability are crucial (Bezdek 
et al., 1978). As a result, soft consensus models that provide dynamic 
feedback mechanisms have become prevalent (Chen et al., 2024; Wei 
et al., 2023). This mechanism suggests modifications to DMs’ opinions, 
facilitating a balance between achieving consensus and maintaining 
decision-making efficiency. Moreover, the development of feedback 
strategies has further refined the CRP. This strategy effectively bridges 
the gap between opinion adjustment and social relationships, enhancing 
the decision-making framework’s capability to handle complex de
cisions (Guo et al., 2020; Zhang et al., 2022; Zhou et al., 2023). Recent 
advancements include the identification rule and direction rule-based 
feedback mechanism (Tang et al., 2019) and optimization rule-based 
feedback mechanism (Cheng et al., 2020; Han et al., 2022; Tang et al., 
2025). A critical challenge is to accommodate the diverse interests of 
stakeholders with organizational goals. Moreover, incorporating het
erogeneous stakeholder interests into a unified MAGDM framework re
mains non-trivial. Diverse expertise levels can lead to conflicting 
objectives, and insufficient attention to these variations can undermine 
consensus stability and decision quality.

The following outlines the gaps identified in developing consensus 
models for MAGDM based on UGC:

1) Typically, the attribute systems for MAGDM are derived from 
predefined standards or literature, which may not capture real-time 
UGC updates. There is a need for a system that integrates and continu
ally updates UGC features, ensuring they are up-to-date and reflective of 
actual user experience.

2) Current models typically use a uniform approach to express DM’s 
preference, neglecting the diversity in their expertise. A more flexible 
model that can adapt to the expertise levels of DMs, allowing for 
generalized and specialized inputs, is crucial for more effective decision- 

making.
3) While existing consensus models consider DM behavior, they often 

overlook the comprehensive inclusion of diverse stakeholder perspec
tives, particularly in scenarios with conflicting interests. There is a gap 
in models that systematically integrate and balance these diverse in
terests to reach a robust consensus.

Hence, this research aims to develop a decentralized multipartite 
consensus model for MAGDM that explicitly leverages UGC-driven, real- 
time attribute generation and adapts to varying DM expertise. By 
addressing the above gaps, we seek to enhance the accuracy and prac
ticality of modern decision-making frameworks. The following main 
contributions are briefly summarized as follows:

1) A UXO attribute system is developed, leveraging a data-driven 
approach focused on UGC. Advanced data acquisition and Sentence- 
BERT (SBERT) are utilized with segment soft relative cosine similarity 
(SSRcos) to enhance semantic comparison accuracy in large-scale 
corpora. Dimensionality reduction through Uniform Manifold Approxi
mation and Projection (UMAP)-assisted Hierarchical Density-Based 
Spatial Clustering of Applications with Noise (HDBSCAN) is employed, 
followed by attribute integration using attribute-based Term Fre
quency–Inverse Document Frequency (A-TF-IDF).

2) An Interest-Expertise (I-E) matrix tailored for MAGDM is intro
duced. This novel decision mechanism for MAGDM uses I-E matrix to 
classify DMs by interests and domain expertise. It aligns decision gran
ularity with DMs’ capabilities, customizes processes for expert and non- 
expert stakeholders, and enhances decision quality and engagement 
within organizational frameworks.

3) A decentralized multipartite feedback consensus mechanism is 
designed within the MAGDM framework. It assesses internal consensus 
levels among diverse stakeholder entities and categorizes them into 
decision-making participative parties. This process aligns stakeholder 
feedback with multi-objective optimization models, fostering compre
hensive and inclusive consensus across varied entities.

The rest of this paper is organized as follows: Section 2 gives the 
framework of the proposed approach and provides necessary pre
liminaries. Section 3 discusses the procedure for generating a UXO 
attribute system. Section 4 introduces a decentralized multipartite 
consensus mechanism tailored for MAGDM. Finally, Section 5 provides a 
numerical application of the methodologies for a new energy vehicle 
(NEV) research and development (R&D) task, with comparative and 
sensitivity analyses.

2. The framework of the proposed approach and preliminaries

This section details the approach’s foundational concepts and pre
sents the steps for implementing the decentralized multipartite 
consensus model within a hierarchical MAGDM system.

2.1. Problem description

Online review platforms are crucial for shaping consumer behavior 
and brand perception. However, the vast and varied UGC creates a 
complex, unstructured data environment. Traditional decision-making 
methods often overlook the subtleties of consumer opinions and strug
gle to integrate diverse perspectives, including expert views. This 
disconnect leaves a gap between the detailed information in reviews and 
the structured insights necessary for effective decision-making. The 
proposed framework addresses this issue by systematically organizing 
(UGC) into weighted decision attributes and implementing a collabo
rative decision-making mechanism. This mechanism integrates expert 
analysis, grounded in specialized domain knowledge and standardized 
assessment criteria, with collective user insights. The framework facili
tates a balanced consensus through an iterative feedback loop, where 
expert and user assessments are integrated, refined, and carefully 
weighted. Consequently, decisions reflect both professional rigor and 
practical applicability.
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Suppose there is a set of alternatives X = {x1,⋯, xm,⋯, xM}(M ≥ 2)
to be ranked which are evaluated based on an attribute system. The 
attribute system could have multiple layers. We consider a two-layer 
situation in this research. The upper layer attributes set is denoted as 
A = {A1,⋯,Al,⋯,AL}(L ≥ 2) and the lower layer attributes set of A is 
denoted as a =

{
a1,1,⋯, a1,n1 ;⋯; al,1,⋯, al,nl ;⋯; aL,1,⋯, aL,nL

}
, where 

nl(l = 1,⋯, L) is the number of lower layer attributes corresponding to 
upper attribute Al. The weights of L upper layer attributes are denoted 
by WA =

{
WA

l |l = 1,⋯, L
}
, and 0 ≤ WA

l ≤ 1 (l = 1,⋯, L), 
∑L

l=1WA
l = 1. 

Similarly, the weights of lower layer attributes are wa =
{

wa
1,1,⋯,wa

1,n1
;⋯;wa

l,1,⋯,wa
l,nl

;⋯;wa
L,1,⋯,wa

L,nl

}
, and 0 ≤ wl,i ≤ 1 (l = 1,

⋯, L, i = 1,⋯, nl), 
∑nl

i=1wa
l,i = 1. The set of evaluation grades to be used is 

H = {H1,⋯,Hn⋯,HN}. Besides, there are multi-party DMs from different 
stakeholder entities who are denoted as SE =
{
SE1,⋯, SEp,⋯, SEP

}
(P ≥ 2), where P means the number of stakeholder 

entities. The set of DMs in the pth stakeholder entity SEp is denoted as 

SEp =
{

dmp,1,⋯, dmp,k,⋯, dmp,np

}
where np signifies the number of DMs 

in SEp. The relative weight of SEp and dmp,k are signified by WSE
p and wdm

p,k 

respectively, which satisfies 0 ≤ WSE
p ≤ 1 (p = 1,⋯, P), 0 ≤ wdm

p,k ≤ 1
(
k 

= 1,⋯, np
)

and 
∑P

p=1WSE
p = 1, 

∑np
k=1wdm

p,k = 1.

2.2. Procedure of decentralized multipartite consensus model for 
MAGDM

The decentralized multipartite consensus model for MAGDM is 
shown in Fig. 1, which encompasses several critical stages: 1) Genera
tion of the UXO attribute system based on UGC through text analysis and 
natural language processing (NLP), which identifies decision attributes 
that accurately reflect user perspectives. This process establishes a two- 
tier attribute framework. 2) The I-E responsive multi-granularity deci
sion mechanism for MAGDM classifies stakeholder interests and exper
tise into four quadrants. The model dynamically adjusts attribute 
granularity according to DMs’ expertise, employing fine-grained or 
coarse-grained distributed preference relations (DPR) for practical 
alternative evaluation. 3) A decentralized multipartite consensus 
mechanism introduces a robust system to manage consensus among 
diverse stakeholders. These stakeholders are categorized into distinct 
decision-making participative parties (DMPs) using the I-E matrix cat
egorizes. The optimization models and feedback mechanisms are 

designed to align these varied perspectives to achieve consensus, ulti
mately leading to the selection of optimal alternatives.

2.3. Preliminaries

2.3.1. Preference relations
In this study, it is proposed that DMs perform their evaluations by 

conducting pairwise comparisons between pairs of alternatives. 
Expanding on LTS, the notion of a distributed linguistic preference 
relation (DLPR) was first presented (Zhang et al., 2014) to aid in the 
assessment of alternatives under conditions of uncertainty. Subse
quently, a variety of frameworks for pairwise comparisons emerged to 
accommodate different evaluative scenarios, such as probabilistic lin
guistic preference relation (PLPR) (Zhang et al., 2016) and DPR (Fu 
et al., 2016). 

Definition 1. (Distributed preference relation (Fu et al., 2016)) There 
exists an alternative set X = {x1,⋯, xM} that can be pairwisely 
compared by a series of evaluation grades H = {H1,⋯,HN} (N > 2 and N 
is an odd number). H1 and HN indicate inferior and superior levels, while 
H(N+1)/2 signifies indifference. Specifically, H1,⋯,H(N− 1)/2 represent the 
grades with decreasing non-preferred intensity, while H(N+3)/2,⋯,HN 

denote the grades with increasing preferred intensity. The DPR matrix 
given by dmp,k is defined as Dp,k⊂X× X,Dp,k = (dp,k

ij )M×M, where

dp,k
ij =

{(
Hn, dp,k

ij (Hn)
)
, n = 1,⋯,N;

(
H, dp,k

ij (H)
)}

(1) 

dp,k
ij (Hn) and dp,k

ij (H) denote the belief degree that alternative xi is 
compared to xj on grade Hn and ignorance by dmp,k, respectively. 
dmp,k(Hn) ≥ 0,dp,k

ij (H) = dp,k
ji (H) = 1 −

∑N
n=1dp,k

ij (Hn).
If dk

ij(H) = 0, it is a complete assessment and vice versa. If 

dp,k
ij (Hn) > 0, Hn is called a focal element. In the context of DPR in 

MAGDM, the ER approach conducts the fusion of different distributions 
in attributes/alternatives/experts levels (Yang and Xu, 2013; Zhou et al., 
2022b). To relieve the burden of expressing assessment information, 
DMs are required to give comparisons between adjacent alternatives 
dp,k

i,i+1(i = 1,⋯,M − 1) rather than any pair of alternatives.
Suppose the evaluation grades in H are symmetrical, and the score 

value s(Hn) of Hn satisfies − 1 = s(H1) < ⋯ < s(HN) = 1, s
(
H (N+1)/ 2

)
=

0 and s(Hn) = − s(HN− n+1)(n = 1,⋯,N). Then DPR matrix 

Fig. 1. The procedure of the decentralized multipartite consensus model for MAGDM.
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Dk= (dp,k
ij )M×M can be converted into a corresponding score matrix 

denoted by Sp,k =
([

S(p,k)−
ij , S(p,k)+

ij

] )

M×M
, where S(p,k)−

ij +S(p,k)+
ji = 0,

S(p,k)+
ij +S(p,k)−

ji = 0, ∀i, j ∈ {1,⋯,M}. After that, to infer the extent that xi 

is preferred to xj, the possibility degree (PD) matrix PDp,k =
(

pdp,k
ij

)

M×M 
will be generated (Fu et al., 2019). 

Definition 2. (Dissimilarity measure between two DPRs (Xue et al., 
2021)) Let Dp,k =

(
dp,k

ij

)

M×M 
and Dp,g =

(
dp,g

ij

)

M×M 
be the DPRs pro

vided by dmp,k and dmp,g, respectively, where p = 1,⋯,P; k, g = 1,⋯, np;

k ∕= g. Then, the preference dissimilarity measure between dmp,k and 
dmq,g on the comparison of alternatives xi and xj can be calculated by

diss
(

dp,k
ij , dp,g

ij

)
=

1
2
∑N− 1

n=1

∑N

n’=n+1
ψkg

ij (Hn)ψkg
ij (Hn’)(s(Hn’) − s(Hn) ) (2) 

where ψkg
ij (Hn) =

⃒
⃒
⃒dp,k

ij (Hn) − dp,g
ij (Hn)

⃒
⃒
⃒

2.3.2. Trust social network analysis
Within the scope of MAGDM, the involvement of DMs from various 

entities is particularly significant, as they often display intricate and 

dynamic social interactions rather than exist in isolation. Trust social 
network analysis (T-SNA) emerges as a specialized branch of SNA that 
concentrates on the complex network of trust relationships among DMs 
(Ji et al., 2023b). 

Definition 3. (Trust social network) A trust social network can be 
represented by a directed graph G(D, E) based on graph theoretic, in 
which the set of nodes D =

{
dm1,⋯, dmk,⋯, dmnp

}
stands for individual 

DMs and directed lines set E indicates the trust relationship 
(

dmk, dmg

)

between DM pairs.

Definition 4.. (Trust score matrix (Wu et al., 2016)) DM dmg evaluates 
his/her trust degree toward DM dmk (dmg, dmk ∈ SEp, k ∕= g) by trust 
function λgk =

(
tgk,dgk

)
. tgk, dgk ∈ [0, 1] Indicate trust and distrust degrees 

from dmg to dmk with tgk + dgk ∈ [0,1]. Then, trust score for representing 
the trust relationship between the two DMs can be further obtained by:

tsgk =
tgk − dgk + 1

2
(3) 

Obviously, tsgk ∈ [0, 1]. On this basis, the trust score matrix TS =
[
tsgk
]

np×np 
can be obtained. Table 1 provides an example of the T-SNA 

among all DMs in SEP.

3. User experience-oriented attribute system generation for 
MAGDM

In this section, a data-driven algorithm is first developed to generate 
the UXO attribute system and automatically determine attribute 
weights. The whole process is depicted in Fig. 2.

3.1. Extract features from UGC to determine decision attributes

This research enhances user experience analysis by thoroughly 

Table 1 
Trust social network analysis of SEP

Trust social network Trust score matrix

TS =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

− ts12 − ts14 − ts16
ts21 − ts23 − ts25 −

− ts32 − ts34 ts36
ts41 − ts43 − ts45
− ts52 − ts54 − ts56
ts61 − ts63 ts64 ts65 −

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Fig. 2. The procedure of UXO attribute system generation based on UGC.
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examining long texts and employing a vast corpus. Long texts reveal 
more about user sentiments and preferences because of their compre
hensive content. Using a large corpus helps represent diverse user ex
periences effectively. However, this approach poses challenges, 
including advanced NLP tasks, the need for complex algorithms to un
derstand context and semantics, and higher computational re
quirements. To overcome these obstacles, we developed a sophisticated 
text mining framework that efficiently processes and analyzes data from 
long texts and large corpora, ensuring accurate attribute determination 
in UGC.

Module 1. UGC data acquisition and domain-specific corpus 
construction

The methodology begins with corpus preparation, a vital step in 
data-driven decision-making. Data is collected using a database gener
ator that employs algorithms to extract relevant UGC, enhanced by web 
crawling techniques to ensure comprehensive and relevant user expe
rience data. Raw data is then transformed into a structured, domain- 
specific corpus. Advanced NLP techniques segment the data into sen
tences for contextual understanding. The data is anonymized, cleaned, 
and prepared for analysis, ensuring privacy compliance and relevance. 
We also define corpus quality measures to evaluate the effectiveness of 
this preparation process: 

Q =
Nrelevant

Ntotal
×

1
Nerrors + 1

(4) 

where Ntotal is the total number of sentences in the corpus, and Nerrors is 
the number of errors or inconsistencies identified in the corpus. Nrelevant 
represents the number of sentences that are identified as relevant. A 
sentence is considered relevant if it (i) contains domain-specific evalu
ative content, such as keywords or phrases indicating user sentiment and 
experience, and (ii) meets a minimum relevance score threshold deter
mined by a combined lexical and statistical filtering process. Here, the 
relevance score is computed based on the occurrence of evaluative in
dicators and the semantic similarity with prototypical evaluative ex
pressions in the domain. Eq. (4) reflects the dual objectives of 
maximizing relevance and minimizing errors in the corpus preparation 
process, thereby ensuring the quality and reliability of the data for 
subsequent analysis and decision-making.

Module 2. Large-scale sentence embedding
Large-scale sentence embedding aims to efficiently extract feature 

embeddings from domain-specific large corpora, addressing time con
straints and dimensional curses. This module’s innovation comprises: (i) 
Instead of the traditional matrix decomposition approach, which may 
blur distinctions in embeddings across large corpora (Landauer et al., 
1998), we adopt a BERT-based model that delivers semantically rich and 
distinct sentence embeddings. (ii) While BERT excels in tasks like sen
tence classification and pair regression by generating fixed-size em
beddings (e.g., averaging BERT’s output (Zhao et al., 2022) or using the 
[CLS] token (Lan et al., 2019)), its cross-encoder structure is unsuitable 
for large-scale embedding due to the impractical number of inferences 
required. For instance, identifying the most similar pair in a collection of 

10,000 sentences (M) requires nearly 50 million BERT inferences 
(

M⋅(M− 1)
2 = 49,995,000

)

, taking about 65 h on a modern V100 GPU.

Therefore, in this study, we leverage a sentence embedding tech
nique based on a model analogous to SBERT (Reimers et al., 2019) and 
introduce a novel similarity metric, Soft Relative Cosine Similarity, to 
enhance the accuracy of embedding comparisons beyond what the 
original SBERT model achieves. SBERT modifies the traditional BERT 
architecture by incorporating Siamese and triplet network structures, 
enabling the direct comparison of generated sentence embeddings. 
However, these comparisons are typically limited to assessing cosine 
similarity at the directional level of the embeddings. To refine this 
approach, we first encode two sentences, S1 and S2, using the standard 
SBERT model, to obtain their respective embeddings, U and V. We then 
employ the SSRcos to evaluate the semantic correlation between these 
embeddings. 

Definition 5. (Segment soft relative cosine similarity between two sentence 
embeddings) Let U = [u1, u2,⋯, uT] ∈ R1×T and V = [v1, v2,⋯, vT ] ∈

R1×T be sentence embedding vectors partitioned into Tʹ subvectors, 
where D = T/Tʹ represents the dimension of each subvector. Each sub
vector Uτ and Vτ for τ = 1, 2,⋯,Tʹ can be written as Uτ,Vτ ∈ R1×D. Then, 
U and V can be represented as U = [U1,⋯,Uτ,⋯,UTʹ ], V = [V1,⋯,Vτ,⋯,

VTʹ ]. Therefore, the SSRcos can be calculated as follows:

SSRcos(U,V) =

∑T’

τ=1

∑∑D
i,jsτ

ij

(
uτ,i − Uτ

)(
vτ,j − Vτ

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑∑D

i,jsτ
ij

(
uτ,i − Uτ

)(
uτ,j − Uτ

)√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑∑D

i,jsτ
ij

(
vτ,i − Vτ

)(
vτ,j − Vτ

)√

T’

(5) 

where sτ
ij = sim

(
uτ,i, vτ,j

)
= 1

1+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(uτ,i − vτ,j)
2

√ captures the similarity between 

components of the segment vectors. And Uτ =
∑D

i=1uτ,i, Vτ =
∑D

i=1vτ,j. 

Properties 1. (1) Symmetry: SSRcos(U,V) = SSRcos(V,U).

(2) Boundedness: SSRcos(U,V) ∈ [ − 1, 1].
(3) Positive definiteness: For any non-zero U, SSRcos(U,U) = 1.
(4) Identity of indiscernible: SSRcos(U,V) should be maximal iff U and 

V are equivalent after segmentation.

Remark 1. Eq. (5) introduces a mathematically intricate similarity 
measure well-suited for sentence embeddings. Fig. 3 compares tradi
tional cosine similarity with the proposed SSRcos. Key features include: 
(1) Segmentation of embeddings: U and V are divided into Tʹ sub- 
vectors, enabling local context evaluation and nuanced semantic 
detection. (2) Mean centering: Each segment Uτ and Vτ is mean-centered 
to minimize magnitude disparities and emphasize relative distribution. 
(3) Soft similarity measure: The similarity sτ

ij between segment compo
nents use a soft function based on Euclidean distance, offering greater 

Fig. 3. Comparison of vectors’ representation (a) Cosine similarity (b) Segment soft relative cosine similarity between two sentence embeddings
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adaptability than traditional cosine similarity. (4) Aggregation across 
segments: The overall score is averaged from segment similarities, with 
equal segment contribution.

This similarity measure underpins various downstream tasks, 
including semantic search and clustering. By leveraging SBERT and 
SSRcos, we reduce the computational burden of pairwise comparisons, 
as embeddings are precomputed for efficient comparison, avoiding 
exhaustive BERT inferences. This approach saves time and mitigates the 
curse of dimensionality in large-scale corpora, making it highly effective 
for practical NLP applications. The PLM model is well-suited for large- 
scale corpora and semantic textual similarity (STS) tasks, embedding 
sentences into dense vectors to facilitate semantic similarity compari
sons, as shown in Fig. 4.

Module 3. Attributes clustering and discovery
The attribute clustering and discovery module organizes high- 

dimensional sentence embeddings into distinct clusters for attribute 
discovery. Using enhanced SBERT in Module 2, we achieve a [Num,768]
dimensional space, where ’Num’ represents the number of sentences in 
the corpus, and ’768′ the SBERT embedding dimensions. The complexity 
of UXO attribute tasks creates ambiguity in spatial locality, which can 
blur distances between points and affect clustering accuracy. To address 
this, we introduce a UMAP-assisted HDBSCAN clustering algorithm that 
reduces dimensionality while robustly clustering domain-specific 
corpora. UMAP compresses high-dimensional embeddings into a 
lower-dimensional space, preserving local and global structures by 
optimizing a weighted k-neighbor graph layout. HDBSCAN then clusters 
the reduced data, managing varied densities and noise without pre
defining cluster numbers. It calculates core distances to the σth nearest 
neighbor constructs a mutual reachability distance graph and forms a 
hierarchy of stable clusters condensed into flat clusters. These clusters 
are analyzed to identify key attributes and filter out noise. In experi
ments, tuning hyperparameters in the UMAP-assisted HDBSCAN is vital 
for optimized clustering. We use metrics like the Silhouette Coefficient 
(SC), Calinski-Harabasz (C-H) Score, and Davies-Bouldin (D-B) Index to 
refine hyperparameters iteratively, achieving clusters that are both 
meaningful and cohesive. Following this, an attribute integration mod
ule is developed that identifies and integrates the top K attributes most 
aligned with user preferences.

Module 4. Attribute integration and weight distribution
The module uses cosine similarity to refine coherent clusters of at

tributes. This module aims to consolidate these attributes into a repre

sentative set that captures UGC’s core themes, emphasizing user 
preferences. The integration process begins with the Count Vectorizer, 
which converts text data into a feature vector, F, counting each term’s 
frequency in the corpus. This process can be represented as: F =

CountVectorizer (Corpus). Subsequently, an A-TF-IDF transformation 
is applied to the feature vector F to weigh the terms of F, which is 
defined in Definition 6. 

Definition 6. (Attribute-based TF-IDF) Suppose there is a corpus C 
containing L attribute sets {A1,⋯,AL}, which are composed of the terms 
{
t1,1,⋯, t1,n1 ;⋯; tL,1,⋯, tL,nL

}
. The domain corpus is processed to identify 

attributes clustered into sets. Each set of attributes Al is considered a 
document as traditional TF-IDF. The A-TF-IDF is computed for each term 
of an attribute set. The TF of term tl,i in attribute set Al is the number of 
times ti appears in Al, denoted as ftl,i ,Al . The IDF of term tl,i is represented 

as log

⎡

⎣
∑L

l=1
nl

L
(

1+dftl,i

)

⎤

⎦, where dftl,i is the number of attribute sets containing 

term tl,i. The A-TF-IDF for term tl,i in Al is then defined as:

TFIDFAttribute
(
tl,i,Al

)
= ftl,i ,Al × log

⎡

⎣

∑L
l=1nl

L
(

1 + dftl,i

)

⎤

⎦ (6) 

Unlike traditional weighting methods, this approach reduces the 
weight of terms frequently appearing across attribute sets while 
increasing the weight of rarer terms. Eq. (6) is applied to each term, 
generating a weighted score that emphasizes a term’s significance 
within the specific domain. The strength of an attribute set is determined 
by summing its terms’ TF-IDF scores. These aggregated scores calculate 
each set’s overall relevance within the corpus. Correspondingly, the 
weight distribution for each term is determined starting with TF-IDF as 
the initial relative weight for the term of tl,i, denoted as Wtl,i . The K-top 
terms, representing the most preferred user features which defined as: 

K-top Terms = argtop − K
tl,i∈Al

(
Wtl,i

)

(7) 

In practice, K is determined such that the cumulative A-TF-IDF 
weight of the selected top − k terms reach a predetermined threshold (e. 
g., 90 % of the total weight of attribute set Al). This criterion ensures that 
the essential information within each attribute set is preserved without 
incorporating superfluous terms. Then, we remove irrelevant attributes 

Fig. 4. Sentence embedding procedure
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by extracting only key weights to form a unified attribute set for the 
domain corpus. After that, the L attributes set {A1,⋯,AL} are updated 
into the same shape (1,K), leading to the term’s set 
{
t1,1,⋯, t1,K;⋯; tL,1,⋯, tL,K

}
. We refine our attribute aggregation process 

with these sets. Given the substantial, valuable data from large-scale 
corpora, directly applying dimensionality-reduced and clustered attri
bute sets as MAGDM indexes is suboptimal. Instead, we adopt an attri
bute integration method using an A-TF-IDF cosine similarity measure, 
defined below. 

Definition 7. (The similarity between attribute sets) Let terms sets 
{
ti,1,

⋯, ti,K
}

and 
{
tj,1,⋯, tj,K

}
belong to attribute sets Ai and Aj, respectively. 

The A-TF-IDF vectors for Ai and Aj are represented by Vi and Vj. The 
similarity between Ai and Aj can be calculated by

Similarity
(
Ai ,Aj

)
=

Vi⋅Vj

‖Vi‖‖Vj‖
(8) 

where Vi⋅Vj is the inner product of the TF-IDF vectors for attributes Ai 
and Aj, and ||Vi|| and ||Vj|| are the Euclidean norms of the TF-IDF 
vectors. This measurement quantifies the cosine of the angle between 
two vectors in the multidimensional space, reflecting how closely 
related the two attribute sets are in terms of their term compositions and 
significance within the corpus.

By using Definition 7, the similarity matrix Similarity
(
Ai ,Aj

)

L×L will 
be built, which is used to merge closely related attribute sets. The 
threshold is calculated by Eq. (9) by combining the mean similarity and 
standard deviation σ of Similarity

(
Ai ,Aj

)

L×L. 

η =
1

(L − 1)(L − 2)
∑L− 1

i=1

∑L

j=i+1
Similarity

(
Ai ,Aj

)
+ 2σ (9) 

The final result of this module is a concise list of K-top attributes, 
which reflects the primary dimensions of user experience within the 
domain-specific corpus.

3.2. Determine the relative weights of attributes

After applying Modules 1–4, a UXO attribute system is established. 
Above all, we denote A = {A1,⋯,AL}(L ≥ 2) as the attribute set which is 
the output of Module 4. The K-top terms 

{
t1,1,⋯, t1,K;⋯; tL,1,⋯, tL,K

}
of A 

is denoted as a =
{
a1,1,⋯, a1,n1 ;⋯; aL,1,⋯, aL,nL

}
, which generated by 

removing duplicate. a is lower layer attributes set of A, where 
nl(l = 1,⋯, L) is the actual number of lower layer attributes of their 
upper-level attribute set Al. The weights of L upper- and lower-layer 
attribute sets are calculated by Definitions 8 and 9. 

Definition 8. (Attribute set weight distribution) The weight of attribute 
set Al is represented by WA

l , which is calculated by the sum of the A-TF- 
IDF scores for all terms in Al as Eq. (10).

WA
l =

∑nl

i
TF-IDFattribute

(
tl,i,Al

)
(10) 

Definition 9. (Normalization of attribute weights) Suppose a =
{
a1,1,

⋯, a1,n1 ;⋯; aL,1,⋯, aL,nL

}
is lower layer attributes in an attribute set A =

{A1,⋯,Al,⋯,AL}. The relative weight of al,i (al,i∊Al) is calculated as:

wa
l,i =

TF-IDFAttribute
(
al,i,Al

)
− min

i=1,⋯,nl
TF-IDFAttribute

(
al,i,Al

)

max
i=1,⋯,nl

TF-IDFAttribute
(
al,i,Al

)
− min

i=1,⋯,nl
TF-IDFAttribute

(
al,i,Al

)
(11) 

The whole UXO attribute system generation algorithm procedure is 
shown in Algorithm 1.

Algorithm 1 (UXO attribute system generation)
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4. Decentralized multipartite consensus mechanism for MAGDM

This section presents a decentralized multipartite consensus mech
anism for MAGDM, utilizing the earlier established I-E responsive 
framework. It integrates a two-layered attribute system to assist DMs of 
different expertise levels in engaging effectively. Additionally, it in
troduces a multipartite feedback mechanism that incorporates various 
stakeholder views.

4.1. I-E responsive multi-granularity decision mechanism for MAGDM

In Section 3.1, we developed a UXO attribute system with a two-layer 
framework. The upper layer includes coarse-grained attributes such as 
performance, comfort, and design, covering general aspects of user 
experience. The lower layer offers detailed, fine-grained attributes like 
acceleration smoothness, seat ergonomics, and aesthetic details. This 
approach accommodates the varied preferences of DMs with different 
professional backgrounds and knowledge levels when evaluating 
alternatives.

4.1.1. Establish Interest-Expertise stakeholder matrix
On this basis, a novel I-E matrix is proposed that draws inspiration 

from Mendelow’s Power-Interest matrix. This matrix is characterized by 
two axes: the X-axis represents stakeholder interest, and the Y-axis de
picts DM’s domain expertise. It is segmented into four distinct quadrants 
by two thresholds (θhorizontal/θvertical), as shown in Fig. 5. Here, #A. 
(IEH− H) involves the core team members, including senior project 
managers, supply chain managers and internal R&D experts, whose in- 
depth knowledge and high interest drive the project’s development. 
#B. (IEL− H) is typically composed of external experts or consumers, such 
as third-party quality auditors or technical consultants. They possess 
profound domain knowledge but might have an irrelevant interest 
regarding the project’s result. #C. (IEL− L) includes stakeholders like 
entry-level enthusiasts, who have limited influence on technical de
cisions and lack deep knowledge of the project domain. #D. (IEH− L) 

includes stakeholders such as potential consumers and market analysts 
who show strong interest in product R&D despite lacking technical 
expertise. Visible features and overall market presence influence their 
perceptions. 

Remark 2. Recognizing that a single entity might cross multiple 
quadrants due to the diversity of interests and expertise levels is 
important. As shown in Fig. 5, different consumer types are in quadrants 
#B, #C and #D. These range from highly interested but technically 
inexperienced individuals focused on product benefits (#D), to those 
with some technical knowledge but less direct impact from outcomes 
(#B), and passive consumers with limited domain knowledge (#C). This 
diversity highlights the need for a decision-making approach tailored to 
different expertise and interest levels. Internal experts typically occupy 
quadrants #A and #D, such as project managers and R&D specialists, 
who possess high expertise and interest (#A). External DMs span 
quadrants #A and #B, including technical consultants, quality auditors 
with high expertise but less vested interest (#B), and supply chain 
managers who combine specialized knowledge with a substantial stake 
in project success (#A).

To more comprehensively measure the X-axis, Y-axis, and demar
cation threshold in the I-E matrix, we employ a combination of quan
titative and qualitative assessment as defined in Definitions 10 and 11. 

Definition 10. (Stakeholder interest level measurement) The interest of 
dmp,k can be assessed through a multi-criteria measurement incorpo
rating both qualitative and quantitative elements. The function 
SIL
(
dmp,k

)
representing the stakeholder interest level (SIL) of DM dmp,k 

is defined as:

SIL
(
dmp,k

)
= γ1⋅ROI

(
dmp,k

)
+ γ2⋅SEL

(
dmp,k

)
+ γ3⋅IVS

(
dmp,k

)
(12) 

The return on involvement (ROI) of dmp,k is calculated by 

ROI
(
dmp,k

)
=

(BOI(dmp,k) − COI(dmp,k))
COI(dmp,k)

∊[0, 1], where BOI
(
dmp,k

)
/COI

(
dmp,k

)

signify the benefit/cost of dmp,k’s involvement. ROI measures the 

Fig. 5. I-E analysis model.
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perceived value stakeholders gain from their involvement relative to the 
effort they have made. The stakeholder engagement level (SEL) of dmp,k 

is obtained by SEL
(
dmp,k

)
=

FOE (dmp,k)× IOE(dmp,k)
TPEO(dmp,k)

∊[0, 1], which captures 

the frequency and depth of stakeholder interactions in project-related 
activities. FOE

(
dmp,k

)
/IOE

(
dmp,k

)
/TPEO

(
dmp,k

)
denote the frequency 

of engagement/intensity of engagement/total possible engagement op
portunities of dmp,k. Interest valuation score IVS

(
dmp,k

)
∊[0, 1] reflects the 

self-assessed value derived from the project by dmp,k. γ1, γ2, γ3 are 
weighting coefficients summing to 1, adjusted to reflect the relative 
importance of each metric. Then the threshold θhorizontal can be set as: 

θhorizontal = μSIL + γʹσSIL (13) 

where μSIL =

∑P
p=1

∑np
k=1

SIL(dmp,k)
∑P

p=1
np

, σSIL =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑P
p=1

∑np
k=1(SIL(dmp,k)− μSIL )

2

∑P
p=1

np

√

, γʹ is an 

adjustment coefficient. A higher value of γʹ stands for a stricter standard 
of high interest, thereby narrowing the high-interest group to the most 
engaged stakeholders. This adjustment allows for the application of the 
model to specific organizational contexts and stakeholder dynamics. 

Remark 3. (ROI(dmk)) is the variation of return on investment, 
focusing on engagement aspect. Benefits include knowledge acquisition, 
network expansion or direct financial gains, while costs could be time or 
resources. Besides, SEL(dmk) measures each instance of engagement (e. 
g., meetings, feedback sessions) weighted by the depth of involvement 
(e.g., active participation vs. passive attendance). IVS(dmk) is a subjec
tive value of DM.

Example 1.. Suppose there are 3 DMs coming from different stake
holder entities SE1, SE2 and SE3, which denote internal experts, external 
experts and consumer representatives, respectively. Suppose the 
weighting coefficients are equally distributed: γ1 = γ2 = γ3 = 1

3.

SIL
(
dm1,1

)
= 1

3×
80− 60

60 + 1
3×

15×0.8
20 + 1

3× 0.8 = 0.591, SIL
(
dm2,1

)
= 1

3×
35− 30

30 + 1
3×

10×0.6
15 + 1

3× 0.5 = 0.444, SIL
(
dm3,1

)
= 1

3 ×
12− 10

10 +1
3 × 1 

×0.4
1 +1

3 × 0.2 = 0.267. When γʹ = 1, θhorizontal = 0.434+0.132 = 0.566.
The detailed numerical case and explanation can be found in Supple
mentary Materials’ Part A.

Definition 11. (Domain expertise level measurement) DM’s domain 
expertise is measured through an integration of peer evaluation and 
knowledge testing. Function DEL

(
dmp,k

)
representing the domain 

expertise level (DEL) of DM dmp,k is defined as:

DEL
(
dmp,k

)
= δ1⋅PTS

(
dmp,k

)
+ δ2⋅KDI

(
dmp,k

)
(14) 

Here, the peer-reviewed trust score (PTS) of dmp,k is calculated by 
PTS

(
dmp,k

)
= 1

np − 1
∑

g∕=ktsgk
(
dmp,k, dmp,g ∈ SEp

)
where tsgk stands for the 

trust score from dmp,g towards dmp,k which is calculated by Eq. (3). 
KDI

(
dmp,k

)
∊[0,1] is the knowledge dissemination index of dmp,k based 

on contributions to domain knowledge pools and active communication 
within the R&D community. δ1 and δ2 are the respective weights of trust 
and contribution measures, δ1 + δ2 = 1. The threshold θvertical can be 
established as: 

θvertical = μDEL + δʹσDEL (15) 

where μDEL =

∑P
p=1

∑np
k=1

DEL(dmp,k)
∑P

p=1
np

, σDEL =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑P
p=1

∑np
k=1(DEL(dmp,k)− μDEL )

2

∑P
p=1

np

√

,δ́  is 

an adjustment coefficient.
By using Definitions 10 and 11, each dmp,k can be identified into 

different I-E region by the 
[
SIL
(
dmp,k

)
,DEL

(
dmp,k

) ]
and the value of 

θhorizontal, θvertical. The discriminant formulas are given as follows: 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

IE(H− H) =
{
dmp,k|SIL

(
dmp,k

)
≥ θhorizontal ∧ DEL

(
dmp,k

)
≥ θvertical

}

IE(L− H) =
{
dmp,k

⃒
⃒SIL

(
dmp,k

)
< θhorizontal ∧ DEL

(
dmp,k

)
≥ θvertical

}

IE(L− L) =
{
dmp,k

⃒
⃒SIL

(
dmp,k

)
< θhorizontal ∧ DEL

(
dmp,k

)
< θvertical

}

IE(H− L) =
{
dmp,k

⃒
⃒SIL

(
dmp,k

)
≥ θhorizontal ∧ DEL

(
dmp,k

)
< θvertical

}

(16) 

Example 2. Continue with Example 1, let’s assume the weighting 
coefficients for the domain expertise level formula are equally distrib
uted: δ1 = δ2 = 1

2. DEL
(
dm1,1

)
= 0.75, DEL

(
dm2,1

)
= 0.87, 

DEL
(
dm3,1

)
= 0.275. When δ́ = 1, θvertical = 0.867. Therefore, 

dm1,1 ∈ IEH− L, dm2,1∈ IEL− H, dm3,1 ∈ IEL− L. The detailed numerical case 
and explanation can be found in Supplementary Materials’ Part A.

4.1.2. Multi-granularity preference model for MAGDM
Given the diverse expertise levels in the I-E matrix, aligning the 

decision-making process with attribute granularity is crucial. High- 
expertise DMs benefit from fine-grained attributes, enabling more pro
found insights and informed decisions. Conversely, less expert DMs may 
prefer coarse-grained attributes that offer a broader overview and 
simplify decision-making. The MAGDM framework adapts flexibly to 
these differences, effectively addressing uncertainty. DM dmp,k should 
evaluate alternatives by using either the fine-grained DPR matrix 
(DEL

(
dmp,k

)
≥ θvertical) or the coarse-grained DPR matrix 

(DEL
(
dmp,k

)
< θvertical) based on DEL

(
dmp,k

)
. 

Definition 12. (Fine-grained DPR matrix) If DEL
(
dmp,k

)
≥ θvertical 

(
dmp,k ∈

{
IE(H− H) ∨ IE(L− H)

} )
, DM dmp,k

(
p = 1,⋯, P; k = 1,⋯, np

)
will 

evaluate M alternatives X = {x1,⋯, xm,⋯, xM} on a two-layer attribute 

system. The weight is wa =
{

wa
1,1,⋯,wa

1,n1
;⋯;wa

L,1,⋯,wa
L,nl

}
. The fine- 

grained frame of discernment to be used by dmp,k is Hp,k =
{
(H1)

p,k
,⋯, (Hn)

p,k
,⋯, (HN)

p,k
}

(N is an odd number). The fine-grained 

DPR is given by dmp,k for comparing alternatives xi and xj on attribute 
{
al,1,⋯, al,nl

}
∈ Al(l = 1,⋯, L) is:

dp,k
l,(ij) =

{(
(Hn)

p,k
, f p,k

l,(ij)

[
(Hn)

p,k
] )

, n = 1,⋯,N;
(

Hp,k, f p,k
l,(ij)

(
Hp,k)

)}

(l = 1,⋯, L)
(17) 

where fp,k
l,(ij)

[
(Hn)

p,k
]

and fp,k
l,(ij)
(
Hp,k) stand for the belief degree on (Hn)

p,k 

and global ignorance, fp,k
l,(ij)

[
(Hn)

p,k
]
=

∑nl
v=1

w̃
p,k
l,v ⋅
⃒
⃒
⃒Hp,k

n,l,ij(al,v)

⃒
⃒
⃒

∑nl
v=1

w̃
p,k
l,v 

and f (p,k)l,(ij) (H) =

∑nl
v=1

w̃
p,k
l,v ⋅
⃒
⃒
⃒Hp,k

l,(ij)(al,v)

⃒
⃒
⃒

∑nl
v=1

w̃
p,k
l,v

. 
⃒
⃒
⃒Hp,k

n,l,(ij)
(
al,v
) ⃒⃒
⃒ and 

⃒
⃒
⃒Hp,k

l,(ij)
(
al,v
) ⃒⃒
⃒ represent the number of 

attributes al,v that dmp,k evaluates for xij on (Hn)
p,k and Hp,k. w̃p,k

l,v =

wa
l,v

1+wa
l,v − rp,k

l,v 
represents an adjusted weight of al,v by combining the original 

weight wa
l,v and the relative importance rp,k

l,v given by dmp,k. Specifically, 

when the relative importance equals to the original weight 
(

rp,k
l,v = wa

l,v

)
, 

the adjusted weight remains unchanged 
(

w̃p,k
l,v = wa

l,v

)

. It is easy to note 

that 
∑N

n=1fp,k
l,(ij)

[
(Hn)

p,k
]
+ fp,k

l,ij
(
Hp,k) = 1. 

Definition 13. (Coarse-grained DPR matrix) If DEL
(
dmp,k

)
< θvertical 

(
dmp,k ∈

{
IE(H− L) ∨ IE(L− L) } ), DM dmp,k

(
p = 1,⋯, P; k = 1,⋯, np

)
will 

only evaluate M alternatives X = {x1,⋯, xm,⋯, xM} on the upper attri
bute set A = {A1,⋯,Al,⋯,AL}. The coarse-grained frame of discern
ment by dmp,k is HC =

{
HC

1 ,⋯,HC
n ,⋯,HC

N
}

(N is an odd number). The 
coarse-grained DPR given by dmp,k for comparing alternative xi and xj 
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on Al is defined as:

dp,k
l,(ij) =

{(
HC

n , c
p,k
l,(ij)

(
HC

n
) )

, n = 1,⋯,N;
(

HC, cp,k
l,(ij)

(
HC)

)}

(l = 1,⋯, L)
(18) 

Similarly, cp,k
l,(ij)

(
HC

n

)
and cp,k

l,(ij)

(
HC
)

stand for the belief degree on HC
n 

and global ignorance, and 
∑N

n=1cp,k
l,(ij)

(
HC

n
)
+ c(p,k)l,(ij)

(
HC
)
= 1. 

Remark 4. There are two types of ignorance fp,k
l,(ij)
(
Hp,k) and cp,k

l,(ij)
(
HC)

caused by different granularity of evaluation. The former is a statisti
cally inferred value reflecting a DM’s ignorance of specific fine-grained 
attributes. DM directly provides the latter due to the global ignorance of 
a coarse-grained attribute. Although similar in form, they differ in 
meaning and computation methods.

After obtaining the DPRs for different regions of DMs within the 

multi-granularity frame of discernment, a crucial step is to ascertain the 
weights of attributes and DMs, especially when faced with significant 
uncertainty. This study addresses two forms of uncertainty: aleatoric 
uncertainty (AU), which reflects the inherent randomness in system 
outcomes or properties, and epistemic uncertainty (EU), arising from 
incomplete domain knowledge. We employ Shannon entropy as a 
measure of belief entropy to evaluate the reliability of the evidence 
provided by DMs. Shannon entropy measures the spread or dispersion of 
belief degrees, providing insights into the uncertainty or precision of the 
DMs’ judgments. High entropy values indicate a more dispersed belief 
system, suggesting higher uncertainty, while lower values denote more 
concentrated beliefs, indicating more decisive preferences. 

Definition 14. (Belief entropy of fine-grained DPRs) Suppose fine- 

grained DPRs by DMs as dp,k
l,(ij) =

{(
(Hn)

p,k
, fp,k

l,(ij)

[
(Hn)

p,k
] )

, n = 1,⋯,

Fig. 6. Decentralized multipartite consensus mechanism for MAGDM.
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N;
(

Hp,k, fp,k
l,(ij)
(
Hp,k)

)}
. The belief entropy is calculated as:

E
(

dp,k
l,(ij)

)
= − BDp,k

l,(ij)log2BDp,k
l,(ij) (19) 

where BDp,k
l,(ij) = 1 −

⃒
⃒
⃒Hp,k

l,(ij)(al,v)

⃒
⃒
⃒

nl 
signifies the sum of belief degrees to all the 

N grades on xij in evaluating Al by dmp,k. And 
⃒
⃒
⃒Hp,k

n,l,(ij)
(
al,v
) ⃒⃒
⃒ represents 

the number of attributes al,v that dmp,k evaluates for xij on (Hn)
p,k. 

Definition 15. (Belief entropy of coarse-grained DPRs) The coarse- 
grained DPR given by dmp,k for comparing alternative xi over xj 

on Al is represented as dp,k
l,(ij) =

{(
HC

n , c
p,k
l,(ij)
(
HC

n
) )

, n = 1,⋯,

N;
(

HC, cp,k
l,(ij)
(
HC)

)}
. The bodies of evidence (BOE) is denoted by 

B
C
l,(ij) =

{
HC

n

⃒
⃒
⃒cp,k

l,(ij)
(
HC

n
)
> 0,HC

n ⊆ HC
}

. Then, the belief entropy of dp,k
l,(ij) is 

computed as:

E
(

dp,k
l,(ij)

)
= −

∑

HC
n⊆BC

l,(ij)
cp,k

l,(ij)

(
HC

n
)
log2cp,k

l,(ij)

(
HC

n
)

(20) 

Therefore, based on Eqs. (19)-(20), the average belief entropy on 
attributes, alternatives, and DMs are calculated by Eqs. (21)-(23) as: 

E
(

dp,k
l

)
=

∑
1<i<M− 1,j=i+1 E

(
dp,k

l,(ij)

)

M − 1
(21) 

E
(

dp,k
(ij)

)
=

∑L
l=1E

(
dp,k

l,(ij)

)

L
(22) 

E
(
dmp,k

)
=

∑
1<i<M− 1,j=i+1E

(
dp,k
(ij)

)

M − 1
(23) 

As for the upper layers A = {A1,⋯,AL}, the initial weights WA
l are 

generated by Algorithm 2. By further taking consideration of AU and EU, 

the adjusted weights W̃
p,k
l are calculated as: 

W̃
p,k
l =

WA
l

1 + WA
l − Rp,k

l
(24) 

where Rp,k
l =

1− Ẽ(dp,k
l )

L−
∑L

l=1
Ẽ(dp,k

l )
and Ẽ

(
dp,k

l

)
=

E(dp,k
l )

∑L
l=1

E(dp,k
l )

signifies the reli

ability of dmp,k for evaluating all alternatives on Al and the normalized 
belief entropy of Eq. (21). This formula uses entropy to measure the 
unpredictability or dispersion of DMs’ belief degrees across alternatives. 
Higher entropy indicates greater uncertainty or lower confidence, often 
due to variability in the decision-making environment or knowledge 

gaps. By subtracting normalized entropy from 1, the formula inversely 
relates greater uncertainty to lower reliability.

When considering the AU and EU generated by dmp,k, the former can 
be calculated by belief entropy. The latter may be derived from differ
ences in the selection and identification framework of experts at 
different professional levels and the uncertainty of the evaluation itself 
given by DMs. The reweighted relative weight of dmp,k is calculated as 
follows: 

w̃dm
p,k =

wdm
p,k

1 + wdm
p,k − rdm

p,k
(25) 

where wdm
p,k =

exp(DEL(dmp,k) )∑np
k=1

exp(DEL(dmp,k) )
, rdm

p,k =
1− Ẽ(dmp,k)

np −
∑np

k=1
Ẽ(dmp,k)

. wdm
p,k signifies the 

original relative weight of dmp,k caused by the difference in DEL, which 
reflects the EU of DM. The reliability rdm

p,k is established for measuring the 
AU of dmp,k. Similarly, the reweighted weight of SEp is obtained as: 

W̃
SE
p =

WSE
p

1 + WSE
p − RSE

p
(26) 

where WSE
p =

exp(SIL(SEp))+exp(DEL(SEp))
∑P

p=1(exp(SIL(SEp))+exp(DEL(SEp) ))
and RSE

p =
1− E(SEp)

P−
∑P

p=1
E(SEp)

. 

Here, WSE
p scales initial weight of SEp, where SIL

(
SEp
)
=

∑np
k=1

SIL( dmp,k)
∑P

p=1

∑np
k=1

SIL( dmp,k)
, DEL

(
SEp
)
=

∑np
k=1

DEL( dmp,k)
∑P

p=1

∑np
k=1

DEL( dmp,k)
. RSE

p represents the 

reliability of SEp, calculated by average belief entropy E
(
SEp
)
=

∑np
k=1

E(dmp,k)
∑P

p

∑np
k=1

E(dmp,k)
. 

Remark 5. Focus on Eq. (25) and (26), wdm
p,k and WSE

p amplifies the 
influence of differences in DEL and SIL, ensuring that even slight vari
ations can significantly impact the weighting. The exponential function 
here emphasizes more pronounced distinctions among DMs, making it 
especially sensitive to variations in expertise or domain knowledge.

Definition 16.. (Normalized DPR matrix) To ensure consistency, the 
differences in the multi-granularity frame of discernment should be 
normalized into a uniform format, H* =

{
H*

1,⋯,H*
n,⋯,H*

N
}

(N is an odd 
number). The score value of H*

n is denoted as s
(
H*

n
)
. The normalized DPR 

is denoted as d*p,k
l,(ij) =

{(
H*

n, d*p,k
l,(ij)
(
H*

n
) )

, n = 1,⋯,N;
(

H*, d*p,k
l,(ij)(H*)

)}
. 

For any fine-grained or coarse-grained DPR, the normalization process is 
defined as:

d*p,k
l,(ij)
(
H*

n
)
= d◦ p,k

l,(ij)
(
H*

n
)
+ d− p,k

l,(ij)

(
H*

n
)
+ d+p,k

l,(ij)
(
H*

n
)

(27) 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d◦ p,k
l,(ij)

(
H∗

n

)
= f p,k

l,(ij)

[
(Hn)

p,k
](

or ​ cp,k
l,(ij)

(
HC

n

))
​ if ​ s

[
(Hn)

p,k
](

or ​ s
(

HC
n

))
= s
(

H∗
n

)

d− p,k
l,(ij)

(

H∗
n

)

=

⃒
⃒
⃒
⃒
s
[
(Hn)

p,k]( or s
(
HC

n
))

− s
(
H∗

n− 1
)

s
(
H∗

n
)
− s
(
H∗

n− 1
)

⃒
⃒
⃒
⃒f

p,k
l,(ij)

[

(Hn)
p,k
](

or ​ cp,k
l,(ij)

(

HC
n

))

if ​ s
[
(Hn)

p,k]( or ​ s
(
HC

n
))

∈
[
s
(
H∗

n− 1
)
, s
(
H∗

n
)]

d+p,k
l,(ij)

(

H∗
n

)

=

⃒
⃒
⃒
⃒
s
(
H∗

n+1
)
− s
[
(Hn)

p,k]( or ​ s
(
HC

n
))

s
(
H∗

n+1
)
− s
(
H∗

n
)

⃒
⃒
⃒
⃒f

p,k
l,(ij)

[

(Hn)
p,k
](

or ​ cp,k
l,(ij)

(

HC
n

))

if ​ s
[
(Hn)

p,k]( or ​ s
(
HC

n
))

∈
[
s
(
H∗

n
)
, s
(
H∗

n+1
)]

(28) 
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Therefore, the independent opinion of each dmp,k with its weight and 
reliability can be generated by applying ER rule (Yang and Xu, 2013) 
denoted by F via Eq. (29) for aggregating upper-layer attributes. 

F
(

W̃
p,k
1 ,d*p,k

1,(ij);⋯;W̃
p,k
l ,d*p,k

l,(ij);⋯;W̃
p,k
L ,d*p,k

L,(ij)

)

= d*p,k
(ij)

(
p=1,⋯,P;k= 1,⋯,np; l= 1,⋯,L; i=1,⋯,M − 1; j= i+1,M

)
(29) 

Algorithm 2 (I-E responsive multi-granularity evaluating and reweighting 
algorithm)

4.2. Decentralized multipartite feedback mechanism for consensus 
reaching

A decentralized multipartite consensus feedback mechanism incor
porating perspectives from various stakeholder entities is designed 
based on the I-E responsive multi-granularity decision mechanism. 
Initially, different stakeholder entities are identified as distinct types of 
DMP. Subsequently, feedback mechanisms are designed to accommo
date the specific characteristics of these parties, leading to establishing a 
multi-objective optimization model aimed at reaching consensus.

4.2.1. Consensus measurement
In the decentralized multipartite feedback mechanism, consensus 

measurement is essential to initiate further consensus feedback. This step is 
critical as the decentralized system requires each stakeholder to provide 
distinct opinions, which serve as reference points for final decision-making. 

Definition 17. (Consensus level between DMs) Let d*p,k
(ij) and d*p,g

(ij) be the 
normalized DPRs on the comparison of alternatives xi over xj by dmp,k 

and dmp,g. Then, the consensus level between them is:

CLkg =
1

M − 1
∑

0<i<M− 1,j=i+1

(
1 − diss

(
d∗p,k

(ij), d
∗p,g
(ij)

))
(30) 

Definition 18. (Consensus level of stakeholder entity) Suppose there 

are np DMs in stakeholder entity SEp =
{

dmp,1,⋯, dmp,k,⋯, dmp,np

}
. Let 

d*p,k
(ij) be the normalized DPR on the comparison of alternatives xi over xj 

by dmp,k. Then, the consensus level of SEp is calculated by:

CLp =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
np
(
np − 1

)
∑np − 1

k=1

∑np

g=k+1
ωkgCLkg, np > 1

1, np = 1

(31) 

where ωkg =
w̃

dm
p,kw̃

dm

p,g
∑np − 1

k=1

∑np
g=k+1

w̃
dm
p,kw̃

dm

p,g 

stands for the relative weight of the pairs 

of dmp,k and dmp,g. CLp is defined by measuring the average preference 
similarity between each pair of DMs. Let ϖp be the accepted consensus 
level of SEp, it is obvious that if CLp ≥ ϖp, SEp will reach accepted 
consensus.

4.2.2. Decentralized multipartite consensus feedback mechanism
In the multi-party MAGDM consensus mechanism, the assumptions 

are: 1) Participant independence: initial opinions from DMs across 
different stakeholders are independent and uninfluenced by each other. 
2) Internal consensus dynamics: participants adjust their decisions by 
balancing their original views with proposed changes to reach a 
compromise. Three decision-making participants (DMP) types are 
identified based on their interactions within the I-E matrix.

a) Non-Consensual Participants: These are stakeholder entities 
with low interest and expertise. They do not actively participate in the 
consensus process but their opinions are used as reference. This incor
poration ensures that the final decision is balanced, reflecting both the 
highly engaged expert views and the broader market sentiment of pas
sive stakeholders, which is identified by: 

DMPNC =
{

SEp|
⃒
⃒IE(L− L) ∩ SEp

⃒
⃒ ≥

np

3
, p = 1, 2,⋯,P

}
(32) 

Therefore, the opinion of SEp ∈ DMPNC is generated by applying F via 
Eq. (33). 

d*SEp
(ij) = F

(

w̃dm
p,1, d

*p,1
(ij);⋯; w̃dm

p,k , d
*p,k
(ij);⋯; w̃dm

p,np
, d*p,np

(ij)

)

(
k = 1,⋯, np; i = 1,⋯,M − 1; j = i + 1,⋯,M

)
(33) 

If more than one entity belonging to DMPNC(P > 1), then the 
aggregated DPR of DMPNC will be: 

d*DMPNC

(ij) = F
(

W̃
SE
p , d*SEp

(ij) ;⋯; W̃
SE
P , d*SEP

(ij)

)

(
SEp ∈ DMPNC; i = 1,⋯,M − 1; j = i + 1,⋯,M

)
(34) 

b) Maximum Return Participants: These stakeholders are identi
fied as being from high-interest regions. They typically do not consider 
the cost of participation as a barrier and aim for high returns, making 
them key players in reaching consensus. 

DMPMR =
{

SEp|
⃒
⃒
(
IE(H− L) ∪ IE(H− H)

)
∩ SEp

⃒
⃒ ≥

np

3
, p = 1,2,⋯,P

}
(35) 

For DMPMR, if SEp ∈ DMPMR with CLp ≥ ϖp, then the collective 
opinion d*SEp

(ij) of SEp can be generated by Eq. (33). However, if CLp < ϖp, 
the consensus feedback mechanism will be activated. In CRP, DMs in 
SEp ∈ DMPMR would like to receive more returns. They are motivated to 
modify their opinions to reach a consensus within the stakeholder entity. 
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Therefore, focusing on the characteristics of this region, the suggested 
opinion of dmp,k ∈ SEp ∈ DMPMR can be calculated by 

d̂
*p,k

(ij) = d*{SEp∩IE(H− H) }
(ij)

(36) 

where d*{SEp∩IE(H− H) }
(ij) signifies the collective original DPR of 

dmp,k ∈
{
SEp ∩ IE(H− H)

}
, calculated by: 

d*{SEp∩IE(H− H) }
(ij) =

F
(

wdm
p,1, d

*p,1
(ij);⋯;wdm

p,k, d
*p,k
(ij);⋯;wdm

p,|SEp∩IE(H− H) |
, d*p,|SEp∩IE(H− H) |

(ij)

) (37) 

where wdm
p,k =

w̃
dm
p,k

∑|SEp∩IE(H− H) |
p=1 w̃

dm
p,k 

represents the average weight of the dmp,k in 

the set 
{
SEp ∩ IE(H− H)

}
.

On this basis, the objective is to reach a consensus while maximizing 
their returns. There are two types of the consensus return:

(1) Identification Return (IR). It depends on the collective DPR d*SEp

(ij)

aggregated by each modified DPR d*p,k

(ij), which measures how closely an 
individual’s opinion aligns with the collective opinion. This return is 
influenced by the extent to which a DM’s opinion is modified to match the 
collective view. The IR of dmp,k comes from the following expression: 

IRp,k = w̃dm
p,k

(

1 −
∑

0<i≤M− 1,j=i+1
diss
(

d
*p,k

(ij), d
*SEp

(ij)

)
)

(38) 

where diss
(

d*p,k
(ij), d

*SEp

(ij)

)
measures the dissimilarity between the modified 

individual opinion d*p,k
(ij) and collective opinion d*SEp

(ij) .

(2) Adjustment Return (AR). It depends on the modified DPR d*p,k

(ij)

and the unit reward r p,k, which reflects the extraneous compensation 
received when an individual is recommended to adjust his/her opinion. 
The AR of dmp,k can be calculated as: 

ARp,k = r p,k

∑

0<i≤M− 1,j=i+1
diss
(

d*p,k
(ij), d

*p,k

(ij)

)
(39) 

where diss
(

d*p,k
(ij), d

*p,k

(ij)

)
measures the dissimilarity between the modified 

opinion d*p,k
(ij) and original opinion d*p,k

(ij). DM dmp,k is eligible for external 
compensation from the moderator only if their modified opinion lies be
tween the original and suggested opinions. And r p,k can be calculated by 

r p,k = w̃dm
p,k

ϖp
CLk,DMPNC (40) 

where CLk,DMPNC represents the consensus level between d*p,k
(ij) and d*DMPNC

(ij) . 
It is noted that the higher weight of dmp,k will lead to higher reward r p,k for 
the dmp,k. When CLk,DMPNC > ϖp, ϖp

CLk,DMPNC
< 1, we have r p,k > w̃dm

p,k which 

means that if the opinion of dmp,k is closer to the non-consensual partic
ipants, he/she will receive more unit rewards and vice versa.

It is obvious that IRp,k,ARp,k ∈ [0,1]. According to Eq. (38)-(39), the 
total return of SEp is: 

URp =
∑np

k=1

(
IRp,k + ARp,k

)
(41) 

Then, the optimization model regarding SEp ∈ DMPMR can be con
structed as a Model I: 

Model I : max URp 

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CLp =
2

np
(
np − 1

)
∑np − 1

k=1

∑np

g=k+1
ωkgCLkg ≥ ϖp

CLkg =
1

M − 1
∑0<i≤M− 1

0<j=i+1<M

(
1 − diss

(
d*p,k

(ij), d
*p,g
(ij)

))

diss
(

d*p,k
(ij), d

*p,g
(ij)

)
=

1
2
∑N− 1

n=1

∑N

n’=n+1
ψkg

ij (Hn)ψkg
ij (Hn’)(s((Hn’)) − s(Hn) )

ψkg
ij (Hn) =

⃒
⃒
⃒d*p,k

(ij)(Hn) − d*p,g
(ij)(Hn)

⃒
⃒
⃒

d
*p,k

(ij) =
(
1 − ϱp,k

)
d*p,k
(ij) + ϱp,k d̂

*p,k
(ij)

d̂
*p,k

(ij) = d*{SEp∩IE(H− H) }
(ij)

d*{SEp∩IE(H− H)}
(ij) = F

(
wdm

p,1, d
*p,1
(ij); ⋯;wdm

p,k , d
*p,k
(ij); ⋯ ;wdm

p,|SEp∩IE(H− H)|
, d*p,|SEp∩IE(H− H)|

(ij)

)

r p,k = w̃dm
p,k

ϖp
CLk,DMPNC

CLk,DMPNC =
1

M − 1
∑0<i≤M− 1

0<j=i+1<M

(
1 − diss

(
d*p,k

ij , d*DMPNC

(ij)

))

d*DMPNC

(ij) = F
(

W̃
SE
p , d*SEp

(ij) ; ⋯ ; W̃
SE
P , d*SEP

(ij)

)(

SEp ∈ DMPNC; i = 1,⋯,M − 1; j = i + 1
)

d
*SEp

(ij) = F
(

w̃dm
p,1, d

*p,1

(ij); ⋯; w̃dm
p,k , d

*p,k

(ij); ⋯ ; w̃dm
p,np

, d
*p,np

(ij)

)

dmp,k ∈ SEp ∈ DMPMR

ϱp,k ∈ [0, 1]

(42) 
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As shown in Model I, the decision variables ϱp,k affects the value of 
the objective function and determines the final DPR matrix of each DM 

in SEp ∈ DMPMR under acceptable consensus level constraints. d
*p,k

(ij) and 

d
*SEp

(ij) are the final modified DPR of dmp,k and SEp under the optimal ϱp,k.
c) Minimum Cost Participants: From the low-interest and high- 

expertise region. These DMP aim to achieve consensus with the least 
possible cost, focusing on efficiency over extensive involvement. 

DMPMC =
{

SEp|
⃒
⃒IE(L− H) ∩ SEp

⃒
⃒ ≥

np

3
, p = 1, 2,⋯,P

}
(43) 

If SEp ∈ DMPMC with CLp ≥ ϖp, then the collective opinion d*SEp
(ij) can 

be generated by Eq. (33). However, if CLp < ϖp, the consensus feedback 
mechanism will be activated. In this scenario, DMs in SEp ∈ DMPMC are 
more inclined to accept proposals that align closely with collective 
preferences, aiming to minimize costs for achieving consensus. They 
prefer adopting suggestions that favor a group consensus, thereby 
reducing the efforts needed to persuade stakeholders to alter their views. 
Therefore, based on these characteristics, the suggested opinion of 
dmp,k ∈ SEp ∈ DMPMC can be calculated by 

d̂
*p,k

(ij) = d*{SEp∩IE(L− H) }
(ij)

(44) 

where d*{SEp∩IE(L− H) }
(ij) stands for the collective original DPR of dmp,k ∈

{
SEp ∩ IE(l− H)

}
which is: 

d*{SEp∩IE(L− H) }
(ij) = F

(

wdm
p,1, d

*p,1
(ij);⋯;wdm

p,k , d
*p,k
(ij);⋯;wdm

p,|SEp∩IE(L− H) |
, d*p,|SEp∩IE(L− H) |

(ij)

)

(45) 

where wdm
p,k =

w̃
dm
p,k

∑|SEp∩IE(L− H) |
p=1 w̃

dm
p,k 

represents the average weight of dmp,k in the 

set 
{
SEp ∩ IE(L− H)

}
.

Here, the objective is to reach consensus with the minimum cost. 
Similar to the external compensation strategy of AR for DMPMR, the 
consensus cost (CC) for dmp,k within SEp ∈ DMPMC can be seen as the 
effort required to persuade a DM to change opinion, which can be 
calculated by: 

CCp,k = c p,k

∑

0<i≤M− 1,j=i+1

(
diss
(

d*p,k
(ij), d

*p,k

(ij)

))

(46) 

where the unit consensus cost is given by 

c p,k = w̃dm
p,k (47) 

Then, the optimization model regarding SEp∊DMPMC is constructed 
as Model II: 

Model II : minCCp =
∑np

k=1

(

c p,k

∑

0<i≤M− 1,j=i+1

(
diss
(

d*p,k
(ij), d

*p,k

(ij)

))
)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CLp =
2

np
(
np − 1

)
∑np − 1

k=1

∑np

g=k+1
ωkgCLkg ≥ϖp

CLkg =
1

M − 1
∑0<i≤M− 1

0<j=i+1<M

(
1 − diss

(
d*p,k

(ij),d
*p,g
(ij)

))

diss
(

d*p,k
(ij),d

*p,g
(ij)

)
=

1
2
∑N− 1

n=1

∑N

n’=n+1
ψkg

ij (Hn)ψkg
ij (Hn’)(s(Hn’) − s(Hn))

ψkg
ij (Hn)=

⃒
⃒
⃒d*p,k

(ij)(Hn) − d*p,g
(ij)(Hn)

⃒
⃒
⃒

d
*p,k

(ij) =
(
1 − ϱp,k

)
d*p,k
(ij) +

(
ϱp,k
)
d̂

*p,k
(ij)

d̂
*p,k

(ij) = d*SEp
(ij)

d*SEp
(ij) = F

(

w̃dm
p,1,d

*p,1
(ij) ; ⋯; w̃dm

p,k ,d
*p,k
(ij) ; ⋯ ;w̃dm

p,np
,d*p,np

(ij)

)

c p,k = w̃dm
p,k

dmp,k ∈ SEp ∈DMPMC

ϱp,k ∈ [0,1]

(48) 

As shown in Model II, the decision variables ϱp,k affects the value of 
objective function and determine the final DPR matrix of DM in SEp ∈

DMPMC under acceptable consensus level constraint. Therefore, the 
optimized collective DPR matrix of SEp can be obtained after 
adjustment. 

Remark 6. The consensus optimization models (Model I for maximum 
return and Model II for minimum cost) are formulated over the adjust
ment variables ρ ∈ [0,1]np . The Weierstrass Extreme Value Theorem 
guarantees an optimal solution since the feasible region is a compact set 
and the objective functions, including the identification and adjustment 
returns, are continuous in Rho. Furthermore, if the overall objective 
function is strictly convex, the optimal solution is unique if its Hessian is 
positive and definite over the feasible set’s interior. In our model, the 
decision variable ρ enters through an affine transformation of the orig
inal DPR matrices, and the dissimilarity functions (constructed from 
absolute differences) are convex. However, due to exponential weight
ing in the adjustment return, strict convexity may not always hold; 
hence, multiple local optima are theoretically possible. To address this, 
we solve the model using the sequential least squares programming 
(SLSQP) algorithm, which iteratively approximates the nonlinear 
objective and constraints by quadratic and linear models, respectively. 
In cases where the aim is nonconvex, multiple initializations are 
employed to improve the likelihood of finding the global optimum. This 
approach ensures the model to produce a solution that satisfies the 
consensus constraints and is a reliable output for our decision-making 
process.

4.2.3. Decentralized multipartite consensus reaching process
Based on the design of the I-E responsive multi-granularity decision 

model and feedback mechanism, we construct the decentralized multi
partite consensus algorithm, as shown in Algorithm 3. In the feedback 
adjustment process, stakeholder entities are first categorized into three 
groups based on their I-E attributes: non-consensual participants 
(DMPNC), Maximum Return Participants (DMPMR), and Minimum Cost 
Participants (DMPMC). For entities in DMPMR, if the initial consensus 
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level CLp is below the accepted threshold ϖp, Model I is applied to 
iteratively adjust individual opinions to maximize the identification and 
adjustment return. Similarly, for entities in DMPMC, Model II is 
employed to minimize the consensus cost under the same consensus 
constraint. These optimization processes are executed independently, 
ensuring that the adjustment of opinions in one group does not affect 
that in the other. After convergence within each group, the optimized 
opinions are aggregated via the decentralized consensus algorithm to 
yield the final collective decision. After each entity completes the CRP, 
the optimal DPR matrix that meets the acceptable consensus level is 
generated. The next step involves selecting the final ranking of alter
natives. Entities’ opinions are then fused using Eq. (49) for optimal 
decisions. The complete process is depicted in Fig. 6. 

F
(

W̃
SE
1 , d

*SE1

(ij) ; ⋯; W̃
SE
p , d

*SEp

(ij) ; ⋯ ; W̃
SE
P , d

*SEP

(ij)

)

= d
*C

(ij)

(p = 1,⋯, P; i = 1,⋯,M − 1; j = i + 1,⋯,M)

(49) 

Algorithm 3 (Decentralized multipartite consensus reaching algorithm)

5. Illustrative example and comparison

This section describes a case study in an NEV R&D department to 
illustrate the practical use of methodologies from prior chapters. It 

explores the intricate product development lifecycle in the NEV in
dustry, focusing on the essential concept evaluation stage. We demon
strate alignment with user preferences and technological standards by 
implementing the suggested decentralized multipartite feedback 
mechanism and consensus model. Comparative analysis with other GDM 
methods, particularly on UGC, shows the effectiveness of our approach. 
Moreover, sensitivity analyses of the optimization models reveal their 
robustness and adaptability in diverse scenarios.

5.1. An illustrative example of new energy vehicle R&D

5.1.1. Case description
In today’s fast-changing technological environment, strategic in

dustries like NEVs are crucial for reshaping global economies and 
addressing environmental issues. NEV’s success hinges on technological 
progress and meeting consumer preferences and experiences. The 
product development cycle includes seven phases: concept, detailed 
development, debugging, release, iteration, and obsolescence. The first 
phase is concept design, which involves generating and evaluating po
tential designs. Practical concept evaluation can lead to disruptive in
novations and considerable success, while poor evaluation can increase 
costs, extend development time, require additional revisions, and 
heighten project uncertainty. Concept evaluation’s importance in sub
sequent stages highlights its role in the design process, necessitating a 
comprehensive analysis of technological progress, design constraints, 
and user satisfaction. This paper explores a decentralized multipartite 
consensus model for MAGDM, focusing on user experience within NEV 
R&D. We offer an example with a set of medium-sized SUV R&D alter
natives X = {x1, x2,⋯, x5}, selected based on UGC data, as illustrated in 
Fig. 7.

Contrary to a purely theoretical model, our approach is grounded in 
authentic UGC from historical NEV customer reviews, as partially 
illustrated in Fig. 8. Based on these time-efficient UGC, a two-layer UXO 
attribute system A = {A1,⋯,AL} =

{
a1,1,⋯, a1,n1 ;⋯; aL,1,⋯, aL,nL

}
(L ≥

2, nl ≥ 1) with weights w =
{
w1,1,⋯,w1,n1 ;⋯;wL,1,⋯,wL,nl

}
could be 

established by applying Algorithm 1, which detailed in Section 5.1.2. To 
improve customer satisfaction and economic returns post-launch, the 
selection of R&D alternatives should incorporate evaluations from 
multiple stakeholders. The R&D department has extended invitations to 
DMs from three distinct stakeholder entities, SE = {SE1, SE2, SE3}, 
which includes internal experts (from NEV R&D department), external 
experts (from university, institute, third-party engineer), and target 
users.

5.1.2. Construct evaluation attributes system
Step 1. UGC data acquisition and domain-specific corpus con

struction. In order to harness the wealth of unstructured UGC, we 
deploy an advanced database generator to systematically collect data 
across an automobile review platform (pcauto.com.cn). This automated 
tool targets new, energetic, medium-sized SUV-related discussions, re
views, and feedback. The raw data is segmented into individual words 
and anonymized to protect user identity, and irrelevant or redundant 
information is removed. The resulting domain-specific corpus was a 
foundational dataset from which user experience attributes are derived. 
Quality metrics calculated by Eq. (4) are applied to the corpus, ensuring 
the relevance and accuracy of the data. The information on domain- 
specific corpus is detailed in Table 2. The whole process in this step 
could be implemented following Module 1 of Algorithm 1.

Step 2. Large-scale sentence embedding. Leveraging the pre- 
processed corpus, we employ an SBERT model, optimized with SSRcos 
loss function defined in Definition 5 to generate embeddings. This 
approach generates large-scale sentence embeddings that transform 
textual data into a standard 768-dimensional vector space for BERT- 
based models. Our dataset, containing 199,601 reviews, the resulting 
embedding matrix size was (199601, 768). Each row in this matrix 
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corresponds to a vector representation of a user review, encapsulating 
semantic depth and intricacies of user opinions. The whole process in 
this step could be implemented following Module 2 of Algorithm 1.

Step 3. Attributes clustering and discovery. By employing UMAP- 
assisted HDBSCAN, we compact the data’s dimensionality and discern 
distinct sentence clusters, maintaining local and global structural 
integrity. We fine-tune hyperparameters through a comprehensive grid 

search, whose efficacy is rigorously assessed via SC, D-B Score, and C-H 
Score. Fig. 9 depicts the iterative optimization process, while Table 3
shows the best balance among neighbor count, reduced dimensionality, 
and minimal cluster size. The whole process in this step could be 
implemented following Module 3 of Algorithm 1.

Step 4. Attribute integration and weight distribution. Before 
constructing the UXO attribute system, we employ a two-stage process 
to assess the significance of clustered attributes in capturing user pref
erences: a Count Vectorizer converts text into feature vectors, followed 
by an A-TF-IDF transformation as described in Definition 6. This high
lights the significance of domain-specific terms across attribute clusters. 
We then streamline the attribute sets using the algorithm from Module 4 
of Algorithm 1. The process is iterative, visualized in Fig. 10, with 
Table 3 detailing the aggregation iterations and the final attribute set 
count. A similarity matrix is created between attribute sets based on 

Fig. 9. Grid search process based on three benchmark metrics.

Fig. 7. Medium-sized SUV R&D alternatives.

Fig. 8. An example of UGC from a historical customer.

Table 2 
Domain-specific corpus information.

Data source The number of 
brands

The number of 
series

The number of 
reviews

pcauto.com. 
cn

38 53 199,601
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Definition 7 and the optimal hyperparameter settings of three bench
mark metrics, shown in Fig. 10 panels (a1)-(a3). This matrix establishes 
a baseline for attribute relatedness at iteration = 0. Through multiple 
iteration rounds, the matrix updates to reflect attribute convergence into 

fewer clusters. We apply the optimal benchmark metrics to finalize the 
clusters upon meeting the convergence criteria in Eq. (9). Panels (b1)- 
(b3) of Fig. 10 show the evolving similarity matrix, and panels (c1)-(c3) 
display the final 2-D representations, chosen for their explicit depiction 
of clustering outcomes. Table 4 and Fig. 11 present the final aggregation 
and weight distribution results.

In NEV R&D, acquiring extensive user experience data is vital for 
aligning designs with consumer preferences. The proposed automated 
method for large-scale corpus acquisition and attribute system con
struction avoids experientialism. By leveraging data mining technolo
gies, it integrates real-world feedback, enhancing R&D responsiveness to 
evolving consumer demands and technological advances.

5.1.3. Apply the proposed method for ranking alternatives
In the following phases, 20 DMs from SE = {SE1, SE2, SE3} will 

Fig. 10. The iteration process of attribute aggregation. (a1)− (a3) represent the similarity matrix of three benchmark metrics before aggregation (iteration = 0); 
(b1)− (b3) represent the similarity matrix of three benchmark metrics after multiple rounds of iteration aggregation; (c1)− (c3) represent the final result on three 
optimal benchmark metrics (n_components = 2 for showing in 2-D).

Table 3 
Hyperparameter setting and cluster aggregation under optimal benchmark 
metrics.

Benchmark metrics SC D-B Score C-H Score

The number of neighboring 100 500 300
The dimensionality after reducing 15 15 5
The minimum size of a cluster 200 260 290
The number of optimal clusters 41 21 32
The number of aggregation iterations 35 13 24
The number of clusters after aggregation 6 8 8
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evaluate 5 R&D alternatives by their own preference model and reach 
consensus for selecting optimal solution.

Phase 1: Apply Algorithm 2 for obtaining the evaluation of each DM 
from {SE1, SE2, SE3} as well as relative weights of attributes and DMs.

Step 1: Establish I-E matrix. First, SIL
(
dmp,k

)
and DEL

(
dmp,k

)
of 

each DM are calculated by Definitions 10 and 11. The value of 
SIL
(
dmp,k

)
can be directly calculated as Example 1, while the value of 

DEL
(
dmp,k

)
partly depends on the PTS of other DMs in the inner stake

holder entity, which are shown in Table 5. Besides, the whole calculating 
details are shown in Table 6, which can refer to Supplementary Mate
rials’ Part A. Based on them, the predefined γʹ = δ́ = 0 so that θhorizontal =

μSIL = 0.70 and θvertical = μDEL = 0.73. Therefore, each DM can be 
identified into different I-E region which is presented in Fig. 12.

Step 2: Establish a multi-granularity preference model and 
normalization. Following Step 1, as Fig. 12, the DMs who should 
provide fine-grained DPRs by Eq. (17) include dm1,1, dm1,2, dm1,3, dm2,1,

dm2,3 and dm2,4. Other DMs should give coarse-grained DPRs by Eq. 
(18). The detailed initial DMs’ preferences are shown in Supplementary 
Materials (Part B for fine-grained DPRs and Part C for coarse-grained 
DPRs). Here, we give two examples for displaying the DPRs genera
tion process of dm1,1 and dm2,2. For dm1,1, the frame of discernment for 

evaluating alternatives is H1,1 =
{
(H1)

1,1
,⋯, (H9)

1,1
}

, and s1,1 =

{ − 1, − 0.75, − 0.5, − 0.25,0, 0.25,0.5,0.75,1}. Based on the initial 
evaluation on A1 given by dm1,1, the fine-grained DPRs are obtained by 
Eq. (17) and the entropy can be calculated by Eq. (19). In this case, the 
normalized frame of discernment is H* =

{
H*

1,⋯,H*
5
}
, then dp,k

l,(ij) can be 

normalized into d*p,k
l,(ij) by Eqs. (28–27). The detailed calculation process 

of dm1,1’s fine-grained DPRs on A1 are shown in Table 7. For dm2,2, the 
evaluation on Al is based on HC =

{
HC

1 ,⋯,HC
5
}

with sC =

{ − 1, − 0.5,0, 0.5, 1}, which equals to the normalized frame of discern
ment. DMs such as dm2,2 just need to offer direct DPRs for evaluating 
alternatives. Table 8 shows the initial assessment of dm2,2 for evaluating 
A1 and the entropy can be calculated by Eq. (20). After applying this 
step, the normalized DPRs d*p,k

l,(ij) of each DM can be finally obtained.
Step 3: Updating the weights of attributes/individuals/entities 

by reweighting the function. In this step, we apply the reweighting 
function to update the relative weights of attributes/individuals/entities 
based on the original weights and the reliability of the assessment. Based 
on Definitions 14 and 15, the average belief entropy on three levels, 
attributes/alternatives/DMs, can be calculated by Eqs. (21–23). Ac
cording to the belief entropy of the initial assessment, we update the 
weights of upper attributes, DMs, and entities by Eqs. (24–26). The 
reweighted results of individuals and entities are shown in Table 9.

In NEV R&D, the reweighted attribute and stakeholder weights 
method incorporates subjective preferences and uncertainties, which is 

Table 4 
UXO attribute system with relative weights.

Al Wl al,i wl,i Al Wl al,i wl,i

Power 0.135 Engine 0.242 Interior 0.138 Design 0.195
Accelerator 0.162 Materials 0.252
Ride 0.139 Futuristic 0.104
Speed 0.131 Smell 0.099
Mode 0.095 Style 0.094
Electromotor 0.080 Functionality 0.087
Gearbox 0.077 Center Console 0.086
Gradeability 0.074 Screen 0.083

Console 0.153 Steering Wheel 0.268 Space 0.158 Trunk 0.293
Brake 0.149 Rear 0.237
Chassis 0.131 Stowage 0.136
Assistance 0.114 Seat 0.108
Precision 0.099 Head 0.079
Functionality 0.087 Comfort 0.052
Sensitive 0.078 Distance 0.048
Body rigidity 0.074 Space Design 0.047

Endurance 0.129 Fuel Economy 0.700 Appearance 0.070 Appearance Design 0.482
Hybrid 0.063 Head Lamp 0.128
Energy Economy 0.102 Body Lines 0.107
Breaking-in Period 0.050 Styling 0.104
Economy 0.043 Body 0.094
Mode 0.043 Tail Lamp 0.085

Configuration 0.097 Performance-Price Ratio 0.360 Comfort 0.120 Seat 0.349
Price 0.258 Insulation 0.398
Maintenance 0.102 Air Conditioner 0.124
Brand 0.073
Keep Value 0.068 Seat Adjustment 0.065
Characteristic 0.050
Model 0.045 Shock Absorber 0.065
Quality 0.044

Fig. 11. UXO attribute system with relative weights distribution result.
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crucial in the competitive NEV industry. Unlike fixed weight determi
nation, this approach merges DMs’ subjective preferences with algo
rithmically generated attribute weights. For instance, while 
algorithmically, data may prioritize range and battery efficiency, DMs 
may focus more on technological monopoly and advanced driver- 
assistance features. This approach balances AU and EU in weight 
assignment for DMs or entities, which is often overlooked in traditional 
methods. For example, input from an external consultant on emerging 
technologies can be weighted differently than an internal engineer’s 
manufacturing expertise, increasing adaptability and transparency 
while providing stakeholders with clear, measurable justifications.

Phase 2: Apply Algorithm 3 to enforce a decentralized multipartite 
consensus mechanism.

Step 1: Consensus measurement. For each pair of DMs within a 
stakeholder entity, we calculate the initial consensus level using Defi
nition 17. In this case, after careful consideration, the R&D department 
selects the accepted consensus levels as ϖp = 0.97.

Step 2: Decentralized multipartite consensus feedback mecha
nism. In this step, we firstly identify SE1, SE2 and SE3 into different 
DMP. As the situation shown in Fig. 12, according to 

⃒
⃒
(
IE(H− L) ∪

IE(H− H)
)
∩ SE1

⃒
⃒ = 3 > 5

3 , 
⃒
⃒IE(L− H) ∩ SE2

⃒
⃒ = 3 > 5

3, 
⃒
⃒IE(L− L) ∩ SE3

⃒
⃒ = 10 ≥

Table 5 
Peer-reviewed trust score of each DM.

dm1,k dm1,1 dm1,2 dm1,3 dm1,4 dm1,5

tkh dkh tskh tkh dkh tskh tkh dkh tskh tkh dkh tskh tkh dkh tskh

dm1,1 − 0.70 0.10 0.80 0.80 0.20 0.80 0.60 0.20 0.70 0.50 0.40 0.55
dm1,2 0.80 0.10 0.85 − 0.70 0.10 0.80 0.50 0.20 0.65 0.40 0.50 0.45
dm1,3 0.90 0.00 0.95 0.70 0.20 0.75 − 0.60 0.30 0.65 0.60 0.40 0.60
dm1,4 0.80 0.00 0.90 0.60 0.20 0.70 0.80 0.10 0.85 − 0.50 0.40 0.55
dm1,5 0.90 0.10 0.90 0.80 0.10 0.85 0.70 0.10 0.80 0.70 0.20 0.75 −

PTSp,k 0.90 0.78 0.81 0.68 0.53

dm2,k dm2,1 dm2,2 dm2,3 dm2,4 dm2,5

​ tkh dkh tskh tkh dkh tskh tkh dkh tskh tkh dkh tskh tkh dkh tskh

dm2,1 − 0.60 0.30 0.65 0.80 0.20 0.80 0.60 0.20 0.70 0.50 0.40 0.55
dm2,2 0.80 0.10 0.85 − 0.90 0.00 0.95 0.50 0.20 0.65 0.40 0.50 0.45
dm2,3 0.70 0.00 0.85 0.50 0.40 ​ − 0.60 0.30 0.65 0.70 0.20 0.75
dm2,4 0.60 0.20 0.70 0.70 0.20 0.75 0.80 0.10 0.85 − 0.50 0.40 0.55
dm2,5 0.90 0.10 0.90 0.60 0.20 0.70 0.90 0.10 0.90 0.90 0.10 0.90 −

PTSp,k 0.83 0.53 0.875 0.725 0.575

Table 6 
I-E matrix calculation process.

SEp dmp,k SIL
(
dmp,k

)
DEL

(
dmp,k

)
wdm

p,k WSE
p

γ1 = 0.40 γ2 = 0.40 γ3 = 0.20 SUM δ1 = 0.70 δ2 = 0.30 SUM
ROI SEL IVS SIL PTS KDI DEL

SE1 dm1,1 0.80 0.82 0.9 0.83 0.90 0.99 0.93 0.238 0.382
dm1,2 0.78 0.68 0.8 0.74 0.78 0.80 0.78 0.206
dm1,3 0.88 0.78 0.9 0.84 0.81 0.57 0.74 0.198
dm1,4 0.65 0.57 0.6 0.61 0.69 0.50 0.63 0.177
dm1,5 0.52 0.44 0.6 0.50 0.54 0.90 0.65 0.180

SE2 dm2,1 0.25 0.34 0.2 0.27 0.83 0.98 0.87 0.225 0.344
dm2,2 0.33 0.48 0.6 0.44 0.53 0.80 0.61 0.173
dm2,3 0.28 0.65 0.6 0.49 0.88 0.95 0.90 0.231
dm2,4 0.65 0.78 0.5 0.67 0.73 0.75 0.73 0.196
dm2,5 0.78 0.68 0.5 0.68 0.58 0.70 0.61 0.174

SE3 dm3,1 0.12 0.21 0.5 0.23 0.00 0.80 0.24 0.113 0.274
dm3,2 0.09 0.11 0.1 0.10 0.00 0.40 0.12 0.100
dm3,3 0.11 0.23 0.3 0.20 0.00 0.20 0.06 0.094
dm3,4 0.10 0.12 0.10 0.11 0.00 0.15 0.05 0.093
dm3,5 0.20 0.15 0.3 0.20 0.00 0.35 0.11 0.099
dm3,6 0.68 0.55 0.7 0.63 0.00 0.45 0.14 0.102
dm3,7 0.18 0.23 0.5 0.26 0.00 0.23 0.07 0.095
dm3,8 0.34 0.78 0.7 0.60 0.00 0.15 0.05 0.093
dm3,9 0.17 0.21 0.2 0.19 0.00 0.33 0.10 0.098
dm3,10 0.75 0.56 0.8 0.68 0.00 0.78 0.23 0.112

Fig. 12. The I-E matrix identification result of DMs.
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10
3 so that SE1 ∈ DMPMR, SE2 ∈ DMPMC, SE3 ∈ DMPNC. For SE3, because 
there is no need to reach consensus in the entity which has low interest 
and expertise, the opinion of SE3 d*SE3

(ij) should be directly generated by 
Eq. (33). For SE1, the consensus level CL1 = 0.877 is firstly calculated by 
Definition 18. Since CL1 < ϖp, we should apply Model I and generate 

optimized collective DPRs d*SE1

(ij) . For SE2, the consensus level CL2 =

0.873 is firstly calculated by Definition 18. Since CL2 < ϖp, we should 

apply Model II and generate optimized collective DPRs d*SE2

(ij) . The final 
collective DPRs and the detailed optimal process of each entity are 
shown in Table 10.

Step 3: Decentralized multipartite selecting process. Based on 
Table 10, the collective DPRs are generated according to Eq. (49). Then, 

calculate its corresponding score value SC =
([

S(C)−
ij , S(C)+

ij

] )

M×M 
and 

PD matrix PDC =
(

pdC
ij

)

M×M
. The detailed calculating process and results 

are shown in Table 11. Therefore, the final alternatives ranking is 
x5 ≻ x4 ≻ x3 ≻ x2 ≻ x1. The Tech-Smart SUV (x5) is the optimal R&D 
alternative for its top score and highest PD in the comprehensive 
decision-making process. It strongly aligns with technology trends, 
consumer safety, connectivity, and innovation preferences.

5.2. Sensitivity analysis for two optimization models

This subsection will develop the sensitivity analysis conducted for 
models I and II. Figs. 13-15 show how different thresholds impact Model 
I and II outcomes in a GDM context.

Table 7 
The detailed calculation process of dm1,1’s fine-grained DPRs on A1

The initial evaluation on A1 given by dm1,1 with H1,1 =
{
(H1)

1,1
,⋯, (H9)

1,1
}

Al a1,v wa
1,v r1,1

1,v w̃1,1
1,v H1,1

n,1,12
(
a1,v

)
H1,1

n,1,23
(
a1,v

)
H1,1

n,1,34
(
a1,v

)
H1,1

n,1,45
(
a1,v

)

A1 a1,1 0.24 0.50 0.33 1 9 8 2
a1,2 0.16 0.30 0.19 3 5 6 5
a1,3 0.14 0.10 0.13 5 6 H 6
a1,4 0.13 0.60 0.25 6 H 5 6
a1,5 0.10 0.10 0.10 7 3 1 7
a1,6 0.08 0.08 0.08 H 5 H H
a1,7 0.08 0.20 0.09 3 2 9 2
a1,8 0.07 0.10 0.08 4 1 7 1

The result of fine-grained DPRs on A1 given by dm1,1

Al s1,1
(Hn)

1,1 f1,1
1,(12)

[
(Hn)

1,1
]

f1,1
1,(23)

[
(Hn)

1,1
]

f1,1
1,(34)

[
(Hn)

1,1
]

f1,1
1,(45)

[
(Hn)

1,1
]

A1 − 1.00 (H1)
1,1 0.264 0.062 0.077 0.062

− 0.75 (H2)
1,1 0.000 0.071 0.000 0.335

− 0.50 (H3)
1,1 0.223 0.077 0.000 0.000

− 0.25 (H4)
1,1 0.062 0.000 0.000 0.000

0.00 (H5)
1,1 0.108 0.217 0.200 0.152

0.25 (H6)
1,1 0.200 0.108 0.152 0.308

0.50 (H7)
1,1 0.077 0.000 0.062 0.077

0.75 (H8)
1,1 0.000 0.000 0.264 0.000

1.00 (H9)
1,1 0.000 0.264 0.071 0.000

​ H1,1 0.065 0.200 0.173 0.065
Entropy E

(
d1,1

1,(12)

)
E
(

d1,1
1,(23)

)
E
(

d1,1
1,(34)

)
E
(

d1,1
1,(45)

)

0.169 0169 0.311 0.169

The normalized DPRs on A1 transformed by fine-grained DPRs

Al s* H*
n d*1,1

1,(12)
(
H*

n
)

d*1,1
1,(23)

(
H*

n
)

d*1,1
1,(34)

(
H*

n
)

d*1,1
1,(45)

(
H*

n
)

A1 − 1.00 H*
1 0.264 0.097 0.077 0.229

− 0.50 H*
2 0.254 0.113 0.000 0.168

0.00 H*
3 0.239 0.271 0.276 0.307

0.50 H*
4 0.177 0.054 0.270 0.232

1.00 H*
5 0.000 0.264 0.203 0.000

​ H* 0.065 0.200 0.173 0.065

Table 8 
The coarse-grained DPRs given by dm2,2 on A1

Al sC HC
n d*2,2

1,(12)
(
HC

n
)

d*2,2
1,(23)

(
HC

n
)

d*2,2
1,(34)

(
HC

n
)

d*2,2
1,(45)

(
HC

n
)

A1 − 1.00 HC
1 0 0.1 0 0

− 0.50 HC
2 0.2 0.4 0 0

0.00 HC
3 0.7 0.4 0 0

0.50 HC
4 0.1 0.1 0.9 0

1.00 HC
5 0 0 0 1

​ HC 0 0 0.1 0

Entropy E
(

d2,2
1,(12)

)
E
(

d2,2
1,(23)

)
E
(

d2,2
1,(34)

)
E
(

d2,2
1,(45)

)

1.157 1.722 0.469 0
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Table 9 
The reweighted results of individuals and entities.

SEp dmp,k wdm
p,k E

(
dmp,k

)
rdm

p,k w̃dm
p,k WSE

p E
(
SEp

)
RSE

p W̃
SE
p

SE1 dm1,1 0.238 0.126 0.231 0.237 0.382 0.141 0.429 0.401
dm1,2 0.206 0.110 0.234 0.212
dm1,3 0.198 0.128 0.231 0.204
dm1,4 0.177 0.711 0.143 0.172
dm1,5 0.180 0.593 0.161 0.177

SE2 dm2,1 0.225 0.104 0.236 0.228 0.344 0.153 0.424 0.374
dm2,2 0.173 0.728 0.149 0.169
dm2,3 0.231 0.146 0.230 0.231
dm2,4 0.196 0.146 0.230 0.203
dm2,5 0.174 0.684 0.155 0.171

SE3 dm3,1 0.113 0.895 0.099 0.111 0.274 0.706 0.147 0.243
dm3,2 0.100 0.842 0.100 0.100
dm3,3 0.094 0.761 0.101 0.095
dm3,4 0.093 0.870 0.100 0.094
dm3,5 0.099 0.873 0.099 0.099
dm3,6 0.102 0.806 0.100 0.102
dm3,7 0.095 0.862 0.100 0.096
dm3,8 0.093 0.827 0.100 0.094
dm3,9 0.098 0.861 0.100 0.098
dm3,10 0.112 0.743 0.101 0.111

Table 10 
The collective DPRs of each stakeholder entity.

The result of collective DPRs by SE1 The optimal process of SE1

s* − 1 − 0.5 0 0.5 1 − Consensus level before optimization 0.877
H* H*

1 H*
2 H*

3 H*
4 H*

5 H* Consensus level after optimization 0.970

d*SE1

(12)
0.184 0.185 0.063 0.371 0.142 0.055 Number of Iterations 16

d*SE1

(23)
0.175 0.131 0.158 0.319 0.149 0.067 Optimal objective function value 1.0564

d*SE1

(34)
0.214 0.229 0.184 0.219 0.106 0.047 Decision variable ϱ1,1 = 0; ϱ1,2 = 1; ϱ1,3 = 0.15;ϱ1,4 = 0; ϱ1,5 = 1

d*SE1

(45)
0.247 0.178 0.094 0.316 0.108 0.057

The result of collective DPRs by SE2 The optimal process of SE2

s* − 1 − 0.5 0 0.5 1 − Consensus level before optimization 0.873
H* H*

1 H*
2 H*

3 H*
4 H*

5 H* Consensus level after optimization 0.970

d*SE2

(12)
0.201 0.215 0.205 0.155 0.160 0.063 Number of Iterations 12

d*SE2

(23)
0.232 0.217 0.140 0.158 0.170 0.084 Optimal objective function value 0.0731

d*SE2

(34)
0.243 0.185 0.139 0.198 0.138 0.098 Decision variable ϱ1,1 = 0.57; ϱ1,2 = 0.49; ϱ1,3 = 0.50; ϱ1,4 = 0.49; ϱ1,5 = 0.49

d*SE2

(45)
0.247 0.172 0.137 0.157 0.179 0.108

The result of collective DPRs by SE3

s* − 1 − 0.5 0 0.5 1 −

H* H*
1 H*

2 H*
3 H*

4 H*
5 H*

d*SE3

(12)
0.062 0.126 0.203 0.447 0.128 0.034

d*SE3

(23)
0.155 0.246 0.224 0.281 0.051 0.044

d*SE3

(34)
0.036 0.182 0.178 0.444 0.120 0.040

d*SE3

(45)
0.049 0.219 0.234 0.351 0.113 0.034

Table 11 
The detailed calculation process of the decentralized multipartite selection process.

The final result of collective DPRs Score value Possibility degree

s* − 1 − 0.5 0 0.5 1 − SC PDC

H* H*
1 H*

2 H*
3 H*

4 H*
5 H*

d*C

(12)
0.162 0.183 0.142 0.322 0.143 0.048 [-0.002, 0.098] 0

d*C
(23)

0.193 0.189 0.165 0.259 0.133 0.061 [-0.086, 0.036] 0.172

d*C
(34)

0.186 0.205 0.165 0.269 0.118 0.057 [-0.093, 0.021] 0.069

d*C
(45)

0.206 0.186 0.138 0.276 0.132 0.063 [-0.091, 0.035] 0.153
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Fig. 13 explores the impact of varying threshold levels on the 
maximum return optimization process and consensus level of SE1. Here 
are some key observations. 1) For consensus return: the figure shows 
that higher threshold values generally lead to a higher value of 
consensus return. The return increases sharply at lower iteration counts, 
indicating rapid convergence at the beginning of the optimization pro
cess. As the threshold increases, the increase in consensus return 

becomes more gradual, suggesting that a higher threshold is required to 
reach a more stringent consensus. 2) For consensus level: it indicates 
that a higher threshold results in faster growth of the consensus level 
with iteration. The consensus level generally stabilizes after 5–10 iter
ations, indicating that most optimization benefit is gained early. A lower 
threshold (e.g., 0.90) reaches a stable consensus level faster than a 
higher threshold (e.g., 0.99), which takes more iterations to stabilize.

Fig. 13. Sensitivity analysis of maximum return optimization process.

Fig. 14. Sensitivity analysis of minimum cost optimization process.

Fig. 15. History of decision variable solution under Model I and Model II.
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Fig. 14 illustrates the minimum cost optimization process and its 
related impact on the consensus level of SE2 across varying threshold 
values. Observations from it include: 1) For consensus cost, it reveals 
that a lower threshold value is associated with a quicker stabilization of 
consensus cost, whereas a higher threshold extends the number of iter
ations required before reaching consensus. This indicates that a tighter 
consensus threshold initially elevates the cost, possibly due to more 
significant adjustments needed to meet stricter consensus criteria. 2) For 
consensus level: similar to the findings in maximum return, the higher 
threshold initially enlarges the consensus level quickly, yet it gradually 
stabilizes over successive iterations. Notably, consensus levels are swift 
to reach stability for thresholds such as 0.90 and 0.91, suggesting that 
less stringent thresholds facilitate easier consensus among DMs.

Fig. 15 provides a visual representation of the decision variable (ϱp,k) 
under multiple iterations and different threshold levels in the two 
optimization models. Here are the insights derived from the analysis: 1) 
Model I exhibits more variability in ϱp,k values across different threshold 
settings. The decision variable fluctuates significantly, indicating its 
sensitivity to the threshold parameter. 2) Model II displays a smoother 
transition in ϱp,k values, with a gradual increase as iterations progress. 
The smoother surface suggests that this model is less sensitive to the 
changes in threshold values and might offer more robust performance 
under varying conditions.

Overall, the sensitivity analysis highlights varying consensus 
threshold levels’ impact on performance outcomes. The consensus 

threshold determines the strictness of the required agreement among 
DMs and plays a crucial role in the update of the decision variable ρ(p,k).

These observations underline the trade-offs between the two models: 
while a higher threshold in Model I can yield a more substantial 
consensus at the expense of increased volatility and longer convergence 
times, Model II provides a more stable and robust performance in terms 
of cost efficiency. This sensitivity analysis thus offers critical guidance 
for parameter tuning, ensuring that the decision-making process can be 
optimally adjusted based on the desired balance between consensus 
strength and computational stability.

5.3. Qualitative comparisons with other methods

5.3.1. Qualitative comparisons with several GDM problems focusing on 
UGC

In this section, we conduct a comparative analysis of the proposed 
decentralized multipartite feedback mechanism with other GDM ap
proaches that concentrate on utilizing UGC. To illustrate the distinctions 
and commonalities with other GDM methods, Table 12 compares based 
on characteristics such as data source handling, weight determination 
method, decision model, and application area.

5.3.2. Qualitative comparisons with other attribute discovery methods
Various attribute discovery methods exist, ranging from purely 

qualitative, expert-driven frameworks to classical topic-modeling 

Table 12 
Comparison with other GDM models focusing on UGC.

Reference Characteristics Data sources Weight determination Decision model Application

(Wu et al., 
2023)

Large-scale alternatives 
Multiple online platforms

Collect online platform 
data (movie rating) from 
IMDb, MTime, and Douban.

Information entropy of 
time series 
The number of 
evaluations

Multivariate time-series- 
based decision-making 
method

Rank movies among a set 
of large-scale alternatives

(Liu et al., 
2023)

UGC 
Interactive criteria 
Risk preference

Crawl online medical 
platform UGC (reviews for 
psychologists) posted on 
haodf.com

Entropy-based method 
Whitening method

Integrate sentiment analysis 
method and MCDM method

Rank psychologists from 
haodf.com

(Ji et al., 
2023a)

User demands and user satisfaction 
Community detection

Crawl online P2P 
accommodation platform 
data (reviews) from Airbnb

A minimal variance 
approach 
Consensus-based 
assignment of weight

Integrate sentiment analysis 
method and large-scale 
group consensus-based 
method.

Evaluate user satisfaction 
with sharing 
accommodation.

(Qin and 
Zeng, 
2022)

Aggregate multiple classifiers using ER 
theory 
Stochastic multi-criteria acceptability 
analysis-PROMETHEE method

Crawl online data (reviews) 
from the JingDong Mall 
website

A TextRank algorithm 
for objectively 
determining the weight

Integrate the MCDM method 
based on sentiment analysis 
and stochastic dominance 
rules

Rank products based on 
online reviews in China’s 
e-commerce

(Darko 
et al., 
2023)

Convert huge online consumer reviews into 
PLTSsLatent Dirichlet Allocation topic 
modeling approach

Crawl online consumer 
information (reviews) from 
the Google Play Store

A probabilistic 
linguistic indifference 
threshold-based 
attribute ratio analysis

Integrate text mining 
analytics with uncertain 
MADM

Evaluate and rank m- 
payment services

(He et al., 
2022)

Interval-valued linguistic distribution 
assessment (ILDA)Extend ER algorithm to 
ILDA environment

Crawl online consumer 
data (reviews) from 
JingDong Mall website

− Integrate incomplete 
textural analysis with the 
MADA framework

Compare and rank 
mobile phones

(Yang et al., 
2021)

Focus on the online discussion system or 
social democratic systemCase-based 
reasoning algorithm for consensus decision- 
making support (CDMS)

Create some cases using 
the online data collected 
from COLLAGREE online 
discussion forums

− A machine learning-based 
framework for CDMS in 
crowd-scale deliberation

Facilitate online 
discussion toward 
smoothing a consensus 
decision

(Xu et al., 
2021)

The location of collection and delivery 
points (CDPs) optimizationQuantitative 
analysis of the relationship between 
customer service level and retailers’ benefit

A real-world data set 
(users’ basic information 
and their activity logs) 
provided by the Ali IJCAI

− Integrate data mining 
models and facility location 
models

Determine CDP locations 
for online retailers

(Wu and 
Liao, 
2021)

Psychological intensity based on Weber- 
Fechner’s lawUtility-based translation 
method

Collect all data 
(quantitative parameters 
and online reviews) from 
Amazon.com.

− Model the personalized 
cognition of customers on 
both quantitative and 
qualitative information.

Television selection from 
Amazon.com

(Guo et al., 
2020)

A more interpretable model than the 
traditional recommender systemPairwise 
comparisons within an aggregation- 
disaggregation paradigm

Available data (a set of 
online reviews and ratings) 
provided by product 
manager

Weight constraints A data-driven MCDA 
approach to integrate online 
information, such as explicit 
and implicit feedback from 
consumers

Assist product manager 
in analyzing the 
consumer’s preferences 
for smartphones.

This 
research

UXO attribute system 
generationDecentralized multipartite 
consensus feedback mechanism

An automobile review 
platform (pcauto.com.cn)

Weight determination 
and reweighting 
function design

Decentralized multipartite 
consensus mechanism for 
MAGDM

R&D alternative selection 
for NEV
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approaches. Unlike manual curation, which relies on limited insights 
from domain experts, our proposed method integrates large-scale UGC 
through advanced SBER and a novel SSRcos metric. This approach offers 
several key advantages. i) Comprehensive coverage: We capture a 
broader spectrum of user concerns by processing extensive corpora, 
ensuring that emerging preferences are not overlooked. ii) Adaptive 
refinement: The method can be periodically re-run to adapt to shifts in 
user sentiment, providing an advantage over static, expert-crafted index 
systems that risk becoming obsolete. iii) Balanced emphasis: a data- 
driven weighting scheme (A-TF-IDF) highlights frequent and distinc
tive attributes, aligning them more effectively with real-world user 
priorities than simple frequency counts. Consequently, our technique is 
a powerful, scalable tool for constructing attribute systems, positioning 
it favorably relative to purely qualitative or conventional statistical 
approaches.

5.4. Quantitative comparisons with other methods

To quantitatively validate the advantages of our decentralized 
multipartite consensus model, we conducted a comprehensive compar
ison experiment against three existing methods, namely MR, MC, and 
Liu’s method (Liu et al., 2024). Table 13 presents the results under a 
uniform stakeholder configuration (SE = [5,5, 10], i.e., 20 decision 
makers) and the same consensus threshold. Although all methods 
reached a similarly high level of agreement, with final consensus levels 
at or near 0.97, the proposed method converged in the fewest iterations 
while achieving the lowest algorithm time cost. Such efficiency is crucial 
for real-world large-scale group decision-making, where time-to- 
consensus often determines the final recommendations’ feasibility. 
Notably, Liu’s method attained a marginally higher consensus (0.981) 
but required more computational effort (10.0274) than our approach 
(1.6313). This trade-off highlights the flexibility of the proposed model, 
which offers a balanced compromise between rapid convergence and 
consensus quality. Consequently, these findings underscore our frame
work’s reliability, scalability, and cost-effectiveness in handling com
plex decision scenarios derived from UGC.

6. Conclusion

In the realm of MAGDM, this research introduces a data-driven 
approach, focusing on UGC to extract and systematize user experience 
attributes. This approach distinctively contrasts with traditional 
methods by prioritizing user-centric data, enabling the creation of a 
more refined and accurate attribute system. This research integrates a 
decentralized multipartite consensus mechanism tailored to diverse 
stakeholder groups, facilitating robust consensus aligned with DMs’ 

varying expertise and interest levels. Building upon a data-driven 
approach in MAGDM, this study introduces three key advancements: 
1) An innovative UXO attribute system that leverages NLP techniques 
and advanced statistical methods to enhance the granularity and rele
vance of UGC data analysis. 2) An I-E responsive multi-granularity de
cision mechanism that effectively aligns decision granularity with 
diverse stakeholder expertise enhances organizational decision-making. 
3) A decentralized multipartite feedback mechanism that ensures in
clusive, robust, and adaptable consensus among stakeholders with 
varying interests and expertise levels, suitable for complex decision 
environments.

Integrating a refined attribute system and robust consensus mecha
nism contributes to more reliable organizational decision-making. This 
approach not only aligns decisions with users’ genuine preferences and 
expectations but also ensures that these decisions are finely tuned to the 
dynamic demands of the market. Businesses can tap into consumer in
sights by focusing on UGC, enabling a more user-centric approach that 
enhances customer satisfaction and loyalty. Furthermore, organizations 
can foster greater inclusivity and equity in decision-making by accom
modating a wide range of stakeholder views through a flexible and 
multipartite consensus mechanism. This improves the quality and 
acceptance of decisions and enhances organizational agility, allowing 
businesses to respond more swiftly and effectively to market changes 
and new opportunities.

In future research, we aim to refine the integration of our attribute 
system and consensus mechanism with real-time analytics, enhancing 
responsiveness to dynamic market conditions and user feedback. This 
would involve deploying machine learning algorithms to predict 
changes in user preferences and adapting the decision-making process 
accordingly. Additionally, exploring the model’s scalability across 
different industries and cultural contexts could provide valuable insights 
into its universal applicability and potential for customization based on 
specific market needs.
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Table 13 
Comparison with other GDM models focusing on UGC.

The proposed method MR MC Liu’s method 
(Liu et al., 2024)

DMs scale SE = [5,5,10] 20 20 20
Algorithm time cost 1.6313 57.4889 31.0915 10.0274
Number of Iterations 28 35 32 31
Final consensus level 0.970 0.970 0.970 0.981
The final alternatives ranking x5 ≻ x4 ≻ x3 ≻ x2 ≻ x1 x5 ≻ x4 ≻ x2 ≻ x3 ≻ x1 x5 ≻ x4 ≻ x3 ≻ x2 ≻ x1 x5 ≻ x4 ≻ x3 ≻ x2 ≻ x1
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Appendix A 

Table A1 
Abbreviations mentioned in the main text.

Abbreviation Denotation Abbreviation Denotation

AU aleatoric uncertainty AR adjustment return
A-TF-IDF attribute-based TF-IDF BD Belief Distribution
BOE bodies of evidence C-H Calinski-Harabasz
CRP consensus reaching process CDPR complete distributed preference relation
DPR distributed preference relation DM decision maker
D-B Davies-Bouldin DEL domain expertise level
DMP decision-making participative party EU epistemic uncertainty
KDI knowledge dissemination index I-E interest-expertise
IR Identification Return IVS interest valuation score
MAGDM multi-attribute group decision making NEV new energy vehicle
NLP natural language processing PTS peer-reviewed trust score
PLPR probabilistic linguistic preference relation PLM pre-trained language models
R&D research and development ROI return on involvement
SEL stakeholder engagement level SBERT sentence-BERT
SNA social network analysis STS semantic textual similarity
SC silhouette coefficient SIL stakeholder interest level
T-SNA trust social network analysis UXO user experience-oriented
UGC user-generated content TF-IDF term frequency–inverse document frequency
UMAP Uniform Manifold Approximation and Projection HDBSCAN hierarchical density-based spatial clustering of applications with noise

Table A2 
Symbols in the main text.

Symbol Description

X = {x1,⋯, xm,⋯, xM}(M ≥ 2) The set of alternatives
A = {A1,⋯,Al ,⋯,AL}(L ≥ 2) The upper layer attributes set

a =

⎧
⎨

⎩

a1,1,⋯, a1,n1 ;⋯;

al,1,⋯, al,nl ;⋯;

aL,1,⋯, aL,nL

⎫
⎬

⎭

The lower layer attributes set

WA =
{

WA
l |l = 1,⋯, L

}
The weights of L upper layer attributes

wa =

⎧
⎪⎪⎨

⎪⎪⎩

wa
1,1,⋯,wa

1,n1
;⋯;

wa
l,1 ,⋯,wa

l,nl
;⋯;

wa
L,1,⋯,wa

L,nl

⎫
⎪⎪⎬

⎪⎪⎭

The weights of lower layer attributes

H = {H1,⋯,Hn⋯,HN} The set of evaluation grades
SE =

{
SE1,⋯, SEp,⋯, SEP

}
(SE ≥ 2) The set of stakeholder entities

SEp =
{

dmp,1,⋯, dmp,k,⋯, dmp,np

}
The set of DMs in the pth stakeholder entity SEp

WSE
p , wdm

p,k The relative weight of SEp, dmp,k

Dp,k = (dp,k
ij )M×M,dp,k

ij =
{(

Hn , dp,k
ij (Hn)

)
, n = 1,⋯,N;

(
H, dp,k

ij (H)
)}

The DPR matrix given by the dmp,k

Sp,k =
([

S(p,k)−
ij , S(p,k)+

ij

] )

M×M
The score matrix of dmp,k

PDp,k =
(

pdp,k
ij

)

M×M
The possibility degree matrix of dmp,k

diss
(

dp,k
ij ,dp,g

ij

)
The preference dissimilarity measure of dmp,k and dmq,g

λkg =
(
tkg,dkg

)
The trust relationship from dmk to dmg

TS =
[
tskg
]

np×np
The trust score matrix of SEp

U = [u1, u2,⋯, uT] ∈ R1×T, V = [v1, v2,⋯, vT] ∈ R1×T Sentence embedding vectors
SSRcos(U,V) The segment soft relative cosine similarity
A = {α1 , α2,⋯, αN}, β = {β1, β2 ,⋯, βN} The high-dimensional dataset and low-dimensional dataset

CE =
∑

i

∑

j

[

pij log

(
pij

qij

)

+
(

1 − pij

)
log

(
1 − pij

1 − qij

)]
The objective function of UMAP

dmreach-σ

(
βi, βj

)
The mutual reachability distance between two points βi and βj

TF − IDFAttribute
(
tl,i,Al

)
,Wtl,i Attribute-based TF-IDF and the relative weight of tl,i

θhorizontal ,θvertical Two thresholds of Interest-Expertise stakeholder matrix
IEH− H, IEL− H, IEL− L, IEH− L I-E (High-High/ Low-High/ Low-Low/ High-Low)
SIL
(
dmp,k

)
Stakeholder interest level

ROI
(
dmp,k

)
,SEL

(
dmp,k

)
, IVS

(
dmp,k

)
Return on Involvement/Stakeholder Engagement Levels/ Interest Valuation Score

DEL
(
dmp,k

)
DM’s domain expertise

PTS
(
dmp,k

)
,KDI

(
dmp,k

)
Peer-reviewed trust score/Knowledge Dissemination Index

Hp,k =
{
(H1)

p,k
,⋯, (Hn)

p,k
,⋯, (HN)

p,k
}

The fine-grained frame of discernment by dmp,k

dp,k
l,(ij) =

{(
(Hn)

p,k
, fp,k

l,(ij)

[
(Hn)

p,k
] )

, n = 1,⋯,N;
(

Hp,k, fp,k
l,(ij)
(
Hp,k)

)}
The fine-grained DPR given by dmp,k for compare xi to xj

w̃p,k
l,v ,w

a
l,v , r

p,k
l,v

Adjust weight/ the original weight/ the relative importance

HC =
{

HC
1 ,⋯,HC

n ,⋯,HC
Nʹ
}

The coarse-grained frame of discernment by dmp,k

(continued on next page)
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Table A2 (continued )

Symbol Description

dp,k
l,(ij) =

{(
HC

n , c
p,k
l,(ij)
(
HC

n
) )

, n = 1,⋯,Nʹ;
(

HC, cp,k
l,(ij)
(
HC)

)}
The coarse-grained DPR given by dmp,k for compare xi to xj

B
p,k
l,(ij)

The bodies of evidence

E
(

dp,k
l,(ij)

)
,E
(

dp,k
l

)
,E
(

dp,k
(ij)

)
,E
(
dmp,k

)
The belief entropy of dp,k

l,(ij)

W̃
p,k
l ,WA

l ,R
p,k
l

The adjusted weights/ the initial weight/ the reliability of dmp,k

w̃dm
p,k ,wdm

p,k , r
dm
p,k

The reweighted relative/ the original relative weight/ the reliability score of dmp,k

W̃
SE
p ,WSE

p ,RSE
p

The reweighted relative/ the original relative weight/ the reliability score of SEp

d*p,k
l,(ij) =

{(
H*

n , d*p,k
l,(ij)
(
H*

n
) )

, n = 1,⋯,N;
(

H* , d*p,k
l,(ij)(H*)

)}
The normalized DPR matrix

CLkg ,CLp Consensus level between two DMs or stakeholder entity
DMPNC,DMPMR,DMPMC Non-Consensual/Maximum Return/Minimum Cost Participants
IRp,k,ARp,k The Identification Return/ Adjustment Return of dmp,k

r p,k, cp,k The unit reward/consensus cost of dmp,k

URp The total return of SEp

CCp,k The consensus cost of dmp,k

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eswa.2025.127917.

Data availability

Data will be made available on request.
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