
Spatial decomposition-based iterative greedy algorithm for the
multi-resource constrained re-entrant hybrid flow shop scheduling problem
in semiconductor wafer fabrication

Feng-Shun Zhou a,b , Rong Hu a,b , Bin Qian a,b,* , Qing-Xia Shang a,b, Yuan-yuan Yang a,b,
Jian-Bo Yang c

a Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, PR China
b Higher Educational Key Laboratory for Industrial Intelligence and Systems of Yunnan Province, Kunming University of Science and Technology, Kunming 650500, PR
China
c Alliance Manchester Business School, University of Manchester, Manchester M15 6PB, UK

A R T I C L E I N F O

Keywords:
Spatial decomposition
Iterated greedy algorithm
Semiconductor manufacturing
Wafer fabrication
Optimized scheduling

A B S T R A C T

Wafer fabrication (WF) is the most expensive and complex process in semiconductor production, which critically
impacts overall manufacturing costs and semiconductor delivery times. This paper considers a common multi-
resource constrained re-entrant hybrid flow shop scheduling problem (MRCRHFSP) in WF. The mixed-integer
programming (MIP) model of the MRCRHFSP is established for the first time to minimize the makespan, and
a novel spatial decomposition-based iterated greedy (SDIG) algorithm is proposed to address it. In the SDIG, the
decoding strategy is developed to attempt to obtain a compact scheduling solution corresponding to each in
dividual. Meanwhile, the new spatial decomposition (SD) method is designed to reasonably decompose the so
lution space into a series of subspaces. Furthermore, the construction-based exploration is devised to guide the
search to the promising regions in each subspace, and then the two-stage deep exploitation utilizing the prob
lem’s properties and the reset strategy are developed to execute in-depth and fast exploitation from these
promising regions. The test results show that the proposed SDIG has better performance than the state-of-the-art
algorithms.

1. Introduction

The semiconductor manufacturing industry is a pillar of the national
economy and a crucial sector in the development of information tech
nology. With the rapid development of artificial intelligence, the de
mand for semiconductors has exploded worldwide (Bang & Kim, 2011;
Y. F. Lee et al., 2009). In this context, companies with high productivity,
high efficiency, and high quality will gain the initiative in fierce inter
national competition. As wafer fabrication is the most complex and cost-
intensive stage of semiconductor production, involving various intricate
processes such as photolithography, etching, and deposition (Y. H. Lee &
Lee, 2022; Mönch et al., 2018). Therefore, scheduling optimization at
this stage is of significant practical importance for enhancing the effi
ciency and capacity of the entire semiconductor manufacturing system.

In recent years, the modeling of wafer fabrication systems has been

divided into two categories: the first type models the common shop
configurations in wafer fabrication as reentrant hybrid flow shop
scheduling problems (Dong & Ye, 2019; Hekmatfar et al., 2011; Jain
et al., 2003). The second category simplifies the entire wafer fabrication
process by defining the photolithography stage as the bottleneck stage
and other stages as non-bottleneck stages. The total processing time of
jobs in non-bottleneck stages is simplified into a fixed travel time, while
the bottleneck stage is modeled as a multi-resource constrained parallel
machine scheduling problem with sequence-dependent setup times (Kim
& Lee, 2016; Y. H. Lee & Lee, 2022). Both categories have certain lim
itations: The first category lacks consideration for the special charac
teristics of the photolithography stage, while the second category
oversimplifies the production configurations of non-photolithography
stages. Therefore, we combined the characteristics of these two cate
gories to establish a mathematical model for the multi-resource

* Corresponding author at: Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, PR China.
E-mail addresses: 20231104003@stu.kust.edu.cn (F.-S. Zhou), ronghu_da@kust.edu.cn (R. Hu), bin.qian@kust.edu.cn (B. Qian), jian-bo.yang@manchester.ac.uk

(J.-B. Yang).

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

https://doi.org/10.1016/j.cie.2025.111330
Received 30 September 2024; Received in revised form 23 May 2025; Accepted 16 June 2025

Computers & Industrial Engineering 208 (2025) 111330

Available online 7 July 2025
0360-8352/© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://orcid.org/0009-0000-2698-9484
https://orcid.org/0009-0000-2698-9484
https://orcid.org/0000-0002-5000-6625
https://orcid.org/0000-0002-5000-6625
https://orcid.org/0000-0002-0048-1487
https://orcid.org/0000-0002-0048-1487
https://orcid.org/0000-0001-8953-1550
https://orcid.org/0000-0001-8953-1550
mailto:20231104003@stu.kust.edu.cn
mailto:ronghu_da@kust.edu.cn
mailto:bin.qian@kust.edu.cn
mailto:jian-bo.yang@manchester.ac.uk
www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2025.111330
https://doi.org/10.1016/j.cie.2025.111330
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2025.111330&domain=pdf

constrained reentrant hybrid flow shop scheduling problem
(MRCRHFSP) to more accurately describe the production configurations
of wafer fabrication workshops. Since the reentrant hybrid flow shop
scheduling problem (RHFSP) has been proven to be NP-hard, and
MRCRHFSP can be reduced to RHFSP, MRCRHFSP is also NP-hard.
Hence, research on modeling and solving MRCRHFSP has significant
theoretical value.

Due to the NP-hard nature of MRCRHFSP, traditional mathematical
programming and heuristic methods struggle to balance solution quality
and computational efficiency. To address these limitations, we propose a
novel metaheuristic algorithm called the Space Decomposition-based
Iterative Greedy (SDIG) algorithm for solving the problem. For
MRCRHFSP, the solution space resembles a “big valley” terrain, con
taining numerous valleys of varying depths, with high-quality solutions
of diverse structures located in different valleys. Therefore, we intro
duced a space decomposition (SD) method in SDIG that combines Uni
form Manifold Approximation and Projection (UMAP) with k-means
clustering to identify and leverage the valley structures in the solution
space. This guides the algorithm to perform parallel exploration of
multiple subspaces (valleys) and discover promising regions within
them. Proper use of the SD method can avoid premature convergence
caused by single or similar initial solutions in traditional iterative greedy
(IG) algorithms (Chen et al., 2021), reducing the risk of getting stuck in
local optima in a short time and improving solution diversity and
quality. Furthermore, inspired by recent studies on critical path neigh
borhood search (H. Ding & Gu, 2020; He et al., 2023) and speed-up
evaluation mechanisms for insert neighborhoods (Fernandez-Viagas,
2022; Taillard, 1990), as well as the research gap in MRCRHFSP, we
propose the critical path theory and speed-up evaluation method for
MRCRHFSP, and based on this, we design a two-stage deep exploitation
approach to enable in-depth and rapid search of promising regions in
subspaces. The effectiveness of the SDIG is validated through simulation
experiments and algorithm comparisons. The main contributions of this
paper are as follows:

1. The mixed-integer programming (MIP) model of the MRCRHFSP in
wafer fabrication is established for the first time. The decoding
strategy considering problem characteristics is developed to try to
find a compact scheduling solution corresponding to each individual,
ensuring that a smaller fitness value (i.e., the makespan) can be
obtained for each individual with a higher probability.

2. The new spatial decomposition (SD) method is designed to perceive
the MRCRHFSP’s landscape over solution space and decompose the
solution space into a series of subspaces. This method uses the UMAP
technique to project all individuals in the population from high-
dimensional space to low-dimensional space, and then performs
the k-means clustering technique on these projected individuals to
reasonably obtain several subspaces with certain differences.

3. Considering that the actual landscape over each subspace is different
(e.g., flat or rugged), a novel search algorithm, i.e., the proposed
SDIG, including the construction-based exploration on the job se
quences as well as the two-stage deep exploitation on the operation
sequences and their corresponding scheduling solutions, is devel
oped to independently execute both broad and in-depth search in
each subspace. This parallel multi-modal search can achieve a good
balance between exploration and exploitation.

The remainder of this paper is orgized as follows: Section 2 reviews
the relevant literature. Section 3 introduces the practical production
background of MRCRHFSP and its MIP model. Section 4 presents the
theoretical contributions based on the properties of the MRCRHFSP.
Section 5 details the SDIG algorithm designed in this study. Section 6
provides extensive experimental results and discussions. Section 7
summarizes the coanntributions of the entire paper. The appendix pre
sents a concrete example of MRCRHFSP and detailed proof of the
theoretical contributions.

2. Literature review

2.1. Wafer fabrication scheduling problems

Wafer fabrication, as a technology-intensive stage in the semi
conductor supply chain, can significantly impact the overall supply
chain’s throughput, cycle time, and responsiveness (Cakici & Mason,
2007). Therefore, researchers have developed various realistic mathe
matical models to approximate scheduling problems in wafer fabrication
and designed effective algorithms to solve them.

Kong et al. (2024) developed a two-stage collaborative green
scheduling model for the photolithography and etching stages in wafer
fabrication. In this model, the photolithography stage is represented by
parallel machines, and the etching stage is represented by batch pro
cessors, with considerations for waiting time and capacity constraints.
To address this problem, they proposed a metaheuristic algorithm
combining a hybrid genetic algorithm with the LPPT-cutting rule. For
the photolithography bottleneck stage in wafer fabrication, Ghaedy-
Heidary et al. (2024) developed a stochastic flexible job shop scheduling
model considering machine processing capabilities, machine specificity,
and mask constraints. C.-Y. Lee et al. (2023) proposed a mathematical
model for unrelated parallel machine scheduling problems, while Bitar
et al. (2016) constructed a mathematical model for unrelated parallel
machine scheduling problems with dual resource constraints and
sequence-dependent setup times. C.-T. Huang et al. (2025) modeled the
wafer fabrication process as a parallel machine scheduling problem with
sequence-dependent setup times. This model assumes that all stages of
the wafer fabrication process can be completed on specific machines,
and there are sequence-dependent setup times between different wafer
products. To solve this problem, they proposed a data-driven multi-
objective composite scheduling rule combined with NSGA-II. Yeong-Dae
Kim et al. (2001) modeled the wafer production process as a hybrid flow
line batch scheduling problem. In this model, multiple identical parallel
machines form batch processing workstations, and wafer batches are
processed sequentially through these workstations to produce the final
wafer products. Their primary focus was on batch division and batch
sequencing, for which they proposed three effective scheduling rules for
solution and comparison. Dong & Ye (2019) developed a distributed
reentrant hybrid flow shop model to describe production scheduling
problems in wafer fabrication under a distributed manufacturing
context and proposed an improved grey wolf algorithm for solving it. Y.
H. Lee & Lee (2022) simplified the non-bottleneck stages in wafer
fabrication by reducing the processing times of different wafer jobs at
these stages into distinct travel times. The bottleneck stage (photoli
thography stage) was modeled as an identical parallel machine sched
uling problem with sequence-dependent setup times. To address this
problem, they proposed an end-to-end deep reinforcement learning al
gorithm for solution.

Based on the literature review, the existing models for scheduling
problems in wafer fabrication have two main limitations: (1) Some re
searchers focus solely on a few specific production stages in wafer
fabrication, particularly the photolithography bottleneck stage, often
oversimplifying or even neglecting the production configurations of
non-bottleneck stages. (2) Other researchers take a macro-level
approach to address all production stages while overlooking the
resource constraints specific to bottleneck stages. In reality, there is a
significant interdependency between bottleneck and non-bottleneck
stages. Bottleneck stages must be scheduled based on the completion
times of jobs in non-bottleneck stages to avoid excessive job blocking.
Similarly, non-bottleneck stages need to schedule jobs according to their
release times from bottleneck stages to prevent excessive machine
idleness. Both factors significantly impact the efficiency and respon
siveness of wafer fabrication. Therefore, we combined the characteris
tics of existing scheduling models and developed a mathematical model
for the reentrant hybrid flow shop scheduling problem that incorporates
mask resource constraints, sequence-dependent setup times, and

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

2

bottleneck stages, that is, the MIP model of MRCRHFSP, and design an
effective algorithm to solve it.

2.2. Dimension reduction visualization methods

Nonlinear dimensionality reduction visualization techniques provide
researchers with intuitive insights into high-dimensional data, helping
to reveal relationships and trends (Grebennik et al., 2023). For example,
Liu et al. (2021) used t-distributed Stochastic Neighbor Embedding (t-
SNE) to analyze groundwater geochemistry data. Hozumi et al. (2021)
used UMAP and K-means clustering to analyze large-scale SARS-CoV-2
mutation datasets. Ding et al. (n.d) applied ISOMAP for dimensionality
reduction and classification of hyperspectral images. Additionally, some
researchers have used dimensionality reduction visualization techniques
to display the distribution and evolutionary process of individuals in the
solution space when solving various COPs. Lutton et al. (2012)
employed the ScatterDice visualization tool to map all solutions gener
ated by intelligent optimization algorithms onto a two-dimensional
plane, analyzing the algorithms’ search capabilities. Jornod et al.
(2015) developed an open-source tool called SwarmViz for particle
swarm optimization algorithms. This tool uses the Sammon mapping
method to visualize and monitor the evolution direction of the particle
swarm algorithm. Collins (2003) used principal component analysis
(PCA) to develop a genetic algorithm visualization tool called Gonzo.
Grebennik et al. (2023) utilized t-SNE to visualize permutation solutions
in COPs, illustrating 5,040 solutions produced during the evolution of
the algorithm for the traveling salesman problem (TSP) in the form of a
heatmap on a two-dimensional plane. Michalak (2019) extended the t-
SNE method to design a technique called Low-Dimensional Euclidean
Embedding (LDEE), which visualizes combinatorial search spaces in
two-dimensional Euclidean space, providing examples of visualizing all
solutions generated by population-based intelligent optimization algo
rithms during their evolution when solving the four peaks problem, the
firefighter problem, the knapsack problem, the quadratic assignment
problem, and the TSP.

The above literature shows that current dimensionality reduction
visualization techniques have only been used by some researchers to
depict the evolutionary process of intelligent optimization algorithms,
but they lack guidance on directing the search directions of these al
gorithms at the solution space level. To address this, we designed the
new SD method in SDIG. This method employs UMAP, which is
computationally efficient and adaptive to non-uniform data densities
(McInnes et al., 2020), to perform dimensionality reduction on in
dividuals from the initial population. Then, K-means clustering is
applied to the reduced-dimension individuals to decompose the
MRCRHFSP solution space (Fahim et al. 2006), guiding the algorithm to
further explore and exploit different subspaces. Thus, the emergence of
SDIG fills this research gap and provides a new perspective for the design
of intelligent optimization algorithms.

2.3. Iterated greedy algorithm

The iterated greedy (IG) algorithm, known for its simple structure
and strong embedding capabilities, was successfully applied to the set
covering problem as early as 1995 (Jacobs & Brusco, 1995). In 2007,
Ruiz & Stützle. (2007a) first employed the IG algorithm to solve flow
shop scheduling problems, demonstrating exceptional performance.
Since then, the IG algorithm has been improved by numerous re
searchers and applied to various scheduling problems.

Zou et al. (2021) proposed a solution speed-up evaluation mecha
nism to improve the efficiency of the IG algorithm for multi-workshop
AGV scheduling problems in matrix manufacturing. Qin et al. (2022)
designed a local perturbation strategy based on swap operators and a
global perturbation strategy based on semi-swap operators to balance
the global and local search capabilities of the IG algorithm. The
improved IG algorithm was applied to solve energy-efficient blocking

hybrid flow shop scheduling problems. J.-Y. Ding et al. (2015) intro
duced a series of Tabu lists into the construction scheme of the IG al
gorithm to prevent redundant searches, thereby enhancing solution
diversity and improving search efficiency. Ozsoydan (2021) added a
hyper-heuristic variable neighborhood descent local search phase to the
IG algorithm and applied it to reconstructed solutions to enhance the
algorithm’s search depth. Fernandez-Viagas et al. (2018) developed a
beam search initialization method to increase the diversity of initial
solutions and reduce the risk of the IG algorithm becoming trapped in
local optima in a short time. Rodriguez et al. (2013) defined heuristic
rules to guide the reconstruction mechanism in the IG algorithm and
employed acceptance criteria based on solution randomness to enhance
the algorithm’s ability to escape local optima, thereby improving its
search performance. Qin et al. (2022) proposed two initialization stra
tegies to improve the diversity and quality of initial solutions for
distributed heterogeneous hybrid flow shop scheduling problems with
blocking constraints. Additionally, a swap-based local search strategy
was introduced to enhance the search depth of the IG algorithm.

From the above research, it is evident that researchers have proposed
various improvement methods to address the issue of IG algorithms
having a single initial solution, which tends to get trapped in local op
tima during the search process. Some researchers have enhanced the
algorithm’s ability to escape local optima by introducing perturbation
mechanisms, while others have adopted multiple heuristic methods to
generate initial solutions, thereby increasing solution diversity and
preventing the algorithm from being trapped in local optima in a short
time. However, due to a lack of awareness of the solution space land
scape, these two methods, while improving the performance of IG al
gorithms to some extent, remain significantly limited. Perturbation
strategies are often blind and unguided, often leading the algorithm into
suboptimal solution regions, thereby wasting search resources. More
over, strategies for generating initial solutions are highly dependent on
specific problem structures, lacking sufficient generalizability. There
fore, the SDIG designed in this paper employs the proposed SD method
to perceive the landscape of the solution space, decomposing it into
subspaces with significant differences. The construction-based explora
tion strategy and the two-stage deep exploitation process are then
designed to further optimize high-quality individuals in these subspaces.
This approach ensures diversity in the search regions while avoiding
redundant searches on similar individuals, thereby enhancing the al
gorithm’s ability to discover high-quality solutions in complex solution
spaces.

3. Problem description and modeling

This section provides a detailed introduction to the wafer fabrication
process and establishes the MIP model of MRCRHFSP to minimize the
makespan.

3.1. Practical background of the problem

The semiconductor wafer fabrication process comprises several
critical steps: cleaning, coating, baking, photolithography, developing,
etching, deposition, and ion implantation. Each step involves multiple
identical machines and requires multiple cycles.

Cleaning Stage: The wafers undergo wet cleaning and deionized
water cleaning to remove contaminants or residues from previous steps
on the wafer surface.

Coating Stage: A small amount of photoresist is applied to the center
of the wafer, and spin coating is used to evenly distribute the photoresist
across the wafer.

Baking Stage: This step reduces the solvent content in the photore
sist, making it thicker and more robust, thereby improving its adhesion
to the wafer.

Photolithography Stage: A specific mask is used as a negative, and
the wafer stage is continuously moved to achieve orderly exposure on

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

3

the wafer surface.
Developing Stage: The exposed portions of the photoresist are dis

solved and removed, leaving behind the desired pattern.
Etching Stage: Wet or dry etching is used to erode the wafer surface

that is not covered by the photoresist, transferring the pattern onto the
wafer.

Deposition Stage: Physical or chemical vapor deposition is employed
to cover the wafer surface with a layer of metal or compound.

Ion Implantation Stage: High-energy ion beams of elements such as

boron, phosphorus, and arsenic bombard the deposited surface,
embedding ions into the material’s lattice to alter its conductivity,
forming semiconductors.

By repeatedly undergoing these processes, nanometer-scale transis
tors and circuits are constructed on the wafer surface.

3.2. Problem modeling

This section defines the symbols, describes the MRCRHFSP in detail,
and proposes the corresponding MIP model.

3.2.1. Symbol definition
The definitions of the relevant mathematical symbols involved in the

MIP model are listed in Table 1.

3.2.2. MIP model of the MRCRHFSP
Following the contents of Section 3.1, MRCRHFSP can be described

as follows: There are N wafer jobs to be processed, which need to go
through K processing stages with L re-entrant cycles to form different
wafer products. Each processing stage k has Mk identical parallel ma
chines to complete the processing tasks, with different machine con
figurations at each stage. The processing time of wafer job j in process
stage k in l-th cycle is pl,k,j. Furthermore, in the photolithography stage,
wafer job j requires a specific photomask rj,l to complete the photoli
thography process during their l re-entrant cycles. Switching between
different photomasks v and w involves a setup time tv,w. as illustrated in
Fig. 1.

The assumptions of MRCRHFSP are summarized as follows:

1. All jobs and machines are available at time 0 and have the same
priority.

2. Job processing preemption and interruptions are not considered.
3. Jobs are processed sequentially through all stages, and at each stage,

they can only be assigned to one machine for processing.
4. A machine can only process one job at a time.
5. The buffer capacity between different stages is infinite, and the

transportation time between stages is not considered.

Based on the problem description, the MIP model for MRCRHFSP can
be expressed as:

Table 1
Notations applied in the MIP model of MRCRHFSP.

Symbol Description

Indices ​
j, j́ The index of wafer job.
k, ḱ The index of process stage.
k* The index of photolithography stage.
m The index of machine.
l The index of re-entries.
v,w The index of mask.
Parameters ​
WJ The set of all jobs (i.e., WJ = {1,2, ...,J}).
WK The set of all processing stages (i.e., WK = {1,2, ...,K}).
WM The set of all machines (i.e., WM = {1,2, ...,M}.
WMk The set of machines available for stage k (i.e., WMk =

{
mʹ

k, ...,

mk
}
,WMk ∈ WM). mʹ

k is the number of the first machine in stage
k, and mk is the number of the last machine in stage k.

WL The set of all processing cycles (i.e., WL = {1,2, ...,L}).
pj,l,k The processing time of job j in process stage k in the l-th cycle.
tv,w The switching time between masks v and w.
rj,l The mask number for the photolithography stage at the l-th cycle

of job j.
G The positive large number.
Auxiliary

variables
​

Sj,l,k The continuous variable for the start processing time of job j in
stage k of the l-th cycle.

Cj,l,k The continuous variable for the completion time of job j in stage
k of the l-th cycle.

Decision
variables

​

Xj,m,l,k The binary variable is set to 1 if job j is processed on machine m at
stage k of the l-th cycle, and 0 otherwise.

Yj,j́ ,m,l The binary variable is set to 1 if the job j́ is processed after the job
j on machine m of the l-th cycle, and 0 otherwise.

Objective ​
Cmax The maximum completion time (i.e., makespan).

Fig. 1. Schematic diagram of MRCRHFSP in semiconductor wafer fabrication.

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

4

Optimization objective:

MinimizeCmax (1)

Subject to:

Cmax ≥ Cj,l,k, j ∈ WJ, l ∈ WL, k ∈ WK (2)

∑mk

m=mʹ
k

Xj,m,l,k = 1, j ∈ WJ, k ∈ WK, l ∈ WL (3)

Cj,l,k = Sj,l,k + pj,l,k, j ∈ WJ, l ∈ WL, k ∈ WK (4)

Sj,l,k ≥ Cj,l,k− 1, j ∈ WJ, l ∈ WL, k ∈ WK (5)

Sj,l,k ≥ Cj,l− 1,kʹ , j ∈ WJ, l ∈ WL, k, kʹ ∈ WK (6)

Sj́ ,l,k ≥ Cj,l,k − G ×
(
3 − Yj,j́ ,m,l − Xj,m,l,k − Xj́ ,m,l,k

)
,

j, j́ ∈ WL,m ∈ WMk, l ∈ WL, k ∈ WK ∩ k ∕= k* (7)

Sj,l,k ≥ Cj́ ,l,k − G × Yj,j́ ,m,l − G ×
(
2 − Xj,m,l,k − Xj́ ,m,l,k

)
,

j, j́ ∈ WJ,m ∈ WMk, l ∈ WL, k ∈ WK ∩ k ∕= k* (8)

Sj́ ,l,k ≥ Cj,l,k + trj,l ,rj́ ,l
− G ×

(
3 − Yj,j́ ,m,l − Xj,m,l,k − Xj́ ,m,l,k

)
,

j, j́ ∈ WJ,m ∈ WMk, l ∈ WL, k = k* (9)

Sj,l,k ≥ Cj́ ,l,k + trj́ ,l ,rj,l − G × Yj,j́ ,m,l − G ×
(
2 − Xj,m,l,k − Xj́ ,m,l,k

)
,

j, j́ ∈ WJ,m ∈ WMk, l ∈ WL, k = k* (10)

Sj,l,k ≥ 0, j ∈ WJ, l ∈ WL, k ∈ WK (11)

Cj,l,k ≥ 0, j ∈ WJ, l ∈ WL, k ∈ WK (12)

Xj,m,l,k ∈ {0,1}, j ∈ WJ,m ∈ WMk, l ∈ WL, k ∈ WK (13)

Yj,j́ ,m,l ∈ {0,1}, j, j́ ∈ WJ,m ∈ WM, l ∈ WL (14)

In this model, Constraint (1) defines the optimization objective as
minimizing the makespan. Constraint (2) defines the makespan.
Constraint (3) ensures that each job can only be processed on one

machine at any given stage. Constraint (4) defines the method for
calculating completion times, and Constraint (5) ensures that a job can
only begin the next stage after completing the previous stage. Constraint
(6) ensures that a job can only start processing in the next cycle after
completing all stages of the previous cycle. Constraints (7) and (8)
ensure that processing times for different jobs on the same machine do
not overlap in non-lithography stages. Constraints (9) and (10) ensure
that processing times for different jobs and mask-switching times do not
overlap on the same machine in the lithography stages. Constraints (11)
to (12) define the auxiliary variables. Constraints (13) to (14) define the
decision variables.

To verify the correctness and applicability of the MIP model pro
posed in this paper, we validate it using the Gurobi solver in the ap
pendix. Computational experiments show that the proposed MIP model
accurately captures the constraints of the problem and generates the
optimal feasible solution.

4. Proposed theoretical contributions

Before detailing the components of the SDIG algorithm, this section
provides a thorough description of some theoretical results we have
proposed, including forward scheduling and backward scheduling,
critical path, speed-up evaluation, and other related theories, which
form the foundation of the SDIG algorithm design. The symbols used in
this section are shown in Table 2.

4.1. Forward scheduling and backward scheduling

Definition 1: (Forward Scheduling). For a complete scheduling so
lution π of the MRCRHFSP, the scheduling process that handles pro
cessing operation priorities sequentially in ascending order of stages and
cycles is called forward scheduling, and the calculation process of the
completion time Cj,l,k for jobs at each cycle stage in forward scheduling is
shown in Eqs. (15)–(19). A specific example of forward scheduling and
its corresponding Gantt chart are provided in the appendix.

Cπm,0,k(c),0,k = Cπm,l,k(c),0,k = 0,m = 1, 2, ...,mk, l = 1, 2,⋯, L, c

= 1, 2, ...,Nm,l,k, k = 1,2, ...,K (15)

Cπm,l,k(0),l,k = Cπm,l− 1,k(Nm,l− 1,k),l− 1,k,m = 1, 2, ...,mk, l = 1,2,⋯, L, k

= 1,2, ...,K (16)

Cπm,l,k(c),l,0 = Cπm,l,k(c),l− 1,K,m = 1,2, ...,mk, l = 1, 2,⋯, L, c

= 1, 2, ...,Nm,l,k, k = 1, 2, ...,K (17)

Cπm,l,k(c),l,k = max
{

Cπm,l,k(c),l,k− 1,Cπm,l,k(c− 1),l,k

}
+ pπm,l,k(c),l,k,

m = 1,2, ...,mk, l = 1, 2,⋯, L, c = 1,2, ...,Nm,l,k, k = 1,2, ...,Kandk ∕= k*

(18)

Cπm,l,k(c),l,k = max
{

Cπm,l,k(c),l,k− 1,Cπm,l,k(c− 1),l,k + trπm,l,k (c− 1),l ,rπm,l,k(c),l

}
+ pπm,l,k(c),l,k,

m = 1,2, ...,mk, l = 1, 2,⋯, L, c = 1,2, ...,Nm,l,k, k = k*

(19)

Definition 2: (Backward Scheduling). For a complete scheduling
solution π of the MRCRHFSP, the scheduling process that handles pro
cessing operation priorities in reverse order while descending by stages
and cycles is called backward scheduling, and the calculation process of
the completion time Cj,l,k for jobs at each cycle stage in backward
scheduling is shown in Eqs. (20)–(24). A specific example of backward
scheduling and its corresponding Gantt chart are provided in the
appendix.

Cπm,L+1,k(c),L+1,k = Cπm,l,k(c),L+1,k = 0,m = 1, 2, ...,mk, l = 1,2,⋯, L, c

= 1, 2, ...,Nm,l,k, k = 1,2, ...,K (20)

Table 2
The symbols applied in the proposed theory.

Symbol Description

πm,l,k The processing operation sequence of jobs on machine m at stage k in the
l-th cycle, πm,l,k =

{
πm,l,k(c)

⃒
⃒c = 1,2, ...,Nm,l,k

}
.

Nm,l,k The total number of scheduled operations on machine m at stage k in the l-
th cycle.

mk The total number of machines at stage k.
J The total number of processing cycles.
L The total number of processing stages.
K The total number of jobs.
ol,k,j The processing operation of job j at stage k in the l-th cycle.
CO The set of job operations on the critical path CO =

{
CO1,1,CO1,2,...,CO1,K,

...,CO1,K
}
, where COl,k represents the job operations belonging to the

critical path in stage k of the l-th cycle.
N CO The set of job operations is not on the critical path,N CO =

{
N CO1,1 ,

N CO1,2, ...,N CO1,K, ...,

N CO1,K}, where N COl,k represents the job operations not belonging to
the critical path in stage k of the l-th cycle.

Cl,k,j The completion time of job j at stage k in the l-th cycle in forward
scheduling.

Cl,k,j The completion time of job j at stage k in the l-th cycle in backward
scheduling.

π A complete scheduling solution, π =
{

π1,1,1 ,π2,1,1 , ...,πm1 ,1,1, ...,πmK ,1,K, ...,

πmK ,L,K
}
.

πʹ́ The new complete scheduling solution obtained after the operation
adjustments

Cmax(π) The makespan corresponding to scheduling solution π.
Cnew

max(πʹ́) The makespan corresponding to the new scheduling solution.

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

5

Cπm,l,k(Nm,l,k+1),l,k = Cπm,l+1,k(1),l+1,k,m = 1, 2, ...,mk, l = 1, 2,⋯, L, k

= 1,2, ...,K (21)

Cπm,l,k(c),l,K+1 = Cπm,l,k(c),l+1,1,m = 1,2, ...,mk, l = 1, 2,⋯, L, c

= 1,2, ...,Nm,l,k, k = 1,2, ...,K (22)

Cπm,l,k(c),l,k = max
{

Cπm,l,k(c),l,k+1,Cπm,l,k(c+1),l,k

}
+ pπm,l,k(c),l,k

m = 1, 2, ...,mk; l = 1,2,⋯, L; c = 1,2, ...,Nm,l,k; k = 1, 2, ...,Kandk ∕= k*

(23)

Cπm,l,k(c),l,k = max
{

trπm,l,k (c),l
,rπm,l,k (c+1),l + Cπm,l,k(c+1),l,k,Cπm,l,k(c),l,k+1,

}
+ pπm,l,k(c),l,k

m = 1, 2, ...,mk; l = 1, 2,⋯, L; c = 1, 2, ...,Nm,l,k; k = k*

(24)

4.2. Critical path

Definition 3 (Critical Path). For scheduling solution π, the longest
path from the first operation starting at time 0 to the last operation with
a completion time of Cmax(π), without any idle time in between, is called
the critical path.

Based on the above definition, this section presents a theorem and
provides its proof.

Theorem 1: Given any instance of the MRCRHFSP and a scheduling
solution π, there exists at least one critical path in both the forward and
backward scheduling and the path lengths are the same.

Proof. Suppose that in the forward scheduling, the last operation
oπm,L,K(Nm,L,K),L,K in the final stage of the last processing cycle has the

maximum completion time Cmax(π), and its completion time is calcu
lated according to Eq. (18) as shown in Eq. (25):

Cπm,L,K(Nm,L,K),L,K = max
{
Cπm,L,K(Nm,L,K),L,K− 1,Cπm,L,K(Nm,L,K − 1),L,K

}
+ pπm,L,K(Nm,L,K),L,K

(25)

This implies that there is at least one operation (oπm,L,K(Nm,L,K),L,K− 1 or

oπm,L,K(Nm,L,K − 1),L,K) preceding operation oπm,L,K(Nm,L,K),L,K that seamlessly

connects with it. We generalize this operation as oπm,l,k(c),l,k. If the oper
ation oπm,l,k(c),l,k is a non-lithography stage operation, according to Eq.
(18), there must be at least one operation (oπm,l,k(c),l,k− 1 or oπm,l,k(c− 1),l,k)
preceding the operation oπm,l,k(c),l,k that seamlessly connects with it; if the
operation oπm,l,k(c),l,k is a lithography stage operation, according to Eq.
(19), the operation oπm,l,k(c− 1),l,k combined with the mask switching
operation orπm,l,k(c− 1),l ,rπm,l,k (c),l

is considered as one operation oπm,l,k(c− 1),l,k +

orπm,l,k(c− 1),l ,rπm,l,k (c),l
, and thus, there must also be at least one operation

oπm,l,k(c),l,k− 1 or oπm,l,k(c− 1),l,k + orπm,l,k(c− 1),l ,rπm,l,k (c),l
) preceding the operation

oπm,l,k(c),l,k that seamlessly connects with it. Through such recursive op
erations until l = 1, k = 1, c = 1, the forward completion time of the
operation oπm,1,1(1),1,1 is calculated as shown in Eq. (26):

Cπm,1,1(1),1,1 = max
{
Cπm,1,1(1),1,0,Cπm,1,1(0),1,1

}
+ pπm,1,1(1),1,1 (26)

Then, according to Eqs. (15)–(17), it follows that Cπm,1,1(1),1,0 =

Cπm,1,1(1),0,K = 0,Cπm,1,1(0),1,1 = Cπm,0,1(1),0,1 = 0 in Eq. (26). This means that
the start processing time of operation oπm,1,1(1),1,1 is
Cπm,1,1(1),1,1 − pπm,1,1(1),1,1 = 0. Thus, all the operations found during the
recursion are seamlessly connected, so the sum of the times for all op
erations is Cmax(π), satisfying the definition of the critical path (Defi
nition 3).

Similarly, for backward scheduling, suppose that the first stage
operation oπm,1,1(Nm,1,1),1,1 in the first processing cycle has the maximum

completion time Cmax(π). Using Eqs. (23)–(24), we recursively search for
operations that seamlessly connect with it until l = L,k = K,c = Nm,L,K.

Then, the backward completion time of the operation oπm,L,K(Nm,L,K),L,K is

calculated as shown in Eq. (27):

Cπm,L,K(Nm,L,K),L,K = max
{
Cπm,L,K(Nm,L,K),L,K+1,Cπm,L,K(Nm,L,K+1),L,K

}
+ pπm,L,K(Nm,L,K),L,K

(27)

Then, according to Eqs. (20)–(22), it follows that Cπm,L,K(Nm,L,K),L,K+1 =

Cπm,L,K(Nm,L,K),L+1,1 = 0,Cπm,L,K(Nm,L,K+1),L,K = Cπm,L+1,K(1),L+1,K = 0 in Eq. (27).

This means that the start processing time of operation oπm,L,K(Nm,L,K),L,K is

Cπm,L,K(Nm,L,K),L,K − pπm,L,K(Nm,L,K),L,K = 0. Thus, all the operations found during

the recursion are seamlessly connected, so the sum of the times for all
operations is Cmax(π), satisfying the critical path definition (Definition
3).

Therefore, there exists at least one critical path in both the forward
and backward scheduling and the path lengths are the same. Thus,
Theorem 1 is proven. A specific example of Theorem 1 is provided in
the appendix.

4.3. Speed-up evaluation

Theorem 2: Given a scheduling solution π for an instance of the
MRCRHFSP, removing operation oj,l,k from π results in scheduling so
lution πʹ with a makespan of Cmax(πʹ). If the operation oj,l,k is inserted at
position c of machine m in stage k of the l-th cycle, the new scheduling
solution πʹ́ is obtained. If k is a non-photolithography stage, the new
makespan Cnew

max(πʹ́) is calculated according to Eq. (28); if k is a photo
lithography stage, the new makespan Cnew

max(πʹ́) is calculated according to
Eq. (29).

Cnew
max(πʹ́) = max

{
Cmax(πʹ),max

{
Cj,l,k− 1,Cπm,l,k(c− 1),l,k

}
+ pj,l,k

+max
{

Cπm,l,k(c),l,k,Cj,l,k+1

}}
,

m = 1,2, ...,mk; l = 1, 2,⋯, L; c = 1,2, ...,Nm,l,k; k = 1,2, ...,Kandk ∕= k*

(28)

Cnew
max(πʹ́)= max{Cmax(πʹ),max

{
Cj,l,k− 1,Cπm,l,k(c− 1),l,k + trπm,l,k(c− 1),l ,rj,l

}
+

pj,l,k + trj,l ,rπm,l,k (c),l
+ max

{
Cπm,l,k(c),l,k,Cj,l,k+1

}
},

m = 1, 2, ...,mk; l = 1, 2,⋯, L; c = 1, 2, ...,Nm,l,k; k = k*

(29)

Proof. When operation oj,l,k is inserted at position c of machine m in
stage k of the l-th cycle, two cases will arise:

1. After inserting the operation oj,l,k, the remaining operations in the
scheduling solution πʹ are unaffected.

2. After inserting the operation oj,l,k, the start time of some operations in
the scheduling solution πʹ will be delayed.

For the first case, If the insertion point of the operation oj,l,k is at the
midpoint of the machine in the entire processing sequence. i.e.,
c ∕= Nm,L,K + 1, the makespan Cmax(πʹ) will remain unaffected because
other operations are not impacted. Hence Cnew

max(πʹ́) = Cmax(πʹ), it clearly
satisfies Eqs. (28) and (29); If the insertion point of the operation oj,l,k is
at the end position of the machine in the entire processing sequence. i.e.,
c = Nm,L,K + 1, If after insertion, the completion time of the operation
oj,l,k is Cj,L,K > Cmax(πʹ), then Cnew

max(πʹ́) = Cj,L,K; if Cj,L,K ≤ Cmax(πʹ), then
Cnew

max(πʹ́) = Cmax(πʹ); Since the stage in which the operation oj,l,k is
inserted is the final stage, it must be a non-photolithography stage, The
completion time of the operation oj,l,k can be calculated using Eq. (30)
based on the forward scheduling Eq. (18). Moreover, according to the
backward scheduling Eqs. (20)–(22), we get Cπm,L,K(Nm,L,K+1),L,K =

Cπm,L+1,k(1),L+1,k = 0, Cj,L,K+1 = Cj,L+1,1 = 0. That is, Eq. (31) is equivalent
to Eq. (30), Thus, the completion time of scheduling solution πʹ́ after

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

6

inserting operation oj,l,k is calculated as shown in Eq. (32), which is
equivalent to Eq. (28).

Cj,L,K = max
{
Cj,L,K− 1,Cπm,L,K(Nm,L,K),L,K

}
+ pj,L,k (30)

Cj,L,K =max
{
Cj,L,K− 1,Cπm,L,K(Nm,L,K),L,K

}
+pj,l,k+max

{
Cπm,L,K(Nm,L,K+1),L,K,Cj,L,K+1

}

(31)

Cnew
max(πʹ́) = max

{
Cmax(πʹ),Cj,L,K

}
=

max
{

Cmax(πʹ),max
{
Cj,L,K− 1,Cπm,L,K(Nm,L,K),L,K

}
+ pj,l,k

+max
{
Cπm,L,K(Nm,L,K+1),L,K,Cj,L,K+1

}}
(32)

For the second case, if the operation oj,l,k is inserted at position c of
machine m in stage k of the l-th cycle, it may delay the start times of
operations oπm,l,k(c+1),l,k or oj,l,k+1. Similarly, it may also delay the start
times of operations oπm,l,k(c+2),l,k or oj,l,k+2. This process continues recur
sively until k = K, l = L, c = Nm,L,K, If operations are consistently
delayed during this process, it may result in the makespan of the new
scheduling solution being either Cnew

max(πʹ́) = Cπm,L,K(Nm,L,K),L,K > Cmax(πʹ) or

Cnew
max(πʹ́) = Cmax(πʹ) ≥ Cπm,L,K(Nm,L,K),L,K. If the first situation occurs, ac

cording to Definition 3, a new critical path containing operation oj,l,k

will form in the scheduling solution πʹ́ . According to the forward and
backward scheduling calculation rules, for the portion of operations
before operation oj,l,k on the critical path, the forward calculation will

produce a makespan of max
{

Cj,l,k− 1,Cπm,l,k(c− 1),l,k

}
or max

{
Cj,l,k− 1,

Cπm,l,k(c− 1),l,k + trπm,l,k(c− 1),l ,rj,l

}
. For the portion of operations after the oper

ation oj,l,k on the critical path, the backward calculation will produce a

makespan of max
{

Ck,πm
k (c),Cj,l,k+1

}
or max

{
trj,l ,rπm,l,k(c),l

+ Cπm,l,k(c),l,k,

Cj,l,k+1

}}
. Furthermore, according to the proof of Theorem 1, the op

erations on the critical path are seamlessly connected. Therefore, after
inserting operation oj,l,k, the makespan Cπm,L,K(Nm,L,K),L,K is calculated as

shown in Eqs. (33) and (34). Therefore, the calculation of the makespan
Cnew

max(πʹ́) for the new scheduling solution πʹ́ still satisfies Eqs. (28) and
(29).

Cπm,L,K(Nm,L,K),L,K =max
{

Cj,l,k− 1,Cπm,l,k(c− 1),l,k

}
+pj,l,k +max

{
Cπm,l,k(c),l,k,Cj,l,k+1

}

m=1,2, ...,mk; l=1,2,⋯,L;c=1,2, ...,Nm,l,k;k=1,2, ...,Kandk∕= k*

(33)

Cπm,L,K(Nm,L,K),L,K = max
{

Cj,l,k− 1,Cπm,l,k(c− 1),l,k + trπm,l,k (c− 1),l ,rj,l

}
+ pj,l,k+

max
{

trj,l ,rπm,l,k(c),l
+ Cπm,l,k(c),l,k,Cj,l,k+1

}

m = 1,2, ...,mk; l = 1, 2,⋯, L; c = 1,2, ...,Nm,l,k; k = k*

(34)

If during the recursion process to k = K, l = L, c = Nm,L,K, there
exists a stage where operations oπm,l,k(c+1),l,k or oj,l,k+1 are unaffected, then
subsequent operations will also be unaffected. Therefore, The comple
tion time Cπm,L,K(Nm,L,K),L,K of operation oπm,L,K(Nm,L,K),L,K and the makespan

Cmax(πʹ) of the original scheduling solution πʹ are unaffected, and thus
Cnew

max(πʹ́) = Cmax(πʹ), which still satisfies Eqs. (28) and (29). The proof of
Theorem 2 is complete. A specific example of Theorem 2 is provided in
the appendix.

Theorem 3: Given any scheduling solution π for MRCRHFSP,
removing an operation that does not belong to the critical path in any
stage results in a scheduling solution πʹ, and then inserting this operation
into any position on any machine in that stage forms a new scheduling
solution πʹ́ , the makespan of the new scheduling solution πʹ́ is
Cnew

max(πʹ́) ≥ Cmax(π).
Proof. According to the proof of Theorem 1, the operations on the

critical path are seamlessly connected, and the sum of times their du
rations equals the makespan Cmax(π). Therefore, if the operations on the
critical path are not modified, the makespan Cmax(πʹ) = Cmax(π) of the
scheduling solution πʹ after removing operations. Then, according to
Theorem 2, the makespan Cnew

max(πʹ́) of the new scheduling solution πʹ́

after inserting the operation can be calculated using Eqs. (28) and (29).
Since Cmax(πʹ) = Cmax(π), the makespan after the operation insertion
must satisfy Cnew

max(πʹ́) ≥ Cmax(πʹ) = Cmax(π), thus proving Theorem 3. A
specific example of Theorem 3 is provided in the appendix.

5. SDIG algorithm for the MRCRHFSP

Currently, a general framework is commonly followed when solving
scheduling problems using metaheuristic algorithms: first, a MIP model
is formulated to abstract various constraints and decision variables of
the practical scheduling problem into mathematical expressions; then, a
metaheuristic algorithm with efficient evolutionary mechanisms and
neighborhood search strategies is designed to solve the problem
(Fernandez-Viagas, 2022; Sadati & Çatay, 2021; Xu et al., 2024).
However, unlike mathematical programming methods, metaheuristic
algorithms typically operate on encoded sequences (i.e., permutations of
numbers) to explore the solution space, whereas MIP models do not
explicitly contain sequence-type variables. Instead, their decision vari
ables are often represented as binary (0–1) variables. This fundamental
difference in variable representation appears to have caused a certain
degree of disconnection between metaheuristic algorithms and MIP
models, and current literature has rarely clarified or explicitly addressed
the linkage between the two.

In fact, the encoding–decoding mechanism serves as a key bridge
between metaheuristic algorithms and MIP models. Specifically, during
the decoding process, a series of decoding rules (see Section 5.1) are
applied to map the encoding sequence to a set of decision variables that
satisfy the constraints of the MIP model, thereby yielding a feasible
solution. Through this mechanism, the 0–1 solution space defined by the
original MIP model is transformed into a permutation-based solution
space in which the encoding sequence resides. This transformation not
only reduces the search space but also inherently ensures solution
feasibility. This is also the fundamental reason why metaheuristic al
gorithms have demonstrated better performance than mathematical
programming methods when solving various complex production
scheduling problems under an acceptable running time. Therefore,
based on the MIP model of the MRCRHFSP problem developed in Sec
tion 3, this study proposes a metaheuristic algorithm (i.e., the SDIG al
gorithm) that incorporates a well-designed encoding–decoding strategy
and efficient neighborhood operation mechanisms to effectively solve
the MRCRHFSP problem.

Specifically, the search framework of the SDIG algorithm proposed in
this paper consists of two main components: the solution space
decomposition and the parallel search within subspaces. As for the
former part, the novel spatial decomposition (SD) method is developed
to reasonably partition the solution space into a series of subspaces. For
the latter part, the construction-based exploration is designed, which
destructs and constructs the best-known optimal individuals (i.e., job
sequences) in each subspace, and decodes them through heuristic rules,
so as to drive the search to promising areas as soon as possible. As the
solution quality obtained through heuristic decoding still leaves room
for improvement, the two-stage deep exploitation approach is developed
to conduct in-depth and rapid exploitation of the promising regions
within each subspace. More specifically, in the first stage, the critical
path-based multi-neighborhood exploitation is performed on the
promising operation sequences decoded from the best-known in
dividuals. In the second stage, the exploitation focuses on the complete
scheduling solution determined by the optimal operation sequences
identified in the first stage. To enhance the efficiency of the second
stage, the specific Insert-based fast neighborhood search is designed,

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

7

which utilizes the built-in block properties on the critical path to avoid
invalid insertions and adopts the speed-up neighbor evaluation method
to accelerate the search process. Moreover, when a stagnation condition
is met, the reset strategy is added to restart the two-stage exploitation for
diversifying exploitation.

5.1. Individual encoding and decoding strategy

The definitions of the relevant mathematical symbols involved in the
encoding and decoding of the solution are shown in Table 3.

In the SDIG algorithm, the encoded individual π* is formed by ar
ranging the jobs in a specific order. During decoding, scheduling is

performed based on the first available machine (FAM) rule and the first-
out-first-in (FOFI) rule. The FOFI rule establishes the priority sequence
of jobs for the next stage based on the completion times of jobs in the
current stage. The priority sequence for the first stage is determined by
the encoded individual (i.e., the randomly generated initial job
sequence). This rule naturally ensures that a job must complete its op
erations in the previous stage before advancing to the next stage.
Furthermore, in re-entrant scheduling scenarios, the rule ensures that
the next cycle cannot commence until the final stage of the previous
cycle is completed, effectively addressing the reentrant property of the
problem. The FAM rule assigns jobs to the earliest available machine
capable of processing them in the current stage based on the determined
job priority sequence. If multiple machines are available simultaneously,
one is selected randomly, as they share the same priority. Additionally,
machine allocation strictly adheres to machine capability constraints,
considering only machines capable of processing the current job. This
ensures that constraints related to machines with varying capabilities
are automatically satisfied during decoding. As outlined in the proposed
MIP model for MRCRHFSP, the optimization objective is to minimize the
makespan. Once the job sequence and machine allocation are deter
mined, the start times for each job at every stage are scheduled as early
as possible while satisfying all constraints. At this point, a compact
scheduling solution π can be obtained, which includes sequence-
dependent setup times and mask-related resource constraints, depend
ing on the job sequence. This process is illustrated in Fig. 1* in the
Appendix, with the detailed decoding procedure described in Algorithm
1.

Table 3
The symbols are applied in encoding and decoding.

Symbol Description

π* A feasible encoded individual (job sequence). π* = {π*(j)|j = 1,2, ...,J}.
π o The operation sequence is obtained after decoding the encoded individual.

π o = {π o(a)|a = 1,2, ...,J⋅K⋅L}.
π m The machine sequence is obtained after decoding the encoded individual.

π m = {π m(b)|b = 1,2, ...,J⋅K⋅L}.
πm,l,k The processing operation sequence on machine m at stage k in the l-th

cycle is obtained after decoding, πm,l,k =
{

πm,l,k(c)
⃒
⃒c = 1,2, ...,Nm,l,k

}
.

π The processing operation sequence on each machine corresponding to
scheduling solution π, π =

{
π1,1,1 ,π2,1,1 , ...,πm1 ,1,1, ...,πmK ,1,K, ...,πmK ,L,K

}
.

Ck,m The completion time of machine m at stage k for processing tasks.
Cj,l,k The completion time of job j at stage k in the l-th cycle.
Mk The total number of machines at stage k.
L The total number of processing cycles.
K The total number of processing stages.
J The total number of jobs.
Cmax(π) The makespan corresponding to the scheduling solution π.

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

8

5.2. Spatial decomposition

5.2.1. Uniform manifold approximation and projection (UMAP)
Uniform Manifold Approximation and Projection (UMAP), proposed

by McInnes et al. (2020), is a nonlinear dimensionality reduction
method based on a graph-based algorithm. The method operates under
three key assumptions: (1) the data are uniformly distributed on a Rie
mannian manifold, (2) the Riemannian metric is locally constant, and
(3) the manifold is locally connected. The essential idea of UMAP is to
create a predefined k-dimensional weighted UMAP graph representation
of each of the original high-dimensional data points such that the edge-
wise cross-entropy between the weighted graph and the original data is
minimized. Finally, the k-dimensional eigenvectors of the UMAP graph
are used to represent each of the original data points. In recent years,
UMAP has been successfully applied to data analysis in fields such as
biology (Hozumi et al., 2021) and environmental science (Yu et al.,
2023). However, to date, no research has explored the integration of
UMAP with metaheuristic algorithm design.

UMAP takes input data X = {x1, x2, ⋯, xN}, xi ∈ RM and seeks an
optimal low-dimensional representation Y = {y1, y2, ⋯, yN}, yi ∈ RK,
where K < M.

The first stage of UMAP involves constructing a k-neighbor graph,
and defining a distance metric d : X× X→R+, where k is a hyper
parameter, and k << M. Calculate the distance d

(
xi, xj

)
, 1 < j < k of the

k-nearest neighbors of each xi. For any given xi, ρi and σi are defined as
illustrated in Eqs. (35) and (36):

ρi = min
{
d
(
xi, xj

)⃒
⃒1 < j < k, d

(
xi, xj

)
> 0

}
(35)

∑k

j=1
exp

(
− max

(
0, d

(
xi, xj

)
− ρi

)

σi

)

= log2k (36)

where σi is the length scale parameter and ρi ensures that at least one
point with an edge weight of 1 is connected to xi.

Define a finite weighted graph G = (V, E, ω), where V is the set of
vertices (i.e., X), E is the set of edges E =

{(
xi,xj

)⃒
⃒1 ≤ i ≤ N,1 ≤ j ≤ k

}
,

and w is the weight of the edges, computed as illustrated in Eq. (37).

w
(
xi, xj

)
= exp

(
− max

(
0, d

(
xi, xj

)
− ρi

)

σi

)

(37)

UMAP defines an undirected weighted graph G using the symmetry

of G. First, let A be the adjacency matrix of the graph G, and the sym
metry matrix B can be obtained based on Eq. (38).

B = A + AT − A ⊗ AT (38)

Where T is the transpose of the matrix and ⊗ is the Hadamard product.
The undirected weighted graph G (UMAP graph) is then defined by the
adjacency matrix B.

The UMAP employs gravitational repulsion along the boundary and
vertices respectively to evolve an equivalent weighted graph H con
structed from the set of points

{
yi
}
, i = 1, 2, ⋯, N. The gravitational

and repulsive forces exerted by vertices i and j at coordinates yi and yj

are illustrated in Eqs. (39) and (40).

− 2ab‖yi − yj‖
2(b− 1)
2

1 + ‖yi − yj‖
2
2

w
(
xi, xj

)(
yi − yj

)
(39)

2b
(ε + ‖yi − yj‖

2
2)(1 + a‖yi − yj‖

2b
2
)
(
1 − w

(
xi, xj

))(
yi − yj

)
(40)

where a and b represent hyperparameters and ε is a small value that
ensures the denominator is not zero.

Therefore, The objective of UMAP is to identify a low-dimensional
equivalent weighted graph H comprising a point set

{
yi
}
, i = 1, 2, ⋯,

N, such that yi minimizes the edge cross-entropy with the original data,
while simultaneously producing a low-dimensional output that accu
rately reflects the topology of the original data.

The distance metric can be calculated using a variety of methods,
including Euclidean distance, Manhattan distance, Minkowski distance,
and Chebyshev distance, among others. For COPs, the distance metric
between two solutions is often measured using Hamming distance
(Bookstein, 2002) and Kendall-τ distance (Cicirello, 2020). Hamming
distance is a measure of the number of differing characters at corre
sponding positions in two equal-length sequences x1, x2, as illustrated in
Eq. (41). The Kendall-τ distance is defined as the number of pairwise
disagreements between two equal-length sequences x1, x2, as illustrated
in Eq. (42).

dH(x1, x2) =
∑n

i=1
(x1(i) ∕= x2(i)) (41)

Fig. 2. Calculation of distance between two equal-length sequences.

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

9

dτ(x1,x2)=|{(i,j):(j<i)∧[(x1(i)<x1(j)∧x2(i)<x2(j))]}
∨(x2(i)<x2(j)∧x1(i)<x1(j))]}|

i,j=1,2,⋯,n
(42)

However, the aforementioned distance calculation methods lack
consideration of the structural information of solutions in MRCRHFSP.
In production scheduling problems, the sequence of adjacent jobs rep
resents the most intuitive structure of the solution, and high-quality
subspaces often exhibit similar structures. Therefore, based on the
characteristics of such production scheduling problems, we define two
adjacent positions in a sequence as a block structure and propose a
distance metric method based on block structures, as shown in Eq. (43).
Taking two equal-length sequences x1=[2,1,6,5,4,3] and x2= [1,4,3,6,5,
2] of length n=6 in Fig. 2 as an example, both contain n− 1= 5 block
structures. There are 2 identical block structures between the block
structure block(x1)={[2,1],[1,6],[6,5],[5,4],[4,3]} in x1 and the block
structure block(x2)={[1,4],[4,3],[3,6],[6,5],[5,2]} in x2, so the distance
between them is d(x1, x2)= 5− 2= 3.

d(x1, x2) = (n − 1) −
∑n− 1

i=1

∑n− 1

j=1
((x1(i), x2(i + 1))

= (x1(j), x2(j + 1))), i, j = 1, 2, ⋯, n − 1 (43)

5.2.2. Improved k-means algorithm
The k-means algorithm is a typical clustering algorithm in data

mining, first introduced by Macqueen (n.d). It is one of the simplest
unsupervised learning algorithms. The algorithm randomly selects K
initial centroids, assigns data points to the nearest centroid to form
clusters, and then updates the centroid to the mean of the points within
the cluster. This process iterates until the centroids no longer change
significantly, ultimately dividing the data into K clusters, aiming to
minimize the sum of squared distances within clusters (Na et al., 2010).

From the above description, it is clear that to apply the k-means
clustering algorithm for a reasonable decomposition of the reduced so
lution space in combinatorial optimization problems, two key issues
need to be addressed: 1. Determining the number of clusters K. 2.
Determining the method for updating the centroid of each cluster.
Therefore, this section improves the conventional k-means clustering
algorithm from these two aspects. The symbol definitions corresponding
to the improved k-means algorithm are shown in Table 4.

The solution space of the MRCRHFSP is “vast,” containing various
peaks (local maxima) and valleys (local minima). When solving
MRCRHFSP, the objective is to find a sufficiently deep valley and its
bottom. Ideally, when clustering and decomposing the solution space of
MRCRHFSP, the number of clusters (K value) should correspond to the
number of valleys, with the centroid of each cluster located at the bot
tom of the respective valley. However, in practice, if the K value is too
large, it may result in the algorithm performing subsequent searches in
relatively shallow valleys after space decomposition, wasting significant
search resources and failing to find truly high-quality solutions. There
fore, We use the depth of the valleys, as shown in Eq. (44), as the
objective function to determine the K value and select the individual
with the lowest fitness in each cluster as the centroid to achieve a
reasonable decomposition of the solution space.

min
(
max

(
f
(
xi,k

))
− f(xck)

)
≥

(
max(f(xi)) − min

(
f
(
xj
)))/

α,
∀xi, xj ∈ C, ∀xi,k ∈ Ck, k = 1, 2, ⋯, K,α ∈ R (44)

Table 4
The symbols are applied in the improved k-means algorithm.

Symbol Description

K The total number of clusters in clustering
xi,xj Objects are to be clustered, and indexed as i and j.
C The set of objects to be clustered C = {x1,x2, ⋯xn}, n is the total

number of objects to be clustered.
xi,k,xj,k Objects indexed as i and j in the k-th cluster.
Ck The k-th cluster set Ck =

{
x1,k ,x2,k, ⋯xnk ,k

}
, nk is the total number of

objects in the k-th cluster.
xck The central object of the k-th cluster.
di,k The Euclidean distance between object xi and the central object xck of k-

th cluster
f(xi),

f
(
xi,k

)
The fitness values (makespan) corresponding to xi and xi,k

α A hyperparameter that determines the number of clusters K

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

10

In Eq. (44), max(f(xi)) − min
(
f
(
xj
))

represents the maximum
fitness difference among the objects C = {x1, x2, ⋯xn} to be clustered,
indicating the height difference between the highest peak and the lowest
valley in the entire solution landscape.

(
max(f(xi)) − min

(
f
(
xj
)))

/α de
notes the depth target of the valleys we aim to identify, and parameter α
requires further determination through subsequent parameter experi
ments. Assuming that the objects C = {x1, x2, ⋯xn} to be clustered have
been divided into K clusters (valleys), max

(
f
(
xi,k

))
− f(xck) represents

the difference in fitness between the object with the highest fitness in the
k-th cluster and the cluster center (valley bottom), which is the depth of
the k-th cluster (valley). Evidently, as the value of K increases, the depth
of each cluster (valley) will gradually become shallower. Therefore, our
objective is to find the largest possible value of K while ensuring that the
depth of all clusters (valleys) remains greater than
(
max(f(xi)) − min

(
f
(
xj
)))

/α. The specific process of the improved k-
means clustering algorithm is illustrated in Algorithm 2.

5.3. Construction-based exploration

After decomposing the solution space of MRCRHFSP using the SD
method described in Section 5.2, the algorithm has achieved an initial
perception of the solution space but has not yet identified the truly
promising regions within the subspaces. Further exploration of these
decomposed subspaces is therefore necessary. The destruction and
construction mechanism in the IG algorithm explores the solution space
by breaking a candidate feasible solution and reconstructing it (Ruiz &
Stützle, 2007). Currently, the IG algorithm has achieved favorable re
sults in solving scheduling problems (J.-Q. Li et al., 2022; Ozsoydan,
2021; Zhao et al., 2022). Inspired by the destruction and construction
mechanism of the IG algorithm, this section designs a construction-
based exploration operation, as illustrated in Fig. 3, to explore prom
ising regions within the decomposed subspaces, as shown in Fig. 4. The
definitions of symbols involved in the construction-based exploration
are provided in Table 5, and the detailed process is as follows:

First of all, the destruction and construction are applied to the best-
known encoded individual π*

k in the subspace to generate a new encoded
individual πʹ

k, in order to achieve a rough exploration of the subspace on
a large scale. If Cmax

(
πʹ

k
)
≤ Cmax

(
π*

k
)
, it indicates that a new promising

region has been discovered within the subspace. The swap neighbor

hood operation is used to construct a set S
(
πʹ

k
)
=

{
πʹ

k,1, πʹ
k,2, ..., πʹ

k,N

}

that includes πʹ
k and all its neighboring individuals, and a small-scale

detailed exploration is conducted on the promising region. Finally, the
best-known individual πk is moved to the optimal individual within

S
(
πʹ

k
)
, i.e. π*

k = min
(

Cmax

(
πʹ

k,n

))
, πʹ

k,n ∈ S
(
πʹ

k
)
. As described in Section

5.2.1, The distance metric method based on block structures shows that
the number of jobs destroyed β determines the exploration radius, which
dictates the granularity of the subspace exploration. If the radius is too
small, it is difficult to escape local optima; if it is too large, the explo
ration may become too coarse to identify the truly promising regions.
Therefore, the number of jobs destroyed β will be determined through
parameter experiments. In summary, the specific process of
construction-based exploration is illustrated in Algorithm 3.

Fig. 3. The construction-based exploration operation process.

Fig. 4. Explore promising solution regions within the subspace.

Table 5
The symbols are applied in the construction-based exploration.

Symbol Description

π*
k The best-known encoded individual in subspace k

πʹ
k The new encoded individual is generated through destruction and

construction.
S
(
πʹ

k
)

The set of N neighboring individuals of πʹ
k generated by swap

neighborhood operations S
(
πʹ

k
)
=

{
πʹ

k, πʹ
k,1,πʹ

k,2, ..., πʹ
k,N

}
.

β The number of destroyed jobs
Cmax

(
π*

k
)
,

Cmax
(
πʹ

k
)

The makespan corresponding to decoded individuals π*
k and πʹ

k.

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

11

5.4. Two-stage deep exploitation

This paper explores promising solution regions within the subspace
through iterative destruction and construction of encoded individuals
within the subspace during the construction-based exploration. By
decoding the encoded individuals, the corresponding scheduling solu
tions are obtained. Although the FAM and FOFI rules in the decoding
process can ensure the quality of the scheduling solutions to a certain
extent, there is still room for improvement. Therefore, this section de
signs a two-stage deep exploitation method to thoroughly exploit
promising solution regions within the subspace. Specifically, starting
from the scheduling solution obtained by decoding the best-known
encoded individual in the subspace, multi-neighborhood operations
are utilized to search the neighboring solutions around this solution,
thereby identifying high-quality solutions deeply embedded in this re
gion. Meanwhile, as shown by Theorem 3 in Section 4.3, reducing the
makespan (optimization objective) is only possible by adjusting the
processing operations of jobs on the critical path. Therefore, all opera
tions in the two-stage deep exploitation designed in this section are
based on the critical path, effectively avoiding a large number of invalid
neighborhoods and thereby improving the search efficiency of the
algorithm.

Since this section is designed based on the theory proposed in Section
4, the definitions of symbols involved in this section are the same as
those in Section 4.

5.4.1. Multi-neighborhood exploitation (First stage)
Studies have shown that efficient neighborhood operation strategies

can significantly enhance the search depth of the algorithm (Qian et al.,
2023). For example, H. Ding & Gu (2020) in their study on the flexible
job shop scheduling problem, and He et al. (2023) in their work on
multi-objective flow shop group scheduling problems effectively avoi
ded numerous invalid neighborhood operations through critical path-
based methods. Moreover, among commonly used neighborhood
search operations, swap and insert neighborhood operations generate
new solutions that are closest to the original ones (Wang & Qian, 2012),
facilitating algorithmic search in a more compact solution space. Based
on the above research findings and Theorem 3 proposed in Section 4.3 of
this paper, the multi-neighborhood exploitation strategy was developed
to perform multi-neighborhood searches on the operation sequence
(corresponding to decision variable Yj,j́ ,m,l) obtained by decoding the
optimal encoded individual in the subspace, thereby achieving the
search for promising solution regions in the subspace. The specific
process is shown in Algorithm 4.

Fig. 5. The swap neighborhood for the operation sequence.

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

12

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

13

Swap neighborhood operation: randomly select a processing opera
tion belonging to the critical set in stage k of l-th cycle, swap this
operation with all non-critical path operations in stage k of l-th cycle,
and reassign machines for the operations based on the FAM rule. Taking
the operation sequence obtained from decoding in the appendix as an
example, the swap neighborhood operation is illustrated in Fig. 5.

Insert neighborhood operation: Randomly select a processing oper
ation belonging to the critical set in stage k of l-th cycle, remove this
operation from the operation sequence, and reinsert it into all possible
positions in stage k of l-th cycle. Taking the operation sequence obtained
from decoding in the appendix as an example, the insert neighborhood
operation is illustrated in Fig. 6.

5.4.2. Insert-based fast neighborhood exploitation (Second stage)
After the neighborhood search on the operation sequence in the first

stage, we have optimized the operation sequence (corresponding to
decision variable Yj,j́ ,m,l), but there are still shortcomings in the opti
mization of machine assignment for operations (corresponding to deci
sion variable Xj,m,l,k). Therefore, we designed an Insert-based fast
neighborhood exploitation method to further optimize the scheduling
solution obtained after the first stage of exploitation from the perspec
tive of machine assignment for operations. In this process, using the
speed-up evaluation method proposed in Theorem 2 in Section 4.3, we
can significantly reduce the complexity of calculating the makespan for
the newly generated scheduling solution, thereby accelerating the

search efficiency. The Insert-based fast neighborhood exploitation is
described as follows: Traverse all the operations in the critical path
sequentially, remove the operation from the current machine, and insert
it into all possible positions on the machines of the same stage. Then, use
the speed-up evaluation method to compute the makespan. If the
makespan improves, update the critical path and restart from the first
operation on the critical path until the critical path no longer updates
and all operations on the critical are traversed. The specific process is
shown in Algorithm 5. Using the complete scheduling solution in the
appendix as an example, the Insert-based fast neighborhood exploitation
is shown in Fig. 7.

5.4.3. Reset strategy
The scheduling problem’s solution space determined by neighbor

hoods or operations often has a big-valley landscape, where a large
number of local optima are densely scattered in the regions near the
bottom of the big valley (Z. C. Li et al., 2019; Qian et al., 2023). In the
proposed SDIG, two-stage deep exploitation utilizes several efficient
neighborhood searches to try to guide the search from the current
promising solution (i.e., the promising region found by the construction-
based exploration) in each subspace to the bottom of the big valley. This
means that the closer the searched or exploited position is to the bottom
of the big valley, the easier it is for the exploitation to fall into some local
optima.

Fig. 6. The insert neighborhood for the operation sequence.

Fig. 7. The Insert-based fast neighborhood exploitation.

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

14

In the first stage, two-stage deep exploitation randomly selects crit
ical and non-critical operations to construct neighborhood search, Thus,
if this exploitation is performed multiple times from the same promising
region, each time it is likely to reach the local optimal region at a
different depth through a different downward search path. That is, in
any subspace, when executing two-stage deep exploitation from the
corresponding promising region and falling into a local optimum (i.e.,
no improvement is observed after the number of J⋅L⋅K⋅ρ iterations,
where ρ is a variable parameter), the reset strategy should be adopted to
reset the current search position to the original promising region, and
then this exploitation should be executed again. This may boost the
search to find a local optimal region at a deeper position through other
paths, thereby obtaining a better solution. Obviously, combining the
reset strategy with two-stage deep exploitation is an effective mode to
prevent the proposed SDIG from getting stuck in local optima too early
and to achieve deeper exploitation, which is beneficial for improving the
SDIG’s performance.

Based on these analyses, the above reset strategy is incorporated into
the exploitation part of the SDIG.

5.5. Overall procedure of SDIG

Based on the above algorithm description, the proposed SDIG algo
rithm framework is shown in Fig. 8. The specific process is as follows:

Step 1: Initialization. A population of 200 encoded individuals is
randomly generated, and the critical SDIG parameters are initialized.
These include the SD parameter α, the subspace exploration radius

parameter β, the exploration time ratio parameter γ, and the reset
strategy parameter ρ.

Step 2: All encoded individuals in the population are decoded and
evaluated. // Algorithm 1.

Step 3: Utilize UMAP to perform dimensionality reduction and
visualize the population.

Step 4: Utilize the improved k-means clustering algorithm to cluster
and decompose the dimensionally reduced population, achieving solu
tion space decomposition and identifying the set pop =

{
π*

1, π*
2, ⋯, π*

K
}

formed by the best-known individual in each subspace. // Algorithm 2.
Step 5: Determine whether the exploration termination time has

been met. If not, go to Step 6; if met, go to Step 7.
Step 6: Perform construction-based exploration on individuals in

pop, update pop =
{

π*
1, π*

2, ⋯, π*
K
}
, and return to Step 5. // Algorithm 3.

Step 7: Perform the multi-neighborhood exploitation (first stage
exploitation) on the operation sequence corresponding scheduling so
lution πn obtained by decoding the individual π*

n in pop. // Algorithm 4.
Step 8: Determine whether the scheduling solution πn has improved

after the first stage. If the scheduling solution πn has improved, go to
Step 9; otherwise, go to Step 10.

Step 9: Perform the Insert-based fast neighborhood exploitation
(second stage exploitation) on the improved scheduling solution πn ob
tained in the first stage, and update the historical global best-known
solution. // Algorithm 5.

Step 10: Determine whether πn meets the reset condition. If this
condition is met, proceed to Step 11; otherwise, return to Step 7.

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

15

Step 11: re-decoding individual π*
n in the corresponding subspace to

obtain scheduling solution πn.
Step 12: Check if the termination time condition is met. If not, return

to Step 7; otherwise, terminate the algorithm and output the historical
best scheduling solution.

5.6. Time complexity and space complexity of the SDIG algorithm

Before analyzing the time complexity and space complexity of the
proposed SDIG algorithm, the meanings of the following symbols need
to be clarified: N represents the number of randomly generated initial
encoding individuals, and Nk is the number of decomposed subspaces
(number of clusters). d represents the dimensionality of the data to be
clustered, and t is the number of iterations in the k-means algorithm. J

Fig. 8. The flowchart of SDIG for MRCRHFSP.

Table 6
Parameter ranges for test instances.

Parameter Size

Number of jobs 10, 15, 20
Number of stages 5, 6, 7
Number of reentrances 4, 6, 10
Number of machines in a stage 2, 3
Processing times DU[1,30]
Mask switch time DU[1,5]

Table 7
Values of five parameters for each factor level.

Parameters Factor levels

1 2 3 4

α 1.0 1.3 1.6 1.9
β 2 4 6 8
γ 0.1 0.2 0.3 0.4
ρ 0.2 0.4 0.6 0.8

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

16

denotes the number of jobs, K is the number of processing stages, L is the
number of re-entries, and M is the total number of machines. β repre
sents the number of jobs destroyed in the construction-based explora
tion. Gmax is the number of iterations of the algorithm within the
specified maximum runtime.

According to Fig. 8, the proposed SDIG algorithm consists of the
following components: (1) Population initialization, (2) Space decom
position, (3) Construction-based exploration, and (4) Two-stage deep
exploitation. In this algorithm, the time complexity of decoding and
evaluating (computing the objective function value) for an individual is
O(J⋅L⋅K⋅M), and the space complexity is O(J⋅L⋅K⋅M). Therefore, the time
complexity of population initialization with N individuals is
O(N⋅J⋅L⋅K⋅M), and the space complexity is O(N⋅J⋅L⋅K⋅M). For the space
decomposition, the time complexity of the dimensionality reduction and
visualization step using the UMAP algorithm is O(N⋅log(N)), and the
space complexity is O(N). The time complexity of the k-means clustering
step is O(N⋅Nk⋅t⋅d), and the space complexity is O(N). The time

Fig. 9. Main effects plot of SDIG parameters.

Table 8
ANOVA results of SDIG parameters.

Source Sum of Squares Df Mean Square F-ratio P-value

Main effects
α 0.789061 3 0.26302 12.86 0.0000
β 0.538037 3 0.179346 8.77 0.0000
γ 0.301062 3 0.100354 4.91 0.0026
ρ 6.21302 3 2.07101 101.23 0.0000
Interactions
α*β 0.301656 9 0.0335173 1.64 0.1069
α*γ 0.174174 9 0.0193527 0.95 0.4865
α*ρ 0.204652 9 0.0227391 1.11 0.3564
β*γ 0.246218 9 0.0273575 1.34 0.2201
β*ρ 0.121263 9 0.0134737 0.66 0.7455
γ*ρ 0.200802 9 0.0223114 1.09 0.3715
Residual 3.86652 189 0.0204578 ​ ​
Total 12.9565 255 ​ ​ ​

Fig. 10. Interaction effect plot of SDIG parameter pairs.

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

17

Table 9
Comparison results of the SDIG with the variants.

Instances SDIG_v1 SDIG_v2 SDIG_v3 SDIG_v4 SDIG_v5 SDIG

BST WST AVG BST WST AVG BST WST AVG BST WST AVG BST WST AVG BST WST AVG

10 × 5 × 4 0.47 2.31 1.06 ​ 2.56 3.47 2.64 ​ 1.86 3.70 2.01 ​ 0.93 2.56 1.46 ​ 0.00 2.55 1.20 ​ 0.00 2.08 1.06
10 × 5 × 6 0.49 2.45 1.21 ​ 1.80 3.27 2.55 ​ 0.82 2.45 1.57 ​ 0.16 1.96 1.16 ​ 0.49 2.61 1.39 ​ 0.00 1.96 1.00
10 × 5 × 10 0.62 1.53 0.64 ​ 1.75 2.45 1.82 ​ 0.92 2.45 1.22 ​ 0.82 2.15 1.20 ​ 0.00 1.43 0.66 ​ 0.00 1.23 0.57
10 × 6 × 4 0.44 2.40 1.46 ​ 2.40 5.24 3.54 ​ 1.31 2.40 1.92 ​ 0.66 2.84 1.64 ​ 0.44 2.84 1.81 ​ 0.00 2.18 1.16
10 × 6 × 6 0.29 1.62 0.81 ​ 1.17 3.52 2.23 ​ 0.88 1.91 1.26 ​ 0.29 1.32 0.90 ​ 0.29 2.50 0.98 ​ 0.00 1.17 0.70
10 × 6 × 10 0.55 3.94 1.72 ​ 1.19 3.76 2.55 ​ 0.64 2.84 1.53 ​ 0.09 2.94 1.52 ​ 0.55 2.39 1.54 ​ 0.00 2.11 1.28
10 × 7 × 4 0.36 1.62 0.72 ​ 0.54 2.71 1.41 ​ 0.54 1.08 0.90 ​ 0.00 1.08 0.90 ​ 0.54 1.44 0.81 ​ 0.00 0.90 0.70
10 × 7 × 6 0.42 1.54 1.09 ​ 1.26 2.66 1.80 ​ 0.98 1.96 1.26 ​ 0.00 1.82 1.09 ​ 0.42 1.54 1.07 ​ 0.28 1.82 0.95
10 × 7 × 10 0.00 1.54 0.52 ​ 0.16 1.46 0.82 ​ 0.16 0.81 0.51 ​ 0.08 1.05 0.35 ​ 0.00 0.81 0.52 ​ 0.00 0.65 0.41
15 × 5 × 4 0.17 1.52 0.95 ​ 0.51 1.69 1.08 ​ 1.52 3.55 2.42 ​ 0.51 1.52 1.01 ​ 0.17 1.69 1.00 ​ 0.00 1.35 0.83
15 × 5 × 6 0.93 2.32 1.36 ​ 1.28 3.02 2.15 ​ 1.39 3.14 2.46 ​ 0.70 2.32 1.68 ​ 0.93 2.09 1.44 ​ 0.00 1.74 1.15
15 × 5 × 10 0.30 1.80 0.86 ​ 0.75 1.65 1.20 ​ 0.97 2.09 1.55 ​ 0.00 1.72 0.79 ​ 0.52 1.50 0.99 ​ 0.00 1.35 0.73
15 × 6 × 4 0.34 2.39 0.97 ​ 1.19 4.09 2.45 ​ 0.17 1.70 1.12 ​ 0.17 2.04 1.02 ​ 0.34 1.87 1.12 ​ 0.00 1.36 0.75
15 × 6 × 6 0.92 2.64 1.09 ​ 1.49 2.75 2.14 ​ 0.92 1.38 1.08 ​ 0.69 1.72 1.09 ​ 0.92 1.72 1.26 ​ 0.00 1.72 1.07
15 × 6 × 10 0.63 1.67 0.93 ​ 0.56 1.95 1.25 ​ 1.11 1.95 1.53 ​ 0.28 1.74 0.88 ​ 0.63 1.46 1.00 ​ 0.00 1.39 0.70
15 × 7 × 4 0.33 1.99 1.40 ​ 2.66 4.98 3.85 ​ 1.16 2.49 1.88 ​ 0.33 3.49 1.43 ​ 0.33 2.49 1.71 ​ 0.00 1.33 0.73
15 × 7 × 6 0.33 2.52 1.54 ​ 1.20 3.61 2.39 ​ 0.88 2.08 1.64 ​ 0.44 3.06 1.43 ​ 0.33 2.08 1.40 ​ 0.00 2.08 1.18
15 × 7 × 10 0.07 1.68 1.05 ​ 0.94 2.02 1.46 ​ 0.34 1.82 1.18 ​ 0.00 1.48 0.71 ​ 0.40 1.82 1.02 ​ 0.00 1.21 0.67
20 × 5 × 4 0.27 1.49 0.80 ​ 0.81 3.53 2.51 ​ 0.54 1.49 0.87 ​ 0.27 1.09 0.80 ​ 0.27 1.36 0.73 ​ 0.00 1.36 0.57
20 × 5 × 6 1.31 2.71 1.92 ​ 2.10 4.20 3.00 ​ 2.19 4.47 3.53 ​ 0.44 3.15 2.06 ​ 1.31 2.71 1.92 ​ 0.00 2.45 1.67
20 × 5 × 10 0.50 1.96 1.75 ​ 1.06 2.86 1.79 ​ 2.30 3.53 2.89 ​ 0.00 2.02 1.17 ​ 0.50 1.90 1.32 ​ 0.17 1.57 1.01
20 × 6 × 4 1.07 2.01 1.25 ​ 2.28 4.43 3.07 ​ 1.48 2.82 2.07 ​ 0.67 2.15 1.21 ​ 1.07 3.36 1.60 ​ 0.00 1.48 0.90
20 × 6 × 6 0.86 2.39 1.22 ​ 0.96 2.87 1.94 ​ 1.82 2.87 2.40 ​ 0.29 1.82 1.55 ​ 0.86 2.11 1.39 ​ 0.00 1.72 1.16
20 × 6 × 10 0.60 1.64 1.07 ​ 1.04 2.13 1.63 ​ 1.42 2.57 2.03 ​ 0.22 1.69 1.02 ​ 0.60 1.58 1.00 ​ 0.00 1.53 0.79
20 × 7 × 4 0.76 2.28 1.57 ​ 1.39 2.78 2.02 ​ 1.64 3.03 2.29 ​ 0.88 2.15 1.49 ​ 0.76 2.02 1.26 ​ 0.00 1.64 1.07
20 × 7 × 6 0.00 1.42 0.80 ​ 1.88 2.76 2.15 ​ 0.89 1.87 0.94 ​ 0.63 1.51 0.72 ​ 0.00 1.60 0.73 ​ 0.98 1.24 0.85
20 × 7 × 10 0.54 1.13 0.77 ​ 0.48 1.51 1.08 ​ 0.70 1.34 1.01 ​ 0.48 1.18 0.82 ​ 0.54 1.29 0.86 ​ 0.00 1.02 0.65
Average 0.50 2.02 1.13 ​ 1.31 3.01 2.09 ​ 1.09 2.35 1.67 ​ 0.37 1.96 1.15 ​ 0.49 1.95 1.18 ​ 0.05 1.55 0.90

F.-S. Zhou et al.
Computers &

 Industrial Engineering 208 (2025) 111330

18

complexity of the construction-based exploration is O
(
β⋅Nk⋅J2⋅L⋅K⋅M

)
,

and the space complexity is O(Nk⋅J⋅L⋅K⋅M). The time complexities of the
critical path-based swap neighborhood search and insert neighborhood
search in the two-stage deep exploitation are both O

(
J2⋅L⋅K⋅M

)
. Thus,

the time complexity of the first-stage exploitation is O
(
2⋅Nk⋅J2⋅L⋅K⋅M

)

and the space complexity is O(Nk⋅J⋅L⋅K⋅M). The time complexity of using
the speed-up evaluation method to compute the objective function for
individuals in the insert-based fast neighborhood exploitation is O(1).
Therefore, the time complexity of the Insert-based fast neighborhood
exploitation is O(Nk⋅J⋅L⋅K⋅M), and the space complexity is
O(Nk⋅J⋅L⋅K⋅M).

In summary, the time complexity of the SDIG algorithm is
O(N⋅J⋅L⋅K⋅M)+O(N⋅log(N))+O(N× Nk × t× d)+Gmax⋅{O((β⋅J+ 2⋅J+
1)⋅(Nk⋅J⋅L⋅K⋅M))}, and the space complexity is O(Nk⋅J⋅L⋅K).

The two-stage deep exploitation in the SDIG algorithm is designed
based on the critical path, which effectively avoids a large number of
invalid neighborhood operations. It reduces the time complexity of
traditional swap and insert neighborhoods from O

(
J3⋅L⋅K⋅M

)
to

O
(
J2⋅L⋅K⋅M

)
. Additionally, the speed-up evaluation method (used only

in the insert neighborhood) reduces the complexity of computing the
objective function from O(J⋅L⋅K⋅M) to O(1). The combination of the
critical path and accelerated evaluation greatly enhances the search
efficiency of the algorithm. As a result, the SDIG algorithm can perform
more search operations within the same amount of time. This, in turn,
demonstrates superior performance in the subsequent experimental
sections.

6. Experimental comparisons and statistical analysis

In this section, numerical simulations and experiments on different
scales of MRCRHFSP instances are conducted to verify the effectiveness
of SDIG in solving the MRCRHFSP problem. First, a detailed experi
mental setup is introduced in Section 6.1. Subsequently, the impact of
critical parameters in SDIG is discussed in Section 6.2. In Section 6.3,
five variant experiments are designed to demonstrate the effectiveness
of key components in SDIG. Finally, in Section 6.4, SDIG is compared
with some current advanced algorithms through comparative statistical
analysis.

6.1. Experimental setup

Due to the proprietary nature of real-world wafer production data
and the difficulty of accessing such data, we generated test instances for
MRCRHFSP by referring to the dataset generation methods of Cho
(2011) for reentrant hybrid flow shop scheduling problems and Ham
(2018) for dual-resource-constrained lithography scheduling problems.

Based on the parameter ranges in Table 6, a total of 27 test instances
were created.

To evaluate the performance of the algorithm, the relative percent
age deviation (RPD) shown in Eq. (45) is used as a performance metric.

RPD =
fa − fb

fb
× 100 (45)

Where fb is the best response value generated by all comparison algo
rithms, and fa is the response value obtained by the current algorithm.
The RPD metric quantifies the discrepancy between the response values
of all algorithms and the best response value obtained currently. The
smaller the RPD value, the better the algorithm performance. To ensure
the fairness of all experiments, the runtime of each algorithm is set to
J3 × K × L × 0.005 seconds. Finally, all algorithms are developed using
Python 3.9 based on PyCharm and run on a PC with Windows 11 OS, an
Intel (R) Core (TM) i5-12400 2.50 GHz CPU, and 16 GB RAM.

6.2. Parameter calibration

Appropriate parameters play a crucial role in the solution quality and
computational efficiency of SDIG. There are four key parameters in
SDIG: SD parameter α, subspace exploration radius parameter β, and
exploration time ratio parameter γ, as well as the reset strategy
parameter ρ. This section uses the design of experiments (DOE) method
to conduct parameter analysis experiments, thereby determining the
parameter values for SDIG.

In this section, four instances with scales of 10× 5× 6, 10× 6× 6,
15× 5× 6, and 10 × 4 × 6 were selected from the MRCRHFSP test
dataset for parameter experiments. The parameter level values are
shown in Table 7. To statistically reveal the main effects and interaction
effects of the parameters, a full factorial experimental design was carried
out for all combinations, including 44 = 256 parameter combinations.
For each parameter combination, SDIG performed 10 independent ex
periments with a termination condition of 10 s, and the average fitness
value (AVF) was calculated according to Eq. (46) as the response value
for each parameter combination.

AVF =
1
R
×
∑R

r=1
fr (46)

where fr is the objective function value obtained by the algorithm under
the given conditions in the r-th experiment for each instance, and R is the
number of experiments.

Analysis of Variance (ANOVA), as a powerful tool for parameter
analysis, is used to determine whether there are significant differences
among multiple group means. In recent years, it has been widely applied

Fig. 11. Means plots with 95% Tukey’s HSD confidence interval and box plots for SDIG against five variants.

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

19

Table 10
Comparison results of SDIG with the state-of-the-art algorithms.

Instances CAGA CSA HEA DABC IGwS SDIG

BST WST AVG BST WST AVG BST WST AVG BST WST AVG BST WST AVG BST WST AVG

10 × 5 × 4 7.87 9.26 8.68 ​ 1.16 4.17 2.75 ​ 1.62 3.47 2.55 ​ 1.85 3.70 2.55 ​ 1.16 2.08 1.50 ​ 0.00 2.08 1.06
10 × 5 × 6 5.71 7.18 6.46 ​ 0.82 2.45 1.76 ​ 0.16 2.28 1.45 ​ 0.82 2.45 1.71 ​ 0.82 1.96 1.32 ​ 0.00 1.79 0.83
10 × 5 × 10 7.28 8.00 7.71 ​ 1.54 4.00 2.82 ​ 0.72 2.56 1.87 ​ 1.44 3.18 2.08 ​ 1.44 1.74 1.60 ​ 0.00 1.85 0.98
10 × 6 × 4 8.73 9.83 9.32 ​ 0.00 4.37 1.53 ​ 0.00 1.53 1.05 ​ 0.66 2.40 1.42 ​ 1.31 2.62 1.86 ​ 0.00 2.40 1.46
10 × 6 × 6 6.30 7.76 7.13 ​ 0.73 2.34 1.83 ​ 0.88 1.90 1.43 ​ 0.88 2.34 1.60 ​ 0.29 1.76 0.95 ​ 0.00 1.32 0.51
10 × 6 × 10 5.70 6.89 6.44 ​ 1.19 3.31 2.47 ​ 1.47 2.48 1.84 ​ 1.47 3.31 2.51 ​ 1.75 3.03 1.75 ​ 0.00 1.75 1.72
10 × 7 × 4 3.97 5.96 5.00 ​ 0.18 1.44 0.94 ​ 0.00 1.08 0.72 ​ 0.54 1.62 0.90 ​ 0.72 0.90 0.79 ​ 0.00 0.90 0.47
10 × 7 × 6 5.74 7.00 6.44 ​ 0.84 2.38 1.58 ​ 0.84 1.96 1.29 ​ 0.56 1.82 1.40 ​ 0.00 1.68 0.81 ​ 0.14 1.40 0.95
10 × 7 × 10 3.43 4.40 3.75 ​ 0.57 1.55 1.22 ​ 0.73 1.71 1.17 ​ 0.82 2.04 1.40 ​ 1.22 1.63 1.40 ​ 0.00 1.14 0.54
15 × 5 × 4 4.37 5.55 4.79 ​ 2.18 4.54 3.29 ​ 2.18 3.70 2.40 ​ 1.68 3.87 2.54 ​ 1.18 3.53 2.22 ​ 0.00 1.01 0.44
15 × 5 × 6 4.84 5.65 5.21 ​ 2.08 4.04 3.32 ​ 2.31 3.34 2.84 ​ 1.38 4.27 2.28 ​ 1.73 2.42 2.11 ​ 0.00 1.04 0.66
15 × 5 × 10 4.14 4.89 4.63 ​ 2.11 3.46 2.89 ​ 1.88 3.08 2.41 ​ 2.18 2.78 2.65 ​ 1.73 2.33 2.08 ​ 0.00 2.26 1.39
15 × 6 × 4 7.69 9.06 8.36 ​ 1.37 3.76 2.75 ​ 1.71 3.25 2.80 ​ 1.54 2.91 2.34 ​ 0.68 1.71 1.32 ​ 0.00 1.37 0.65
15 × 6 × 6 4.23 5.26 4.81 ​ 1.03 2.06 1.59 ​ 0.69 1.83 1.39 ​ 1.14 2.63 1.87 ​ 0.34 1.37 0.61 ​ 0.00 1.03 0.74
15 × 6 × 10 3.61 4.73 4.25 ​ 2.08 3.06 2.54 ​ 0.97 1.88 1.47 ​ 1.67 3.06 2.34 ​ 1.18 2.08 1.63 ​ 0.00 1.39 0.65
15 × 7 × 4 6.78 8.43 7.93 ​ 1.65 3.31 2.60 ​ 1.65 3.31 2.78 ​ 0.99 3.97 2.51 ​ 0.50 2.15 1.07 ​ 0.00 1.49 0.89
15 × 7 × 6 5.01 6.09 5.67 ​ 0.87 3.05 1.93 ​ 1.20 2.61 1.86 ​ 1.09 2.72 1.92 ​ 0.54 1.96 1.16 ​ 0.00 1.52 0.99
15 × 7 × 10 5.62 7.03 6.53 ​ 1.07 2.48 1.96 ​ 0.80 1.61 1.10 ​ 0.80 1.20 0.80 ​ 0.47 1.20 0.89 ​ 0.00 0.80 0.58
20 × 5 × 4 2.85 3.66 3.13 ​ 0.68 2.44 1.27 ​ 0.68 1.76 1.41 ​ 0.54 1.90 1.12 ​ 0.27 1.22 0.66 ​ 0.00 0.68 0.47
20 × 5 × 6 4.67 5.45 5.08 ​ 2.59 4.75 3.85 ​ 0.00 3.20 1.74 ​ 3.03 4.24 3.76 ​ 1.82 2.68 2.36 ​ 0.00 1.38 0.60
20 × 5 × 10 3.10 3.82 3.39 ​ 1.66 3.32 2.79 ​ 0.00 2.71 1.38 ​ 1.77 2.43 2.16 ​ 0.83 1.77 1.36 ​ 0.06 0.77 0.51
20 × 6 × 4 4.15 6.29 5.86 ​ 2.28 4.55 3.32 ​ 2.41 4.02 3.43 ​ 1.74 4.15 2.97 ​ 0.54 2.14 1.55 ​ 0.00 1.87 0.98
20 × 6 × 6 4.49 5.45 4.96 ​ 2.58 4.40 3.40 ​ 2.58 3.35 2.87 ​ 1.72 3.54 2.43 ​ 1.91 2.39 2.22 ​ 0.00 1.72 1.12
20 × 6 × 10 3.26 4.18 3.70 ​ 2.50 3.53 3.03 ​ 1.47 2.07 1.89 ​ 2.17 3.15 2.63 ​ 1.09 2.17 1.52 ​ 0.00 1.03 0.52
20 × 7 × 4 4.26 5.64 4.89 ​ 2.26 4.14 3.20 ​ 0.00 3.26 2.29 ​ 1.75 3.63 2.64 ​ 0.88 2.13 1.59 ​ 0.00 1.13 0.68
20 × 7 × 6 3.47 5.25 4.57 ​ 2.23 3.65 2.66 ​ 1.60 2.49 2.13 ​ 2.23 3.12 2.61 ​ 0.45 1.87 1.02 ​ 0.00 1.78 0.98
20 × 7 × 10 2.89 3.58 3.28 ​ 0.80 1.55 1.13 ​ 0.27 1.12 0.80 ​ 0.86 2.35 1.66 ​ 0.32 0.86 0.56 ​ 0.00 0.54 0.29
Average 4.97 6.16 5.63 ​ 1.45 3.26 2.39 ​ 1.07 2.50 1.86 ​ 1.38 2.92 2.10 ​ 0.91 1.97 1.40 ​ 0.03 1.40 0.80

F.-S. Zhou et al.
Computers &

 Industrial Engineering 208 (2025) 111330

20

to parameter tuning for various scheduling problem-solving algorithms
(Y.-Y. Huang et al., 2021; Pan et al., 2019; Zhang et al., 2022).

The main effects plot of SDIG for the 4 parameters and 4 levels on the
test instances are shown in Fig. 9, and the ANOVA results are presented
in Table 8. In the ANOVA table, the P-value is used to determine whether
the parameter is significant, while the F-ratio describes the degree of
significance. From Table 8, it can be seen that all parameters have P-
values less than 0.05, indicating that they are significant parameters in
the algorithm with statistical significance. Furthermore, based on the
ranking of the F-ratio values in Table 8, the parameters affecting SDIG
performance are ordered by significance from high to low as ρ, α, β, γ.
This is consistent with the main effects plot.

Although the main effect plots can easily identify the optimal
parameter combination, analyzing the parameter values is meaningless
if there is a significant interaction between the parameters. Therefore,
we further examined the interaction between the four parameters, as
shown in Table 8. From Table 8, it can be seen that the P-Values for the
interactions between each pair of parameters are all greater than 0.05,
indicating that the interactions between the parameters are not signifi
cant. At the same time, Fig. 10 shows the interaction plots between the
parameters, from which it can be seen that the interactions between the
parameters are relatively weak, which is with the conclusions drawn
from the table. In addition, the P-values for individual parameters are
significantly larger than those for interactions, indicating that the in
teractions between parameters can be ignored. Based on this theoretical
foundation and Fig. 9, it is clear that SDIG has the smallest response
values when α = 1.6, β = 4, γ = 0.2, ρ = 0.8. Therefore, it can be
concluded that SDIG performs better with this parameter combination
compared to others. Thus, this parameter combination will be used in
the following experiments in this section.

6.3. Performance analysis of key components in the SDIG

To improve the search performance and efficiency of SDIG, four in
novations are described in detail in Section 5, specifically, the SD in
Section 5.2, the construction-based exploration in Section 5.3, the two-
stage deep exploitation in Section 5.4, and the reset strategy in Section
5.5. To verify the effectiveness of these innovations, this section con
structs some variants of SDIG for experimental analysis. SDIG_v1 ex
cludes the SD, SDIG_v2 excludes the construction-based exploration,
SDIG_v3 excludes the multi-neighborhood exploitation (First stage),
SDIG_v4 excludes the Insert-based fast neighborhood exploitation (Sec
ond stage), and SDIG_v5 excludes the reset strategy.

To ensure the fairness of the experiments, it should be clarified that
each variant algorithm only eliminates one phase, with all other parts
remaining identical. All algorithms run independently 10 times on each

example, and the average objective function value from Eq. (46) is used
as the response value of the algorithm, and the relative percentage de
viation (RPD) from Eq. (45) is used as the performance indicator of the
algorithm. The experimental results are shown in Table 9, with the best-
performing values highlighted in bold. To determine whether the dif
ferences between SDIG and the other variant algorithms are statistically
significant, ANOVA was conducted in this section, and mean plots with
95 % Tukey’s HSD confidence intervals and box plots of different al
gorithms were drawn, as shown in Fig. 11. As can be seen from Table 9,
SDIG outperforms its variant algorithms in almost all cases. At the same
time, from the interval plots in Fig. 11, it can be seen that the intervals of
SDIG and the other variant algorithms do not overlap, indicating that
there are significant differences between SDIG and the other variant
algorithms, which means that SDIG is significantly better than the other
variant algorithms in terms of the RPD performance indicator. In addi
tion, from the box plots in Fig. 11, it can be seen that the box length of
SDIG is significantly smaller than that of its variant algorithms, indi
cating that SDIG has better stability. In summary, all phases of the
designed SDIG effectively improve the performance and stability of the
algorithm.

The performance analysis of the key components of SDIG is as
follows:

(1) The SD method: By decomposing the solution space, multiple
subspaces with potential search values can be identified. On this
basis, further searches are conducted in the subspaces, preserving
solution diversity while only adding minimal computational
costs, and avoiding the risk of getting trapped in a single local
optimum for a short time. If deep searches are conducted only on
the best-known individual in the initial population, it can
significantly reduce computational costs but may lead to pre
mature convergence, making the algorithm prone to a single local
optimum. On the other hand, using a random method to
decompose the solution space increases the diversity of solutions
but lacks the perception of the solution space. This may result in
further searches on multiple similar individuals that are not in the
promising regions, greatly wasting search costs and making it
difficult to find truly satisfactory solutions. Therefore, SDIG ex
hibits superior performance in comparison to SDIG_v1.

(2) The construction-based exploration: After the SD is achieved. The
best-known individuals in each subspace may not necessarily be
in the promising regions of the current subspace. Therefore, it is
necessary to extensively explore the current subspace. The
destruction and construction can roughly explore the solution
regions near the best-known solution in the subspace while
retaining some high-quality solution structure information.

Fig. 12. Means plots with 95% Tukey’s HSD confidence intervals and box plots for SDIG and five algorithms.

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

21

Meanwhile, the swap-based neighborhood search allows for more
detailed exploration, guiding individuals to move toward prom
ising solution regions and laying the foundation for subsequent
two-stage deep exploitation. Therefore, SDIG exhibits superior
performance in comparison to SDIG_v2.

(3) The multi-neighborhood exploitation (first stage): Although the
FOFI and FAM rules are used in decoding individuals to ensure
the quality of the solution to a certain extent, the rules for
operation sequencing and machine allocation are short-sighted. It
can only make decisions based on the current availability of
machines, without considering the impact on subsequent opera
tions. Therefore, it is necessary to perform appropriate neigh
borhood searches on the operation sequence obtained after
decoding the individuals to increase the search depth of the al
gorithm. At the same time, the multi-neighborhood exploitation
is constructed based on the swap and insert neighborhood

operations combined with the critical path characteristics, which
avoids a large number of invalid neighborhood operations and
accelerates the efficiency of the algorithm. Therefore, SDIG ex
hibits superior performance in comparison to SDIG_v3.

(4) The Insert-based fast neighborhood exploitation (second stage):
Although the first stage has conducted in-depth searches on the
operation sequence of the individuals, it still lacks search depth in
the machine allocation aspect. Therefore, based on the speed-up
neighbor evaluation method and critical path property, we
designed a specific Insert-based fast neighborhood search for the
scheduling solution determined by the best-known operation
sequences obtained. This significantly reduces the computational
complexity of the algorithm while enabling more detailed
searches, further enhancing the algorithm’s performance.
Consequently, SDIG exhibits superior performance compared to
SDIG_v4.

Fig. 13. Convergence traces of SDIG versus the other five algorithms on 6 different-scale instances.

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

22

(5) The reset strategy: When the algorithm falls into a local optimum
while conducting the in-depth search on the subspaces, The reset
strategy can be used to return the current individual to its state
before the exploitation, and then perform the two-stage deep
exploitation process again. This strategy enriches the diversity of
local optima, providing more options for further optimization. As
a result, SDIG exhibits superior performance in comparison to
SDIG_v5.

6.4. Comparison SDIG with the state-of-the-art methods

Currently, there are very few algorithms available for solving
MRCRHFSP. Generally, for new or less studied problems, the main
stream academic approach is to select algorithms that solve similar
problems for comparison to validate the effectiveness of the proposed
algorithm. Therefore, this paper compares SDIG with the discrete arti
ficial bee colony (DABC) algorithm(Pan et al., 2014) for HFSP, the
chaos-enhanced simulated annealing (CSA) algorithm(Lin et al., 2021),
the hybrid evolutionary algorithm (HEA) (Fan et al., 2023), the iterated
greedy algorithm with speed-up mechanism (IGwS) (Fernandez-Viagas,
2022), and the cooperative adaptive genetic algorithm (CAGA) for
solving RHFSP with sequence-dependent setup times and limited buffers
(Zheng et al., 2023). For experimental fairness, the main frameworks
and encoding/decoding methods of the aforementioned algorithms were
not modified; they were directly applied to solve MRCRHFSP, with
parameter settings identical to their original papers. All algorithms were
run independently 20 times on each instance.

The average objective function value calculated by Eq. (46) was used
as the response value, and the relative percentage deviation (RPD)
defined by Eq. (45) was used as the performance measure. The experi
mental results are shown in Table 10, with the best results highlighted in
bold. To make the experimental results more convincing, a multifacto
rial ANOVA was conducted, similar to Section 6.3, was performed to
verify that the results were statistically significant. The 95 % Tukey HSD
confidence interval mean plots and box plots for SDIG and the compared
algorithms at different CPU run times are shown in Fig. 12.

As shown in Table 10, SDIG outperforms the other compared algo
rithms in almost all instances. The mean plots show that there is no
overlapping region between SDIG and the other algorithms, and the RPD
is smaller, indicating that SDIG’s performance is statistically superior. In
addition, the box plots show that SDIG’s results are more concentrated
with smaller variances, indicating better stability and robustness

compared to the other algorithms. Furthermore, to better demonstrate
the convergence of the algorithms, six instances were selected for
testing: 10 × 5 × 4, 10 × 6 × 6, 15 × 5 × 4, 15 × 5 × 6, 20 × 5 × 4, and
20 × 5 × 6 for testing. The convergence curves of SDIG and the
compared algorithms are shown in Fig. 13. SDIG exhibits superior
convergence compared to the other algorithms. In addition, there is a
distinct step in the SDIG convergence curve, which marks the transition
from exploration to exploitation. This indicates that once the promising
regions are found in the subspace exploration process, the exploitation
phase can quickly converge to a higher-quality solution.

Finally, this paper presents the Gantt chart of the solution obtained
by the SDIG algorithm for the 10 × 5 × 4 instance, as shown in Fig. 14,
where the makespan is 438. From Fig. 14, it can be seen that almost all
jobs in the bottleneck stage are seamlessly connected, and the jobs in the
non-bottleneck stage are scheduled as compactly as possible. This in
dicates that the proposed SDIG can effectively solve the MRCRHFSP and
obtain high-quality scheduling schemes.

The performance differences of various algorithms in solving
MRCRHSSP fundamentally stem from their encoding and decoding
methods and evolutionary mechanisms. Among these algorithms, CAGA
and CSA perform the worst, primarily because they adopt an operation-
based encoding–decoding approach rather than a job-based approach.
This expands the solution search space J! to (J× K× L)!, where J rep
resents the number of jobs, K is the number of stages, and L is the
number of cycles. Although operation-based encoding–decoding can
explore the solution space in greater detail, it requires substantial
computational resources, making it difficult to converge to high-quality
solution regions within a limited time frame. For the second tier of al
gorithms, HEA and DABC, a job-based encoding–decoding method is
employed. By leveraging heuristic rules to order operations, these al
gorithms can ensure a certain level of solution quality while narrowing
the search space. However, since both algorithms utilize population-
based evolutionary mechanisms and lack acceleration strategies based
on problem characteristics, they exhibit higher time complexity, which
leads to significantly poorer search efficiency compared to the IGWS and
SDIG algorithms. As shown in Fig. 13, even at the deadline, HEA has not
yet converged, there is still considerable room for improvement in the
optimization objective value. The top-performing algorithms are IGWS
and SDIG. Both use job-based encoding–decoding methods. IGWS em
ploys a single-individual evolutionary mechanism, initializing the so
lution with the NEH heuristic and further optimizing it. This approach
ensures fast convergence, as demonstrated in Fig. 13. However, due to

Fig. 14. Gantt chart of the best-known solution obtained by SDIG for instance 10 × 5 × 4.

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

23

the limited diversity of its single individual, IGWS tends to fall into local
optima and struggles to explore deep, high-quality solutions across
multiple regions. In contrast, the SDIG algorithm proposed in this study
decomposes the solution space during the initial stage and iteratively
optimizes the best-known solutions within subspaces. While this adds
slight computational complexity, it enriches the search region. Addi
tionally, as discussed in Sections 5.4.1 and 5.4.2, the multi-
neighborhood exploitation based on the critical path and the Insert-
based fast neighborhood exploitation enhance the algorithm’s search
efficiency. As a result, the SDIG algorithm demonstrates significant ad
vantages in comparative experiments.

In summary, CAGA and CSA adopt operation-based enco
ding–decoding methods with population-based evolutionary mecha
nisms. HEA and DABC employ job-based encoding–decoding with
population-based evolutionary mechanisms. IGWS uses job-based
encoding–decoding combined with a single-individual evolutionary
mechanism. SDIG also uses job-based encoding–decoding but integrates
a limited-individual evolutionary mechanism, and designs two methods
to improve the search efficiency of the algorithm. These differences in
encoding–decoding methods and evolutionary mechanisms fundamen
tally explain the variation in performances among the algorithms.

7. Conclusions

Based on the reentrant hybrid flow shop scheduling problem, We
further consider practical factors such as mask resource constraints and
sequence-dependent setup times during the photolithography stage
(bottleneck stage) in semiconductor wafer fabrication, It establishes the
mixed-integer programming (MIP) model for the multi-resource con
strained re-entrant hybrid flow shop scheduling problem (MRCRHFSP)
for the first time to minimize makespan by scheduling the machine
assignment and operation processing sequence of jobs. We propose the
space decomposition-based iterative greedy (SDIG) algorithm for solv
ing MRCRHFSP. Computational experiments and statistical results show
that SDIG outperforms the compared algorithms in terms of efficiency,
quality, and convergence when solving MRCRHFSP.

The superiority of the SDIG lies in two aspects: The new SD method
and a parallel multimodal search mechanism. The SD method can
perceive the landscape of the MRCRHFSP solution space and decompose
it into several subspaces with certain differences, guiding the algorithm
to perform subsequent searches in the subspaces, avoiding the risk of

quickly falling into local optima. The parallel multi-modal search
mechanism implements extensive and in-depth parallel searches for
each subspace through construction-based exploration and two-stage
deep exploitation, thus achieving a good balance between exploration
and exploitation.

In future research, the following valuable directions exist: (1) further
extending the MRCRHFSP by incorporating buffer capacities between
stages and wafer transportation time into the scheduling framework, to
enhance the realism of the wafer fabrication workshop scheduling
problem model. (2) Consider order-driven MRCRHFSP and design dy
namic scheduling strategies to solve it. In actual production activities,
dynamic orders are the source of production demand, which makes
research on order-driven MRCRHFSP more practical. (3) Apply SDIG to
solve other combinatorial optimization problems (COPs) to verify its
generality and effectiveness.

CRediT authorship contribution statement

Feng-Shun Zhou: Writing – original draft, Validation, Software,
Methodology, Investigation, Data curation. Rong Hu: Writing – review
& editing, Supervision, Methodology, Funding acquisition. Bin Qian:
Writing – review & editing, Methodology, Funding acquisition,
Conceptualization. Qing-Xia Shang: Writing – review & editing, Su
pervision. Yuan-yuan Yang: Writing – review & editing, Investigation.
Jian-Bo Yang: Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This work was supported by the National Natural Science Foundation
of China (Grant Numbers: U24A20273, 62173169 and 62463013), the
Basic Research Key Project of Yunnan Province (Grant Number:
202201AS070030), and the Construction Project of Higher Educational
Key Laboratory for Industrial Intelligence and Systems of Yunnan
Province (Grant Number: KKPH202403003).

Appendix 1

The appendix includes the six materials required for the paper titled “Spatial Decomposition-Based Iterative Greedy Algorithm for the Multi-
Resource Constrained Re-entrant Hybrid Flow Shop Scheduling Problem in Semiconductor Wafer Fabrication.”

Part 1. A simple example of the encoding and decoding strategy

To gain a deeper understanding of the encoding and decoding strategy of the SDIG algorithm for MRCRHFSP, a simple example is provided below.
The number of jobs J = 4, the number of processing stages K = 4, and the number of machines in each processing stage M1 = 2, M2 = 3, M3 = 1,
M4 = 2 with re-entry cycles L = 4. The processing times of the jobs are illustrated in Table 1*, the required masks for the jobs are illustrated in
Table 2*, and the mask switch setup times are illustrated in Table 3*. The encoded individualπ* = [3, 1, 4, 2], after decoding as described in Section
5.1, results in the operation sequenceπ o = [3, 1, 4, 2, 1, 3, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4], machine sequenceπ m = [1,
2, 2, 1, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1], and a complete scheduling solution Π are generated, with a makespan of
582. The entire decoding process and the Gantt chart corresponding to the obtained scheduling solution after decoding are shown in Fig. 1*.

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

24

Fig. 1*. Numerical example of the decoding strategy.

Table 1*
Job processing time.

Job Process 1 Process 2

Stage 1 Stage 2 Stage 3 Stage 4 Stage 1 Stage 2 Stage 3 Stage 4

1 80 58 37 18 53 47 72 47
2 47 98 22 29 70 77 22 65
3 85 36 18 50 32 25 54 69
4 39 66 25 95 53 77 77 37

Table 2*
Mask required for the job.

Job Process 1 Process 2

1 4 1
2 8 6
3 5 3
4 2 7

Table 3*
Mask switching setup time.

Mask 1 2 3 4 5 6 7 8

1 0 1 29 1 8 8 16 29
2 21 0 5 13 24 5 25 8
3 27 15 0 30 8 1 20 24
4 14 15 12 0 8 23 30 10
5 22 28 24 13 0 13 18 7
6 7 27 18 13 19 0 11 14
7 20 15 5 25 5 25 0 17
8 2 25 8 1 2 25 23 0

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

25

Part 2. Validation of the proposed MIP model in the paper using the Gurobi solver

To validate the correctness and applicability of the proposed MIP model in this paper, we used the example in Part 1 and verified the model with
the Gurobi solver. Computational experiments showed that the proposed MIP model accurately captured the problem constraints and produced the
optimal feasible schedule as illustrated in Fig. 2*, with a makespan of 580.

Part 3. Examples of forward scheduling and backward scheduling

To gain a deeper understanding of the forward and backward scheduling processes, we use the decoded scheduling solution from Part 1 as an
example. The Gantt chart corresponding to the forward scheduling solution, calculated based on Eqs. (14)–(18) in the main text, is shown in Fig. 3*.
The Gantt chart corresponding to the backward scheduling solution, calculated based on Eqs. (19)–(23), is shown in Fig. 4*.

Fig. 2*. The Gantt chart corresponding to the optimal schedule solution obtained by the Gurobi solver.

Fig. 3*. Forward Schedule Gantt chart.

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

26

Fig. 4*. Backward schedule Gantt chart.

Part 4. Examples of the Theorem 1

Taking the scheduling solution provided in Part 1 as an example, the critical paths for forward and backward scheduling (Theorem 1) are shown in
Fig. 5* and Fig. 6*.

Fig. 5*. The forward schedule critical path.

Fig. 6*. The backward schedule critical path.

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

27

Part 5. Examples of the Theorem 2

Taking the scheduling solution provided in Part 1 as an example, the schematic diagrams for the speed-up evaluation of the insertion neighborhood
(Theorem 2) in the photolithography and non-photolithography stages are shown in Fig. 7* and Fig. 8*.

Fig. 7*. Speed-up evaluation for non-bottleneck stages.

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

28

Fig. 8*. Speed-up evaluation for the bottleneck stage.

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

29

Part 6. Examples of the Theorem 3

Taking the scheduling solution provided in Part 1 as an example, the schematic diagrams for Theorem 3 are shown in Fig. 9*.

Fig. 9*. Schematic diagram of Theorem 3.

Data availability

Data will be made available on request.

References

Bang, J.-Y., & Kim, Y.-D. (2011). Scheduling algorithms for a semiconductor probing
facility. Computers and Operations Research, 38(3), 666–673. https://doi.org/
10.1016/j.cor.2010.08.010

Bitar, A., Dauzère-Pérès, S., Yugma, C., & Roussel, R. (2016). A memetic algorithm to
solve an unrelated parallel machine scheduling problem with auxiliary resources in
semiconductor manufacturing. Journal of Scheduling, 19(4), 367–376. https://doi.
org/10.1007/s10951-014-0397-6

Bookstein, A. (2002). Generalized hamming distance. Information Retrieval, 5, 353–375.
Cakici, E., & Mason, S. J. (2007). Parallel machine scheduling subject to auxiliary

resource constraints. Production Planning & Control, 18(3), 217–225. https://doi.org/
10.1080/09537280601035836

Chen, S., Pan, Q.-K., Gao, L., & Sang, H.-Y. (2021). A population-based iterated greedy
algorithm to minimize total flowtime for the distributed blocking flowshop scheduling
problem, 104, Article 104375.

Cho, H.-M. (2011). Bi-objective scheduling for reentrant hybrid flow shop using Pareto
genetic algorithm. Industrial Engineering.

Cicirello, V. A. (2020). Kendall Tau sequence distance: Extending Kendall Tau from ranks
to sequences. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems,
7(23), Article 163925. https://doi.org/10.4108/eai.13-7-2018.163925

Collins, T. D. (2003). Applying software visualization technology to support the use of
evolutionary algorithms. Journal of Visual Languages & Computing, 14(2), 123–150.
https://doi.org/10.1016/S1045-926X(02)00060-5

Ding, H., & Gu, X. (2020). Improved particle swarm optimization algorithm based novel
encoding and decoding schemes for flexible job shop scheduling problem. Computers
and Operations Research, 121, Article 104951. https://doi.org/10.1016/j.
cor.2020.104951

Ding, J.-Y., Song, S., Gupta, J. N. D., Zhang, R., Chiong, R., & Wu, C. (2015). An
improved iterated greedy algorithm with a Tabu-based reconstruction strategy for

the no-wait flowshop scheduling problem. Applied Soft Computing, 30, 604–613.
https://doi.org/10.1016/j.asoc.2015.02.006

Ding, S., Keal, C. A., Zhao, L., & Yu, D. (n.d.). Dimensionality reduction and classification
for hyperspectral image based on robust supervised ISOMA.

Dong, J., & Ye, C. (2019). Research on collaborative optimization of green manufacturing
in semiconductor wafer distributed heterogeneous factory. Applied Sciences, 9(14),
2879. https://doi.org/10.3390/app9142879

Fahim, A. M., Salem, A. M., Torkey, F. A., & Ramadan, M. A. (2006). An efficient
enhanced k-means clustering algorithm. Journal of Zhejiang University-SCIENCE A, 7
(10), 1626–1633. https://doi.org/10.1631/jzus.2006.A1626

Fan, J., Li, Y., Xie, J., Zhang, C., Shen, W., & Gao, L. (2023). A hybrid evolutionary
algorithm using two solution representations for hybrid flow-shop scheduling
problem. IEEE Transactions on Cybernetics, 53(3), 1752–1764. https://doi.org/
10.1109/TCYB.2021.3120875

Fernandez-Viagas, V. (2022). A speed-up procedure for the hybrid flow shop scheduling
problem. Expert Systems with Applications, 187, Article 115903. https://doi.org/
10.1016/j.eswa.2021.115903

Fernandez-Viagas, V., Valente, J. M. S., & Framinan, J. M. (2018). Iterated-greedy-based
algorithms with beam search initialization for the permutation flowshop to minimise
total tardiness. Expert Systems with Applications, 94, 58–69. https://doi.org/10.1016/
j.eswa.2017.10.050

Ghaedy-Heidary, E., Nejati, E., Ghasemi, A., & Torabi, S. A. (2024). A simulation
optimization framework to solve stochastic flexible job-shop scheduling
problems—Case: Semiconductor manufacturing. Computers and Operations Research,
163, Article 106508. https://doi.org/10.1016/j.cor.2023.106508

Grebennik, I., Chorna, O., & Urniaieva, I. (2023). Visualizing Feasible Regions for
Optimization Problems on High-Dimensional Permutations using Dimensionality
Reduction Methods. In 2023 13th International Conference on Advanced Computer
Information Technologies (ACIT) (pp. 126–130). https://doi.org/10.1109/
ACIT58437.2023.10275497

Ham, A. (2018). Scheduling of dual resource constrained lithography production: Using
CP and MIP/CP. IEEE Transactions on Semiconductor Manufacturing, 31(1), 52–61.
https://doi.org/10.1109/TSM.2017.2768899

He, X., Pan, Q.-K., Gao, L., Wang, L., & Suganthan, P. N. (2023). A greedy cooperative co-
evolutionary algorithm with problem-specific knowledge for multiobjective
flowshop group scheduling problems. IEEE Transactions on Evolutionary Computation,
27(3), 430–444. https://doi.org/10.1109/TEVC.2021.3115795

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

30

https://doi.org/10.1016/j.cor.2010.08.010
https://doi.org/10.1016/j.cor.2010.08.010
https://doi.org/10.1007/s10951-014-0397-6
https://doi.org/10.1007/s10951-014-0397-6
http://refhub.elsevier.com/S0360-8352(25)00476-0/h0015
https://doi.org/10.1080/09537280601035836
https://doi.org/10.1080/09537280601035836
http://refhub.elsevier.com/S0360-8352(25)00476-0/h0020
http://refhub.elsevier.com/S0360-8352(25)00476-0/h0020
http://refhub.elsevier.com/S0360-8352(25)00476-0/h0020
http://refhub.elsevier.com/S0360-8352(25)00476-0/h0025
http://refhub.elsevier.com/S0360-8352(25)00476-0/h0025
https://doi.org/10.4108/eai.13-7-2018.163925
https://doi.org/10.1016/S1045-926X(02)00060-5
https://doi.org/10.1016/j.cor.2020.104951
https://doi.org/10.1016/j.cor.2020.104951
https://doi.org/10.1016/j.asoc.2015.02.006
https://doi.org/10.3390/app9142879
https://doi.org/10.1631/jzus.2006.A1626
https://doi.org/10.1109/TCYB.2021.3120875
https://doi.org/10.1109/TCYB.2021.3120875
https://doi.org/10.1016/j.eswa.2021.115903
https://doi.org/10.1016/j.eswa.2021.115903
https://doi.org/10.1016/j.eswa.2017.10.050
https://doi.org/10.1016/j.eswa.2017.10.050
https://doi.org/10.1016/j.cor.2023.106508
https://doi.org/10.1109/ACIT58437.2023.10275497
https://doi.org/10.1109/ACIT58437.2023.10275497
https://doi.org/10.1109/TSM.2017.2768899
https://doi.org/10.1109/TEVC.2021.3115795

Hekmatfar, M., Fatemi Ghomi, S. M. T., & Karimi, B. (2011). Two stage reentrant hybrid
flow shop with setup times and the criterion of minimizing makespan. Applied Soft
Computing, 11(8), 4530–4539. https://doi.org/10.1016/j.asoc.2011.08.013

Hozumi, Y., Wang, R., Yin, C., & Wei, G.-W. (2021). UMAP-assisted K-means clustering of
large-scale SARS-CoV-2 mutation datasets. Computers in Biology and Medicine, 131,
Article 104264. https://doi.org/10.1016/j.compbiomed.2021.104264

Huang, C.-T., Hsieh, T.-J., & Lin, B. M. T. (2025). Data-driven scheduling for the
photolithography process in semiconductor manufacturing. Journal of Industrial and
Management Optimization, 21(3), 1946–1963. https://doi.org/10.3934/
jimo.2024157

Huang, Y.-Y., Pan, Q.-K., Huang, J.-P., Suganthan, P., & Gao, L. (2021). An improved
iterated greedy algorithm for the distributed assembly permutation flowshop
scheduling problem. Computers and Industrial Engineering, 152, Article 107021.
https://doi.org/10.1016/j.cie.2020.107021

Jacobs, L. W., & Brusco, M. J. (1995). Note: A local-search heuristic for large set-covering
problems. Naval Research Logistics, 42(7), 1129–1140. https://doi.org/10.1002/
1520-6750(199510)42:7<1129::AID-NAV3220420711>3.0.CO;2-M

Jain, V., Swarnkar, R., & Tiwari, M. K. (2003). Modelling and analysis of wafer
fabrication scheduling via generalized stochastic Petri net and simulated annealing.
International Journal of Production Research, 41(15), 3501–3527. https://doi.org/
10.1080/0020754031000118152

Jornod, G., Di Mario, E., Navarro, I., & Martinoli, A. (2015). SwarmViz: An open-source
visualization tool for Particle Swarm Optimization. IEEE Congress on Evolutionary
Computation (CEC), 2015, 179–186. https://doi.org/10.1109/CEC.2015.7256890

Kim, S. H., & Lee, Y. H. (2016). Synchronized production planning and scheduling in
semiconductor fabrication. Computers and Industrial Engineering, 96, 72–85. https://
doi.org/10.1016/j.cie.2016.03.019

Kong, M., Zhang, Y., Xu, J., Wang, W., Lu, S., & Fathollahi-Fard, A. M. (2024). A green
scheduling model for two-stage photo-etching and acid-etching collaboration in
semiconductor manufacturing. Journal of Industrial Information Integration, 41,
Article 100655. https://doi.org/10.1016/j.jii.2024.100655

Lee, C.-Y., Wu, C.-M., Hsu, C.-Y., Xie, H.-H., & Fang, Y.-H. (2023). Lithography reticle
scheduling in semiconductor manufacturing. Engineering Optimization, 1–19. https://
doi.org/10.1080/0305215X.2023.2285416

Lee, Y. F., Jiang, Z. B., & Liu, H. R. (2009). Multiple-objective scheduling and real-time
dispatching for the semiconductor manufacturing system. Computers and Operations
Research, 36(3), 866–884. https://doi.org/10.1016/j.cor.2007.11.006

Lee, Y. H., & Lee, S. (2022). Deep reinforcement learning based scheduling within
production plan in semiconductor fabrication. Expert Systems with Applications, 191,
Article 116222. https://doi.org/10.1016/j.eswa.2021.116222

Li, J.-Q., Du, Y., Gao, K.-Z., Duan, P.-Y., Gong, D.-W., Pan, Q.-K., & Suganthan, P. N.
(2022). A hybrid iterated greedy algorithm for a crane transportation flexible job
shop problem. IEEE Transactions on Automation Science and Engineering, 19(3),
2153–2170. https://doi.org/10.1109/TASE.2021.3062979

Li, Z. C., Qian, B., Hu, R., Chang, L. L., & Yang, J. B. (2019). An elitist nondominated
sorting hybrid algorithm for multi-objective flexible job-shop scheduling problem
with sequence-dependent setups. Knowledge-Based Systems, 173, 83–112. https://doi.
org/10.1016/j.knosys.2019.02.027

Lin, S.-W., Cheng, C.-Y., Pourhejazy, P., Ying, K.-C., & Lee, C.-H. (2021). New benchmark
algorithm for hybrid flowshop scheduling with identical machines. Expert Systems
with Applications, 183, Article 115422. https://doi.org/10.1016/j.eswa.2021.115422

Liu, H., Yang, J., Ye, M., James, S. C., Tang, Z., Dong, J., & Xing, T. (2021). Using t-
distributed Stochastic Neighbor Embedding (t-SNE) for cluster analysis and spatial
zone delineation of groundwater geochemistry data. Journal of Hydrology, 597,
Article 126146. https://doi.org/10.1016/j.jhydrol.2021.126146

Lutton, E., Foucquier, J., Perrot, N., Louchet, J., & Fekete, J.-D. (2012). Visual Analysis of
Population Scatterplots. In J.-.-K. Hao, P. Legrand, P. Collet, N. Monmarché,
E. Lutton, & M. Schoenauer (Eds.), Artificial Evolution, 7401 pp. 61–72). Berlin
Heidelberg: Springer. https://doi.org/10.1007/978-3-642-35533-2_6.

Macqueen, J. (n.d.). Some methods for classification and analysis of multivariate
observations. Multivariate Observations.

McInnes, L., Healy, J., & Melville, J. (2020). UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction (No. arXiv:1802.03426). arXiv. http://arxiv.org/
abs/1802.03426.

Michalak, K. (2019). Low-dimensional Euclidean Embedding for visualization of search
spaces in combinatorial optimization. IEEE Transactions on Evolutionary Computation,
23(2), 232–246. https://doi.org/10.1109/TEVC.2018.2846636

Mönch, L., Uzsoy, R., & Fowler, J. W. (2018). A survey of semiconductor supply chain
models part I: Semiconductor supply chains, strategic network design, and supply

chain simulation. International Journal of Production Research, 56(13), 4524–4545.
https://doi.org/10.1080/00207543.2017.1401233

Na, S., Xumin, L., & Yong, G. (2010). Research on k-means clustering algorithm: An
improved k-means clustering algorithm. Third International Symposium on Intelligent
Information Technology and Security Informatics, 2010, 63–67. https://doi.org/
10.1109/IITSI.2010.74

Ozsoydan, F. B. (2021). Iterated greedy algorithms enhanced by hyper-heuristic based
learning for hybrid flexible flowshop scheduling problem with sequence dependent setup
times: A case study at a manufacturing plant.

Pan, Q.-K., Gao, L., Xin-Yu, L., & Jose, F. M. (2019). Effective constructive heuristics and
meta-heuristics for the distributed assembly permutation flowshop scheduling
problem. Applied Soft Computing, 81, Article 105492. https://doi.org/10.1016/j.
asoc.2019.105492

Pan, Q.-K., Wang, L., Li, J.-Q., & Duan, J.-H. (2014). A novel discrete artificial bee colony
algorithm for the hybrid flowshop scheduling problem with makespan minimisation.
Omega, 45, 42–56. https://doi.org/10.1016/j.omega.2013.12.004

Qian, B., Zhang, Z.-Q., Hu, R., Jin, H.-P., & Yang, J.-B. (2023). A matrix-cube-based
estimation of distribution algorithm for no-wait flow-shop scheduling with
sequence-dependent setup times and release times. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 53(3), 1492–1503. https://doi.org/10.1109/
TSMC.2022.3198829

Qin, H.-X., Han, Y.-Y., Liu, Y.-P., Li, J.-Q., Pan, Q.-K., & Xue-Han. (2022). A collaborative
iterative greedy algorithm for the scheduling of distributed heterogeneous hybrid
flow shop with blocking constraints. Expert Systems with Applications, 201, Article
117256. https://doi.org/10.1016/j.eswa.2022.117256

Qin, H.-X., Han, Y.-Y., Zhang, B., Meng, L.-L., Liu, Y.-P., Pan, Q.-K., & Gong, D.-W.
(2022). An improved iterated greedy algorithm for the energy-efficient blocking
hybrid flow shop scheduling problem. Swarm and Evolutionary Computation, 69,
Article 100992. https://doi.org/10.1016/j.swevo.2021.100992

Rodriguez, F. J., Lozano, M., Blum, C., & García-Martínez, C. (2013). An iterated greedy
algorithm for the large-scale unrelated parallel machines scheduling problem.
Computers and Operations Research, 40(7), 1829–1841. https://doi.org/10.1016/j.
cor.2013.01.018

Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational Research,
177(3), 2033–2049. https://doi.org/10.1016/j.ejor.2005.12.009

Sadati, M. E. H., & Çatay, B. (2021). A hybrid variable neighborhood search approach for
the multi-depot green vehicle routing problem. Transportation Research Part E:
Logistics and Transportation Review, 149, Article 102293. https://doi.org/10.1016/j.
tre.2021.102293

Taillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing problem, 1
(47), 65–74.

Wang, L., & Qian, B. (2012). Hybrid differential evolution and scheduling algorithm.
Xu, Y., Zhang, M., Yang, M., & Wang, D. (2024). Hybrid quantum particle swarm

optimization and variable neighborhood search for flexible job-shop scheduling
problem. Journal of Manufacturing Systems, 73, 334–348. https://doi.org/10.1016/j.
jmsy.2024.02.007

Kim, Y.-D., Kim, J.-G., Choi, B., & Kim, H.-U. (2001). Production scheduling in a
semiconductor wafer fabrication facility producing multiple product types with
distinct due dates. IEEE Transactions on Robotics and Automation, 17(5), 589–598.
https://doi.org/10.1109/70.964660

Yu, T.-T., Chen, C.-Y., Wu, T.-H., & Chang, Y.-C. (2023). Application of high-dimensional
uniform manifold approximation and projection (UMAP) to cluster existing landfills
on the basis of geographical and environmental features. The Science of the Total
Environment, 904, 16701.

Zhang, Z.-Q., Hu, R., Qian, B., Jin, H.-P., Wang, L., & Yang, J.-B. (2022). A matrix cube-
based estimation of distribution algorithm for the energy-efficient distributed
assembly permutation flow-shop scheduling problem. Expert Systems with
Applications, 194, Article 116484. https://doi.org/10.1016/j.eswa.2021.116484

Zhao, Z., Zhou, M., & Liu, S. (2022). Iterated greedy algorithms for flow-shop scheduling
problems: A tutorial. IEEE Transactions on Automation Science and Engineering, 19(3),
1941–1959. https://doi.org/10.1109/TASE.2021.3062994

Zheng, Q., Zhang, Y., Tian, H., & He, L. (2023). A cooperative adaptive genetic algorithm
for reentrant hybrid flow shop scheduling with sequence-dependent setup time and
limited buffers. Complex & Intelligent Systems. https://doi.org/10.1007/s40747-023-
01147-8

Zou, W.-Q., Pan, Q.-K., & Tasgetiren, M. F. (2021). An effective iterated greedy algorithm
for solving a multi-compartment AGV scheduling problem in a matrix manufacturing
workshop. Applied Soft Computing, 99, Article 106945. https://doi.org/10.1016/j.
asoc.2020.106945

F.-S. Zhou et al. Computers & Industrial Engineering 208 (2025) 111330

31

https://doi.org/10.1016/j.asoc.2011.08.013
https://doi.org/10.1016/j.compbiomed.2021.104264
https://doi.org/10.3934/jimo.2024157
https://doi.org/10.3934/jimo.2024157
https://doi.org/10.1016/j.cie.2020.107021
https://doi.org/10.1002/1520-6750(199510)42:7<1129::AID-NAV3220420711>3.0.CO;2-M
https://doi.org/10.1002/1520-6750(199510)42:7<1129::AID-NAV3220420711>3.0.CO;2-M
https://doi.org/10.1080/0020754031000118152
https://doi.org/10.1080/0020754031000118152
https://doi.org/10.1109/CEC.2015.7256890
https://doi.org/10.1016/j.cie.2016.03.019
https://doi.org/10.1016/j.cie.2016.03.019
https://doi.org/10.1016/j.jii.2024.100655
https://doi.org/10.1080/0305215X.2023.2285416
https://doi.org/10.1080/0305215X.2023.2285416
https://doi.org/10.1016/j.cor.2007.11.006
https://doi.org/10.1016/j.eswa.2021.116222
https://doi.org/10.1109/TASE.2021.3062979
https://doi.org/10.1016/j.knosys.2019.02.027
https://doi.org/10.1016/j.knosys.2019.02.027
https://doi.org/10.1016/j.eswa.2021.115422
https://doi.org/10.1016/j.jhydrol.2021.126146
https://doi.org/10.1007/978-3-642-35533-2_6
https://doi.org/10.1109/TEVC.2018.2846636
https://doi.org/10.1080/00207543.2017.1401233
https://doi.org/10.1109/IITSI.2010.74
https://doi.org/10.1109/IITSI.2010.74
https://doi.org/10.1016/j.asoc.2019.105492
https://doi.org/10.1016/j.asoc.2019.105492
https://doi.org/10.1016/j.omega.2013.12.004
https://doi.org/10.1109/TSMC.2022.3198829
https://doi.org/10.1109/TSMC.2022.3198829
https://doi.org/10.1016/j.eswa.2022.117256
https://doi.org/10.1016/j.swevo.2021.100992
https://doi.org/10.1016/j.cor.2013.01.018
https://doi.org/10.1016/j.cor.2013.01.018
https://doi.org/10.1016/j.ejor.2005.12.009
https://doi.org/10.1016/j.tre.2021.102293
https://doi.org/10.1016/j.tre.2021.102293
http://refhub.elsevier.com/S0360-8352(25)00476-0/h0255
http://refhub.elsevier.com/S0360-8352(25)00476-0/h0255
https://doi.org/10.1016/j.jmsy.2024.02.007
https://doi.org/10.1016/j.jmsy.2024.02.007
https://doi.org/10.1109/70.964660
http://refhub.elsevier.com/S0360-8352(25)00476-0/h0275
http://refhub.elsevier.com/S0360-8352(25)00476-0/h0275
http://refhub.elsevier.com/S0360-8352(25)00476-0/h0275
http://refhub.elsevier.com/S0360-8352(25)00476-0/h0275
https://doi.org/10.1016/j.eswa.2021.116484
https://doi.org/10.1109/TASE.2021.3062994
https://doi.org/10.1007/s40747-023-01147-8
https://doi.org/10.1007/s40747-023-01147-8
https://doi.org/10.1016/j.asoc.2020.106945
https://doi.org/10.1016/j.asoc.2020.106945

	Spatial decomposition-based iterative greedy algorithm for the multi-resource constrained re-entrant hybrid flow shop sched ...
	1 Introduction
	2 Literature review
	2.1 Wafer fabrication scheduling problems
	2.2 Dimension reduction visualization methods
	2.3 Iterated greedy algorithm

	3 Problem description and modeling
	3.1 Practical background of the problem
	3.2 Problem modeling
	3.2.1 Symbol definition
	3.2.2 MIP model of the MRCRHFSP

	4 Proposed theoretical contributions
	4.1 Forward scheduling and backward scheduling
	4.2 Critical path
	4.3 Speed-up evaluation

	5 SDIG algorithm for the MRCRHFSP
	5.1 Individual encoding and decoding strategy
	5.2 Spatial decomposition
	5.2.1 Uniform manifold approximation and projection (UMAP)
	5.2.2 Improved k-means algorithm

	5.3 Construction-based exploration
	5.4 Two-stage deep exploitation
	5.4.1 Multi-neighborhood exploitation (First stage)
	5.4.2 Insert-based fast neighborhood exploitation (Second stage)
	5.4.3 Reset strategy

	5.5 Overall procedure of SDIG
	5.6 Time complexity and space complexity of the SDIG algorithm

	6 Experimental comparisons and statistical analysis
	6.1 Experimental setup
	6.2 Parameter calibration
	6.3 Performance analysis of key components in the SDIG
	6.4 Comparison SDIG with the state-of-the-art methods

	7 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix 1 Acknowledgments
	Part 1. A simple example of the encoding and decoding strategy
	Part 2. Validation of the proposed MIP model in the paper using the Gurobi solver
	Part 3. Examples of forward scheduling and backward scheduling
	Part 4. Examples of the Theorem 1
	Part 5. Examples of the Theorem 2
	Part 6. Examples of the Theorem 3

	Data availability
	References

