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In this paper a recursive algorithm based on the Bayesian reasoning approach is proposed to update a
belief rule based (BRB) expert system for pipeline leak detection and leak size estimation. In addition
to using available real time data, expert knowledge on the relationships of the parameters among differ-
ent rules is incorporated into the updating process so that the performance of the expert system can be
improved. Experiments are carried out to compare the newly proposed algorithm with the previously
published algorithms, and results show that the proposed algorithm can update the BRB expert system
faster and more accurately, which is important for real-time applications. The BRB expert systems can
be automatically tuned to represent complex real world systems, and applied widely in engineering.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Leaks from pipelines may cause immeasurable damage to the
environment and losses to the pipeline operating companies. To
minimize the damages and improve the reliability, many methods
and types of systems for pipeline leak detection are developed,
such as those based on mass balance (Rougier, 2005), real time
transit models (Abhulimen & Susu, 2004; Yang, Li, & Lai, 2007),
probabilistic models (Cagno, Caron, Mancini, & Ruggeri, 2000;
Davis, Burn, Moglia, & Gould, 2007), statistical analysis (Buchberger
& Nadimpalli, 2004) and acoustic emission detection (Gao, Bren-
nan, Joseph, Muggleton, & Hunaidi, 2005). Real time systems based
on mass balance corrected with pressure are among the very pop-
ular ones. The belief rule based (BRB) expert system for leak detec-
tion which has been studied is also based on the mass balance
principle (Xu et al., 2007; Zhou, Hu, Yang, Xu, & Zhou, 2009).

In the previous studies, based on a generic rule-base inference
methodology using the evidential reasoning (RIMER) approach in
which the belief rule base and the evidential reasoning (ER) ap-
proach are used as knowledge formulation and inference tool
respectively (Yang, Liu, Wang, Sii, & Wang, 2006a), the algorithms
for training the BRB expert system for pipeline leak detection (Xu
et al., 2007; Zhou et al., 2009) include three steps. Firstly, human
experts provide a set of belief rules as an initial BRB expert system
to represent the relationships of pipeline flow and pressure
changes under various normal and leak conditions. Secondly, based
ll rights reserved.

x: +86 010 62786911.
hou).
on the ER approach (Yang & Singh, 1994; Yang et al., 2006a, Yang,
Wang, Xu, & Chin, 2006b; Yang, 2001), the dedicated learning algo-
rithms which are named as ER based algorithms are used to train
the BRB expert system (Xu et al., 2007; Zhou et al., 2009). Finally,
the trained BRB expert system is used for leak detection and leak
size estimation. Compared with traditional rule based expert sys-
tems, the BRB expert system can detect smaller leaks and provide
more accurate information on leak sizes. Generally, by using belief
rules, a BRB expert system can capture relationships between sys-
tem inputs and outputs that could be discrete or continuous, com-
plete or incomplete, linear, nonlinear or non-smooth, or their
mixture (Yang et al., 2006a).

Compared with other methods, such as probability based meth-
ods where it is very difficult to decide the prior and conditional
probabilities (Cagno et al., 2000; Davis et al., 2007; Pearl, 1988;
Spiegelhalter, Dawld, Lauritzen, & Cowell, 1993), the BRB expert
system has an important characteristic to allow the direct expert
intervention (Xu et al., 2007; Yang et al., 2006a) which can be used
to guide the training of the parameters such as belief degrees in the
BRB expert system.

However, the RIMER approach is a complex nonlinear mapping
between the inputs and outputs of a system. It involves compli-
cated calculations (Xu et al., 2007; Zhou et al., 2009). In order to
overcome this weakness, a fuzzy rule-based Bayesian reasoning
algorithm was proposed and used in failure mode and effects anal-
ysis (Yang, Bonsall, & Wang, 2008).

In the study given by Yang et al. (2008), the belief degrees in the
rules were given by the experts. But in engineering, it is difficult for
experts to provide belief degrees accurately, especially for large
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scale rule bases with hundreds or thousands of rules. Therefore, it
is necessary to update these parameters when new information be-
comes available.

Based on the relationship between belief distribution and prob-
ability distribution (Dempster, 1967, 1968; Halpern & Fagin, 1992;
Pearl, 1988; Shafer, 1976; Simon, Weber, & Evsukoff, 2008; Spie-
gelhalter et al., 1993), in this paper a recursive learning algorithm
is proposed which is based on the Bayesian reasoning approach
and can online update the parameters of a BRB expert system.
The new algorithm is applied to the pipeline leak detection prob-
lem studied in Xu et al. (2007) and Zhou et al. (2009). Compared
with the ER based algorithms which include offline learning algo-
rithm (Xu et al., 2007) and online updating algorithm (Zhou
et al., 2009), the proposed algorithm can update the BRB expert
system faster, which is important when there is higher real-time
requirement.

This paper is organized as follows. In Section 2, based on the
relationship between belief distribution and probability distribu-
tion, the inference method of the BRB expert system using the
Bayesian reasoning approach is briefly introduced. Section 3 pro-
poses a Bayesian reasoning based recursive algorithm for online
updating the BRB expert system. The proposed algorithm is used
for oil pipeline leak detection in Section 4. The paper is concluded
in Section 5.

2. Inference method of BRB expert system using Bayesian
reasoning approach

2.1. The structure and representation of BRB expert system

In order to capture the dynamics of a system, a belief rule based
(BRB) expert system consisting of a collection of belief rules is de-
fined as follows (Yang et al., 2006a):

Rk : If x1 is Ak
1 ^ x2 is Ak

2 � � � ^ xM is Ak
M;

Then fðD1; b1;kÞ; . . . ; ðDN ;bN;kÞg with
XN

j¼1

bj;k ¼ 1;
ð1Þ

where Rk denotes the kth belief rule. xm(m = 1, . . . ,M) is the mth
antecedent attribute. Ak

mðm ¼ 1; . . . ;M; k ¼ 1; . . . ; LÞ is the referen-
tial value of the mth antecedent attribute in the kth rule and
Ak

m 2 Am. Am = {Am,j, jm = 1, . . . , Jm} is a set of referential values for
the mth antecedent attribute and Jm is the number of the referential
values. bj,k(j = 1, . . . ,N,k = 1, . . . ,L) is the belief degree assessed to Dj

which denotes the jth consequence where Dj 2 D and
D = {D1, . . . ,DN}. Note that ‘‘^” is a logical connective to represent
the ‘‘AND” relationship.

2.2. Relationship between belief distribution and probability
distribution

In order to use the Bayesian reasoning approach on the BRB ex-
pert system as represented in Eq. (1), the relationship between be-
lief distribution and probability distribution is given as follows:

Halpern and Fagin (1992) proposed that there were two useful
and quite different ways of interpreting belief functions. The first is
that a belief function is interpreted as a generalized probability
function and the second is that a belief function is used as a way
for representing evidence (Dempster, 1967, 1968; Halpern & Fagin,
1992; Pearl, 1988; Shafer, 1976; Simon et al., 2008; Spiegelhalter
et al., 1993). To facilitate the discussion, the following concepts
are defined.

Let H be the frame of discernment defined by H = {H1,H2, . . . ,HN}
and H as the power set of H, consisting of all the subsets of H, or

H ¼ fH1; . . . ;HN; fH1;H2g; . . . ; fH1;HNg; . . . ; fH1 � � �HN�1g;Hg: ð2Þ
A piece of evidence is represented as a belief distribution, defined as
follows in general:

SðZÞ ¼ fðWs;bsÞ;Ws # Hg; ð3Þ

where Ws is any subset of H and bs is a belief degree assigned to Ws

with
P

Ws # Hbs ¼ 1.
A belief distribution defined on the power set H reduces to a

conventional probability distribution defined on H if the following
two assumptions are satisfied:

(1) bn P 0 holds only for the singleton evaluation grade Hn for
n = 1, . . . ,N, bs = 0 for any other Ws # H, i.e., these N evalua-
tion grades are mutually exclusive and collectively exhaus-
tive (Pearl, 1988; Yang et al., 2006a).

(2) There is
PN

n¼1bn ¼ 1.

The above analysis means that a conventional probability distri-
bution is a special case of a belief distribution. In other words, a be-
lief distribution is a generalized probability distribution (Pearl,
1988; Yang et al., 2006a). Thus, it is possible to use the Bayesian
reasoning approach as the inference tool in the belief distribution
when it is a probability distribution.

2.3. Belief rule inference using Bayesian reasoning approach

In Eq. (1), it is assumed that the linguistic set D is mutually
exclusive and collectively exhaustive. In addition, the belief de-
grees should satisfy the equality constraint as given in Eq. (1).
Therefore, the belief degrees can be treated as the conventional
probabilities according to the two assumptions given in sub Sec-
tion 2.2. Thus, the belief rule in Eq. (1) can be further expressed
in the form of conditional probability as follows (Yang et al.,
2008; Pearl, 1988):

Given Ak
1 ^ � � � ^ Ak

M; Then pðD1Þ is b1;k; . . . ; pðDNÞ is bN;k; ð4Þ

where there are Ak
m 2 Am;Am ¼ fAm;jm ;m ¼ 1; . . . ;M; jm ¼ 1; . . . ; Jmg;

k ¼ 1; . . . ; L, and L ¼
QM

m¼1Jm. p(�) denotes the probability.
Eq. (4) can also be written as the following conditional

probability.

p DsjAk
1; . . . ;Ak

M

� �
¼ bs;k; s ¼ 1; . . . ;N: ð5Þ

Based on the probability expression of a belief rule, the Bayesian
reasoning approach can be used to combine rules and generate final
conclusions, i.e., the marginal probabilities of Ds(s = 1, . . . ,N) which
can be calculated as:

pðDsÞ ¼
XL

k¼1

p DsjAk
1; . . . ;Ak

M

� �YM
m¼1

p Ak
m

� �
: ð6Þ

In Eq. (6), the prior probability p Ak
m

� �
ðm ¼ 1; . . . ;M; k ¼ 1; . . . ; LÞ

and conditional probability p DsjAk
1; . . . ;Ak

M

� �
are needed. In the

probability based methods, it is very difficult to decide these
probabilities (Cagno et al., 2000; Davis et al., 2007; Pearl, 1988;
Spiegelhalter et al., 1993). It is noted however due to the introduc-
tion of the BRB expert system, the direct expert intervention is
allowed (Xu et al., 2007; Yang et al., 2006a) and can be used to
determine the probabilities as follows:

(1) In Eq. (5), the belief degree bs,k is given by experts, so the
conditional probability p DsjAk

1; . . . ;Ak
M

� �
in Eq. (6) can be

obtained (Yang et al., 2008).
(2) In this study, it is also assumed that the linguistic set

Am ¼ fAm;jm ;m ¼ 1; . . . ;M; jm ¼ 1; . . . ; Jmg is mutually exclu-
sive and collectively exhaustive, so the prior probability
p Ak

m

� �
is equal to the belief degree to the referential value
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Ak
m from Eq. (4), where Ak

m 2 Am. On the other hand, the belief
degree can be calculated using the rule based information
transformation technique when the antecedent attributes

are available (Yang, 2001). Thus, p Ak
m

� �
can be obtained.

The detail example about how to calculate the belief degree
was introduced by Xu et al. (2007).

3. Bayesian reasoning approach based recursive algorithm for
online updating the BRB expert system

As mentioned above, the conditional probabilities in Eq. (6) are
given by experts in the current study in order to calculate the
marginal probability. However, it is difficult to accurately deter-
mine these parameters entirely subjectively in engineering. As
such, based on the recursive expectation maximization (EM) algo-
rithm, a Bayesian reasoning approach based recursive algorithm
for online estimating the belief degrees will be given in this
Section.

In the proposed recursive algorithm, the observations on the
system inputs and outputs are required. We assume that a set of
observation pairs (x,y) is available, where x is a given input vector
and y is the corresponding observed output vector. From Eq. (1),
there is x = [x1, . . . ,xM]T.

3.1. Bayesian reasoning based recursive algorithm

Assume that the output y is a random variable. Furthermore, it
is assumed that y(1), . . . ,y(n) are independent. Therefore, there is

f ðyð1Þ; . . . ; yðnÞjxð1Þ; . . . ;xðnÞ;Q Þ ¼
Yn

s¼1

f ðyðsÞjxðsÞ;Q Þ; ð7Þ

where f(y(s)jx(s),Q) denotes the conditional probability density
function (pdf) of y at time instant s and Q is the unknown parame-
ter vector.

The recursive formulation of the expectation of the log-likeli-
hood of Eq. (7) can be written as:

Lnþ1ðQ Þ ¼ LnðQ Þ þ E log f ðyðnÞjxðnÞ;Q ÞjQ ðnÞf g; ð8Þ

where E{�j�} denotes the conditional expectation at Q = Q(n).
Define

CðQ ðnÞÞ¼D rQ log f ðyðnÞjxðnÞ;Q ðnÞÞ; ð9Þ

NðQ ðnÞÞ¼D E �rQrT
Q log f ðyðnÞjxðnÞ;Q ÞjQ ðnÞ

n o
; ð10Þ

where rQlog f(y(n)jx(n),Q(n)) denotes the gradient vector at Q(n).
Based on the recursive EM algorithm (Chung & Bohme, 2005;

Titterington, 1984), the maximizing parameter vector Q(n + 1) is
given by:

Q ðnþ 1Þ ¼ Q ðnÞ þ 1
n

NðQ ðnÞÞ½ ��1CðQ ðnÞÞ: ð11Þ

Due to the fact that the recursive EM algorithm is indeed a maxi-
mum likelihood (ML) algorithm, the proposed recursive algorithm
as given in Eq. (11) is also a ML algorithm.

3.2. Recursive algorithm under normal distribution of observation

Since the belief degrees are treated as a generalized probability
in this paper, in Eq. (6) let

bs¼
D pðDsÞ; ð12Þ

where bs(s = 1, . . . ,N) is one of the final conclusions generated by the
BRB expert system using the Bayesian reasoning approach and de-
notes the belief degree to an individual consequence Ds.
Substituting Eqs. (5) and (12) into Eq. (6), we can obtain:

bs ¼
XL

k¼1

bs;k

YM
m¼1

p Ak
m

� �
: ð13Þ

The expected output ŷðnÞ of the BRB expert system can be calcu-
lated by (Yang, 2001):

ŷðnÞ ¼
XN

s¼1

lsbsðnÞ; ð14Þ

where ls denotes the utility (or score) of an individual consequence
Ds which can be either given using a scale or estimated using the
decision maker’s preferences (Yang, 2001; Yang et al., 2006a).
bs(n) denotes the value of bs at time instant n.

It is hoped that given the input x(n), the BRB expert system can
generate an output as represented in Eq. (14), which can be close to
y(n) as possible. It is noted however in this paper, y(n) is referred to
the observation of a system obtained by a sensor at time instant n
and it is random. In the ML algorithm, it is usually assumed that
y(n) obeys the following normal distribution.

f ðyðnÞjxðnÞ;Q Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr
p exp �ðyðnÞ � ŷðnÞÞ2

2r

( )
; ð15Þ

where ŷðnÞ is the expectation of y(n). Q = [VT,r]T denotes parameter
vector. V = [b1,1, . . . ,bN,L]T denotes parameter vector of the BRB ex-
pert system and r denotes variance.

Due to the independence between the elements of V and r,
C(Q(n)) and N(Q(n)) in Eq. (11) can be written as:

CðQ ðnÞÞ ¼ C0ðQ ðnÞÞT ;C00ðQ ðnÞÞT
h iT

; ð16Þ

NðQ ðnÞÞ ¼ N0ðQ ðnÞÞ 0
0 N00ðQ ðnÞÞ

� �
; ð17Þ

where C 0(Q(n)) and N0(Q(n)) are the derivates with respect to the
entries of V. C 00(Q(n)) and N00(Q(n)) are the derivates with respect
to r.

When we consider only parameter vector V, from Eqs. (16) and
(17), the recursive algorithm in Eq. (11) changes into the following
form:

Vðnþ 1Þ ¼ VðnÞ þ 1
n
½N0ðQ ðnÞÞ��1C0ðQ ðnÞÞ: ð18Þ

In Eq. (18), V(n) is known. From Eqs. (9), (10), (13)–(15), the ath ele-
ment of the gradient vector of C0(Q(n)) and the entries of N0(Q(n)) at
time instant n are:

½C0ðQ ðnÞÞ�a ¼
ðyðnÞ � ŷðnÞÞ

rðnÞ
XN

s¼1

ls
@bsðnÞ
@Q a

�����
V¼VðnÞ

; ð19Þ

N0ðQ ðnÞÞ
� 	

a;b ¼
1

rðnÞ
XN

s¼1

ls
@bsðnÞ
@Q a

" # XN

s¼1

ls
@bsðnÞ
@Qb

" #�����
V¼VðnÞ

; ð20Þ

where there are a = 1, . . . ,L � N and b = 1, . . . ,L � N. @bs(n)/@Qa de-
notes the value of @bs/@Qa at time instant n. From Eq. (13), @bs/
@Qa can be determined by:

@bs

@Q a
¼

QM
m¼1

p Ak
m

� �
; a ¼ ðk� 1Þ � N þ s;

0; others;

8><
>: ð21Þ

where s ¼ 1; . . . ;N; k ¼ 1; . . . ; L; Ak
m 2 Am;jm ;m¼1;...;M;jm¼1;...;Jm


 �
As shown in Eq. (1), the belief degrees should satisfy the equal-

ity constraint
PN

j¼1bj;k ¼ 1 and the inequality constraints
0 6 bj,k 6 1, where j = 1, . . . ,N and k = 1, . . . ,L. In order to deal with
these constraints, the recursive algorithm as given in Eq. (18) can
be written as follows:
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Vðnþ 1Þ ¼
Y

H

VðnÞ þ 1
n

N0ðQ ðnÞÞ
� 	�1C0ðQ ðnÞÞ

� 

; ð22Þ

where
Q

Hf�g is the projection onto the constraint set H which is
composed of the equality and inequality constraints. The detailed
projection algorithm for dealing with these constraints has been gi-
ven by Zhou et al. (2009).

In Eqs. (19) and (20), r(n) is required. If x(n), y(n) and V(n) are
available, it can be estimated by:

rðnÞ ¼ arg max
r

log f ðyðnÞjxðnÞ;Q ÞjV¼VðnÞ

¼ ðyðnÞ � ŷðnÞÞ2jV¼VðnÞ: ð23Þ

As a result of the above discussion, the procedure of the Bayes-
ian reasoning approach based recursive algorithm for online
updating the BRB expert system may be summarized as the follow-
ing steps:

Step 1: Let n = 0. Assign initial values to the parameter vector V(n).
The elements of V(n) should satisfy the equality and
inequality constraints.

Step 2: Since the observations x(n), y(n) and V(n) are available,
r(n) can be estimated by using Eq. (23). Then the recursive
algorithm as given in Eq. (22) is used to estimate V(n + 1).
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Fig. 1. Training data and output generated by the initial BRB expert system.
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Fig. 2. Training data and the output generated by the updated BRB expert system.
Step 3: After x(n + 1), y(n + 1) and V(n + 1) are available, let
n = n + 1 and go to Step 2. Otherwise, go to Step 4.

Step 4: Once the BRB expert system is updated, its knowledge can
be used to perform inference from the given inputs.

4. Online updating BRB expert system for pipeline leak
detection

4.1. Problem formulation

In this Section, we will also consider a pipeline studied in Xu
et al. (2007) and Zhou et al. (2009) and the pipeline leak data will
be used to demonstrate the validity of the proposed algorithm.

We also choose the difference between inlet flow and outlet
flow, the average pipeline pressure change over time and the leak
rate, denoted by FlowDiff, PressureDiff and LeakSize respectively, as
the leak data (Xu et al., 2007). During the leak trial, 2008 samples
of 25% leak data were collected at the rate of 10s per sample,
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Fig. 3. Testing data of no leak and 25% leak and the output generated by the
updated BRB expert system.

Fig. 4. Testing data of no leak and 25% leak and the output generated by the
updated BRB expert system.

Table 1
Calculation time of three algorithms.

Calculation
time

ER based offline
algorithm

ER based online
algorithm

Proposed
algorithm

Minute 300 20 2



Table 2
MAE of three algorithms.

Calculation
time

ER based offline
algorithm

ER based online
algorithm

Proposed
algorithm

Minute 0.2245 0.4227 0.1732
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respectively. The leak data is completely same to the one used by
Xu et al. (2007).
4.2. Construction of the initial BRB expert system for pipeline leak
detection

In this study, FlowDiff and PressureDiff are also chosen as the ante-
cedent attributes of the rule base. And LeakSize is the consequent
Table A-1
Updated belief rules for pipeline oil leak detection.

Rule number FlowDiff AND PressureDiff Lea

1 NL AND NL {(D
2 NL AND NM {(D
3 NL AND NS {(D
4 NL AND Z {(D
5 NL AND PS {(D
6 NL AND PM {(D
7 NL AND PL {(D
8 NM AND NL {(D
9 NM AND NM {(D

10 NM AND NS {(D
11 NM AND Z {(D
12 NM AND PS {(D
13 NM AND PM {(D
14 NM AND PL {(D
15 NS AND NL {(D
16 NS AND NM {(D
17 NS AND NS {(D
18 NS AND Z {(D
19 NS AND PS {(D
20 NS AND PM {(D
21 NS AND PL {(D
22 NVS AND NL {(D
23 NVS AND NM {(D
24 NVS AND NS {(D
25 NVS AND Z {(D
26 NVS AND PS {(D
27 NVS AND PM {(D
28 NVS AND PL {(D
29 Z AND NL {(D
30 Z AND NM {(D
31 Z AND NS {(D
32 Z AND Z {(D
33 Z AND PS {(D
34 Z AND PM {(D
35 Z AND PL {(D
36 PS AND NL {(D
37 PS AND NM {(D
38 PS AND NS {(D
39 PS AND Z {(D
40 PS AND PS {(D
41 PS AND PM {(D
42 PS AND PL {(D
43 PM AND NL {(D
44 PM AND NM {(D
45 PM AND NS {(D
46 PM AND Z {(D
47 PM AND PS {(D
48 PM AND PM {(D
49 PM AND PL {(D
50 PL AND NL {(D
51 PL AND NM {(D
52 PL AND NS {(D
53 PL AND Z {(D
54 PL AND PS {(D
55 PL AND PM {(D
56 PL AND PL {(D
attribute of the rule base. Therefore, the input vector x is composed
of FlowDiff and PressureDiff, and the output vector y only includes
LeakSize. The antecedents and consequence in the rule base should
be given some referential points. Here FlowDiff, PressureDiff and
LeakSize are given eight, seven and five referential points, respec-
tively. The linguistic terms and quantified results of these points
are the same as the ones used by Xu et al. (2007).

Thus, based on the running patterns of pipeline leak, a BRB
expert system for the pipeline leak detection can be constructed.
A belief rule is represented as:

Rk : If FlowDiff is Ak
1^PressureDiff is Ak

2

Then LeakSize is ðZ;b1;kÞ;ðVS;b2;kÞ; M;b3;k

� �
;ðH;b4;kÞ;ðVH;b5;kÞ


 �
;

ð24Þ

where Ak
1 and Ak

2ðk ¼ 1; . . . ;56Þ are the referential values.
kSize distribution {D1,D2,D3,D4,D5} = {0,2,4,6,8}

1,0.1425), (D2,0.0559), (D3,0), (D4,0.0054), (D5,0.7961)}
1,0.0561), (D2,0.0281), (D3,0), (D4,0.2173), (D5,0.6985)}
1,0), (D2,0), (D3,0), (D4,0.667), (D5,0.333)}
1,0.1027), (D2,0.0329), (D3,0.0366), (D4,0.0056), (D5,0.8223)}
1,0.0419), (D2,0.0446), (D3,0), (D4,0.3043), (D5,0.6092)}
1,0.0724), (D2,0.005), (D3,0), (D4,0.1484), (D5,0.7741)}
1,0.016), (D2,0), (D3,0), (D4,0.2656), (D5,0.7184)}
1,0.0024), (D2,0.0021), (D3,0), (D4,0.8844), (D5,0.1111)}
1,0.0347), (D2,0.0174), (D3,0.3098), (D4,0.2826), (D5,0.3555)}
1,0.0952), (D2,0.1067), (D3,0.0864), (D4,0.166), (D5,0.5457)}
1,0.246), (D2,0.0158), (D3,0.0004), (D4,0.0066), (D5,0.7312)}
1,0.1397), (D2,0.1005), (D3,0), (D4,0.2175), (D5,0.5422)}
1,0.1843), (D2,0.1109), (D3,0), (D4,0.0132), (D5,0.6916)}
1,0.1722), (D2,0.0624), (D3,0), (D4,0.1217), (D5,0.6437)}
1,0), (D2,0), (D3,0.4), (D4,0.6), (D5,0)}
1,0), (D2,0), (D3,0), (D4,0.1621), (D5,0.8379)}
1,0.0012), (D2,0.0049), (D3,0.4782), (D4,0.1965), (D5,0.3193)}
1,0.1714), (D2,0.0601), (D3,0.0204), (D4,0.1719), (D5,0.5762)}
1,0.0478), (D2,0.0687), (D3,0), (D4,0.1926), (D5,0.6909)}
1,0.1718), (D2,0.0049), (D3,0), (D4,0.2488), (D5,0.5745)}
1,1), (D2,0), (D3,0), (D4,0), (D5,0)}
1,0.6018), (D2,0.1038), (D3,0.1079), (D4,0.1533), (D5,0.0332)}
1,0.5749), (D2,0.425), (D3,0.0001), (D4,0), (D5,0)}
1,0.4621), (D2,0.5327), (D3,0.0034), (D4,0.0005), (D5, 0.0013)}
1,0.8206), (D2,0.0256), (D3,0), (D4,0.0385), (D5, 0.1152)}
1,0.8644), (D2,0.0579), (D3,0), (D4,0.0139), (D5, 0.0637)}
1,0.742), (D2,0.0401), (D3,0), (D4,0.0565), (D5, 0.1614)}
1,0.668), (D2,0.0552), (D3,0), (D4,0.0712), (D5, 0.2056)}
1,1), (D2,0), (D3,0), (D4,0), (D5,0)}
1,1), (D2,0), (D3,0), (D4,0), (D5,0)}
1,1), (D2,0), (D3,0), (D4,0), (D5,0)}
1,1), (D2,0), (D3,0), (D4,0), (D5,0)}
1,1), (D2,0), (D3,0), (D4,0), (D5,0)}
1,1), (D2,0), (D3,0), (D4,0), (D5,0)}
1,0.9957), (D2,0.0018), (D3,0), (D4,0.0009), (D5, 0.0016)}
1,1), (D2,0), (D3,0), (D4,0), (D5,0)}
1,0.9935), (D2,0.0065), (D3,0), (D4,0), (D5,0)}
1,0.9993), (D2,0.0007), (D3,0), (D4,0), (D5,0)}
1,1), (D2,0), (D3,0), (D4,0), (D5,0)}
1,1), (D2,0), (D3,0), (D4,0), (D5,0)}
1,1), (D2,0), (D3,0), (D4,0), (D5,0)}
1,1), (D2,0), (D3,0), (D4,0), (D5,0)}
1,1), (D2,0), (D3,0), (D4,0), (D5,0)}
1,0.3), (D2,0.7), (D3,0), (D4,0), (D5,0)}
1,0.85), (D2,0.15), (D3,0), (D4,0), (D5,0)}
1,0.98), (D2,0.02), (D3,0), (D4,0), (D5,0)}
1,1), (D2,0), (D3,0), (D4,0), (D5,0)}
1,1), (D2,0), (D3,0), (D4,0), (D5,0)}
1,1), (D2,0), (D3,0), (D4,0), (D5,0)}
1,0.9), (D2,0.1), (D3,0), (D4,0), (D5,0)}
1,0.99), (D2,0.01), (D3,0), (D4,0), (D5,0)}
1,1), (D2,0), (D3,0), (D4,0), (D5,0)}
1,1), (D2,0), (D3,0), (D4,0), (D5,0)}
1,1), (D2,0), (D3,0), (D4,0), (D5,0)}
1,1), (D2,0), (D3,0), (D4,0), (D5,0)}
1,1), (D2,0), (D3,0), (D4,0), (D5,0)}
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In Eq. (24), the experts can give the values of the belief degrees,
thus an initial BRB expert system is constructed. Here the initial
BRB expert system is the same as the one used by Xu et al.
(2007). As shown in Fig. 1, it is obvious that the values of the esti-
mated LeakSize calculated by the initial BRB expert system using
Eqs. (6) and (14) do not match the training data. This means the
initial BRB expert system provided by an expert is not good. So it
is necessary to update the initial BRB expert system.
4.3. Online updating the initial BRB expert system and pipeline leak
detection

In order to update the initial BRB expert system for pipeline leak
detection, 500 data are selected as the training data, which include
300 from no leak and 200 from 25% leak. The process of updating
and testing the BRB is implemented using MATLAB.

Step 1: Update the BRB expert system
Using the training data, the proposed recursive algorithm
is used to update the BRB expert system. The updated
belief degrees are listed in Table A-1 of Appendix A.
Fig. 2 shows that the updated BRB expert system can clo-
sely replicate the relationship among FlowDiff, PressureDiff
and LeakSize in the training data. Furthermore, the calcula-
tion speed of the recursive algorithm is very high.

Step 2: Test
For testing the updated BRB expert system, all the 2008
data are used. Fig. 3 shows that the estimated outcomes
match the observed ones very closely. Fig. 4 displays the
observed and estimated LeakSize on the time scale. It
shows that rule base can detect the leak which happened
at around 9:38 a.m. and ended at around 10:53 a.m.

4.4. Comparative studies

Under the same experimental conditions, the initial BRB expert
system is also trained by the ER based offline learning algorithm
(Xu et al., 2007) and the ER based online updating algorithm (Zhou
et al., 2009), respectively. The experimental results show that the
trained BRB expert systems by these two ER based algorithms
can both accomplish the leak detection and leak size estimation.

In order to further demonstrate the validity of the proposed
algorithm, the following two cases are considered.

Case 1. When the initial BRB expert system is trained, the
calculation time of the proposed algorithm in this
paper, the ER based offline algorithm and the ER based
online algorithm is recorded, respectively. Table 1 gives
the calculation time of three algorithms. From Table 1,
it can be seen that compared with the other two
algorithms, the calculation time used by the proposed
algorithm is least.

Case 2. When the BRB expert systems trained by the three
learning algorithms are tested, a quantitative index –
Mean Absolute Error (MAE) is chosen to compare the
prediction accuracy of the proposed algorithm with
the ER based algorithms. Table 2 gives the MAE of the
three algorithms. It shows that the prediction accuracy
of the BRB expert system updated by the proposed algo-
rithm is highest.

Therefore, it can be concluded that although three algorithms
can accomplish the leak detection, the proposed algorithm can
train the BRB expert system more quickly and accurately, which
is important when there is higher requirement in engineering.
5. Conclusions

In this paper, a feasible Bayesian reasoning approach based
recursive algorithm to online update the belief rule based (BRB) ex-
pert system is proposed on the basis of the relationship between
belief distribution and probability distribution. Then the recursive
algorithm is used to online update the BRB expert system for pipe-
line leak detection. The study demonstrates that the updated BRB
expert system can learn the relationship between leak sizes and
the pipeline flow and pressure readings from pipeline operating
data, and can be applied for pipeline leak detection and leak size
estimation. Compared with the evidential reasoning (ER) based
offline and online optimal algorithms for pipeline leak detection
(Xu et al., 2007; Zhou et al., 2009), the proposed algorithm can reduce
the parameter tuning time significantly. Except for oil pipeline leak
detection, the BRB expert system and the proposed algorithm may
be widely applied in the other fields of engineering such as real-
time reliability and safety analysis of the complex systems.

From this study, we see that based on the belief rule base, the
Bayesian reasoning approach and the ER based approach can both
be used as the inference tools. Therefore, the difference and the
relation between these two tools should be studied in the future.
Furthermore, it is necessary to develop a more generalized rea-
soning approach for the BRB expert system and also the optimal
methods to train the parameters of the BRB expert system in the
future.
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