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Belief distribution (BD) is the scheme of representing uncertain and imprecise subjective assessment in the
evidential reasoning methodology. In a multiple attribute decision making (MADM) problem, how to elicit at-
tribute weights rationally from subjective assessments is an open issue. Moreover, the support degree of as-
sessment for the final decision is critically important because it has a direct implication on the likelihood of
making a right decision. The aim of this paper is firstly to identify the intrinsic information carried by different
attributes in the form of BDs for generating attribute weights in a MADM problem. Thus, we present the concept
of conflict measure between two attributes on both the alternative and evaluation grade level. A novel weight
assignment method is further proposed based on the conflict measure between attributes and the divergence of
different BDs. Secondly, the paper puts forward the external divergence and internal indeterminacy to measure
the support degree of the final aggregated results for decision making. They are determined by the defined
concept of dissimilarity and uncertainty measures on alternatives. A series of properties and comparative ana-

lysis are given to demonstrate the rationality and effectiveness of the proposed methods.

1. Introduction

Multiple attribute decision making (MADM) problems (Dong, Liu,
Chiclana, Kou, & Herrera-Viedma, 2019; Liang, Gong, Dong, & Ding, 2018;
Liu, Zhang, Wu, & Dong, 2019) are usually comprised of a set of attributes,
which can be either quantitative or qualitative. Qualitative attributes can
be expressed by various forms, such as linguistic variable (Gou, Xu, Liao, &
Herrera, 2018; Wu, Chang, Cao, & Liang, 2019), belief distribution (BD)
(Dubois & Prade, 1988; Fu, Xu, & Xue, 2018), intuitionistic fuzzy set (Chen,
2014; Li & Deng, 2019; MiloSevié, Petrovi¢, & Jeremié, 2017); hesitant
fuzzy sets (Xue, Xu, Wang, & Ren, 2019); and so on. The evidential rea-
soning (ER) approach (Akhoundi & Nazif, 2018; Wang, Yang, & Xu, 2006;
Xiao, 2019; Xu et al., 2016, 2017; Yang and Xu, 2002, 2013; Yang, 2001;
Zhou et al., 2018, 2019) provides a probabilistic aggregation process for
MADM problems where assessments are represented by BDs, and un-
certainty, incompleteness and fuzziness can all be dealt with in a consistent
way. Since attribute weight is an important factor in the aggregation pro-
cess of a MADM problem, how to generate a set of rational and valid
weights is significant for the ER approach or other evidence combination
methods (Xiao, 2019; Yin, Deng, & Deng, 2019). Weight assignment

methods can be broadly classified into three categories: subjective, objec-
tive and hybrid (Fu & Wang, 2015; Wang & Luo, 2010). Subjective method
includes direct rating method (Bottomley & Doyle, 2013), weighted least
square method (Chu, Kalaba, & Spingarn, 1979), Delphi (Hwang & Lin,
1987) and so on. This kind of method extracts the attribute weights directly
from the decision maker (DM) through interview, discussion or ques-
tionnaire. Objective method generates attribute weights from the intrinsic
information of the assessment values. It can be classified into two sub-
categories. One is based on the divergence of values from the assessment of
different alternatives on each attribute. Representative methods include the
entropy weight assignment method (EWAM) (Song, 7hu, Peng, &
Santibanez Gonzalez, 2017; Zhou, Liu, Yang, & Chen, 2019), standard
deviation (SD) (Chin, Fu, & Wang, 2015; Diakoulaki, Mavrotas, &
Papayannakis, 1995), maximizing deviation method (Qian & Luan, 2017)
and discriminating power method (Fu et al., 2018). The other sub-category
not only depends on the dimension of information extracted in the first
category, but also the correlation between each pair of attributes that re-
flects interdependency or conflict of attributes. Typical methods include
criteria importance through intercriteria correlation (CRITIC) (Diakoulaki
et al.,, 1995), correlation coefficient and standard deviation integrated
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(CCSD) method (Wang & Luo, 2010), deviation and decision incompat-
ibility based method (Chin et al., 2015), and so on. Hybrid method (Yang,
Yang, Xu, & Khoveyni, 2017) is applied when both subjective judgment
and numerical evaluation values can be obtained.

Although a great number of methods for assigning attribute weights
have been proposed in the last few decades, how to elicit appropriate
weights from subjective assessments on attributes still remains an open
issue, especially if there is no prior knowledge. The above mentioned
objective weight assignment methods such as EWAM, SD method,
CRITIC, CCSD and maximizing deviation method all assume that each
attribute is assessed by a numerical value no matter it is in a quantitative
or qualitative nature. In real decision-making problems, qualitative at-
tributes are usually expressed by subjective judgments, e.g., BD, hesitant
fuzzy sets. If there is no prior knowledge on the importance of attributes,
the method of deriving attribute weights from the subjective assessments
together with numerical values on quantitative attributes needs to be
studied comprehensively. In recent years, some research has been de-
voted on generating attribute weights provided that qualitative attributes
are denoted by BDs, such as the above mentioned discriminating power
method. But they only considered one dimension of information which
reveals the discrepancy among the BDs of different alternatives asso-
ciated with a specific attribute. The other dimension which measures the
interdependency between the BDs of each pair of attributes was not
considered in the previous studies. In either the CRITIC or CCSD, the
interdependency is quantified by the Spearman correlation coefficient
among attributes which are all represented by numerical values. When
the values of attributes are represented by BDs, the conflict or dissim-
ilarity measure between BDs is the basis to measure the interdependency
between attributes. Up to now, many metrics have been proposed on the
conflict or dissimilarity measure such as Tessem’s distance (Tessem,
1993), combined dissimilarity measure (Liu, Dezert, Pan, & Mercier,
2011); Jousselme’s distance (Jousselme, Grenier, & Bossé, 2001); cosine
similarity (Wen, Wang, & Xu, 2008), correlation coefficient (Jiang,
2018), Liu’s distance (Liu, 2006). But none of them is perfect to tackling
with all circumstances which will be detailed in Section 3.3. If BDs are
transformed to numerical values such as utilities, some information
contained in BDs may not be preserved. So how to measure the inter-
dependency between two attributes represented by BDs is still an un-
answered question. Inspired by the concept of dissimilarity measure
between the BDs of DMs (Fu, Yang, & Yang, 2015) and alternatives (Fu
et al., 2018) defined by Fu et al., this paper proposes the dissimilarity
measure between the BDs of two attributes on an alternative. Then the
conflict measure between two attributes is defined on both the alter-
native and evaluation grade level in order to quantify the inter-
dependency. As a result, a novel weight assignment method which
considers both the above two dimensions derived from BDs is developed
in this paper. Optimization models are also constructed for the con-
sideration of incompleteness included in BDs.

When the subjective judgments from multiple sources are aggregated
to an overall assessment, how to measure the support degree of assessment
for a decision is a critical issue because it may affect the likelihood of
making a right decision on two aspects. One is the external divergence
which can be quantified by the dissimilarity of different attributes. The
other one is the internal indeterminacy which is correlated with the un-
certainty measure of original subjective judgments. The uncertainty
measure of belief distributions has widely accepted solutions (Deng,
2016). In the past decades, a lot of uncertainty measures have been pro-
posed, e.g., Klir & Ramer’s discord (Klir & Ramer, 1990); Deng entropy
(Deng, 2016); Radim & Prakash’s total uncertainty (Jirousek & Shenoy,
2018); Jousselme’s ambiguity measure (Jousselme, Liu, Grenier, & Bosse,
2006), Yager's interval-valued entropy (Ronald & Yager, 2018); Yang’s
total uncertainty measure (Yang & Han, 2016). But they are all defined in
the context of Dempster-Shafer’s evidence theory. In a decision-making
problem, the utility of each focal element should be considered in the
definition of the uncertain degree in a BD. For example, A is assessed to be
‘Excellent’ and ‘Average’ with the belief degree of 0.5 and 0.5, while B is
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assumed to be ‘Good’ and ‘Average’ with the belief degree of 0.5 and 0.5.
According to any one of the above mentioned uncertainty measures on
mass function, the result is identical for A and B although it may be dif-
ferent by each method. It is not reasonable because the difference between
the utility of ‘Excellent’ and ‘Average’ is larger than ‘Good” and ‘Average’,
which leads to the divergence of opinion for A is more than B in either a
GDM situation or individual decision circumstance. So the uncertainty
measure on mass function should be improved to considering the differ-
ence among the utilities of discrete focal elements. In this paper, the
concepts of dissimilarity measure and uncertainty measure on alternatives
are proposed to generate the support degree of assessment for decision
making. The uncertainty measure on the BDs of all attributes and the
aggregated BD are presented, followed by the definition of incompatibility
measure among the BDs of attributes for the purpose of quantifying the
discrepancy of the BDs on different attributes.
The main contributions of the paper are summarized as follows:

(1) The conflict measures between two attributes on both the alter-
native and evaluation grade level are defined provided that sub-
jective judgements are represented in the form of BDs. The ad-
vantages of the measurement are analyzed compared with existing
conflict or distance metrics.

(2) A novel weight assignment method is developed from two dimen-
sions extracted from the subjective judgments of attributes. This
enables us to determine the weights of qualitative attributes if we
are confronted with lack of prior knowledge. Comparative analysis
is conducted to show the effectiveness and applicability of the
proposed method.

(3) In order to facilitate the DM to measure the support degree of as-
sessment for decision making in a MADM problem, the dissimilarity
measure on alternatives and the uncertainty measure of BD are
proposed. The concepts of average and global uncertainty measure
are defined, which induce the total incompatibility measure among
the BDs of all attributes for an alternative. This enables us to utilize
the aggregated result in a more rational way instead of just de-
pending on the ranking order of different alternatives.

The reminder of the paper is organized as follows. Section 2 is a brief
presentation of the ER approach. In Section 3, conflict measure on the
alternative level and evaluation grade level are firstly given, followed by
the description of a comprehensive weight assignment method based on
BDs. Sections 4 and 5 are both used to discuss the support degree of
assessment for decision making. More specifically, Section 4 provides a
method to quantify the external dissimilarity measure on alternatives,
while Section 5 proposes a measurement of internal indeterminacy or
uncertainty on belief structures. Section 6 presents a case study and the
comparative analysis with existing methodological methods are con-
ducted. This paper is concluded in Section 7.

2. Preliminaries

The ER approach uses the belief structure to represent uncertain
subjective judgment on qualitative attribute based on the framework of
Dempster-Shafer (D-S) evidence theory (Jirousek & Shenoy, 2018; Klir
& Ramer, 1990; Ronald & Yager, 2018) and decision-making theory. A
set of evaluation grades for the assessment of an attribute on an alter-
native constitute the frame of discernment which is profiled as follows:

H={H, I, -+-H,, -+,Hy} (1)

where H,(n = 1, 2,---,N) each denotes an evaluation grade, and H,4, is
supposed to be preferred to H,(n =1, 2,---,N — 1). They are collec-
tively exhaustive and mutually exclusive. The utility of H, is re-
presented by u(H,), and u(H,4+,) > u(H,). In a MADM problem, sub-
jective judgments may be used to evaluate one alternative against
others on either qualitative or quantitative attributes. Let
A ={a,, a, ---,q;, ---,as} and E = {e}, €5, ---,¢;, ---,¢;} be the alternative



M. Zhou, et al.

vector and the basic attribute vector in a MADM problem respectively,
where S and L denotes the number of alternatives and attributes. The
belief degree that q; be evaluated on ¢; to the nth evaluation grade H, is
profiled by ﬁn_i(af) with 0 <4, ;(a) <1 and ZL ,Bm(a,) <1

Definition 1. Suppose §,;(a;) is the intensity to which the state of a
single attribute ¢; at alternative a; be assessed to an evaluation grade H,,.
Then the belief distribution (abbreviated as BD) that a; be assessed on e;
is profiled as follows:

S(ei(a) = {(Hy, B (@), n =1, 2,--,N: (H, By ; (@)} (2

where (H,, f,,(@)) is an element of S(e;(a;)), representing that the
evidence points to the proposition H, to the degree of §,;(a).

Eq. (2) stands for the state of a basic attribute evaluated for an al-
ternative to all the N grades. H, is referred to as a focal element of
S(ei(ay)) if B,;(a) > 0. By ;(a) is interpreted as the global ignorance
included in the assessment of @; on ¢;, or called the degree of total in-
completeness. Z:r:lﬁn‘,(al) + By (@) =1 is a basic condition which
means the sum of the uncertain belief degree on all theN grades and the
degree of ignorance is one. S(e;(a;)) is said to be an incomplete BD if
By (@) > 0; otherwise, it is complete when g;;(a)=0 [(or
e Bl = 1)

Example 1. In a car selection problem, some quantitative and qua-
litative attributes are included in the assessment where six alternative
cars are to be compared. The attributes include Acceleration (e),
Braking (e;), Handling (e3), Horsepower (es), Ride quality (es),
Powertrain (es) and Fuel economy (e7). The frame of discernment
consists of six evaluation grades such that H={Worst (H;), Poor (H>),
Average (Hs3), Good (Hy), Excellent (Hs) and Top (Hg)}-

In the assessment of Car 6, for example, the assessor is (1) 25% sure
that its “Acceleration” is good, and 75% sure that it is excellent; (2) 50%
sure that its “Handling” is excellent and 40% sure that it is top; (3) 100%
unaware of the assessment on “Ride quality”. Then the assessment on
“Acceleration”, “Handling” and “Ride quality” can be represented by
BDs as follows:

S(er(as)) = {{(G, 0.25), (E, 0.75)}}
S(ei(aﬁ)) = {(Es 05), (T! 04)v (H! 01)}

S(es(ag)) = {(H, 1.0)}

S(ei(ag)) and S(es(ag)) are both uncertain assessment because more
than one evaluation grades are picked up, or in other words, there are
more than one focal elements in these two BDs. Note that S(e;(ag)) is a
complete assessment because the total belief degree for the statement
sums up to 1 such that 8, (as) + B5,(as) = 1, which means that the
information provided by the assessor is complete. The missing 0.1 in
S(es(ag)) represents the degree of ignorance or incompleteness.
S(es(ag)) is said to be completely ignorant because the global ignorance
represented by 8, ;(ae) is 1.

In a MADM problem, a decision matrix can then be represented as
follows:

S(e1(A))---S (e (A))---S (g (A))---S(er.(A))
S(E(a)) | Ster(ar)) - SCei(a)) S(ejlar))- Ser(ar))

[SCei(a))lsxe = S(E(ap) | Ster(an) - S(elan)- S(ejlan)-  S(erlan)

S(E(as)| Sleilas)) - Sleilas))- Slejlag)) - Slerlas) | (3)

In Eq. (3), each row represents the BDs that an alternative a; be
evaluated on all the [ attributes denoted by a vector
S(E(a)) = (S(er(ap)),---,S(e;(ap)), -, S(er (q;))), while each column de-
notes the vector that all the S alternatives be assessed on an attribute ¢;
such that S(e;(A)) = (S(e;(a), -+, S(e; (@), -, S (e;(ag))). The relative
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weight of the ith attribute is represented by w; such that 0 < w; < 1 and
Z,.L:l w; = 1. Either the recursive/analytical ER algorithm (Wang et al.,
2006; Yang & Xu, 2002) or the ER rule (Yang & Xu, 2013; Zhou, Liu,
Chen, & Yang, 2018) can be used as the aggregation approach to gen-
erate a general assessment from S(E (a;)). The generated BD on q; from

S(E(q;)) is denoted as follows:
S(a) = {(Hn, B,(a)), n =1, 2,---.N; (H, By (ap)} (4)

where §, (a;) represents the combined BD that a; be evaluated on H,,
and §, (a;) denotes the global ignorance assessed on a;. The general BD
on each alternative can then be compared using the average utility,
maximum utility and minimum utility.

3. Assignment of attribute weight based on BDs

The dissimilarity measure of assessments is a critical issue to derive
attribute weights in an objective way for MADM problems. When the
assessments are presented in the form of numerical values, geometric
models such as Euclidean distance, Manhattan distance, Chebyshev
distance can be applied. Besides, Hamming distance, correlation coef-
ficient, information entropy can also be employed to quantify the dis-
similarity between objects. If the numerical values are not sufficiently
informative, fuzzy sets can be introduced to represent the assessment
information. In recent years, many researchers have devoted to mea-
suring the similarity/dissimilarity of fuzzy sets (Gou et al., 2018;
Milosevi¢ et al., 2017). When the assessments are represented by BDs,
how to calculate the similarity/dissimilarity of BDs is an open issue. In
(Fu et al., 2018) and (Fu et al., 2015), dissimilarity measure between
the BDs of alternatives and DMs are defined respectively. Suppose the
BDs of attribute ¢; on two alternatives q; and a,, are represented by Eq.
(2), then the distributed dissimilarity vector between g, and a,, respect
to ¢; is denoted as follows:

GD (ef (al'm)) = ((Hls 6141 (alm))a (HZ’ ﬁz,i (alm))’ . 'a(HN* ﬁ[\',i (aim))) (5)
where
ﬁnvf (ar’m) = Iﬁn‘i (al') - ﬂ)’t‘l (am)l(” =1, 2, aN) (6)

Let D(e; (a;,)) be the dissimilarity measure between q; and a,, with
respect to attribute ¢;. Then the dissimilarity measure between the BDs
of q; and a,, on e; is defined as follows (Fu et al., 2018):

N-1 N
D (e (aIm)) = Z Z .Bn‘i(alm),e‘_,'(alm)u(hrleﬂ\)

n=1 s=n+1 (7)
where
M(Hr\s—n\) = u(Hy) — u(H,) (8)

The dissimilarity measure defined in Eq. (7) quantifies the divergence
between the BDs of two alternatives on a specific attribute. The purpose
of the dissimilarity measure defined in (Fu et al., 2018) is to compute the
divergence among the BDs of all alternatives on one attribute, named as
discriminating power, which is used to generate attribute weight for a
MADM problem. Here, the dissimilarity is defined to measure the dis-
crepancy between the BDs of two attributes respect to an alternative. The
purpose of the dissimilarity measure defined in this paper is to calculate
the subsequently defined conflict measure between two attributes, which
is then applied to compute attribute weight together with the dis-
criminating power. Intuitively, if the conflict between the BD of one
attribute and all other attributes is large, it will be allocated with higher
weight, and vice versa. So both dimensions are considered to be relevant
to attribute weight generation in the background of BD. Although some
objective methods such as the CRITIC and CCSD considered these two
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dimensions, they were designed to tackling with the situation where the
data are presented in the form of accurate numerical values. Next, we
will present the conflict measure between two attributes when subjective
judgments are presented in the form of BDs.

3.1. Conflict measure on the alternative level

Given the BDs of two attributes ¢; and ¢; on g, represented by Eq. (2),
the belief degree of dissimilarity that a; be assessed on H, between ¢; and ¢;
is computed by

'Bn,u—jl(ai) = ‘/3“'5(01) - 6n,j (@)l 9)

Definition 2. Suppose the belief degree of dissimilarity is calculated by
Eq. (9), the distributed dissimilarity vector between S (¢; (a;)) and S (¢j (a;))
denoted by GD(e;(a;)) is defined as follows:

GD (e (ap))
= ((Hl, ,61‘|1'_J'| (al))! (HZ, ﬁz,lf—j\(af))! B (HNs BNJf_ﬂ(al)})
(i,j=1,2,---,L) (10)

The distributed dissimilarity vector in Def.2 provides us a
panoramic view of the discrepancy between two attributes on a
specific  alternative. It is obvious that when i=j,
Bﬂ‘uﬂ‘(af) =0(n =1, 2,---,N) which leads to GD(e;(a)) = (0, 0,---,0).
Based on Eq. (10), the distributed dissimilarity matrix between S (¢;(A))
and S(ej(A)) can be denoted by

GD = [GD(e;j(A))]sxn = (GD(e;(a)), GD(ej(az)), -, GD (e (as)))"
an

Definition 3. Given the distributed dissimilarity vector defined in Eq.
(10), an improved dissimilarity measure between S(e; (a;)) and S(e;(a))) is
proposed as follows:

N-1

N
. Z Z ﬁnq\,fﬂ(al)ﬁwfﬂ(aI)u(‘H\sfnlj

Doy (o) = u(Hy) — u(H,) el sent1

(12)

Def. 3 defines the dissimilarity measure between two attributes
associated with an alternative. Here, a multiplier m is added in
the dissimilarity measure for the purpose that the maximum value
of D(e;(a;)) attains to 1. For example, if the belief degree of ¢
assessed on q; to grade H is 1 such that g, ;(a)) = 1, and the belief
degree that ¢; be evaluated on g, to grade Hy is 1 such that 5N,1 (a)) =1,
then from Eq. (9) we have Bl“ﬂl(al) =1, IBN.Iifjl(af) =1 and
Briyl@) =0(n =2,3,-.N=1). If m is not multiplied,
D(ej(ap)) = u(Hy) — u(Hy). Since the utility of H,(n=1,2,3--N)
reflects the subjective judgment of an individual or a group of DMs, the
utility of H; may be more than 0, whereas the utility of Hy may be less
than one considering the personal difference on background, knowl-
edge and risk preference. When u(H;) > 0 oru(Hy) < 1, D(¢g;(q;)) < 1.
So the largest dissimilarity between two BDs will not certainly lead to
the result that D (e;;(a;)) = 1. Comparatively, the proposed dissimilarity
in Eq. (12) equals to one when ﬁmﬂl(al) =1 and ﬁN,u—jl (q)) =1 no
matter how the utility of H; or Hy is set. So the improved dissimilarity
measure defined in Eq. (12) has the following properties:

1> 0<D(ela)) =L

2> Dley(a)) = D(ei(a));

3> D(eg(ap) =1 iff !31‘“,1'\(111) =1 and ﬁwlﬂ‘(a,) =1
4> D(ey(a)) =0 iff Vnell, 2 N},B,,_;(a)=0;
5> D(e;(a))=0.

Here, Property 2 > is the symmetry of the measure. Property
3 > and 4 > indicate that D(e;(a;)) defined in Eq. (12) is bounded
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between 0 and 1. Property 5 > is the reflexivity of the dissimilarity
measure.

Definition 4. Suppose the distributed dissimilarity vector between two
BDs S(e; (@) and S(e;(a;)) is denoted by Eq. (10). Then based on the
improved dissimilarity measure given in Def.3, the conflict measure on
the alternative level between two attributes ¢; and ¢; (i,j =1, 2, ---,L)
respect to all the S alternatives is defined as follows:

1 s
Con'(e;, ) = 5 >

1oy Dleglan)

(13)

Remark 1. If V [ € {1, 2, ---,S}, D(eg;(a;)) = 1, then from Def.4, we will
have Con'(e;, ¢) = 1; On the contrary, VI € {1, 2, ---.S}, D(e;(a)) = 0,
we will have Con'(e;, ¢;) = 0. So the following properties are satisfied:

1> 0< Con'(e;, ¢) < 15

2 > Con'(e;, ) = Con'(e;, &);

3 > Con'(e, ¢) = 0;

4> Con'(e, ¢) =1 iff VIe{l, 2.8, Digla)) =1;
5> Con'(e;, g) =0 iff VIe€{1,2,-.5}, D(ej(a)) = 0.

When Con'(e;, ¢)) = 1, it is clear that the BDs between ¢; and ¢; on
each alternative are completely opposite, that is, VI € {1, 2, ---,5},
GD(e;(ar)) = (1, 0, 0---,0, 1). The more discordant the BDs of the S al-
ternatives on ¢; and e;, the higher the value of Con'(e;. ¢;).

Example 2. Given the frame of discernment H = {H,, H, ---,Hs}.
Table 1 shows the BDs of two attributes e, and e, on two alternatives a,
and a,. It is clear that there is no uncertainty and ignorance contained in
any of the four BDs. From Eq. (12), we have
D(eyz (@) = D(eja(ay)) = 1. And the conflict measure on the alternative
level between e, and e, denoted by Con'(e,, ¢,) equals to 1.

In this case, a; and a; cannot be compared only from e, and e, be-

cause they are both assessed to be bad on one attribute and excellent on
the other one. According to (Fu et al., 2018), the dissimilarity based
discriminating power on e; represented by D(e;) can be generated as
follows:
D) =5 3, D) 0
Here, D(e;(a;)) denotes the average dissimilarity measure between
S(e;(ar)) and the BDs of ¢; on other § — 1 alternatives represented by
S(e;(ay))(m =1, 2,--.,S, m # 1), and it is computed by

_ 1 s ,
Dleta) =2, _, Dlelan) (15)

In Eq. (15), D'(e;(a;,)) is generated from D (e; (ay,,)) in Eq. (7) which
is multiplied by ) =i Here, D(e;) = D(e;) = 1.

Example 3. Similar with Example 2, the BDs of ¢; and e, on @; and a,
shown in Table 2 are also certain and complete. Differently, the two
alternatives are assessed to be the same on either e, or e,. Here,
D(ex(a))) = D(epp(az)) =1, and Con'(ey, e;) = 1 which are identical
with Example 2.

Because there is no difference between the BDs of the two alter-
natives on ¢;(i = 1, 2), D(e;) = D(e;) = 0. So @, and a, cannot be simply
compared only from e¢; and e,. According to the objective weight as-
signment method such as entropy method, SD method or discriminating
power method, the weight of e¢; and e, is 0 in both Example 2 and 3 if
there are other attributes included in the assessment and no more al-
ternatives involved. It is not reasonable because the conflict measure

Table 1
Belief distributions of two attributes on two alternatives.

e H, H; H; Hy Hs e H, H; Hs Hy Hs

aq 1 0 0 0 0 a O 0 0 0 1
a 0 0 0 0 1 e 1 0 0 0
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Table 2
Belief distributions of two attributes on two alternatives.

e H, H, H; H, Hs ey H, H, Hs H, Hs

a 1 0 0 0 0 a, 0 0 0 0 1
az 1 0 0 0 0 az 0 0 0 0 1

between ¢; and e, is 1 in the two cases. The difference lies in that two
opposite assessments are possessed by each attribute respect to the two
alternatives in Example 2, while the BDs of different alternatives on a
specific attribute are the same in Example 3. In sum, the second di-
mension which measures the conflict between the BDs of each pair of
attributes should be considered in the generation of weights, especially
when the first dimension which quantifies the discrepancy among dif-
ferent alternatives on a specific attribute cannot discriminate the im-
portance of different attributes properly.

Example 4. Given the frame of discernment H = {H,, H, ---,Hs}. The
BDs of three attributes e, e, and e; on five alternatives q¢;(i = 1, 2,---,5)
are shown in Table 3. It is clear that q, is the worst one because its belief
degree on H, for all the three attributes are 1, while a, is the best option
since it is assessed to Hs with the belief degree of 1 on each of the three
attributes.

In this example, the dissimilarity based discriminating power on the
three attributes are identical such that D(e;) = D(e;) = D(e;) = 0.6. The
SD or Gini’s mean difference (GMD) based discriminating power (Fu
et al., 2018) in this case are also identical on the three attributes such
that S(El)=g (22) = S(f.’;) = 0.2, G(eﬂ:@(ez) = G(e;) = 0.36. So the ob-
jective weights generated from any one of the three discriminating
powers will be the same such that w, = w, = w; = ; But the conflict
measure on the alternative level between each pair of the three attri-
butes is different, i.e., Con'(e;, e;) =04, Con!(ey, e3) = 0.6,
Con'(ey, e3) = 0.2. According to the viewpoint of CRITIC and CCSD, the
correlation between each pair of the three attributes should be con-
sidered in the process of generating weights. So the discrepancy on the
correlation among the three attributes will lead to the difference on
attribute weights.

Based on the conflict measure defined in Def.4, a conflict measure
matrix can be constructed as follows:

Con'(ey, e;) Con'(ey, e3) --- Conl(ey, er)

Con'(ey, e) Con'(ey, e;) -+ Con'(ey, e1)

Con'(er, ey) Con'(eg, e;) Con' (e, er) (16)

It’s a symmetric matrix that reflects the conflict measure of each
pair of attributes. From remark 1, the elements on the diagonal line of
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the matrix in Eq. (16) are 0. If the average conflict measure between ¢;
and other L — 1 attributes is large, ¢; should probably be given a higher
weight. Thus, the average conflict measure is defined as follows.

Definition 5. Given the dissimilarity measure and conflict measure
defined in Eqgs. (12) and (13) respectively, the average conflict measure
on the alternative level created from e; with respect to other L — 1
attributes is defined as follows:

1 L
1) — z: L. e
Con'(e;) = T 241 Con'(e;, e) a7)

Properties:

1> 0< Con'(e) < 1;
2> Con'(e) =1 iff Vje{l,2L}j#1 Conlle, ¢) =1;
3> Con'(e) =0 iff Vje{l, 2. L}, Con'(e. ¢) = 0.

Property 2 > is a special case that all attributes except ¢; have the
same BDs on each alternative, while the BDs between ¢; and any one of
the other L — 1 attributes on each alternative are absolutely in-
compatible, i.e., V je {1, 2,---,i — 1,i+ 1,---,L}; L € {1, 2,---, 5}

GD (e (a) = ((Hy, 1), (Ha, 0),+,(Hy, 0),+++,(Hy-1, 0), (Hy, 1))

andV j,ke{l,2,--i—-1,i+1,---L}; 1 €11, 2,---,5}

GD (e (a1)) = ((Hy, 0), (Hy, 0),--+,(Hy, 0),---,(Hyn_1, 0), (Hy, 0))
Otherwise, Con'(e;) < 1. Property 3 > indicates that all the L attri-

butes have the same BDs on each alternative although it rarely happens
in real MADM problems.

3.2. Conflict measure on the evaluation grade level

Given the belief degree of dissimilarity defined in Eq. (9), then the
belief degree vector of dissimilarity on H, between ¢; and ¢; considering all
the S alternatives is denoted by

6)1,\17_1\(‘4) = (Bn,\iﬁ\(al)’ 'Bn,lifjl(aﬁ’""lgn.lffjl(a-‘f))j- (18)

So the distributed dissimilarity matrix shown in Eq. (11) can be
represented by GD = (lsl,li—jl (A), 52,”_]1(14)’ m,ﬁth_ﬂ(A)). As such, the
average belief degree of dissimilarity on H, between ¢; and ¢; is defined as
follows:

Lo
Buiga) = < 2 B y@) 19)

Definition 6. Suppose the average belief degree of dissimilarity is

Table 3

Belief distributions of three attributes on five alternatives.
e H, H> Hy H, Hs es H, H, H, H, Hs
a 1 0 0 0 0 a, 1 0 0 0 0
a 0 0 0 0 1 a 1 0 0 0 0
as 1 0 0 0 0 as 1 0 0 0 0
ay 0 0 0 0 1 as 0 0 0 0 1
as 1 0 0 0 0 as 0 0 0 0 1
e3 H, H» H; H, Hs
a 1 0 0 0 0
as 1 0 0 0 0
as 0 0 0 0 1
as 0 0 0 0 1
as 0 0 0 0 1
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computed by Eq. (19) based on the belief degree vector of dissimilarity
presented in Eq. (18), then the conflict measure on the evaluation grade
level between e; and ¢; respect to all the S alternatives is defined by

N-1 /

1 S .
W) —u(m) Z Z B iz (@B iy (@) u (His—n1)

n=1 s=n+1

Con?(e;, ¢;) =

(20)

Properties:

1> 0< Con*(e,e) < 1;
2 > Con’(e;, ¢j) = Con®(ej, €);
3 > Con’(e;, ¢) = 0;

4> Con*(e, ¢) =1 iff ;’E’mlH‘(a;) =1 for n=1,N and En‘hfﬂ(al) =;

0 for n=2, ---,.N—=1
5> Con*(e ¢) =0 iff V1e{l, 2.8} S(e(a)) = S(e(a)).

Property 4 > and 5 > represent two special cases, i.e., the evalua-
tion values of two attributes are either completely conflicting or com-
pletely consistent. In Property 5 >, S(e; (a;)) = S(e;(ay)) will lead to the
result that Bn“f_ﬂ(af) =0 for n=1, 2, ---,N, while the condition in
Property 4 > is caused by the fact that GD(e;(a)) = (1,0, 0---,0, 1)
(Vief1, 2,---,Sh.

Definition 7. Suppose the conflict measure is calculated by Eq. (20),
then the average conflict measure on the evaluation grade level created
from e; is computed by

1 L N
1 Zj:l Con?(e;, ¢) (21)

Con®(e) = T

Example 5. Given the frame of discernment H = {H,, H,, ---,Hs}.
Table 4 shows the BDs of four attributes ¢;(i = 1, 2, 3, 4) on five alter-
natives a;(l = 1, 2,---,5). It is clear that the BDs of e,, e; and e, are
identical with each other on all alternatives, while the BD of ¢; on any
one of the five alternatives is completely opposite to e, e; and e,. From
Eq. (12), we have D(ey(ap) =1 for j=2,3,4:1=1,2, ---,5, and
D(e;(qp)) = 0 for i, j = 2, 3, 4. The conflict measure on the alternative
level between e, and ¢;(j = 2, 3, 4) denoted by Con'(e,, ¢) equals to 1,
while Con'(e;, ;) = 0 for i, j = 2, 3, 4. So the average conflict measure
defined in Eq. (17) can be generated as: Con'(e) =1,
Conl(e) = %(i = 2, 3, 4). By Eq. (20), the conflict measure on the eva-
luation grade level between ¢; and ¢; can also be generated as follows:
Con*(ey, ¢)) = 1(j = 2, 3, 4), Con*(e;, ¢;) = 0 for i, j =2, 3, 4. Then the
average conflict measure defined in Eq. (21) is Con®(e) =1,
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3.3. Comparisons with other conflict measures

The conflict measures between two pieces of evidence in the
mathematical framework of evidence theory have been widely studied
in recent years. It is also termed as distance or dissimilarity. The conflict
belief K in the Dempster’s combination rule (Ronald & Yager, 2018) has
previously been regarded as the sole quantification of conflict measure
between BDs. But this factor can be inappropriate to be a dissimilarity
measure because some counterintuitive results may be generated,
especially when two pieces of evidence are identical. Afterwards, more
than 15 popular dissimilarity measures have been proposed. Jousselme
classified them into five categories (Jousselme & Maupin, 2012), in-
cluding the composite distances (Tessem, 1993), the Minkowski family
(Jousselme et al., 2001), the inner product family (Ristic & Smets,
2006), the fidelity family (Florea & Bossé, 2009), the information-based
distances (Denoeux, 2000) and the two-dimensional distances (Liu,
2006).

Here, we divided them into three categories: (1) the probability-
based distance such as Tessem’s distance (Tessem, 1993) and combined
dissimilarity measure (Liu et al., 2011); (2) the mass-based distance
such as Jousselme’s distance (Jousselme et al., 2001), Cosine similarity
(Wen et al., 2008) and correlation coefficient (Jiang, 2018); (3) dis-
tance considering two factors such as Liu’s distance (Liu, 2006). Up to
now, there is no one measure that is perfect to quantify the dissimilarity
between two BDs in all cases. That is to say, each one of them has its
advantages together with some weakness in specific situation. For in-
stance, Tessem’s distance and Tanimoto’s similarity is invalid when the
Pignistic probability of two pieces of evidence is identical even though
the BDs may be different. Jousselme’s distance may generate counter-
intuitive result when the intersection of the focal elements associated
with two BDs is empty. Cosine similarity may generate irrational result
when there is no identical focal element for two BDs although the cores
of the two BDs have common elements.

It is not within the scope of this paper to conduct a comprehensive
survey of the existing conflict measures. The big advantage of the
conflict measure proposed in Defs.4 and 6 lies in the consideration of
the utilities of evaluation grades against the non-definition on the uti-
lity of hypotheses included in the frame of discernment in any of the
above mentioned measures. So the above listed conflict/dissimilarity
measures cannot be applied in a MADM or GDM problem unless the
utilities of different evaluation grades are distinguished. Instead, they
are more applicable in the situation such as sensor fusion and target
identification where each element in the frame of discernment re-
presents a probable target rather than an evaluation grade.

Example 6 Given the frame of discernment
= {Worst(H,), Poor(H,), Average(Hs), Good(H,), Excellent(Hs)}. The
utilities of the five evaluation grades are set to be u(H;) =0,
u(H,) = 0.25, u(H;) = 0.5, u(H,) = 0.75, u(Hs) = 1. Table 5 shows the

Con®(e;) = é(i =2,3,4). BDs of three attributes ¢;(i=1,2,3) on five alternatives

Table 4

Belief distributions of four attributes on five alternatives.
[ H, H, Hj H, Hs [ H, H, H; H, Hs
a 1 0 0 0 0 a, 0 0 0 0 1
ay 0 0 0 0 1 a 1 0 0 0 0
as 1 0 0 0 0 as 0 0 0 0 1
a4 0 0 0 0 1 as 1 0 0 0 0
as 1 0 0 0 0 as 0 0 0 0 1
es H, H, Hs H, Hs ey H, H, H; H, Hs
a, 0 0 0 0 1 a, 0 0 0 0 1
ay 1 0 0 0 0 a, 1 0 0 0 0
as 0 0 0 0 1 as 0 0 0 0 1
a4 1 0 0 0 0 as 1 0 0 0 0
as 0 0 0 0 1 as 0 0 0 0 1
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Table 5
Belief distributions of three attributes on five alternatives.
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e H, H, H, H, Hs e H, H, Hs H, Hs es H H, Ha He Hs
a 1 0 0 0 0 a 0 0 0 0 1 a 0 0 0 0 1
a 0 0 0 0 1 a 1 0 0 0 0 a 0 0 1 0 0
a3 1 0 0 0 0 a 0 0 0 0 1 a 0 0 0 0 1
a 0 0 0 0 1 a 1 0 0 0 0 as 0 0 1 0 0
as 1 0 0 0 0 as 0 0 0 0 1 as 0 0 0 0 1

a(l =1, 2,---,5). It is clear that the BD of ¢; on any one of the five
alternatives is completely opposite to e,.

According to Def.2, the distributed dissimilarity matrix is generated
and shown in Table 6. From Eq. (12), we have D(e;x(a;)) =1 for
[=1,2, -5, D(ens(a)) = 1(l =1, 3, 5) and D(e;3(a)) = 0.5(1 = 2, 4).
So the conflict measure on the alternative level between ¢, and e, de-
fined in Eq. (13) denoted by Con'(ey, e;) equals to 1, while
Con'(ey, e3) = 0.8, Con!(ey, e3) = 0.2. As such, the average conflict mea-
sure defined in Eq. (17) is generated as: Con'(e;) = 0.9, Con'(e;) = 0.6,
Con'(e3) = 0.5. By Eq. (20), the conflict measure on the evaluation grade
level between ¢; and ¢; can also be generated as follows: Con?(ey, €;) = 1,
Con?(ey, e3) = 0.92, Con®(e,, e3) = 0.08. Then the average conflict mea-
sure defined in Def.7 is Con®(e;) = 0.96, Con®(e;) = 0.54, Con?(e;) = 0.5.
Obviously, D(e(a2)) # D(es(az)), D(en(as)) # D(eiz(as)). It is rea-
sonable because the dissimilarity between e, and e, respect to a, or ay is
larger than that between e; and e;. If we use any one of the above
mentioned dissimilarity measures to replace Eq. (12), the induced value
of conflict measure between e, and e, will be 1, which is equal to that
between e; and e;.

3.4. Comprehensive weight assignment method

Just as discussed in (Fu et al., 2018) and (Chin et al., 2015), the larger
the discriminating power or deviation incompatibility of an attribute, the
larger weight should be assigned. It is in accord with the perspective of
EWAM (Song et al., 2017; Zhou et al., 2019) and SD method (Chin et al.,
2015; Diakoulaki et al., 1995) where the EWAM or SD is the measurement
of discrepancy among different alternatives on a specific attribute. The
CRITIC or CCSD method adds a second aspect of intrinsic information
contained in attributes, namely the conflict among attributes or from an
opposite point of view, the correlation between each pair of attributes. It is
known to us all that the more conflict between the values of an attribute
and any other attributes respect to all alternatives, the attribute is to be
assigned with a higher weight. But it should be mentioned that the cor-
relation in either the CRITIC or CCSD method is derived from crisp nu-
merical values. When the assessments of attributes are represented by BDs,

Table 6
Distributed dissimilarity matrix between attributes.

the Spearman correlation coefficient cannot be directly used. For instance,
given the BDs of two attributes be assessed on five alternatives which are
shown in Table 7. The utilities of the five evaluation grades are set to be
u(H)) = 0, u(Hy) = 0.25, u(Hs) = 0.5, u(Hy) = 0.75, u(Hs) = 1. So the
utilities of a;(I=1,2,--,5) on e; and e, are identical such that
uley(a) = uley(a)) = 025, ule(az)) = ules(ay)) = 0.5, ulei(as)) = uley(as)) = 0.75,
ue;(as)) = ules(ay)) = 0.5, u(e,(as)) = u(es(as)) = 1. The intrinsic information
contained in the BDs is not preserved when the utility based correlation
coefficient is applied. The conflict measure calculated by Eq. (13) is
0.375. It is reasonable because the dissimilarity between e, and e,
on all alternatives in Eq. (13) is extracted from the BDs although the
utilities of each alternative on e, and e, are the same. So the rationality of
the method to measure the correlation or conflict between attributes re-
presented by BDs is significant for objectively obtaining the weights of
attributes.

It should be mentioned that results created by the average conflict
measure on the alternative and evaluation grade level are not ne-
cessarily the same in any case. So a weighted averaging operation for
the two conflict measures is conducted as follows:
Con(e) = Zizl 8, Conk (e;) (22)
where 0 < &, < 1(k = 1, 2), and Zi:l 8, = 1. Here, we call Con(g;) the
weighted average conflict measure. When &, = 1, Con(e;) becomes the
average conflict measure on the alternative level. Conversely, Eq. (22)
becomes the average conflict measure on the evaluation grade level
provided that &, = 1. So the selection of §; will determine the value of
Con(e;) to some extent.

In (Fu et al., 2018), a combination of the dissimilarity, SD and GMD
based discriminating power is conducted. Inspired by the entropy-based
weight assignment method (Zhou et al., 2019), the entropy based dis-
criminating power is added as the fourth factor. Then the comprehensive
discriminating power on ¢; can be computed as follows:

D(e) = 8°D(e;) + 65S(e) + 6°G(e;) + BEE () (23)

In Eq. (23), (&), G(e;) and E (e;) signify the SD, GMD and entropy

GD(ei2(ap) H, H; Hs Ha Hs Doeyz(aD) GD(eys(ap) H, H; H; Hy Hs Dieys(ap)
a; 1 0 0 0 1 1 a, 1 0 0 0 1 1

az 1 0 0 0 1 1 az 0 0 1 0 1 0.5

as 1 0 0 0 1 1 as 1 0 0 0 1 1

as 1 0 0 0 1 1 as 0 0 1 0 1 0.5

as 1 0 0 0 1 1 as 1 0 0 0 1 1
Bn,ll—z\(ul) 1 0 0 0 1 ﬁ’ml_zl(ﬂ,) 0.6 0 0.4 0 1

GD(ezs(ap) H, H, H, H, Hs Dleys(a))
a 0 0 0 0 0 0

as 1 0 1 0 0 0.5

as 0 0 0 0 0 0

ay 1 0 1 0 0 0.5

as 0 0 0 0 0 0
5’”)'2_3‘(;“) 0.4 0 0.4 0 0
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Table 7
Belief distributions of two attributes on five alternatives.

e H, H: Hs H. Hs [ H, H, Hs

E
F

a 05 0 05 0 0 a 0 1 0 0 0
a 0 05 0 05 0 a 0 0 1 0 0
a; 0 0 05 0 05 a5 O 0 0 1 0
a 05 0 0 0 05 a; 0 0 1 0 0
as 0 0 0 0 1 as 0 0 0 0 1

based discriminating power respectively. 0 < 8" < 1(h = D, S, G, E),
and 82 + 65 4 6¢ 4 6 = 1. It is obvious that different assignment of §"
will lead to different value of D(e;). Based on the weighted average
conflict measure and the comprehensive discriminating power on ¢;, the
weight of ¢; can be generated by the following equation:

= D{e;) * Vﬁm
i Z_Ii;lD(ei) % m (24)

It need to be mentioned that if the BDs of ¢; on all S alternatives are
identical, D(e;), S(e;), G(e;) or E(e;) equals to 0 which means ¢; can be
deleted before generating the attribute weights. A special case is that
VYiell, 2L}, D(e) =0, which means all the S alternatives are as-
sessed to be the same on any attribute. In this situation, the attribute
weights cannot be generated by Egs. (22)-(24), but it rarely happens in
real decision-making problems because any two alternatives do have
differentia on some attributes.

4. Dissimilarity measure on alternative

In a decision-making problem, the support degree of assessment for
the final decision is pivotal because it determines the extent that we can
rely on the aggregated result. However, if the assessment value of each
alternative differs significantly over different attributes, it may be dif-
ficult to make a ranking order firmly. On the contrary, it is easier to
make a choice provided that the BDs of attributes achieve a high degree
of consistency no matter the assessment is positive or negative.
Specifically, if an alternative is assessed on some attributes with high
grades, whereas it is assumed to be relatively poor on some other at-
tributes, the divergence of different attributes should be considered
before the final decision be made only depending on the aggregated
assessment. So how to measure the total distinction among different
attributes associated with an alternative is significant for the final se-
lection or ranking. In this section, the definition of dissimilarity mea-
sure on alternative is given to calculate the incompatibility of the BDs
on different attributes assessed to an alternative. We call it the external
divergence of different attributes which is the first factor to influence
the support degree of assessment. Thus, the smaller the value of the
dissimilarity measure on an alternative, the easier to give a final
judgment on the alternative, and vice versa.

4.1. Dissimilarity measure on alternative

The dissimilarity measure matrix on ; can be constructed based on
Eq. (12) as follows:

D(ey(a)) Dlel(ar))
D(exn(a)) Diex(ap)

D(epy(ap) Dlepz(ar))

- D(ey(a))
D = [D(ej(a))]xe = - D(ea(ap)
" D(eLL (al)) (25)

It is a non-negative symmetric matrix where the diagonal line value
is zero.

Definition 8. Given the dissimilarity measure matrix on ¢; shown in Eq.
(25), the average dissimilarity measure between S(e; (¢;)) and the BDs of
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a; on other L — 1 attributes can be determined by

1 L
_1 Zj:l D(eij (al}) (26)

D(ei(ay) = I

The average dissimilarity measure defined in Def.8 reflects the
discrepancy that a) be assessed on ¢; and other L — 1 attributes. It is a
measure of incompatibility between the subjective judgment of a spe-
cific attribute and the BDs of other attributes on an alternative. The
larger the value of D(e; (a;)), the more inconsistency between the BDs of
¢; and other attributes on a;.

Properties:

1> 0<D(e(a) =L
2> D(e(@)=1iff Vje1,2, «i—1,i+1-L}L D(egla)) =1
3> D(e(a))=0 iff Vje({l, 2,---,L} D(ei(a)) = D(g(ar).

Property 2 > indicates that D(e; (a;)) attains to the maximum value
when ¢; is assessed to be completely opposite with other L — 1 aftri-

butes on o such that By,ila) =1 and
61J(af)= 1(i=1a 2, =10+ 1,“‘,L), or .31_f(al)=l and
BNJ (q)=1(j=1,2,--+,i—1,i+1,---,L). Otherwise, D(e;(q;)) <1,

especially when all the attributes are assessed to be the same, we will
have D(e;(a;)) = 0 no matter the assessment is certain or contain ig-
norance.

Definition 9. Based on the average dissimilarity measure proposed in
Def.8, the dissimilarity measure on alternative a; is defined as follows:

1 L
Dl@) =7 2, Dleia) 27)

Properties:

1> 0<D(@) =L
2> D(a)=0 iff Vi jell, 2L} Diela)) =0;
3> D(g)=1 iff L=2,and D(e;p(q)) = 1.

The dissimilarity measure on an alternative defined in Eq. (27)
measures the divergence of the BDs that an alternative be assessed to
different attributes. The smaller the value of D(q;), the higher con-
sistency among different attributes assessed on an alternative, and vice
versa. So it is easier for a DM to conclude a comprehensive judgment on
an alternative when D(q) is small. From another point of view, when
the aggregating assessments of two alternatives are similar, D(a;) could
be considered for the comparison of them. It has the similar meaning
with standard deviation where the assessments of ¢; on a; are numerical
values. Property 2 > is a special case that the BDs of ¢; on all the L
attributes are the same which leads to D(a;) = 0. It should be men-
tioned that even if the BDs of all the attributes are the same, the ag-
gregated BD may be probably different with the BDs of original attri-
butes when the ER approach is applied. Moreover, if
D(a)) = D(ap)(, ke {1, 2,---,.L}: | # k), we cannot conclude that
D(e;(a;)) = D(ei(a)) (Vi € {1, 2, ---,L}). The reason lies in that D(q;) is
the general dissimilarity measure between every two attributes respect
to ;. So D(e;(a)) may be worse than D(e;(a,)) on some attributes,
while better than D(e; (a;)) on other attributes which may lead to the
result that D(q;) equals to D (a).

Example 7. Suppose the BDs that q; be assessed on ¢, ¢, and e; are
given in Table 8. Let the BDs on e, and e3 be fixed, while the BD on ¢, be
changing steadily, ie., for [=1,2, ---,10, B,(q) =1— 0.1+ and
By (ap) = 0.1e1, Byi(a) =1— 0.1 and Bs, (@) = 0.1,
Byi(a)=1-01s and B, (aq)) =01, B, (q)=1-0.1 and
By, (afm) = 0.1el. The dissimilarity measures on alternatives q;, af, aln and

arm(l =1, 2,---,10) can then be calculated by Eq. (27) and shown in
Fig. 1. Obviously, with the difference between the BDs of ¢, and
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¢;(i = 2, 3) increases gradually from a, to a 1"('], the dissimilarity measure
also increases. When the BD of e, is assessed on a,, such that
B, (a;y) =1 and B.1 (a;0) = 0(n = 2, 3,4, 5), it attains the maximum
dissimilarity measure of 0.667.

Here, the dissimilarity measure can also be calculated by the stan-
dard deviation as follows:

N-1 N

1
D I —— n S H! n
(a) = W) — u(H,) nzzl \zn;,la (a)os(a)u(Hy_n)) 28)

where o, (a;) denotes the standard deviation of the belief degree that g,
be assigned to H, on all L attributes.

L 2
i= nf( )
o (@) = %Z; [ﬁ’n,,(az) - Z‘im] (n=1,2,--N)
(29)

It can be proved easily that Eq. (28) also satisfies the three prop-
erties listed for Eq. (27).

4.2. Considering the incompleteness of BDs

The above conflict measure or dissimilarity measure assumes that
the BDs are all complete assessments. In other words, there is no ig-
norance included in any one of the BDs. However, incompleteness and
ignorance are common in real decision-making problems, such as GDM
situation (Hwang & Lin, 1987; Zhou et al., 2018), lack of professional
knowledge from experts, unreliability of equipment where data are
acquired from, and so on. In these circumstances, the ignorance pre-
sented in Eq. (2) is more than 0 such that §, ;(a;) > 0. Here, the conflict
measure on the alternative level and dissimilarity measure on alter-
native will be discussed in the situation that BDs are incomplete as-
sessments.

Based on Eq. (12), the minimum and maximum value of the im-
proved dissimilarity measure between S(e;(a;)) and S(ej(a)) can be
generated by the following pair of optimization models:

Min/MaxD (e;(a;))

s.t. Egs. (2), (8)

N-1 N
D(eq (al)) m HZ::I :z:Ml ﬁ,i\,‘_ﬂ (al)ﬂ::u_j\ (al)M(I_I\s—n\)
3,, li—jl (ai) ‘ﬁ;.f(al) - 6:\) (al)l n=12, - N

Bi(a) < By (a) < B, (a) + By (a)n=1,2, N

Thus, the improved dissimilarity measure will be included in an
interval such that D (e; (a;)) € [D~(e;(ap)), D*(e;(a))| where D~ (e;(a;))
and D*(e;(a;)) are computed by the above pair of models.

The conflict measure on the alternative level in Eq. (13) will also be
an interval, which can be generated by solving the following pair of
programming models:

Min/MaxCon'(e;, ¢;)
s.t. Egs. (2), (8)

Con'(e;, ¢)
N—-1 N

s
m E L S:Zn;rl Boyiji (@B (ap)u(Hys_py)

By (@) = 1By, (@) = B (@)l n=1,2, = N; 1= 1,2, .8

Buila) < B (a) < By i(a) + By (a)n=1,2, -\ N:[=1,2, .8

So we have Con'(e;, ) € [Con'(e;, ¢)~, Con'(e;, ¢;)*]. Then the left
and right extensions of average conflict measure defined in Eq. (17) can
be computed by the following pair of models:
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Min/MaxCon!(e;)
s.t. Egs. (2), (8)

L » N-1 N

S(L — D (Hy) — u(H) E E i1 ZH e 0
(af)u (I—I\s—nl)

Bn*,\i—jl (al') = ‘6,:,((11) -
=1,2, L

Con'(e;) =

Brjla)l n=1,2, -

Bila) < By (a) < B, (a) + By (a)n =1, 2, -,
=1,2, L

By solving the above model, we have
Conl(e;) € [Con'(e;)~, Con'(e)*].

Similarly, the average dissimilarity measure proposed in Def.8 will
be in an interval such that D(e;(q;)) € [D(ei(a;)), D™ (e;(a;))], which

can be calculated by the following pair of models:
Min/MaxD (e; (a;))
s.t. Egs. (2), (8)

N-1 N

Z Z H|L J\(al)‘esll —jl

D(ei(a)) =

1 L
— D(u(Hy) — u(H)) Z::
(al)u (Hlx—n\)

6:'\,,_” (ap = ‘ﬁ;.g(al) -

Br(a)n=1,2 -~ Nij=12 L

Boia) < By (a) < B, (@) + By la)n=1,2, - N;j=1,2, ---,L

As such, the minimum and maximum value of dissimilarity measure
on a; proposed in Def.9 can be generated by the following pair of
models:

Min/MaxD (a;)
s.t. Egs. (2), (8)

L N-1 N
1
D = * o
@ = L= Dt — a2 & &2, P O
(a[)u(Hls—nl)
By (a) = 187 () = B (@)l n=1.2, N3 i, j=1,2, -+ L

Bila) < By (a) < B, (a) + By (a)n=1,2, -,

So we have D(a;) € [D™(q;), D*(ay)].

Niij=1,2, L

5. The uncertainty measure of BDs

The second factor to determine the support degree of assessment is
the internal indeterminacy of a BD. It can be measured by the un-
certainty of the original assessment provided that subjective judgments
are extracted from an individual or a group of DMs. If the BDs assessed
on most attributes are associated with a high degree of uncertainty, the
support degree of the aggregated result will be low no matter which
combination rule is used. An extreme case is that all attributes are as-
sessed to be Good and Bad with the belief degree of 0.5 and 0.5 on an
alternative, which represents a confusing situation to any DM.

Table 8

Belief distributions of alternative a; on three attributes.
aj H, H, Hs H. Hs
e 0 0 0 0 1
e 0 0 0 0 1
e 0 0 0 0 1
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Dissimilarity measure

Alternatives

Fig. 1. Dissimilarity measure on alternative.

Moreover, the aggregated BD by the ER algorithm may be an uncertain
assessment even though all the basic attributes are certain BDs as long
as the BDs of at least two attributes are different. So the uncertainty of
the final combined BD not only results from the uncertainty of the BD
on each basic attribute, but also the incompatibility among the BDs of
all attributes. In recent years, a lot of researchers have proposed the
uncertainty measure of mass functions (Jirousek & Shenoy, 2018;
Jousselme et al., 2006; Klir & Ramer, 1990; Ronald & Yager, 2018; Yang
& Han, 2016). As discussed in the introduction, all of them are not
considered in a decision-making situation where the utility of each
evaluation grade is different. Here, to capture the utility difference
among focal elements, two types of uncertainty measure are defined as
the uncertainty of the original BD and the uncertainty of the final ag-
gregated BD. The relationship between these two types of uncertainty is
also studied, which will deduce the total incompatibility measure
among BDs.

5.1. Uncertainty measure
Definition 10. Suppose the belief degree that a; be assessed on ¢; to H,

is denoted by Eq. (2), the uncertainty measure to the BD of S(e; (a;)) can
be calculated as follows:

4 N-1 N
Ui i T — i . Hs—n
n(e; (ay)) WD — i@ nz::l sglﬁn.!(al)ﬁw(m)u( s—nl) 30)
Properties:

1> 0= Un(e(a)) £1;

2> Un(elan) =0, ifffy,;(a) = 1(h € {1, 2, .N]),Bpi(a) = 0(n = 1, 2,---.N, n # h);
3> Un(e(a)) =1, iffBy i (@) = 0.5, By i (ar) = 0.5, B ;(a) = 0(n = 2,---,N — 1).
The uncertainty measure proposed in Def.10 is a multivariable

quadratic function with N variables, i.e. 3, (a)(n =1, 2,---,N) such
that 0 < g, (a) = 1, Zj::lﬁm (@) < 1. Properties 2 > and 3 > can be
proved by calculating the following model:
Min/MaxUn (e;(a;))

s.t. Egs. (8), (30)
0<B,,(@=<1n=12 N

Z‘::l ﬁn,i (a) =1

Property 2 > indicates that if the BD is absolutely assigned to an
evaluation grade, the uncertainty measure is 0. In individual decision-
making problems, the uncertainty of a BD is subjective that can be in-
terpreted as the likelihood of a proposition, so the uncertainty measure
to a BD on an attribute in Def.10 may be seen as the hesitation degree
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from an individual. In a multiple attribute group decision making
(MAGDM) problem, the belief degree reflects objective uncertainty to
some extent, so Un(e;(q;)) can be interpreted as the inconsistency de-
gree among the judgments of DMs. The condition in Property 3 just
reflects the largest conflict among different DMs. Thus, the proposed
uncertainty measure can be seen as the unreliability of the assessment
or the conflict involved in a BD.

The above model assumes that there is no ignorance contained in a
BD. When the assessment is incomplete, the following pair of models
can be conducted to calculate the minimum and maximum value of the
uncertainty measure defined in Eq. (30).

Min/MaxUn (e; (q;))
s.t. Egs. (2), (8)

N-1 N

Z Z B, (@B (ar)u(Hys—p)

n=1 s=n+1

4

Un(e(a))= —————
@) = iy — )
Bo(@) < B7,(a) < B (@) + By (@)n = 1,2, N

Z::l By () =1

Let Un—(e;(a;)) and Un*(e;(¢;)) be the minimum and maximum
value of the above pair of programming models respectively, then we
have Un (ei (@) € [Un~(e; (a), Un* (e (ap)].

Example 8. Given the frame of discernment H = {H,, H,, H;, H,}.
The utilities of the four evaluation grades are set to be u(H;) = 0,
u(H,) = 0.35, u(H;) = 0.7, u(Hy) = 1. Suppose the belief degree of ¢; be
evaluated to @; on grade H, represented by §, ;(a;) changes from 0 to 1
with a step of 0.1. Three cases are to be conducted. 1) The belief degree
on H, represented by 3, ; (@) is set to be 1 — f, ; (a;). 2) The belief degree
on H; represented by ,G,M(a;) is assumed to be 1 — By (an)- 3) B, (ap) is
assumed to be 1 — B, ;(a)). Fig. 2 shows the uncertainty measure gen-
erated by Eq. (30) with the change of 8, ;(a)(n = 2, 3, 4). ‘Hy’, ‘Hy’ and
‘H,’ represent the results from the above three mentioned cases re-
spectively.

From Fig. 2, we can see that the three curves are all symmetric. For
a specific value of §,;(q), the uncertainty measure to the BD increases
when n changes from 2 to 4. The reason lies in that the larger the value
of n, the greater the utility difference represented by u(Hj_,) that
makes the BD more indeterminate. When g, ;(a)) = 0.5(n = 2, 3, 4), the
uncertainty measure attains the maximum value for each of the three
cases. A special situation is that Un(e; (q;)) = 1 when the BD is given by
S(e; (7)) = {(Hy, 0.5), (H,, 0), (Hs, 0), (Hy, 0.5)}. In this case, the alter-
native has two extreme opposite characters that we cannot easily make
a choice. In a MAGDM problem, it reflects that half of the DMs assume
a; to be excellent on ¢;, while the other half object to it.

Theorem 1. If the uncertainty measure of S(e;(a;)) is defined by Eq. (30),
it is continuous with respect to f3, ; (a;).

The proof of Theorem 1 is shown in the appendix.

Definition 11. Given the BD represented by Eq. (2) and the uncertainty
measure proposed in Def.10, the average uncertainty measure on g
considering the uncertainty measure of all the L attributes can be
calculated as follows:

L
1
Un(a) = - ; Un (e () 31)

Def.11 gives us a view about the overall uncertainty measure on an
alternative respect to all the L attributes. Obviously, the larger the
value of Un(qap), the more subjective uncertainty contained in some of
the L attributes, which will lead to the decrease of support degree of
assessment. Here, we also define an uncertainty measure just from the
aggregated belief degrees as follows.

Definition 12. Given the aggregated belief degrees represented by Eq.
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(4), the global uncertainty measure to the aggregated BD S(q) is
calculated by

4 N-1 N
un(S = — . Hj_n
n(S @) = T ZIZH B (@), () (Hy—n) 32
Properties:

1> 0< Un(a) £1,0< Un(S(a)) < 1;
2>
Un(a) =0, iff Yiefl, 2L} I €1, 2N} B (a) =1, ;

and B, (@) =0(n=1,2--N,n#h')
3> Un(a)=1,iffVie{l, 2L}, .31,1-(0!) = 0.5, ,BM.(a;) =

0.5, and 6,“.((11) =0n=1,2,---,N,n#1,N)
4> Un(a) = Un(S (@), iffS(er(a)) = S(ea(a)) = =S (er(a)) = S(ap;
5> Un(S(an) =0, ffB,1(a) = Byala) = --=p, (a) = 1(n € {1, 2,--,N})and
ﬁm.x(a;) =0m#n,i=1,2.-L)
6> Un(S(a))=1 iff S(ei(a)) = S(ez(a)) = ---=S(ex(a)) and
Vie{l 2Lk B (@) =05, By, (a) =05.

Un(S(q)) in Def.12 reflects the uncertainty of the aggregated BD,
while Un(q)) in Def.11 shows the uncertainty extracted from each at-
tribute assessed on q;. Property 2 > indicates that when the assessments
that a; be assessed to all the L attributes are certain, then Un(q;) = 0. So
if 3i,je{l,2,---,L}. S(ei(a)) # S(ej(a), the aggregated BD is un-
certain by the ER approach. Then from Def1l2, we will
haveUn (S(a;)) > 0 because the aggregated belief degree is positive on
at least two evaluation grades. But the average uncertainty measure
Un(a;) proposed in Def.11 can still attain to O if the condition in
Property 2 > is satisfied.

Property 4 > indicates that the average uncertainty measure equals
to the global uncertainty measure when S(a;) = S(e;(q))(i = 1, 2,---,L).
There are two situations satisfying the condition in Property 4 > .
Firstly, the BDs that q; be assessed on all L attributes are the same and
certain such that 8, ,(a) =g, ,(a) = =, (@) = 1(n € {1, 2,---,N})
and g, ;(a)) =0(m # n,i=1,2,---,L). This will lead to the result that
B,(q)=1land B, () =0(m =1,2,---,n— 1, n+ 1,--- N). Itis a special
case of the condition in Property 2 > where K is not necessary to be
identical with h/(i, j € {1, 2,---,L}). Secondly, the total belief degree of
one is evenly assigned to a set of evaluation grades for all L attributes
no matter how the weights are assigned to these attributes. Specifically,
suppose  H* = (I Ig, (a) > 0}, and B, (a) = 5 (T, € HY),
B,.(@) = O(H, ¢ H") where |H' is the cardinality of H;". Here,
HY = Hj*(i,j e{l,2,--,L}) and |H'l <N. In the first situation of
Property 4 >, Un(q)) = Un(S(q;)) = 0, while Un(a;) = Un(S(q;)) > 0
in the second situation. The first situation can also be seen as a special
case of situation 2 where H;" consists of only one element.

Example 9. Three BDs are given as follows:

S(el(al)) = {(Hb 0)! (H2! 1/3)! (H39 1/3)a (Hﬁh 1/3), (Hig 0)}
S(ex (@) = {(Hy, 0), (H, 1/3), (Ha, 1/3), (Hy, 1/3), (Hs, 0)}

S(es(a)) = {(Hy, 0), (Hy, 1/3), (Hs, 1/3), (Hy, 1/3), (Hs, 0)}

The aggregated distribution is S(a;) = {(F, 0), (Fa, 1/3), (Fs, 1/3), (Ha, 1/3),
(Hs, 0)} no matter how the weights are allocated to the attributes. So in this
case, Un(a;) = Un(S(a;)) > 0 which accords with the second situation in
Property 4 > .

Property 5 > is just the first situation in Property 4 > that all L
attributes are definitely assessed to a specific evaluation grade, which
leads to the combined BD being a certain assessment such that
B,(aq) =1(nefl, 2, N}) and B,(q) = 0(m # n). Property 6 >is a
special case of the second situation in Property 4 > that all the L at-
tributes are assessed with the largest uncertainty which leads to the
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Fig. 2. Uncertainty measure subject to the changes of §,;(a) (n = 2, 3, 4).

global uncertainty measure attains to 1.
Example 10. Two BDs are given as follows:

S(el(al)) = {(Hb 1)9 (H25 0), (HS, O)a (H45 O)a (Hia 0)}
5(82 (ai)) = {(Hb O)s (H25 1), (Hg, 0)’ (H4s 0), (H5! 0)}

The aggregated BD is S(q;) = {(H), 0.5), (Hy, 0.5), (H, 0), (Hy, 0),
(Hs, 0)} provided that the weights of ¢; and e, are assumed to be equal.
Suppose u(Hy) =0 , u(H,) =03, u(H;) =06, u(Hy)=08 and
u(Hs)=1, then from Egs. (30)-(32), we have Un(aq)=0,
Un(S(q;)) = 0.3.

It can be seen that although the uncertainty measures of S(e;(a;))
and S(ey(q;)) defined in Eq. (30) are zero, the global uncertainty
measure Un(S(q;)) is greater than 0 and purely determined by the
discrepancy of the two BDs in this case. So we conclude that the in-
equation Un(a;) # Un(S(ay) satisfies in almost all of the cases. Even if
S(ei(a)) = S(ea(a)) = ---=S(ev(ap)), we will have Un(a) # Un(S(a)
aslong as 8, ; (@) # ‘Hlﬂ (H, € H"). The reason lies in that S(a;) does not
equal to S(e; (a))(i = kl, 2,---,L) no matter how the weights are assigned
to the attributes.

Example 11. Three BDs are given as follows:

S(el(al)) = {(Hb 0)! (H2! 0'5)! (qu 0-3)9 (H4’ 0.2), (Hs, O)}
5(22 (al)) = {(Hb O)v (H27 05), (H3’ 03), (Hfh 02)’ (HS’ 0)}
S(ES(HI)) = {(Hla 0)2 (H25 05), (HBv 03)a (H4’ 02), (Hiv 0)}

The aggregated BD is S(a)) = {(H,, 0), (Hy, 0.5280), (I, 0.2886), (I, 0.1834),
(Hs, 0)} provided that w,=w,=w3;=1/3. It is clear that
Un(a)) # Un(S(a). Un(a;) = 0.428, Un(S(q;)) = 0.419. Here, Un(a;) > Un(S(q;))
because the aggregated BD becomes more certain after the combination of
the three same BDs by the ER approach. Specifically, the aggregated belief
degree on H, becomes larger while the fused belief degree on H; and H,
become smaller. This can be easily interpreted because the more confident a
focal element is judged by different evidences compared with other focal
elements, the higher combined belief degree to the focal element. So when
Un(q;) > Un(S(qp)) just as presented in Example 11, the BDs are consistent
to a certain degree that the aggregated BD becomes more certain than any
one of the original BD. On the contrary, if Un(q;) < Un(S(q,)), the BDs are
incompatible to an extent that the combined BD is more uncertain than the
original BDs.

So the global uncertainty measure to the aggregated BD reflects the
differences between each pair of the BDs to some extent. From this
point of view, we conclude that Un (S (a;)) reflects the uncertainty from
the final aggregated distribution. It reveals not only the uncertainties
from the original BD of each attribute, but also the incompatibility
among the BDs of L attributes. It can be easily explained from Example
10 that Un(S(q;)) = 0.3 derives from the differences between S (e, (q;))
and S(e, (a;)).

Comparatively, Un(q;) reflects the uncertainty only caused by the
original BD of each attribute. With the rise of Un(gq;), the uncertainty or
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unreliability of assessment increases since the judgments to the basic
attributes by the DM may be probably more hesitate. Property 3 > re-
veals the situation where the maximum average uncertainty is con-
tained in the original BDs no matter how the weights are assigned to the
L attributes. It is just a special case of Property 4>, so
Un(q;) = Un(S(q;)) = 1 in this situation.

From the above analysis, the total incompatibility measure among
the BDs of attributes on a specific alternative can be defined.

Definition 13. Given the average uncertainty measure in Def.11 and
the global uncertainty measure in Def.12, the total incompatibility
measure among the BDs of all the L attributes on q; is computed by

tncom ([} S(ei(a)) = Un(S(@)) ~ Un(ay) (33)

The symbol ] in Eq. (33) does not signify the continuous multi-
plication, it only represents the total effect of the BDs of L attributes.
Properties:

1> Incom(HfLS(ei(a,))) <1;
2> Incom(H;" S(ei(w))) =0 iff Un(S(q)) = Un(q);
3> Incom(Hf‘"S(el—(a,))) =1 iff Un(aq)) =0 and Un(S(aq)) = 1.

The situation in Property 3 > happens when half of the attributes
are assigned with §,;(aj) =1 and g, (q;) = 0(n = 2,---,N), while the
other  half are given the BDs of S (@)=1 and
B, ila)=0mn=1,2,---,N—1).

‘ Example 12. Four BDs are given as follows:

S(el(al)) = {(Hlv 1)! (H2= 0), (HS! O)v (H4= O)v (HSv 0)}
S(EZ (al)) = {(Hl, 1)7 (H27 0), (HSa 0)’ (H4a 0), (HSa 0)}
S(es(ar) = {(Hy, 0), (Hy, 0), (Hs, 0), (Hy, 0), (Hs, 1)}

S(es(a)) = {(Hy, 0), (Hy, 0), (Hs, 0), (Hy. 0), (Hs. 1)}

The aggregated BD is S(a)) = {(I}, 0.5), (I, 0), (Is, 0), (14, 0), (Hs, 0.5)}
provided that the weights of e, to e, satisfy the condition of either
Wy = W3, Wa = Wy Oor Wy = Wy, Wo = Wws. Suppose u(H;) =0, u(FH;) = 0.3,
u(H;) =06, u(H;)=0.8 and wu(Hs)=1, we have Un(q)=0,
Un(S(a;)) =1 from Eqs. (31) and (32). This means that the original
assessment of each attribute is certain, while the aggregated BD of the
four attributes is a high uncertain outcome. The total incompatibility
measure attains the maximum value, i.e., Incom(H:' Sei(a))) =1.If
the condition of either w; = ws, w; = wy or w; = wy, W, = wy is not sa-
tisfied, the aggregated BD will not be 3, (¢;) = 0.5 and () = 0.5, even
though we set w; + w, = w3 + wy. As a result, Un(S(q;)) < 1. From this
point of view, the global uncertainty measure is not only determined by
the uncertainty measure to the original BD of each attribute and the
incompatibility among the BDs of attributes, but also influenced by the
attribute weights. It can be observed from the above result that the
complete high conflict between subset {e;, e;} and {e;, e4} leads to the
maximum value of total incompatibility measure. Thereby, in a MADM
problem, the higher value of the total incompatibility measure, the
larger discrepancy among the assessments of different attributes, and
vice versa. So it will be more difficult for a DM to make a decision when
the total incompatibility measure is large, especially in the above case
where the assessment of each attribute is certain while the aggregated
assessment is highly uncertain. In a decision-making problem where we
intend to choose alternatives with distinguished features, an alternative
with larger total incompatibility measure may probably be selected if
the aggregated assessments of several alternatives are similar. The se-
lection of football players can sometimes represent this situation. On
the contrary, inadecision-making problem where alternatives should
not be deficient on any attribute, an alternative with smaller total in-
compatibility measure has priority over others with similar aggregated
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assessments. The college entrance examination in China is a typical case
of the second situation. A student cannot do poorly in any of the courses
if he/she wants to be admitted to a good college. The selection of a
leader is also such a case where many aspects of a candidate ought to be
considered. A candidate cannot be selected if his/her morality is low
even though he/she has excellent professional capability. In consistence
with the Cannikin law, the following conclusion can be drawn: if some
alternatives have similar performance in general, an alternative with
smaller total incompatibility will be preferred over others in an in-
complete compensatory MADM problem; otherwise, we should choose
the alternative with larger total incompatibility in a complete com-
pensatory MADM problem. The total incompatibility measure designed
in Eq. (33) and the dissimilarity measure defined in Eq. (27) or Eq. (28)
have similar meanings. They reflect the discrepancy of different evi-
dences (e.g., attributes in MADM problem or DMs in GDM problem)
represented by uncertain BDs. The former is an indirect concept gen-
erated from Egs. (31) and (32), while the latter is a direct definition
generated from the dissimilarity measure matrix.

5.2. The procedure of decision-making

In sum, the whole process of the proposed method is shown in
Fig. 3, where the weight assignment method is further extended in
Fig. 4. There are three steps included in the whole decision-making
process.

(1) Before applying the proposed method, the first step is to construct
the hierarchical structure of attributes for a MADM problem, fol-
lowed by the data collection from either an individual or a group of
DMs. For a quantitative attribute, the acquired numerical value
should be transformed to a BD associated with the general frame of
discernment according to the rules provided in (Zhou et al., 2019).
Each qualitative attribute may be assigned with a unique frame of
discernment which also ought to be transformed to the general
frame of discernment according to specific rules established in real
problems. As such, a decision-making matrix in the form of BDs
transformed from the values of both quantitative and qualitative
attributes presented by Eq. (3) is constructed.

(2) The second step is to generate attribute weights from BDs which is
the main topic discussed in Section 3. Two dimensions are to be
involved in the calculation. The first dimension is the dis-
criminating power derived from the BD matrix computed by Eq.
(23) according to (Fu et al., 2018). It is assumed that the larger the
value of discriminating power, the more weight will be allocated to
the attribute. Meanwhile, the improved dissimilarity measure be-
tween two attributes on an alternative proposed in Eq. (12) can be
computed from the distributed dissimilarity vector defined in Eq.
(10). Then it is used to calculate the conflict measure on the al-
ternative or evaluation grade level respectively, which induce the
second dimension called the weighted average conflict measure
defined in Eq. (22). The larger the value of the weighted average
conflict measure, the less interdependency between the attribute
and all other attributes, thus the attribute will be assigned with
higher importance. As such, the weight derived from both the above
two dimensions is generated by Eq. (24).

(3) The third step of the decision making process is to aggregate the
BDs of all attributes on each alternative by the ER algorithm. The
ER algorithm provides a conjunctive probabilistic reasoning pro-
cess, and is both commutative and associative. The final generated
assessment on an alternative is presented in the form shown in Eq.
(4). To facilitate the ranking or selection of alternatives, average
dissimilarity measure is calculated by Eq. (26), followed by the
computation of dissimilarity measure on alternative defined by Eq.
(27) in Section 4. It can be then used to assist the DM to make a
ranking order or choice. The smaller the value of dissimilarity
measure on an alternative, the more support degree that the
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Fig. 3. The general decision process under subjective judgment.

aggregated result can be considered as the basis of the final deci-
sion, and vice versa. Furthermore, the uncertainty measure pro-
posed in Section 5 can also be utilized to quantify the support de-
gree of the final aggregated result. The dissimilarity measure and
the average uncertainty measure on an alternative are two sides of
an assessment. The former reflects the external divergence among
the assessments of different attributes, while the latter reveals the
internal indeterminacy of each attribute represented by linguistic
judgment.

6. Case study

It was discussed in the introduction section that a variety of meth-
odological methods to determine attribute weights have been designed
in order to handle different situations. Each of them has its unique
feature which differentiates from other techniques. In this subsection, a
car selection problem adapted from (Yang, 2001) is chosen to illustrate
the effectiveness and applicability of the proposed method. Several
different weight assignment methods are compared with the proposed
method to demonstrate their respective properties.

6.1. Generating weights using different methods

In a car selection problem, seven attributes are included in the as-
sessment and ranking order of six cars. Six linguistic evaluation grades
are set to assess the alternative cars as follows:

H = {Worst(W), Poor(P), Average(A), Good(G), Excellent(E)
andTop(T)}

Table 9 shows the BDs assessed on qualitative attributes and the
transformed BDs from original numerical values on quantitative
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attributes. For the generation of the overall performance on each car,
the ER approach is to be used to combine the BDs in Table 9. In (Yang,
2001), the weights are supposed to be equal such that
w;=1/7(i=1, 2,---,L).

The specific meaning of the BD in Table 9 has been illustrated in
Example 1. It can be seen that some of the assessments are incomplete.
Intuitively, from the viewpoint of the first dimension, the weight of e,
ought to be large because the divergence of assessments on the six cars
respect to e; “Horsepower” is very large. Additionally, on the second
dimension, the state of e, for Car 2 to grade Poor is 0.533, while the
belief degree of e, for Car 5 to grade Worst and Poor is 0.467 and 0.533.
For other six attributes, the six alternative cars are rarely assessed to
Worst and Poor. So the conflict between ey and other attributes is large,
which will lead to more importance allocated to e,. Comparatively, the
assessments of es or e; on all the six cars are quite similar. That is to say,
these two attributes should not be paid much attention in the decision
process. So es and e; will be allocated with less weight in the final result
no matter which methods are applied because each one of the following
listed methods employs this dimension.

Without loss of generality, the utilities of the six evaluation grades
are set to be equidistantly distributed such that u(W) =0, u(P) = 0.2,
u(A) =04, u(G) =06, u(E) = 0.8, u(T) = 1. It is worth mentioning
that the utility functions of different DMs may not be the same due to
their discrepancy on knowledge, background and expertise. So the
utility of the worst evaluation grade may be larger than 0, while the
utility of the best evaluation grade may be less than 1. As such, our
proposed dissimilarity measure in Eq. (12) is comparatively rational in
this circumstance. From this point of view, different utility functions
may affect the final result. Fig. 5 shows the generated weights by dif-
ferent methods, including the GMD (Fu et al., 2018) method, SD (Chin
et al., 2015; Diakoulaki et al., 1995) method, CCSD (Wang & Luo,
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Fig. 4. The detailed process of generating attribute weights from BDs.

2010), CRITIC (Diakoulaki et al., 1995), methods in (Fu et al., 2018)
and (Zhou et al., 2019). The horizontal axis represents the serial
number of attribute, while the vertical axis denotes the generated
weights. Since the first four methods are all designed to tackling with
numerical assessment values, we transformed the BDs in Table 9 to
utilities such that u(¢;(q;)) = Z::l B, (a)u(Hy) + By, (al)w to
apply these methods. In the transformation process, information loss
will inevitably occur because different BDs may be transformed to the
same utility value. The method in (Fu et al., 2018) considers the first
dimension of information, while the method in (Zhou et al., 2019)
extended the entropy method to cope with the situation where BDs are
the representation of assessments. Although the divergence of the as-
sessment of e, is large, the weight on e, generated by the method in
(Zhou et al., 2019) is a little larger. Comparatively, the weight of e,
computed by the proposed method is 0.2959 which is much less than
0.3768. And it is also a little larger than the other five methods. As such,
we could distinguish more clearly the attribute that should be focused
on. CCSD also creates a relatively high weight on e,, but the weight on
e, generated by it is small. From Table 9, we can see that both Car 4 and
Car 5 are assessed on e, to Poor with the belief degree of 0.75 and 1,
while other attributes are rarely assessed to these two grades except ¢;.
So from the second dimension, the average conflict measure of e, is
large. Meanwhile, from the first dimension, the assessment of Car 2 on
e, to grade TOP is 0.667, which leads to a large divergence of the six
alternative cars on e,. Thus, e, ought to be allocated with a large weight
considering the two dimensions. The method in (Fu et al., 2018) also
creates a set of relatively reasonable weights, but the weights of e, and

ey are similar. Intuitively, both the divergence and average conflict
measure of ¢, are larger than e,, so the difference between the weight of
them should be more obvious just as the proposed method does.

The standard deviations of the generated weights by the seven
methods are shown in Table 10. Obviously, the weights created by the
method in (Zhou et al., 2019) have the largest variation, whereas the
CRITIC is the smallest. The proposed method provides a relatively
compromised result that the important attributes can be reflected,
while the distinction between the weights of attributes will not be
overstated.

The dissimilarity measures and average uncertainty measures on the
six cars are generated as shown in Fig. 6. The horizontal and vertical
axes denote the alternative cars and dissimilarity/average uncertainty
measure respectively. They reflect the extent that the final aggregated
result could support the DM for a decision. It can be seen that the
dissimilarity measures of Car 2 and Car 5 are relatively high. The reason
lies in that Car 2 is assessed to be Poor on ey “Horsepower” with the
belief degree of 0.533, while it is assumed to be Top on e, “Breaking”
and e; “Handling” with the belief degree of 0.667 and 0.4. So both the
advantages and disadvantages of Car 2 are obvious that would make a
DM confused. It is the same case for Car 5 because it is assessed to be
Poor on e, “Horsepower” and e, “Braking” with the belief degree of
0.533 and 1.0 respectively, while it is considered to be not bad on e,
“Acceleration” and e, “Powertrain”. Car 3 owns the smallest dissim-
ilarity measure because the assessments on it respect to different at-
tributes don'’t differentiate much. So the aggregated BD of Car 3 can be
used more easily for the ranking order. With respect to the average
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uncertainty measure, the values are all relatively small because no as-
sessment is allocated to more than two evaluation grades. Generally
speaking, the average uncertainty has little impact on the reliability of
the final result for any car, while the dissimilarity plays a primary role
in determining the support degree of the final aggregated results.

6.2. Generating the final aggregated results

If we use utility to represent the assessment of cars on each attri-
bute, the BDs in Table 9 can be transformed to utilities in Table 11.
Although the transformation from Tables 9 to 11 loses some original
information, it gives us a panoramic view on the performance of six
cars. For instance, it is clear that Car 3 is assessed to be the best on ey, eg
and ez, while Car 5 is assessed to be the worst on es, e4 and es.

The overall assessment of each car under the proposed weight as-
signment method can be generated by the ER algorithm. For example,
the aggregated distributed result of Car 1 using the proposed weights is
shown in Fig. 7. It is obvious that Car 1 is assessed to be Good with a
belief degree higher than 0.5. It is caused by the fact that e,, es, es, eg
and ey are all assessed to be Good with certain belief degrees. Similarly,
the general performance on Car 1 is not assessed to be Worst because no
basic attribute is assessed to this grade on Car 1.

Table 12 shows the final aggregated results and the global un-
certainty measures of the six cars provided that the weights are calcu-
lated by the proposed methods. They are distributed assessment results
which enable us to make a specific insight into the performance of each
car. The aggregated result of Car 2 is the most uncertain assessment
because the global uncertainty measure of Car 2 is the largest among
the six cars. Comparatively, the performance of Car 3 is more de-
terminate since its global uncertainty measure is the smallest.

The overall distributions of Car 3, Car 5 and Car 6 contain ignorance
because the original assessments on these three cars include global ig-
norance. The overall utilities and ranking orders of the six cars under
the above mentioned weight assignment methods are summarized in
Table 13, in which “Averaging” means the seven attributes are of equal
importance as stated in (Yang, 2001). From Table 13, we can see that
the averaging weights, GMD, SD, and CRITIC have generated the same
ranking order. It may be caused by the fact that these methods trans-
form the BDs of each attribute to utilities before generating weights
except the averaging weights. Since the original assessments of each car
on all the attributes in Table 9 only involve a maximum of two adjacent
evaluation grades, the information loss in the utility transformation is
limited. When the assessment to an alternative is quite uncertain, the
BDs may involve more than two adjacent evaluation grades. So the
average uncertainty measure defined in Eq. (31) is large to some extent.
The utility transformation will incur more information loss in this cir-
cumstance.

The results in Table 13 show that Car 3 is assessed to be the best by
most of the methods. It can be interpreted that Car 3 is assessed to be
Top on e; and eg to a certain degree, while it is assessed to be neither
Worst nor Poor on any attribute. Considering the low dissimilarity and
uncertainty depicted in Fig. 6, the support degree of assessment on Car
3 is high. So Car 3 is surely the most preferred alternative. Car 1 is
ranked as the first by the method in (Zhou et al., 2019). It can be seen

Table 9
BDs that six cars be assessed on seven attributes.
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5 GMD
@ Method in [7]

# SD
= Method in [16]

= CCSD i CRITIC

M Proposed

Weight of attribute

1 2 3 4 5 6 7
Serial number of attribute

Fig. 5. Weights of attributes computed by different methods.

from Fig. 5 that ey is allocated with an abnormal large weight by
EWAM, and Car 1 is assessed to be Top and Excellent on eq4, so the ad-
vantage of Car 1 is enlarged.

The results show that Car 2 is superior to Car 1 by GMD, SD, and
Method in (Fu et al., 2018), while Car 1 is considered to be better than
Car 2 by CCSD and the proposed method. It is caused by the fact that
the former three methods only employ one dimension of information to
generate attribute weights. So the correlation between each pair of
attributes is not utilized in the weight assignment procedure. From
Tables 12 and 13, we can also see that although the final utilities of Car
1 and Car 2 by most of the methods are similar, while their overall
distributed assessments are quite different. Take the proposed method
for example, the aggregated BD of Car 2 is a relatively averaging as-
sessment on grade P, A, G, E and T (i.e., the fourth column in Table 12).
Comparatively, the distributed overall assessment on Car 1 is mostly
assigned to G and T (i.e., the third column in Table 12). This can also be
seen from the dissimilarity calculated in Fig. 6 and global uncertainty
generated in Table 12. The dissimilarity or global uncertainty of Car 1 is
smaller than that of Car 2. The reason lies in that the original assess-
ments of Car 1 on the seven attributes are quite focused on a set of
evaluation grades, whereas Car 2 is assessed to all the six evaluation
grades on different attributes. For example, Car 2 is assessed to be Top
on ¢y and ea, while assessed to be Poor on e4. So the performance of Car
2 on different attributes is obviously contradictory which will probably
make the DM a little confused. From this point of view, the support
degree of the final assessment for Car 2 is less than Car 1. Car 5 is
assessed to be the worst by all the weight assignment methods, and its
dissimilarity shown in Fig. 6 is also too large. From Table 9, it is obvious
that Car 5 is evaluated to be Poor and Worst on e; and es, whereas it is
assessed to be Good on ey, e, e5 and eg. But it is not considered to be Top
on any attribute. If these six cars are the alternative products on market
for a car manufacturer, it is significant for the product manager to find
out the way of improving the poor performance on e; and e, for Car 5.
The total incompatibility measure can also be generated by the average
uncertainty measure and global uncertainty measure as shown in Fig. 8.
As it has the similar trend with the dissimilarity measure depicted in
Fig. 6, the two measures play the same role in this problem.

It should be mentioned that the utility estimation also determines

Performance Carl Car 2 Car 3

Car 4 Car 5 Car 6

e;  Acceleration {(P,0.2), (A,0.8)} {(G,0.5), (E,0.5)}

{(E,0.75), (T,0.25)}

{(A,0.4), (G,0.6)} {(G,0.4), (E,0.4), (H,0.2)} {(G,0.25), (E,0.75)}

ey Braking {(G,1.0)} {(E,0.333), (T,0.667)} {(G,0.5), (E,0.5)} {(P,0.75), (A,0.25)} 1(P,1.0)} {(E,1.0)}

e3  Handling {(A,0.4), (G,0.6)} {(E,0.6), (T,0.4)} {(A,0.4), (G,0.4), (H,0.2)} {(A,1.0)} {(G,1.0)} {(E,0.5), (T,0.4), (H,0.1)}
¢4 Horsepower {(E,0.333), (T,0.667)} {(P,0.533), (A,0.467)} {(G,0.462), (E,0.538)} {(G,0.385), (E,0.615)} {(W,0.467), (P,0.533)} {(A,0.267), (G,0.733)}

es  Ride quality {(G,0.6), (E,0.4)} {(A,1.0)} {(H,1.00}» {(G,1.0)} {(G,1.0)} {(H,1.0)}

e Powertrain {(A,0.4), (G,0.6)} {(G,1.0)} {(E,0.5), (T,0.4), (H,0.1)} {(A,0.4), (G,0.6)} {(G,0.6), (E,0.4)} {(E,0.5), (T,0.3), (H,0.2)}
ez Fuel economy {(G,1.0)} {(G,1.00> {(E,1.0)} {(G,1.0)} 1(A,1.0)} 1(G,1.0)>
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Table 10
The standard deviations of the attribute weights by different methods.
GMD SD CCSD CRITIC Method in (Fu et al., 2018) Method in (Zhou et al., 2019) Proposed
Standard deviation 0.0589 0.0561 0.0673 0.0548 0.0654 0.1293 0.0839
car 1 on performance
== Dissimilarity === Average uncertainty
100.00%
0.35 90.00%
0.3 A A £0.00%
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@ 027 5, oo
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= 015 \ T
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0.05 m 3000%
' 2000% e AT
0 T 11.80% '
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P G T
A E

Alternative cars

Fig. 6. Dissimilarity and average uncertainty measures on cars.

the final results of all the cars. If the DM is risk-averse, the utility of six
evaluation grades may be u(W)=0, u(P)=035 u(A)=06,
u(G) = 0.8, u(E) =0.95, u(T) = 1. Then the aggregated utilities of six
cars by the proposed weights are u(Carl) = 0.8185, u(Car2) = 0.7612,
u(Car3) = 0.8584, u(Card) = 0.6973, u(Cars) = 0.4802, u(Car6) = 0.8479.
Although the ranking order is still Car3>Car6>Carl>Car2>Car4>Car5,
the final utilities of all the six cars increase. Furthermore, the degree of
risk aversion will also influence the final assessment of each car.

6.3. Comparative analysis

Table 14 shows the comparison of the proposed method with several
objective weight assignment methods.

Here, ‘Num’ means numerical value in the above table. The well-
known GMD method, SD method, CRITIC, and CCSD to derive objective
attribute weights are all based on the premise that assessments are
presented in the form of numerical values. When qualitative attributes
are assessed by subjective judgements such as BDs, these methods are
not applicable to create the weights just from the assessment itself,
unless the subjective method (such as AHP) is used. The proposed
method is just designed to generate attribute weights by analyzing the
intrinsic information contained in subjective assessments provided by
DMs. In this sense, DMs don’t need to provide their judgments on the
importance of attribute passively. Otherwise, two aspects of subjective
information should be extracted from DMs, which will probably make
the decision-making process more complex and the DMs impatient.
Thus the proposed method has the property of (i) and (ii).

(iii) and (iv) are associated with the proposed method due to the
fact that the assessments are extracted in the form of BDs, which are

Table 11
The utilities of 6 cars be assessed on 7 attributes.

w F,
Evaluation grades

Fig. 7. The distributed overall assessment on Car 1 by the proposed weights.

easy to get from an individual or a group of experts when attributes
cannot be quantified by numerical values. So the generated weights
contain subjectivity to some extent. It is the same circumstance with the
techniques in Refs. (Fu et al., 2018) and (Zhou et al., 2019). Since the
GMD, SD, CRITIC and CCSD methods derive the relative importance
from extracting quantitative values of attributes, the generated weights
are unbiased and contain no subjectivity. The risk preference of eva-
luation grade is considered here because different types of utility
function may be constructed due to the divergent attitude of DMs to-
wards risk. This is reflected from the definitions of dissimilarity and
conflict measure in Egs. (12) and (13).

(v) and (vi) reflect the information utilized in the determination of
attribute weights. The main difference between the proposed method
and the techniques in Refs. (Fu et al., 2018) or (Zhou et al., 2019) lies in
that whether the correlation between attributes is considered. The
proposed method considers this dimension together with the diver-
gence of different alternatives on each attribute, whereas Refs. (Fu
et al., 2018) or (Zhou et al., 2019) only considers the dimension in (v).
Although CCSD and CRITIC both take into account the dimensions in
(v) and (vi), as they termed by ‘the contrast intensity’ and ‘the con-
flicting character of the evaluation criteria’, they are designed to cope
with the situation where attributes are all assessed by numeric values. It
can be easily reflected from the cases illustrated in these two methods
(Diakoulaki et al., 1995; Wang & Luo, 2010). So how to measure the
conflict or interdependency between BDs is not defined in the two
techniques. Although the specific calculation process may be different,
the above listed 7 methods all regard the dimension in property (v) as a
factor to determine the attribute weights. For example, both SD, CRITIC
and CCSD use the standard deviation as the divergence of different

Acceleration Braking Handing Horsepower Ride quality Powertrain Fuel economy

Utility Rank Utility Rank Utility Rank Utility Rank Utility Rank Utility Rank Utility Rank
Car 1 0.36 6 0.60 4 0.52 4 0.9334 1 0.68 1 0.52 5 0.60 2
Car 2 0.70 3 0.9334 1 0.88 1 0.2934 5 0.40 6 0.60 4 0.60 2
Car 3 0.85 1 0.70 3 0.50 5 0.7076 3 0.50 4 0.85 1 0.80 1
Car 4 0.52 5 0.25 5 0.40 6 0.7230 2 0.60 2 0.52 5 0.60 2
Car5 0.66 4 0.20 6 0.60 3 0.1066 6 0.60 2 0.68 3 0.40 6
Car 6 0.75 2 0.80 2 0.85 2 0.5466 4 0.50 4 0.80 2 0.60 2
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Table 12
The final aggregated BDs of the six cars from the weights generated by the proposed method.
Evaluation grade Car1 Car 2 Car 3 Car 4 Car 5 Car 6
Performance w 0 0 0 0 0.1445 0
P 0.0172 0.1697 0 0.1671 0.4391 0
A 0.1592 0.1962 0.0475 0.2796 0.0564 0.0818
G 0.5039 0.1948 0.3259 0.3640 0.2771 0.3284
E 0.1180 0.2209 0.5135 0.1893 0.0658 0.4536
T 0.2017 0.2184 0.0495 0 0 0.0742
H 0 0 0.0635 0 0.0172 0.0620
Un(S(ay) 0.4326 0.6319 0.2371 0.4318 0.5072 0.2805
Table 13
The overall utilities and ranking orders of the six cars by some weight assignment methods.
Averaging GMD SD CCSD
Utility Rank Utility Rank Utility Rank Utility Rank
Car 1 0.5988 4 0.6324 4 0.6310 4 0.6502 3
Car 2 0.6306 3 0.6464 3 0.6468 3 0.6040 4
Car 3 0.7159 1 0.7110 1 0.7119 1 0.7012 1
Car 4 0.5222 5 0.5034 5 0.5043 5 0.5312 5
Car 5 0.4713 6 0.3834 6 0.3851 6 0.3926 6
Car 6 0.7017 2 0.7088 2 0.7077 2 0.6943 2
CRITIC Method in (Fu et al., 2018) Method in (Zhou et al., 2019) Proposed
Utility Rank Utility Rank Utility Rank Utility Rank
Car 1 0.6445 4 0.6387 4 0.7135 1 0.6655 3
Car 2 0.6180 3 0.6467 3 0.6027 4 0.6244 4
Car 3 0.6980 1 0.7093 2 0.7062 2 0.7066 1
Car 4 0.5216 5 0.5031 5 0.5180 5 0.5151 5
Car 5 0.3937 6 0.3734 6 0.2550 6 0.3378 6
Car 6 0.6944 2 0.7095 1 0.6804 3 0.6979 2

Total incompatibiltiy

0.6

0.1

Total incompatibility measure

0 T T
0 2 4 6
Alternative cars

Fig. 8. Total incompatibility measure on cars.

alternatives on a certain attribute, comparatively, the method in Ref.
(Zhou et al., 2019) utilize the concept of Shannon entropy as the
measurement of dimension in (v).

With regard to (vii) and (viii), since the GMD method, SD, CRITIC
and CCSD are all designed on the premise that attributes are re-
presented by crisp numerical values, ignorance is not involved.
Comparatively, Refs. (Fu et al., 2018); (Zhou et al., 2019) and the
proposed method consider the ignorance embedded in BDs, which lead
to the construction of optimization models for generating the range of
the final results. As for (ix), the proposed method uses the original BDs
to quantify the dimensions in (v) and (vi) for the elicitation of weights,
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so no information is lost or distorted. Ref. (Zhou et al., 2019) extended
the entropy weight assignment method to tackling with the situations
where attributes are assessed by interval numerical values, BDs with
accurate belief degrees and interval BDs. But the factor of (v) is mea-
sured by the utilities converted from BDs instead of the direct dis-
crepancy of BDs. So information contained in the BD may lose to a
certain extent in the conversion. It is worth mentioning that all the
above listed techniques require more than two alternatives included in
a decision-making problem. That is to say, these methods are invalid if
there is no alternative.

Last but not least, the proposed method can generate the support
degree of assessment for decision-making which helps the DM to know
how dependency the assessment is. Other methods don’t incorporate
this step, so only a final aggregated result can be generated. The support
degree reflects the intrinsic characteristic of the assessment information
provided by DMs. So the credibility or reliability of the assessment can
be manifested to a certain degree.

7. Conclusions

In this paper, a novel weight assignment method for MADM pro-
blems is proposed on condition that the assessments are presented by
BDs. The main principle behind the method is that the weight is cor-
related with the divergence of subjective judgment among different
alternatives and the conflict between each pair of attributes. To do that,
the conflict measures on both the alternative and evaluation grade le-
vels between two attributes are designed. A comprehensive weight as-
signment method is then presented based on the above two aspects.
Secondly, an alternative approach is proposed to quantify the support
degree of assessment for decision-making in a MADM problem. It is
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Table 14
Comparison of several weight assignment methods.
Property Method
Proposed GMD (Fu SD (Diakoulaki et al., CCSD (Wang & CRITIC (Diakoulaki Method in Fu Method in Zhou
et al.,, 2018) 1995) Luo, 2010) et al., 1995) et al. (2018) et al. (2019))

i Assessment form BD Num Num Num Num BD BD

ii Ability to tackle with subjective v X be X X N v
judgements

iii ~ The extent of subjectivity certain X X X X certain certain

iv Considering the risk preference v x x X x X v

v Considering the divergence of v v v v v v v
different alternatives

vi  Considering the correlation v X b4 v v x X
between attributes

vii  Consideration of ignorance v X X X X v v

viii Optimization models v x x v X v v

ix  No information loss v v v v v v X

X Practicability related to =2 =2 =2 =2 =2 =2 =2
alternative number

xi  Support degree of assessment for v X b4 x X X X

decision

based on the logic that the more discrepancy among different attributes
on an alternative, the less supportive of the aggregated value to the
final decision. Meanwhile, the more uncertainty contained in the as-
sessment of each attribute on an alternative, the less support degree of
the combined result. As such, the dissimilarity on alternative and un-
certainty measure of BD are defined and analyzed. Some properties and
comparisons are given to illustrate the effectiveness and applicability of
the proposed methods. It is hoped that the method proposed in this
paper can contribute to the development of the ER approach for MADM
problem. In the future, the dissimilarity measure between interval be-
lief distributions (IBDs) is to be studied, and how to reflect the ignor-
ance contained in the original IBDs in the generated weights will be
further analyzed.
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