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A B S T R A C T

The semiconductor final test scheduling problem (SFTSP), recognized as a crucial bottleneck in the semi-
conductor production process, holds immense significance for improving both quality control and scheduling
efficiency within chip and integrated circuit enterprises. This article introduces the knowledge-enhanced
multidimensional estimation of distribution hyper-heuristic evolutionary algorithm (KMEDHEA) for address-
ing the SFTSP with the aim of minimizing the makespan. First, a single-vector encoding scheme is used to
represent feasible solutions, and a problem-specific constrained-separable left-shift decoding scheme is devised to
transform these solutions into feasible scheduling schedules. Second, eight simple yet effective heuristics with
problem-specific knowledge are developed that served as a suite of low-level heuristics (LLHs) for exploring the
problem solution space. Third, the multidimensional estimation of distribution algorithm (MEDA) is employed as
the high-level strategy to estimate the correlations and connections of the pre-designed LLHs, thereby guiding the
search scope towards high-quality individuals. Finally, critical configurations of parameters are systematically
analyzed by conducting a design-of-experiment (DOE) approach. Numerical experiments are conducted on well-
known benchmark datasets, and the experimental results demonstrate the superiority of the KMEDHEA versus
several state-of-the-art approaches. The best-known solutions are updated for nine out of ten benchmark in-
stances, highlighting the effectiveness and efficiency of the proposed KMEDHEA in solving the SFTSP.

1. Introduction

As the cornerstone of the modern electronics industry, the semi-
conductor sector exerts an essential impact on promoting economic ef-
ficiency and technical advances. Semiconductor chips serve as the core
components in various electronic devices, with their applications bur-
geoning across domains such as green energy, satellite communication,
robotic devices, smart diagnosis, and autonomous driving (Hao, et al.,
2014). The semiconductor production process consists of multiple
stages, such as wafer fabrication, wafer probing, packaging, and final
testing (FT), each involving various tests to ensure quality and

reliability, as shown in Fig. 1. Semiconductor FT (SFT) as the last critical
stage requires suitable scheduling strategies to optimize both efficiency
and quality. Due to both complexity and flexibility, SFT scheduling
poses considerable challenges; however, implementing superior sched-
uling can significantly strengthen competitiveness by reducing costs and
refining efficiency for integrated circuit enterprises. Recent research on
the SFT scheduling problem (SFTSP) and solution techniques enables
enterprises to fine-tune production processes, enhance product quality,
and elevate resource utilization. Although the SFTSP has received
widespread attention, there remains a need for further expansion of
relevant theories and methodologies. Thus, it is imperative to develop
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effective and efficient methods for SFTSP, given the significant surge in
research interests, to achieve practical engineering applications and
economic benefits.

The semiconductor production process can be divided into two main
stages: the front-end-of-line (FEOL) and the back-end-of-line (BEOL),
each consisting of several critical steps (Dass, et al., 2022; Kim, et al.,
2021; Lee, et al., 2023). The FEOL process involves wafer fabrication
and inspection, where wafers undergo rigorous testing to detect defec-
tive circuits. Following photolithography and etching, wafers are diced
to isolate chip circuits, which are encapsulated and wired, resulting in
pristine chips free of defects. The BEOL process plays a pivotal role in
determining the performance and functionality of the chips, which un-
dergo a series of FTs to ensure the required quality and standard spec-
ifications. However, the BEOL process poses significant challenges, as
handlers and testers incur substantial costs and face limitations in terms
of available accessories or resources, resulting in severe bottlenecks.
Hence, SFTSP has emerged as a frontier hotspot with great research
interest and potential. Recent studies have revealed that the SFTSP can
be reduced to a flexible JSP (FJSP) with multi-resource constraints,
thereby proving to be strongly NP-hard (Wu, et al., 2008). To describe
the complexity of the SFTSP, the three-field notation α|β|γ is used, where
α represents the shop environment and β and γ represent the constraints
and criteria, respectively. The SFTSP with the objective of minimizing
makespan is denoted as FJ|MRs,STs|Cmax. Here, FJ refers to a flexible job
shop.MRs and STs represent multi-resource constraints and setup times,
and Cmax is the makespan criterion. Since FJ‖Cmax has been proven to be
NP-hard problem (Fattahi, et al., 2007), subsequent studies by Mousa-
khani, (2013) and Lei, et al., (2014) further confirmed the NP-hardness
of both FJ|STs|Cmax and FJ|MRs|Cmax. Given that FJ|MRs, STs|Cmax is
much more complex than FJ|STs|Cmax and FJ|MRs|Cmax, and it can be
reduced to either of them, SFTSP is still strongly NP-hard problem (Wu,
et al., 2008). This inherent complexity implies the formidable challenge
of finding optimal solutions, particularly for tackling large-scale prob-
lems, due to the considerable computational complexity (CC). Conse-
quently, the modeling and solving of the SFTSP present a challenging
endeavor, holding quite importance in both practical applications and
academic research. Over the past few decades, significant scholarly
studies have emerged (Cao, et al., 2019; Chen, et al., 1994; Freed, et al.,
1999; Hao, et al., 2014; Hu, et al., 2023; Huanxin Henry, et al., 1998;
Lin, et al., 2022; Lin, et al., 2004; Ovacik, et al., 1996; Pearn, et al., 2004;

Sang, et al., 2018; Uzsoy, et al., 1993; Uzsoy, et al., 1992; Uzsoy, et al.,
1991; Wang, et al., 2014, 2015; Wang, et al., 2013; Wu, et al., 2008; Wu,
et al., 2012; Zheng, et al., 2014), as summarized in Table 1. However,
when dealing with large-scale instances of SFTSP, commonly used
mathematical methods such as branch & bound (B&B) (Chen, et al.,
1994) become increasingly impractical due to the considerable cost
caused by the complexity. Constructive heuristics, while capable of
quickly yielding feasible scheduling schemes based on problem prop-
erties, often struggle to guarantee the solution’s superiority (Huanxin
Henry, et al., 1998; Lin, et al., 2004; Pearn, et al., 2004; Uzsoy, et al.,
1992). As shown in Table 1, extensive efforts have mainly focused on
addressing these challenges through the application of hybrid intelligent
optimization algorithms (HIOAs) (Cao, et al., 2019; Hao, et al., 2014;
Lin, et al., 2022; Sang, et al., 2018; Wang, et al., 2014, 2015; Wang,
et al., 2013; Wu, et al., 2008; Wu, et al., 2012; Zheng, et al., 2014). In
contrast to typical mathematical methods and constructive heuristics,
HIOAs have the unique advantage of not being constrained by
complexity. Through inherent evolutionary mechanisms and search
strategies, HIOAs allow the formulation of search operators that are
dependent on problem-specific knowledge. This renders their search
behaviors versatile, well-suited for tackling complex constraints, and
proficient in achieving high-quality solutions within a reasonable
timeframe.

As a novel emerging paradigm, hyper-heuristic evolutionary algo-
rithms (HHEAs) have gained significant attention in recent years.
HHEAs enable employing high-level strategy (HLS) to modulate low-
level heuristics (LLHs), aiming to surpass the limitations of HIOAs and
effectively tackle complex problems via interactive interconnections and
collaborative searches among various LLHs (Zhang, et al., 2023). The
significant distinction between existing HIOAs and HHEAs lies in search
behaviors: while HIOAs directly explore the solution space, HHEAs
operate in the strategy space of LLHs, guided by HLSs. Well-designed
HLSs facilitate the most suitable sequencing of LLHs, while the or-
dered execution of LLHs enables efficient exploration of the solution
space, thereby seeking superior solutions (Branke, et al., 2016; Shang,
et al., 2022). Due to their strengths in suitably selecting and adaptively
adjusting search strategies, HHEAs have self-learning skills, reducing the
reliance on problem-specific knowledge. Consequently, HHEAs have
shown success in solving various NP-hard problems, such as engineering
optimization and scheduling problems. Recent studies have emerged

Fig. 1. Schematic diagram of semiconductor testing stages.
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applying HHEAs for shop scheduling problems, including SMSP (Wu,
et al., 2021), dynamic JSPs (Fan, et al., 2021; Park, et al., 2018), flexible
JSPs (Lim, et al., 2022; Lin, et al., 2019; Zhang, et al., 2023), RCPSPs
(Chen, et al., 2021; Chen, et al., 2022; Zhu, et al., 2021), DAPFSPs (Lin,
et al., 2017; Song, et al., 2021; Song, et al., 2023), DABFSPs (Zhang,
et al., 2023; Zhao, et al., 2022), and SFTSP (Lin, et al., 2022). Although
HHEAs are expected to be promising paradigms for solving complex,
large-scale problems, their effectiveness is directly dependent on the
design of HLSs, which enable the interaction and coordination of LLHs to
achieve excellent search efficacy. However, the design of HLS confronts
certain challenges. Firstly, typical HLSs may exhibit insensitivity to the
importance of LLHs or may struggle with the huge and complex char-
acteristics of the strategy space, thus hindering the development of
effective learningmechanisms. Additionally, there is a risk that potential
patterns in the sequences of LLHs may be destroyed or that critical
characteristics may not be accurately captured, especially for GP-based
HHEAs. Furthermore, the adaptability and versatility of HLSs require
consideration. Therefore, research efforts have been dedicated to
designing efficient HLSs that are capable of effectively guiding the
generation of LLH sequences while inheriting their inherent patterns.

Estimation of distribution algorithms (EDAs) as learning-based par-
adigms have been a prominent research hotspot in the fields of statistical
learning and evolutionary computation. EDAs aim to estimate the

distribution characteristics and correlations of solutions from the macro
perspective by establishing probabilistic models and extrapolating pro-
spective patterns of high-quality solutions, driving the search behavior
through the collaborative interactions of sampling strategies and
updating mechanisms to seek superior solutions. Recent decades have
witnessed widespread applications of EDAs in solving scheduling
problems, including PFSP (Jarboui, et al., 2009), two-stage FSP (Liu,
et al., 2018), multi-objective PFSP (Tiwari, et al., 2015), lot-streaming
FSP (Pan, et al., 2012), FJSP (Wang, et al., 2012), and quay crane
scheduling problem (QCSP) (Expósito-Izquierdo, et al., 2013). To the
best of our knowledge, relevant research on applications of EDAs to
HHEAs is still scarce. Existing EDA-based HHEAs commonly attempt to
employ one or more two-dimensional (2-D) probabilistic models to
represent the pattern characteristics of LLHs (Song, et al., 2023; Zhao,
et al., 2023). Here, the patterns refer to the block structures and block
distributions, where each block consists of any two consecutive LLH
pairs in sequences of heuristics. However, these 2-D probabilistic models
encounter challenges in accurately capturing the positional details and
distributional tendencies of LLHs. As a result, critical blocks may be
misplaced in the newly generated heuristic sequences during sampling,
thus constraining the effectiveness of EDA-based HHEAs. In contrast,
multidimensional probabilistic models provide richer feature extraction
and much more accurate correlations, which can easily recognize and
represent potential patterns, showing significant strengths in charac-
terizing the positions and interconnections of blocks (Zhang, et al.,
2022; Zhang, et al., 2021; Zhang, et al., 2022). Motivated by these in-
sights, a knowledge-enhanced multidimensional estimation of distribu-
tion hyper-heuristic evolutionary algorithm (KMEDHEA) is developed
for addressing the SFTSP. In KMEDHEA, eight simple yet efficient heu-
ristics are crafted to create pools of LLHs, while the multidimensional
EDA (MEDA) serves as the learning-based paradigm to manipulate
problem-specific LLHs. Specifically, MEDA-based HLS employs the 3-D
probabilistic model to generate heuristic sequences through special
sampling strategies (see Section 4.4), and executes specific sorted LLHs
to steer search scopes toward promising regions within the search space
of problem solutions. This 3-D probabilistic model is updated by an
efficient update mechanism (see Subsection 4.2.3) to reasonably reserve
valuable information extracted from superior sequences of LLHs.

The innovative contributions of this article are as follows:

• A novel operation-based sequence model is formulated for SFTSP,
problem properties are analyzed, and a knowledge-enhanced
multidimensional estimation of distribution hyper-heuristic evolu-
tionary algorithm (KMEDHEA) is proposed aiming at minimizing the
makespan.

• A problem-dependent hybrid initialization method (HIM) based on
three problem-specific heuristic rules is developed to improve the
quality and diversity of the initial population.

• A single-vector encoding scheme and an effective constrained-
separable left-shift decoding scheme are designed based on multi-
resource constraints to represent feasible scheduling solutions and
transform these solutions into suitable scheduling schemes and
schedules.

• A suite of problem-specific heuristics is developed that act as pools of
LLHs dedicated to exploring the solution space of the problem and
executing fine-grained searches. In addition, a simulated annealing
(SA)-based acceptance mechanism is introduced to enhance the
ability to jump out of local optima.

• As a prospective learning-based paradigm, the multidimensional
EDA (MEDA) is applied as the HLS in EDA-based HHEAs, which
manipulates a set of easy-to-implement LLHs and accurately records
the block structure and block distribution of LLHs through the use of
3-D probabilistic models with specific sampling strategies and
updating mechanisms.

• Numerical experiments are conducted on well-known public data-
sets, and ablation studies show the effectiveness of the critical

Table 1
Review of recent related works for SFTSP.

Author(s) Objective(s) Proposed approach(es)

Uzsoy, et al.
(1991)

Makespan Shifting bottleneck approach;
Production scheduling algorithms for
semiconductor test operations.

Uzsoy, et al.
(1992)

Maximum lateness
with dynamic
arrivals and number of
tardy jobs

Constructive heuristics.

Uzsoy, et al.
(1993)

Performance of
dispatching rules

Several efficient dispatching rules.

Chen, et al.
(1994)

Makespan Lagrangian relaxation; Subgradient
direction method.

Ovacik, et al.
(1996)

Makespan Decomposition methods; Specialized
strategies.

Huanxin
Henry, et al.
(1998)

Makespan Two Petri net-based hybrid heuristic
strategies.

Freed, et al.
(1999)

Makespan Designed an enumeration solution
method.

Pearn, et al.
(2004)

Minimum total
machine workload

Three efficient network algorithms.

Lin, et al.
(2004)

Maximum committed
volume performance

Capacity-constrained approach based
on the theory of constraints.

Wu, et al.
(2008)

Makespan Mixed integer linear programming;
Genetic algorithm (GA).

Wu, et al.
(2012)

Makespan Bi-vector encoding genetic algorithm
(bvGA).

Wang, et al.
(2013)

Makespan Hybrid estimation of distribution
algorithm (HEDA).

Hao, et al.
(2014)

Makespan Cooperative estimation of distribution
algorithm (CEDA).

Wang, et al.
(2014)

Makespan Compact estimation of distribution
algorithm (cEDA).

Zheng, et al.
(2014)

Makespan Novel fruit fly optimization algorithm
(nFOA).

Wang, et al.
(2015)

Makespan Knowledge-based multi-agent
evolutionary algorithm (KMEA).

Sang, et al.
(2018)

Makespan Cooperative coevolutionary invasive
weed optimization (CCIWO)
algorithm.

Cao, et al.
(2019)

Makespan Cuckoo search algorithm with
reinforcement learning (CSRL).

Lin, et al.
(2022)

Makespan Q-learning-based hyper-heuristic
(QHH).

Hu, et al.
(2023)

Makespan Greedy-based crow search algorithm
(GCSA).
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components of the KMEDHEA; in particular, the MEDA-based HLS is
effective due to its strengths in learning ordinal correlation and po-
sitional connection of the LLHs, while computational results
demonstrate the superiority of the KMEDHEA, with the best-known
scheduling solutions updated for 9 out of 10 benchmark instances.

The subsequent sections of this article are organized as follows.
Section 2 provides a comprehensive review of pertinent literature.
Section 3 introduces the SFTSP and formulates an operation-based
sequence model for it. Section 4 details the implementation of KMED-
HEA, and Section 5 provides and discusses the computational evaluation
and comparison results. Finally, Section 6 presents concluding remarks
and outlines future research directions.

2. Literature review

2.1. Related work on SFTSP

Over the past decades, SFTSP has attracted significant attention in
both the fields of smart manufacturing and evolutionary computation.
Pioneering work was studied by Uzsoy, et al., (1991), in which a foun-
dational framework for modeling semiconductor test operations was
introduced using the shifting bottleneck approach. They divided the
facility or shop into distinct work centers and adopted a disjunctive
graph representation to capture inherent interactions between work
centers. Uzsoy, et al., (1992) treated SFTSP as a variant of SMSP with
setup times. They devised dynamic programming (DP) aimed at mini-
mizing maximum tardiness, taking into account dynamic arrivals and
the number of tardy jobs. Subsequently, Uzsoy, et al., (1993) evaluated
the effectiveness of several scheduling strategies for SFT processes,
considering the impacts of job arrival patterns and uncertainties.
Experimental results revealed findings that a single strategy hardly
performed well across metrics simultaneously. Chen, et al., (1994)
modeled the SFTSP as JSPs with simultaneous resources. They intro-
duced a Lagrangian relaxation (LR) approach to address both resource
and precedence constraints. The results indicated that the LR method
outperformed DP-based heuristics proposed by Uzsoy, et al., (1992).
Ovacik, et al., (1996) developed decomposition methods that segmented
SFT facilities into various types of work centers. They devised specific
procedures for multiple work centers, and the results confirmed the
viability of these decomposition procedures. Huanxin Henry, et al.,
(1998) adopted PetriNets to represent lot sizes of jobs, resource and
precedence constraints, concurrent activities, and flexible routes. In
Petri nets, they proposed two hybrid search strategies—a best-first
heuristic strategy and a controlled backtracking strategy—to find
optimal or near-optimal schedules. Freed, et al., (1999) generalized the
SFTSP as a multi-head tester scheduling problem. To address this
extended problem, they designed an enumerative procedure that
considered the efficiency of utilizing various numbers of test heads.
Pearn, et al., (2004) further investigated the multistage SFTSP with
reentry and attempted to develop three efficient heuristics aimed at
minimizing machine workloads. Lin, et al., (2004) developed discrete
event simulation models based on e-M− PlantTM to implement suitable
strategies via capacity-constrained rules. The results indicated that
capacity-constrained rules outperformed other rules in terms of
committed volume performance.

Recent research has predominantly focused on developing HIOAs to
seek superior solutions for SFTSPs. Wu, et al., (2008) pioneered
formulating the MILP model based on crucial characteristics, employing
an assignment rule to determine machine configurations and allocate
resources, and proposing a problem-specific GA. Wu, et al., (2012)
delved deeper into SFTSP, presenting a bi-vector coding-based GA
(bvGA) capable of capturing crucial characteristics of dynamic config-
urations of machines across multiple resources and setup times between
operations. Subsequent contributions byWang, et al., (2013) introduced
a hybrid EDA (HEDA), combining both sampling strategies and updating

mechanisms of a 2-D probabilistic model with local searches to stress
global exploration and local intensification. Hao, et al., (2014) extended
a co-evolutionary framework with a cooperative EDA (CEDA), incor-
porating a divide-and-conquer strategy. Experimental results verified
that the CEDA outperformed both GA (Wu, et al., 2008) and bvGA (Wu,
et al., 2012), albeit with discernible trade-offs in computational costs.
Seeking superior solutions while striking a balance between search ef-
ficiency and cost prompted further improvements. Wang, et al., (2014)
introduced a compact EDA (cEDA) that used operation-based sequence
encoding and decoding schemes and a 2-D probabilistic model to char-
acterize the distribution of the blocks in superior solutions. Zheng, et al.,
(2014) designed a novel fruit fly optimization algorithm (nFOA),
emphasizing exploitation via a cooperative search mechanism by smell-
and vision-based operators. Computational evaluation demonstrated the
superiority of nFOA with less cost. Wang, et al., (2015) proposed a
knowledge-based multi-agent evolutionary algorithm (KMEA). In
KMEA, feasible solutions act as agents engaged in mutual learning and
competition through problem-specific search operators. Furthermore,
the cooperative co-evolutionary invasive weed optimization (CCIWO)
was proposed by Sang, et al. (2018). CCIWO utilized two coupled col-
onies: one dedicated to handling the machine allocation problem and
the other focused on the operation sequence problem. The results
demonstrated that CCIWO outperformed several state-of-the-art algo-
rithms, showcasing the potential of cooperative strategies. However, it is
noteworthy that HIOAs for SFTSP are highly sensitive to parameters,
which makes the selection of proper parameters a non-trivial task. To
address this concern, Cao, et al., (2019) introduced a cuckoo search with
reinforcement learning (CSRL). CSRL used an RL-based parameter con-
trol scheme to enhance efficiency, balance diversification and intensi-
fication, and evaluate solution rankings through the surrogate model,
effectively reducing computational costs. Lin, et al., (2022) designed a
Q-learning-based hyper-heuristic (QHH) that incorporated a left-shift
strategy to improve resource utilization, marking the first report of Q-
learning-based HHEA in solving SFTSP. Further innovations continued
with Hu, et al., (2023) who introduced a greedy-based crow search al-
gorithm (GCSA), enhancing its adaptability to SFTSP through revamped
crow position updating strategies called “track” and “hover.” Upon
comprehensive efforts review, it is evident that existing approaches to
addressing SFTSP primarily revolve around HIOAs, with limited
emphasis on mathematical methods and constructive heuristics. Math-
ematical methods, despite their theoretical soundness, suffer from
considerable computational costs, limiting their practical applicability.
Constructive heuristics can provide solutions rapidly but may fall short
in terms of solution quality. In contrast, HIOAs exhibit significant su-
periority by virtue of their efficient evolutionary mechanisms, specific
search strategies, and effective neighborhood operators. Therefore, the
emergence of HHEAs presents promising insights to address the
complexity and uncertainty with limited resources. This flexibility and
adaptivity make them indispensable in tackling the challenges posed by
SFTSP.

2.2. Related work on HHEAs

As promising paradigms in EAs, HHEAs have emerged as efficient
and automatic search methodologies for generating or selecting heu-
ristics to address real-world problems. HHEAs showcase significant
strengths in dynamically creating and adaptively coordinating LLHs
through HLSs, thereby fully utilizing the potential of heuristics. This
autonomy and adaptability allow HHEAs to effectively explore the
search space for problem solutions, facilitating the search for superior
solutions. A systematic review conducted by Burke, et al., (2013) has
categorized HHEAs into two main methodologies: heuristic generation
and heuristic selection. The former involves the development of LLHs
tailored to problem characteristics, while the latter focuses on the design
of HLSs that adaptively select and apply LLHs in specific scenarios,
providing guidance on search directions via search states and search
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experience (Zhang, et al., 2023). Among the methodologies used in
HHEAs, GP-based HLSs are the most commonly adopted for heuristic
generation, with extensive efforts applied to various problems (Kieffer,
et al., 2020; Sabar, et al., 2013; Song, et al., 2021). Park, et al., (2018)
proposed an ensemble GP-based hyper-heuristic (GP-HH) for addressing
dynamic JSP, aiming at minimizing mean tardiness while considering
dynamic arrivals. This study showed that weighted combination
schemes performed poorly when evolving ensembles of scheduling
schemes. Chen, et al., (2022) proposed a hyper-heuristic-based two-
stage GP (TGP-HH) to solve the stochastic resource-constrained multi-
project scheduling problem. TGP-HH decomposed the evolutionary
process into generation and selection stages, using the strengths of GP-
based HLSs to develop multiple suitable scheduling strategies. Further-
more, Kieffer, et al., (2020) extended the application of GP-HH to train
efficient greedy heuristics for optimizing cloud pricing problems, aiming
at achieving the best deal between service providers and customers.
Song, et al., (2021) employed GP-HH to address DAPFSP with sequence-
dependent setup times. They developed ten efficient heuristics and used
the GP-based HLS to produce heuristic sequences. However, it is worth
noting that existing GP-based HLSs suffer from distinct drawbacks:
exponential increases in CC as the search space expands, both in terms of
the number of rule components and the quantity of rules created. As a
result, heuristic selection-based HHEAs have witnessed applications due
to both efficiency and effectiveness in various scheduling problems.
Sabar, et al., (2015) developed a Monte Carlo tree search-based HHEA,
which modeled the search space of LLHs as a tree structure and exploited
Monte Carlo tree search as the HLS for efficient exploration, which
exhibited excellent efficacy in solving various problems, including FSPs,
TSP, and VRPs with time windows. Asta, et al., (2016) developed a
tensor-based HHEA for tackling the nurse rostering problem, combining
data science techniques with knowledge extraction by tensor analysis,
enabling efficient problem-solving and self-improving methods. Lin,
et al., (2017) devised a backtracking search-based hyper-heuristic (BS-
HH) to address DAPFSP. In BS-HH, ten effective heuristics were devised

to form a set of LLHs, and a backtracking search strategy served as the
HLS, orchestrating LLHs in pursuit of seeking the best order of LLHs.
Furthermore, Song, et al., (2023) presented a hyper-heuristic-based
memetic algorithm (HH-MA) aimed at addressing DAPFSP with the
objective of minimizing makespan. In HH-MA, EDA-based HLS was used
for global exploration while incorporating a critical-products-based
referenced local search to enhance local exploitation. Lim, et al.,
(2022) provided a simulated-annealing-based hyper-heuristic (SA-HH)
for FJSP. SA-HH constructed heuristics comprising machine assignment
rules (MARs) and job sequencing rules (JSRs) based on state features.
Recent advances include the Q-learning-based HHEA (QLHHEA) pro-
posed by Zhang, et al., (2023) to solve DABFSP. In QLHHEA, LLHs were
treated as states, and state selections were regarded as actions. Q-
learning served as HLS to determine the best correlations of LLHs and
select suitable sequences of LLSs. Zhang, et al., (2023) further proposed
an innovative Q-learning-based HHEA (QHHEA) for distributed FJSP
with crane transportation, applying Q-learning as HLS to assist HHEA in
identifying suitable LLH for each state via feedback recorded in Q tables.
Zhao, et al., (2022) devised a constructive heuristic HHNRa and
designed a self-learning hyper-heuristic (SL-HH) to tackle the DABFSP.
In SL-HH, a self-learning HLS was devised, utilizing historical success
rates of LLHs to dynamically adapt and refine the search behaviors.
Mahmud, et al., (2022) introduced a self-adaptive, multi-operator, and
multi-objective HHEA (SA(MO)2H) for integrated scheduling, devising
four solution-updating heuristics to enhance LLH efficacy, coupled with
Q-learning-based HLS to guide the search for LLHs. Interested readers
are advised to refer to the study of Zhang, et al., (2023) for recent ad-
vances and applications of HHEAs.

Despite significant strides in studies of HLSs in HHEAs, challenges
persist, including reliance on problem-specific domain knowledge,
limited generality in HLSs, and relatively high computational costs. To
address these challenges, the recently emerged MEDA is recognized as a
promising paradigm for HLS. MEDA holds the potential to overcome
existing limitations in HLS design and enhance the efficacy of HHEAs.

Fig. 2. Illustration of the SFTSP.
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These insights inspire the impetus to design MEDA-based HHEA to solve
the SFTSP. Remarkably, to the best of our authors’ knowledge, there has
been no previous investigation into the problem-specific KMEDHEA for
SFTSP, thus making this work a worthwhile contribution to the field of
evolutionary computation.

3. Problem description

Previous studies show that the SFTSP is a complex FJSP with multi-
resource constraints and setup times. This problem entails efficient
scheduling of operations and effective allocation of test resources and
machines to minimize manufacturing periods, thereby maximizing test
efficiency while satisfying specific requirements and multiple con-
straints (Cao, et al., 2019; Lin, et al., 2022; Sang, et al., 2018; Wang,
et al., 2015). Unlike mathematical models, which typically involve de-
cision variables, sequence models include a set of equations that enable
the calculation of start and end times for operations on machines, with
optimization variables represented as operation sequences. Recent
research on HIOAs and HHEAs for SFTSPs has focused on sequence

models since their evolutionary mechanisms and search strategies are
specific to the operation sequences, which are suitable for solving
sequence models (Wang, et al., 2015; Hu, et al., 2023). It is crucial to
note that in sequence models, individuals or solutions correspond to
variables with undetermined sequencing rather than the decision vari-
ables used in mathematical models. Essentially, HIOAs are designed to
optimize the operation sequences of sequence models, while mathe-
matical solvers are suited for handling decision variables in mathe-
matical models.

For ease of understanding, this section provides a detailed descrip-
tion of SFTSP and presents the operation-based sequence model for
SFTSP. The schematic of the SFTSP is illustrated in Fig. 2, and an
explanation of the relevant notations is provided in Table 2. There are n
jobs that need to undergo testing on m machines. Each job Ji consists of
one or more operations, such as electric testing, temperature testing,
burn-in, scanning, baking, tape reeling, packaging, and loading, each of
which can be tested on one or more machines. Effective SFT scheduling
necessitates the collaboration of multiple resources, including testers,
handlers, and accessories, each of which can be categorized into
different types. Testers are responsible for performing software tests and
stimulating equipment to identify defects. Handlers maintain the device
at the required temperature for specific tests. Accessories, particularly
adapters, provide the interface between the tester and the device. The
allocation of testing resources to each machine and the processing time
for each job are predetermined. Since devices undergo multiple func-
tional tests on machines at different temperatures, specific setup times
are required to prepare for test machines to perform these tests. Note
that the setup time is independent of the testing process, which can only
begin once all required resources are available, the setup process is
done, and the job arrives at the test machine. Furthermore, several
predefined constraints must be satisfied. (1) All jobs, machines, and
resources are available from the outset. (2) Testing processes for oper-
ations cannot be interrupted or preempted. (3) Machines and all types of
available resources must be exclusive during the testing process. (4)
Operations belonging to the same job must be executed sequentially
with specific priorities. (5) Each machine can process only one operation
at a time, and each operation can be tested on only one machine at a
time. (6) Transportation times are considered negligible. The aim of
addressing the SFTSP is to determine the allocation of operations to
machines and the sequence of operations on machines so as to minimize
the makespan without exceeding the total available resources. Based on
this description, the operation-based sequence model of the SFTSP can
be formulated as follows:

Cmax(π) = max{C1,k1 ,C2,k2 , ...,Cn,kn} (1)

Ci,k = Si,k +PTOi,k ,Mi,k ,∀i (2)

Si,k = max{RTMi,k , FMi,k}, ∀i, k = 1 (3)

Si,k = max{RTMi,k , FMi,k ,Ci,k− 1 + STMi,k− 1 ,Mi,k}, ∀i, k > 1 (4)

RTMi,k = max{Wt
Mi,k

,Wh
Mi,k

,Wa
Mi,k

}, ∀i, k (5)

WT
Mi,k

= min{FMTa
1
, FMTa

2
, ..., FMTa

m
},∀a, i, k;NTa = 0 (6)

WH
Mi,k

= min{FMHb
1
, FMHb

2
, ..., FMHb

m
}, ∀b, i, k;NHb = 0 (7)

WA
Mi,k

= min{FMAc
1
, FMAc

2
, ..., FMAc

m
}, ∀c, i, k;NAc = 0 (8)

Table 2
Symbols and explanations.

Notation Description

Indices ​
i Index of jobs, i.e., i = 1,2, ...,n
j Index of machines, i.e., j = 1,2, ...,m
k Index of operations for job Ji, i.e., k = 1,2, ...,ki
t Index of time, i.e., t⩾0
Sets ​
J Set of jobs, i.e., J = {J1,J2, ...,Jn}
M Set of machines, i.e., M = {M1,M2, ...,Mm}

T Set of tester resources, i.e., T = {T1,T2, ...,TNt }
H Set of handle resources, i.e., H = {H1,H2, ...,HNh }

A Set of accessory resources, i.e., A = {A1,A2, ...,ANa }
EMi,k Set of eligible machines for the processing of Oi,k
R Set of total resources, i.e., R = {T,H,A}
Parameters ​
n Number of jobs
m Number of machines
Nt Number of types for testers
Nh Number of types for handles
Na Number of types for accessories
ki Number of operations for job Ji
TO Total number of operations for jobs, i.e., TO =

∑n
i=1
ki

Oi,k The kth operation of job Ji
πjob The sequence of operations, i.e., πjob = {πjob(1), ...,πjob(TO)}
πmac The sequence of machines, i.e., πmac = {πmac(1), ...,πmac(TO)}
π The feasible scheduling solution, i.e., π = (πjob,πmac)
Mi,k The machine for the processing of Oi,k

MR
j The machine for occupying resource R

Si,k The start time for the processing of Oi,k
Ci,k The complete time for the processing of Oi,k
Nj,t Number of jobs in process of machine Mj at time t
NEMi,k Number of eligible machines for the processing of Oi,k

RMi,k Type of resources required for Mi,k

Ni,k,t Number of completed processing of operation Oi,k at time t
NTa The number of testers Ta, a = 1, ...,Nt

NHb The number of handles Hb, b = 1, ...,Nh

NAc The number of accessories Ac, c = 1, ...,Na

FMi,k The finish time of the last operation on Mi,k

FMR
j

The finish time of the last operation on MR
j

RTMi,k The ready time for the required resources of Mi,k
STMi,k− 1 ,Mi,k The setup time for operations of Ji transferring from Mi,k− 1 to Mi,k

PTOi,k ,Mi,k The processing time of Oi,k on Mi,k

WR
Mi,k

The waiting time for resources of Mi,k
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Nj,t ∈ {0,1},∀j, t (9)

Ni,k,t = 1,∀i, k; t = Cmax (10)

Cmax(π*) = min
π⊂
∏Cmax(π) (11)

π* = arg{Cmax(π)}→min, ∀π⊂
∏

(12)

Eqs. (1) to (5) are formulas for calculating the makespan Cmax. Eqs.
(6) to (8) are formulas for calculating the ready time of the required
resources for each machine. Eqs. (9) and (10) ensure that each machine
can process at most one job at a time and each job should be processed

once during the test process, respectively. Eqs. (11) to (12) indicate that
the optimization goal is to find the best scheduling solution π* among
the set of all feasible solutions

∏
aiming to minimize the makespan Cmax.

To illustrate the problem under consideration, an example with 5
jobs, 9 operations, and 4 machines is provided here. The processing time
for each operation and the setup time for each machine are given in
Table 3. Each machine requires a tester, a handler, and an accessory to
perform test tasks. The number and combination of available resources
for machines are shown in Table 4 and Table 5, respectively. For ease of
explanation, let the operation vector πjob andmachine vector πmac in π be
πjob = {2,1, 3,5, 4,1, 3,2, 5} and πmac = {1,2,3,4,3,2,4,3,1}. Fig. 3(a)
shows a Gantt chart of the feasible solution π = (πjob,πmac). Fig. 3(b)-3(d)
report the number of available resources corresponding to the test
process.

From Fig. 3, it is clear that O2,1 and O3,1 are processed onM1 andM3
at time 0, respectively, due to the testers, handlers, and accessories are
available. O1,1 cannot be started on M2 at time 0 because the resources
required forM2 (the first type of tester T1) are occupied byM1 at time 0,
and the quantity for T1 is only one. Thus, it has to be processed at time 3
after M1 releases the occupied tester T1. The same situation occurs for
O5,1, which must be started at time 3 after M1 releases the occupied
accessory A3. In addition, although the required resource for M3 is
released at time 7, O2,2 started at time 10 because of the setup time when
job J2 is transferred from M1 to M3 (i.e., O2,1 and O2,2 are processed on
M1 and M3, respectively). Thus, the makespan Cmax(π) of the feasible
solution π is 14.

4. KMEDHEA for SFTSP

This section introduces KMEDHEA, considering the critical charac-
teristics and problem properties, which is developed to minimize the

Table 3
Processing times and setup times. (‘-’ indicates that the machine does not meet the operating conditions).

Machine Processing time Setup time

O1,1 O1,2 O2,1 O2,2 O3,1 O3,2 O4,1 O5,1 O5,2 M1 M2 M3 M4

M1 3 − 3 2 4 5 2 2 4 0 1 3 2
M2 2 3 − 2 − 3 − 2 2 1 0 2 4
M3 4 2 2 4 4 − 3 − − 3 2 0 1
M4 2 3 3 − 6 3 3 4 2 2 4 2 0

Table 4
Number of available resources.

Type Tester Handler Accessory

Type 1 1 1 1
Type 2 1 1 1
Type 3 1 1 1
Type 4 1 1 0

Table 5
Resource configuration of machines.

Machine Tester Handler Accessory

M1 Type 1 Type 1 Type 3
M2 Type 1 Type 2 Type 2
M3 Type 2 Type 4 Type 1
M4 Type 4 Type 3 Type 3

Fig. 3. Illustration of the Gantt chart for a feasible solution.
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makespan of the SFTSP. Firstly, considering the specificity of SFTSP,
single-vector encoding and constrained-separable left-shift decoding
schemes are developed to represent feasible solutions and transform
solutions into scheduling schemes, as described in Section 4.1. Then, a
MEDA-based HLS is designed to guide the evolution of the high-level
population in the strategy domain detailed in Section 4.2. Further-
more, the problem-dependent hybrid initialization method (HIM) based
on three problem-specific heuristic rules is developed in Section 4.3 to
produce a high-quality initial population with a certain diversity. Next,
eight problem-specific heuristics are developed in Section 4.5 to
generate a set of LLHs for forming high-level individuals dedicated to
exploring the solution space and executing the fine-grained searches.
This innovation ensures effective search behaviors, with each LLH effi-
ciently exploring superior solutions within the specific search scope.
Finally, the framework of KMEDHEA and the CC of KMEDHEA are
provided and analyzed in Sections 4.6 and 4.7, respectively.

4.1. Encoding and decoding schemes

The efficacy of HIOAs in tackling complex FJSPs with multi-resource
constraints depends on the design of the encoding scheme and decoding
scheme (Cao, et al., 2019; Lin, et al., 2022; Sang, et al., 2018; Wang,
et al., 2014, 2015; Wang, et al., 2013; Wu, et al., 2012; Zheng, et al.,
2014). An effective encoding scheme properly reflects the critical
characteristics of the problem, enabling efficient exploration of the so-
lution space through specific search strategies. A suitable decoding
scheme ensures that the scheduling solutions that are obtained are
feasible and high-quality. KMEDHEA presents a promising perspective
for HHEAs design, which employs a learning-based paradigm with a bi-
level framework, where high-level individuals consist of problem-
specific LLHs in the strategy space and low-level individuals consist of
sequences of operations in the solution space. Detailed descriptions of
the encoding and decoding schemes for the low-level and high-level
individuals can be found in Subsections 4.1.1 and 4.1.2, respectively.

4.1.1. Encoding and decoding in problem domain
Encoding and decoding play a crucial role in problem-solving as they

enable effective representation and transformation of the specific
characteristics of the problem, allowing algorithms to better explore and
exploit superior solutions. As shown in previous studies (Cao, et al.,
2019; Hu, et al., 2023; Lin, et al., 2022; Sang, et al., 2018; Wang, et al.,
2014, 2015; Zheng, et al., 2014), in the solution space of the problem,
feasible solutions or low-level individuals are denoted as scheduling
sequences, i.e., πjob = {πjob(1),πjob(2), ...,πjob(TO)}. The elements in πjob
denote the job number. The number of occurrences of the job number
corresponds to the corresponding operation for that job. The total
number of elements in πjob is TO, i.e., TO =

∑n
i=1ki, and the ki operations

of job Ji are processed only once. It is this simple yet effective coding
scheme that allows the execution of search operators on solution se-
quences to have a direct impact on scheduling schedules, thus avoiding
infeasible or redundant scheduling schemes.

Decoding solution sequences into scheduling schedules requires
careful consideration of multiple factors. These factors include deter-

mining the start and end times of each operation, assigning appropriate
machines to perform each operation, and considering the constraints of
test resources and operation priorities. However, a challenge arises due
to the limited number of resources available. In some cases, most ma-
chines may have completed their processing tasks, while a few still have
unfinished tasks. This imbalance may significantly increase the pro-
duction cycle (i.e., the total time required to complete all operations). In
addition, due to priority and setup time constraints between operations,
idle time may exist between two adjacent operations on the same ma-
chine, which further results in large processing time gaps. To address
these challenges and minimize idle time, we adopt a constrained-
separable left-shift decoding scheme. It is intended to make the pro-
cessing process of operations as compact as possible. With the strategic
shifting of operations within given resources and constraints, this
scheme ensures that operations are scheduled to reduce idle time and
minimize completion time. The details of this constrained-separable left-
shift decoding scheme are outlined below. Firstly, at the start of the
decoding decision, it is assumed that the operation Oi,k is assigned to the
machine Mi,k and does not consume resources during processing. Sec-
ondly, for each operation Oi,k, all eligible machines are traversed to
determine if there exists unnecessary waiting time (UWT) on the cor-
responding machine. The calculation of UWT in different cases is given
by the following rules (i.e., UWT Rules 1–3), respectively. Then, the most
suitable machine Mi,k and processing priority on Mi,k are selected for
each operation Oi,k with the goal of minimizing UWT per machine, thus
obtaining the machine assignment sequence πmac that matches the
operation sequence πjob. Finally, considering the resource constraints,
the makespan is calculated by Eqs. (1)-(12).

UWT Rule 1: If no operations are currently scheduled for processing
on the machine, then the is 0.

UWT Rule 2: If at least one operation is scheduled on the current
machine and the arrived operation is the first operation Oi,1 of job Ji, the
UWT is determined as follows. Define the period from the completion
time of the pth operation to the start time of the (p+1)th operation on
the same machine as the idle time gap (ITP), where
p = {1,2, ...,NPMi,k − 1} and NPMi,k is the number of jobs processed on
machine Mi,k. When p = 1, ITP is the time from time 0 to the start of
processing for the first operation on the machine. If ITP > PTOi,1 ,Mi,1 , then
UWT = ITP.

UWT Rule 3: Assume that at least one operation is scheduled for
processing on the machine and that the arrived operation Oi,k(k > 1) is
not the first operation of the job Ji. If ITP⩾PTOi,k ,Mi,k + Ci,k− 1 + STMi,k− 1 ,Mi,k ,
then UWT = ITP.

The pseudo-code for the constrained-separable left-shift decoding
scheme is shown in Algorithm 1. For ease of interpretation, the relevant
notations are defined. φpos = {pos1,pos2,..,posm}: sequence recording the
machine processing positions, e.g., pos7 = 3 denotes the 3rd processing
position of the machine M7. φc = {c1,c2, ...,cn}: sequence recording the
completion time. ΛOP: a 2-D matrix used to record the operations at each
position on each machine, e.g., ΛOP[7,3] = O3,2 means that O3,2 is pro-
cessed at the third position on the machine M7.

14 4 1 7 5 6 8 33

Fig. 4. Illustration of the high-level individual encoding scheme.
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.

4.1.2. Encoding and decoding in strategy domain
In HHEAs, high-level individuals represent specific sequences of

heuristics, which consist of predefined LLHs in the strategy space. Spe-
cifically, the execution order of LLHs determines a specific search
strategy for global exploration in the solution space. The search be-

haviors of HHEAs greatly depend on the design of the HLSs, as they
directly influence the generation of high-level individuals. Therefore,
the design of efficient HLSs that effectively coordinate and call LLHs is of
vital importance. To clarify the description, let Hgen represent the high-
level population at the genth generation, denoted asHgen = {Hgen

1 ,Hgen
2 ,...,

Hgen
Hs }, where the size of Hgen is Hs. Let Hgen

best be the subset of the superior
high-level individuals selected from Hgen with size Is, i.e.,
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Fig. 5. Illustration of eight low-level heuristics.
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Hgen
best ={Igen1 , Igen2 , ..., IgenIs } and Is = Hs× ρ, ρ is the percentage of superior

high-level individuals. In addition, Lgen denotes the low-level population
with size popwhere L0 is the initialization population. In this subsection,
a single-vector encoding scheme is used to represent the high-level in-
dividual, denoted by πh = {πh1,πh2, ...,πhhl}. Each element in πh represents
the index number of the LLH, and the sequence of elements denotes the
execution order of the LLHs. To ensure efficiency and diversity, the
length of the high-level individual is set to hl = 10, with no more than
three occurrences of the same LLH in each individual. To facilitate un-
derstanding, an illustrative example of a high-level individual πh =
{3,4, 4,1, 7,5, 6,1, 8,3} is provided in Fig. 4.

During the decoding process of high-level individuals, the selection
of LLHs is based on predetermined priorities, aimed at searching the
solution space for seeking superior solutions. If a candidate solution is
found to be superior to the original solution, it replaces the original one,

and the remaining LLHs are executed. If the candidate solutions do not
outperform any of the existing solutions, the next LLH is executed until
all the remaining LLHs in the high-level individual are completed. To
evaluate the effectiveness of each high-level individual, the improve-
ment rate (IR) is utilized as an evaluating metric. The IR is calculated by
determining the average fitness of the best solution obtained after
executing each LLH owned by the high-level individual in the popula-
tion in the solution space. To record fitness values, two sequences φh and
φl are adopted, i.e., φh = {h1, h2, ..., hpop} and φl = {l1, l2, ..., lpop}. The
pseudo-code for the calculation of IR is detailed in Algorithm 2, which
outlines the steps involved in evaluating the effectiveness of each high-
level individual by measuring the fitness improvement achieved by
performing the respective LLHs.

.

Fig. 6. The general framework of KMEDHEA.
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4.2. MEDA

4.2.1. Block structure and similar blocks
For an HLS domain individual, we define two adjacent LLHs as a

block structure. Thus, each high-level individual can be seen as a
composition of various block structures that appear at different posi-
tions. Among the individuals in the high-level population, the same
block structures that appear in different positions across all individuals
are considered as similar blocks. To illustrate this, let’s consider a high-
level population with four individuals: [1,3,2,2], [3,2,1,2], [1,3,1,2],
and [2,3,3,1]. Here, [1,3], [3,2], and [2,2] are block structures. Notably,
[1,3] appears not only as the first block in the first individual but also as
the first block in the third individual, and thus block [1,3] is considered
a similar block. According to the above description, a three-dimensional
(3-D) probabilistic model is designed to guide the update of the high-
level population based on the distribution characteristics of similar
blocks.

4.2.2. Model for the distribution of similar blocks
In this subsection, the multidimensional matrix model used to record

the distributional characteristics of the similar blocks of all high-level
individuals in Hgen

best is defined as SM
gen
(p− 1)×q×q, where p is the length of

the individuals in the HLS domain and q is the number of types of LLHs.
This multidimensional matrix model SMgen

(p− 1)×q×q is described as shown
in Eqs. (13) to (16):

λ SMgen,v
(p− 1)×q×q(x, y, z) =

{
1, y = Igenv (x), z = Igenv (x+ 1),
0, otherwise,

x = 1, ..., p − 1; y, z = 1, ..., q; v = 1,2, ..., Is.

(13)

SMgen,v
(p− 1)×q×q(x, y, z) =

∑Is

v− 1
λ SMgen,v

(p− 1)×q×q(x, y, z),

x = 1, ..., p − 1; y, z = 1, ..., q; v = 1,2, ..., Is.

(14)

SMgen
(p− 1)×q×q(x) =

⎡

⎢
⎢
⎢
⎣

SMgen
(p− 1)×q×q(x,1, 1) ⋯ SMgen

(p− 1)×q×q(x,1, q)
⋮ ⋱ ⋮

SMgen
(p− 1)×q×q(x, q,1) ⋯ SMgen

(p− 1)×q×q(x, q, q)

⎤

⎥
⎥
⎥
⎦

q×q

, x = 1, ..., p − 1.
(15)

SMgen
(p− 1)×q×q(y, z) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

SMgen
(p− 1)×q×q(1, y, z)

SMgen
(p− 1)×q×q(2, y, z)

⋮
SMgen

(p− 1)×q×q(p − 1, y, z)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1×q

,

x = 1, ..., p − 1; y, z = 1, ..., q.

(16)

where λ SMgen,v
(p− 1)×q×q(x, y, z) in Eq. (13) is the indicator function, which is

used to record not only the type and order of LLHs of the v th individual
Igenv in Hgen

best , but also the distribution information of the similar blocks at
each position of Igenv . Eq. (14) is used to count the positional information
of similar blocks of all high-level individuals in Hgen

best . SM
gen
(p− 1)×q×q(x, y, z)

is an element in SMgen
(p− 1)×q×q indicating the number of times the block

structure [y,z] occurs at the x th position of all the individuals in Hgen
best .

Eqs. (15) and (16) describe the structural features of the 3-D model.

4.2.3. Three-dimensional (3-D) probabilistic model
In order to effectively enhance the efficiency of learning and accu-

mulating information about types of LLHs and characteristics of distri-
butions in SMgen

(p− 1)×q×q, a 3-D probabilistic model PMgen
(p− 1)×q×q based on

SMgen
(p− 1)×q×q is introduced. The element PMgen

(p− 1)×q×q(x, y, z) in
PMgen

(p− 1)×q×q denotes the definition of the probability distribution of the
similar block [y,z] at the position x of all individuals in Hgen

best , which is
described in Eqs. (17)-(22):

PMgen
(p− 1)×q×q(x) =

⎡

⎢
⎢
⎢
⎣

PMgen
(p− 1)×q×q(x,1, 1) ⋯ PMgen

(p− 1)×q×q(x,1, q)
⋮ ⋱ ⋮

PMgen
(p− 1)×q×q(x, q,1) ⋯ PMgen

(p− 1)×q×q(x, q, q)

⎤

⎥
⎥
⎥
⎦

q×q

, x = 1, ..., p − 1.
(17)

To efficiently sample PMgen
(p− 1)×q×q (see Section 4.4), let the sum of

similar blocks [y,z] occurring at the x th position among all individuals
in Hgen

best be denoted as sSMgen(x), which can be calculated by Eq. (18).

sSMgen(x) =
∑q

y=1

∑q

z=1
SMgen

(p− 1)×q×q(x, y, z) (18)

Similarly, the sum of the probability values of the similar block [y,z]
arising at the x th position among all individuals in Hgen

best is defined as
sPMgen(x).

sPMgen(x) =
∑q

y=1

∑q

z=1
PMgen

(p− 1)×q×q(x, y, z) (19)

The specific update steps of the multidimensional probability model
PMgen

(p− 1)×q×q are detailed in Eqs. (20)-(22):
Step 1: If gen = 0, generate the initial 3-D probabilistic model

PM0
(p− 1)×q×q according to Eq. (20).

PM0
(p− 1)×q×q(x, y, z) =

{
1/q, x = 1, y, z = 1, ..., q,
1/q2, x = 2, 3, ..., p − 1; y, z = 1, ..., q. (20)

Step 2: If gen = 1, obtain the multidimensional matrix model
SM0

(p− 1)×q×q according to Eqs. (13)-(16) and update the 3-D probabilistic
model PM0

(p− 1)×q×q to PM1
(p− 1)×q×q according to Eq. (21).
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PM1
(p− 1)×q×q(x,y,z)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

SM0
(p− 1)×q×q(x,y,z)/T SM

0(x), x= 1;y,z=1, ...,q,

[PM0
(p− 1)×q×q(x,y,z)+SM

0
(p− 1)×q×q(x,y,z)]

/[T PM0(x)+T SM0(x)],
x=2,3, ...,p − 1;y,z=1, ...,q.

(21)

Step 3: If gen>1, calculate the multidimensional matrix model
SMgen− 1

(p− 1)×q×q according to Eqs. (13)-(16) and then update the 3-D proba-
bilistic model PMgen

(p− 1)×q×q according to Eq. (22).

PMgen
(p− 1)×q×q(x, y, z) = α × SMgen− 1

(p− 1)×q×q(x, y, z)

+(1 − α) × PMgen− 1
(p− 1)×q×q(x, y, z)/T SMgen− 1(x),

x = 1, 2,…, p − 1; y, z = 1, ..., q.

(22)

where α in Eq. (22) is the learning factor, which is used to control the
learning rate when updating the 3-D probabilistic model.

Step 4: Set gen = gen + 1; if gen < MaxGen, skip to step 3; otherwise,
terminate the loop.

4.3. Population initialization

The population initialization plays a pivotal role in directly deter-
mining the initial search scope, holding crucial significance in acceler-
ating convergence, averting entrapment in local optima, and bolstering
the stability and adaptability of HIOAs. As stated in previous studies,
constructive heuristics, especially effective for tackling scheduling
problems with complex constraints, are commonly employed to produce
adequate and acceptable initial solutions or provide affordable available
solutions for real-time requirements. As described in Section 3, the study
of SFTSP involves addressing two decision-making aspects: determining
the order of operations and allocating these operations to machines. In
light of the insights in Subsection 4.1.1, it is clear that the order of
assigning operations to machines is inherently linked to the order of
operations. Thus, it becomes essential to establish heuristic rules that
determine the order of operations to provide a proper pre-scheduling
scheme for the initialization of HIOAs. Moreover, previous research
has established that the choice of initialization strategies significantly
impacts the effectiveness and efficiency of HIOAs. Random generation of
initial populations, lacking consideration for problem characteristics,
may compromise the quality and diversity of initial solutions. To
enhance the quality of the initial population, a problem-dependent

Fig. 7. The flowchart for KMEDHEA.

Table 6
Computational complexity of critical components in KMEDHEA.

Crucial components CC Analyzes

Initialization O(pop× TO) ① The CC for generating the population by MPT rule: O(0.4× pop× TO)
② The CC for generating the population by APT rule: O(0.3× pop× TO)
③ The CC for generating the population by SSR rule: O(0.2× pop× TO)
④ The CC for generating the population by random generation: O(0.1× pop× TO)

Local exploration O(TO) + O(poplogpop) ① The CC for fitness value calculation: O(TO)
② The CC for sorting Lgen: O(poplogpop)
③ The CC for LLH1 ~ LLH8: O(1)

Global exploration O(hl3 × Is) + O(hl2 × Hs)
+O(0.1× pop× TO)

+O(HslogHs)

① The CC for updating the 3-D probabilistic model: O(hl3 × Is)
② The CC for generating Hgen : O(hl2 × Hs)
③ The CC for IR calculation: O(hl× pop× TO)
④ The CC for sorting Hgen: O(HslogHs)
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hybrid initialization method (HIM) is introduced. Inspired by these in-
sights, three heuristic rules are devised, considering the optimization
objective and the problem-specific characteristics, as follows:

(1) MPT Rule: Aimed at achieving a compact processing process, all
jobs in πjob are sorted in ascending order based on the minimum pro-
cessing time (MPT), and then selecting the operation with the shortest
MPT. The purpose of this rule is to reduce processing time as much as
possible. The pseudo-code of the MPT rule is outlined in Algorithm 3.

(2) APT Rule: Aligned with the goal of the MPT rule, this rule ar-
ranges all jobs in ascending order of average processing time (APT). It
selects the job with the shortest APT. The pseudo-code of the APT rule is
detailed in Algorithm 4.

(3) SSR Rule: Appropriate allocation of resources during scheduling
greatly affects the completion time. To reasonably balance the resource

allocation of machines, we introduce a separate similar resources (SSR)
rule, aiming to shorten the completion time by strategically segregating
operations that are processable on machines with similar resource
combinations while adhering to the constraints. The pseudo-code of the
SSR rule is shown in Algorithm 5.

To ensure the quality of the initial population, 90 % of the in-
dividuals in the initial population are generated by the heuristic rules
described above. Specifically, 40 % of the individuals are generated by
the MPT rule, 30 % by the APT rule, and 20 % by the SSR rule. The
remaining 10 % of individuals are randomly generated to increase the
diversity of the initial population. To provide clarity in discussing the
proposed heuristic rules, relevant notations are defined. φMO =

{MO1,MO2, ...,MOTO}: Sequence for recording MPT values. φA =

{AO1,AO2, ...,AOTO}: Sequence for recording APT values. φRO =

{RO1,RO2, ...,ROTO}: Sequence for recording a combination of re-
sources. ΛMR: 2-D vector for recording MPT values. ΛAR: 2-D vector for
recording APT values. The pseudo-code of the proposed HIM is given in
Algorithm 6.

.

.

Table 7
Parameter values for each factor level.

Parameter Factor level

1 2 3 4

pop 20 40 60 80
Hs 20 30 40 50
ρ 0.3 0.35 0.4 0.5
a 0.05 0.1 0.2 0.3
ξ 0.7 0.75 0.8 0.85
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Table 8
ANOVA results of KMEDHEA’s parameters.

Source Sum of Squares Df Mean Square F-Ratio P-Value

pop 27601.4 3 9200.46 2436.32 0.0000
Hs 5372.1 3 1790.7 474.19 0.0000
α 4379.56 3 1459.85 386.58 0.0000
ρ 7500.17 3 2500.06 662.03 0.0000
ξ 1036.34 3 345.447 91.48 0.0000
pop ∗ Hs 3737.85 9 415.317 109.98 0.0000
pop ∗ α 287.645 9 31.9605 8.46 0.0000
pop ∗ ρ 595.698 9 66.1886 17.53 0.0000
pop ∗ ξ 349.686 9 38.854 10.29 0.0000
Hs ∗ α 55.8442 9 6.20491 1.64 0.0987
Hs ∗ ρ 115.295 9 12.8106 3.39 0.0004
Hs ∗ ξ 106.407 9 11.823 3.13 0.0010
α ∗ ρ 1100.55 9 122.283 32.38 0.0000
α ∗ ξ 614.594 9 68.2882 18.08 0.0000
ρ ∗ ξ 96.9888 9 10.7765 2.85 0.0025
Residual 3466.71 918 3.77637 ​ ​
Total 56416.8 1023 ​ ​ ​

Fig. 8. Main effect plots of parameters.
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4.4. Sampling 3-D probabilistic model to generate high-level populations

Since the probability value of a similar block [Igenv (u − 1), Igenv (u)] is
stored in PMgen

(p− 1)×q×q(u − 1), we obtain Igenv (u) at the uth position of Igenv
by sampling PMgen

(p− 1)×q×q(u − 1). However, by the definition of the
similar block, when u = 1, there is no similar block in the first position
of Igenv . Therefore, a special sampling strategy is designed for the selec-
tion of the first LLH in the high-level individual, and we sample
PMgen

(p− 1)×q×q(u − 1) to select the LLH for other positions. The update
process of the high-level population Hgen is as follows:

Step 1: Set v = 1.
Step 2: Set u = 1. Calculate RWgen− 1(y) according to Eq. (23).

RWgen− 1(y) =
∑p

z=1
sPMgen− 1(1, y, z), y = 1, ..., p (23)

Step 3: Select the LLH of Igenv (u) by roulette wheel, randomly generate

the probability value r1, r1 ∈
[
0,

∑p
j=1RWgen− 1(j)

]
; if r1 ∈

[
0,RWgen− 1(1)

]
,

then set x = 1, and set Igenv (1) as LLHx. If r1 ∈

⎡

⎢
⎢
⎢
⎣

∑ω

j=1
sPMgen− 1

(p− 1)×q×q(i − 1, Igenv (u − 1), j),
∑ω+1

j=1
sPMgen− 1

(p− 1)×q×q(i − 1, Igenv (u − 1), j)

⎤

⎥
⎥
⎥
⎦
,ω ∈ {1,...,q − 1}, then set x =

ω + 1, and set Igenv (1) as LLHx.
Step 4: Set u = u + 1.

Step 5: Select LLHx of I
gen
v (u) by the roulette wheel, and randomly

generate the probability value r,

r ∈
[
0,

∑q
j=1sPM

gen− 1
(p− 1)×q×q(u − 1, Igenv (u − 1), j)

]
.

If r ∈
[
0, sPMgen− 1

(p− 1)×q×q(u − 1, Igenv (u − 1), j)
]
, then set x = 1, and set

Igenv (u) as LLHx. If r1 ∈

⎡

⎢
⎢
⎢
⎣

∑ω
j=1
sPMgen− 1

(p− 1)×q×q(u − 1, Igenv (u − 1), j),
∑ω+1

j=1
sPMgen− 1

(p− 1)×q×q(u − 1, Igenv (u − 1), j)

⎤

⎥
⎥
⎥
⎦
,ω ∈ {

1, ...,q − 1}, then set x = ω + 1, and let Igenv (u) be LLHx.
Step 6: Set u = u + 1; if u⩽q, then go to step 5; otherwise, go to step

7.
Step 7: Set v = v + 1; if v⩽Hs, then go to step 2; otherwise, go to step

8.
Step 8: Output Hgen.

4.5. Low-level heuristics

The low-level heuristics (LLHs) are the underlying foundational
structures in HHEAs, which determine in detail some specific search
strategies for performing local searches and optimization operations
within the search space. These diverse LLHs are chosen and called
through the HLS and thus compose the execution sequences of high-level
individuals. Since specific LLHs are responsible for local search opera-
tions, both their quality and the way they are selected affect the algo-
rithm’s ability for local exploitation (Zhang, et al., 2023). Typically,
LLHs are designed on the basis of the domain-specific knowledge, but
they can also be developed with respect to the neighborhood structure of
specific problems (Zhang, et al., 2023). These neighborhood structures
are defined by the description of how some specific operators change the
sequences of current solutions to create candidate solutions. Since
different neighborhood structures have different search behaviors, the
selection scheme of the suitable structure will have an important impact
on both the effectiveness and efficiency of the proposed algorithm
(Zhang, et al., 2021). Based on three types of easy-implement operators
(i.e., Swap, Insert, and Reverse), this section provides eight simple and
effective heuristics for generating an LLH pool. For a more intuitive
description, the illustrations of LLH1-LLH8 are shown in Fig. 5(a)-(h),
respectively. The details of these LLHs are described as follows.

(1) Two-position swap (LLH1): Randomly select two positions from
the sequence πjob, and then swap the operations on the positions.

(2) Adjacent-position swap (LLH2): Randomly select two positions p
and ṕ from the sequence πjob, and then swap the operation on the po-
sition p with the operation on the position ṕ , and swap the operation on
the position p+1 with the operation on the position ṕ + 1.

(3) Forward insert (LLH4): Randomly select two positions p and ṕ
(p < ṕ ) from the sequence πjob, and then insert the operation on the
position ṕ before the operation on the position p.

(4) Backward insert (LLH4): Randomly select two positions p and pʹ

(p < ṕ ) from the sequence πjob, and then insert the operation on the
position p behind the operation on the position ṕ .

(5) Adjacent-segment swap (LLH5): Randomly separate the sequence
πjob into two segments (i.e., π1job and π2job), and then swap the operations
on the subsequence π1job with the operations on the subsequence π2job.

(6) Two-segment swap (LLH6): Randomly separate the sequence πjob
into three segments (i.e., π1job, π2job, and π3job), and then swap the opera-
tions on the subsequence π1job with the operations on the subsequence
π3job.

(7) Three-segment exchange (LLH7): Randomly separate the
sequence πjob into three segments (i.e., π1job, π2job, and π3job), and then swap
the operations on these three subsequences with each other.

(8) Segment reverse (LLH8): Randomly select a subsequence πsjob from
the sequence πjob, and then reverse the operations on the subsequence
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πsjob.
To maintain the search vitality of LLHs to avoid premature conver-

gence, each LLH is embedded with the SA-based acceptance mechanism
to accept individuals with relatively poor fitness to improve the per-
formance of the fine local search. These SA-embedded LLHs are executed
according to Algorithm 7. The job or operation sequence that needs to be
processed is denoted by ϕ. ξ is the annealing rate. The beginning tem-
perature is denoted by T0 (i.e., T0 = 5) and the terminal temperature is
denoted by Tf (i.e., Tf = 1).

.

4.6. The framework of KMEDHEA

With the critical components outlined above, this section provides
the framework of the MEDA-based HHEA for solving the SFTSP, as
illustrated in Fig. 6. Furthermore, the flowchart of the proposed
KMEDHEA is shown in Fig. 7. Firstly, the HIM (see Algorithm 6) is
employed to produce pop potential and promising solutions in the initial

Fig. 9. Interaction effect plots of parameter pairs.
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population L0 with both quality and diversity. As defined in Section 4.5,
eight LLHs are chosen to construct high-level individuals based on the
MEDA-based HLS, which are evaluated by a constrained-separable left-
shift decoding scheme (see Algorithm 1). As illustrated in Fig. 7, the
iterative process of the KMEDHEA consists of two main parts: global
exploration and local exploration. In the global exploration, MEDA acts
as the HLS to extract and estimate the characteristic of the block struc-
ture (i.e., linkage relations of LLHs) and the distribution of similar blocks
(i.e., location information of LLH pairs) by the 3-D probabilistic model,
which aims at identifying the most suitable sequences of heuristics.
These sequences of LLHs are executed for searching the solution space
with the expectation of obtaining superior solutions in the local explo-
ration. This entire procedure is iteratively performed until the termi-
nation criteria are satisfied.

4.7. Complexity analysis of KMEDHEA

Computational complexity (CC) is an important indicator for evalu-
ating the efficiency and feasibility of the algorithm. Analyzing the CC of
critical components in KMEDHEA not only provides insights into how
the algorithm entirely behaves under different problem sizes but also
reveals bottlenecks and boosts in the algorithm, contributing to direct-
ing the development and improvement of the algorithm. As illustrated in
Fig. 7, KMEDHEA can be classified into three crucial components,
including population initialization, local exploration, and global
exploration. To analyze the CC of each component in KMEDHEA for
solving the SFTSP, Table 6 provides a rough estimation of these CC
values. Each generation’s total CC of KMEDHEA is denoted as
TCCMEDHEA, as shown in Eq. (24).

TCCKMEDHEA = O(pop× TO) + O(TO) + O(poplogpop)
+O(hl3 × Is) + O(hl2 × Hs) + O(0.1× pop× TO) + O(HslogHs) (24)

From Eq. (24), it can be seen that the maximum overall CC of
KMEDHEA is O(hl3 × Is), where hl is a small value (in this study, it is set
as 10). This suggests that the KMEDHEA has a relatively low complexity.

5. Numerical results and comparisons

This section provides comprehensive comparisons and analyses of
both the effectiveness and efficiency of KMEDHEA in addressing the
SFTSP. Firstly, Section 5.1 introduces the basic experimental settings,
including details on the test instances and the experimental environ-
ments. Subsequently, in Section 5.2, the parameters of KMEDHEA are
calibrated, involving validation of the main effects of parameters and
the interaction effects between parameters. Following this, the validity
of each critical component of KMEDHEA is verified in Section 5.3.
Finally, in Section 5.4, extensive experiments and statistical analyses are
conducted to demonstrate the KMEDHEA’s superiority by evaluating the
performance of KMEDHEA against several state-of-the-art algorithms.

5.1. Experimental settings

In order to comprehensively check KMEDHEA’s capabilities and
confirm its effectiveness and efficiency, we employ the publicly avail-
able SFTSP benchmark suite of 10 examples introduced by Wu and
Chien (2008), which are available at the website: https://dalab.ie.nthu.
edu.tw/newsen_content.php?id=0. These instances can be categorized
into two subsets:

Table 9
The parameter settings of SA-HH, BS-HH, and GP-HH.

Algorithm Parameters setting

SA-HH T0 = 3000, coolingrate = 0.9, NumEVAL = 3000
BS-HH popsize = 50, λ = 5, rmix = 1
GP-HH popsize = 40, D = 4, Rm = 0.15
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• Large-Scale Instances: This subset comprises 5 large-scale (LS) in-
stances, each consisting of 100 jobs, 36 machines, and 196–213
operations. The processing times for each operation in these in-
stances range from 1 to 15 h.

• Wide-Range Instances: The second subset contains 5 wide-range
(WR) instances, each composed of 60 jobs, 36 machines, and
114–134 operations. These instances exhibit a wider range of pro-
cessing times for each operation, varying from 1 to 50 h.

Considering the resource constraints inherent in SFTSP, the above-
mentioned instances include three types of resources, i.e., testers, han-
dlers, and accessories. These three resources collectively contribute to
machine configuration and cooperatively complete each job’s opera-
tions. To ensure fair comparisons and eliminate random errors, all al-
gorithms are executed under the same experimental setup, including
identical hardware facilities, programming language, and termination
conditions. To be more precise, all algorithms involved in this study
have been implemented in Delphi 2010 and independently executed on
a PC equipped with an Intel Core™ i7-3050 CPU@ 4 GHz and 16 GB of
RAM, operating in theWindows 10 environment. The Pascal code can be
found on the web: https://github.com/qxh-zhu/KMEDHEA-for-SFTSP.
Each algorithm shares the same termination criteria, which is set to the
maximum elapsed CPU time of n×m× λ seconds, and the runtime
factor λ can be adjustable to 1 and 5. Furthermore, to guarantee the
stability and reliability of the test results, each algorithm is indepen-
dently executed 20 times per instance. All the solutions from these runs
are combined and chosen as the best solution for the specific instance.
Thus, for all test instances, 200 results are generated for each algorithm,
providing a fair basis for computational comparisons.

5.2. Analysis of parameters

Parameter settings have a significant influence on the performance of
HIOAs, and selecting appropriate configurations is pivotal for deter-
mining the operational efficiency and optimization effectiveness of
HHEAs. To determine desirable parameter combinations for the
KMEDHEA, following the existing work (Zhang, et al., 2023), the Design
of Experiments (DOE) method (Hinkelmann, et al., 2008) was employed
in this section. There are five key parameters in KMEDHEA, i.e., low-
level population size (pop), high-level population size (Hs), percentage
of superior high-level individuals (ρ), learning rate (α), and annealing
rate (ξ). The parameter values and levels were determined by investi-
gating previous studies on solving similar problems and by conducting

preliminary experiments. Table 7 details the values of each parameter
across different levels, along with all possible parameter combinations,
resulting in a total of 4× 4× 4× 4× 4 = 1024 configurations for
KMEDHEA. However, it is worth noting that there would be a potential
risk of overfitting by adjusting parameters using the same instances;
thus, the same instances should not be adopted for parameter calibration
and computational comparisons. Therefore, ten new instances were
generated using the same method as the benchmark instances for
parameter calibration. Each configuration was evaluated on these ten
instances, and each algorithm was executed 20 times per instance,
resulting in a total of 1024× 10× 20 = 204800 treatments in the full
factorial experimental design across all configurations. Herein, the
termination condition for the algorithm was set to a maximum elapsed
CPU time of n×m× 0.5 seconds. To put this into perspective, if the
parameter calibration program were to run as a single-process program,
it would require at least 2560 CPU days to complete. Fortunately,
multiple PCs with identical multi-core architectures were available to
conduct these experiments in parallel, reducing the total time to 35.5
days to complete the entire parameter calibration. To evaluate the
effectiveness of the parameter combinations, the average fitness value
(AVF) was used as the response variable (RV). Obviously, the lower RV
value signifies the superior performance of the algorithm associated
with the specific parameter combination. Similar to previous studies, the
experimental results were analyzed by multifactor analysis of variance
(ANOVA), which is a robust parametric statistical technique applied to
determine whether two or more factors significantly affect the average
values of samples across different levels. ANOVA is widely applied in
analyzing experimental results from HIOAs used to solve various
scheduling problems (Zhang, et al., 2021). Before conducting ANOVA, it
is imperative to check and confirm that three primary assumptions are
met: normality, homoscedasticity, and independence of residuals, to
ensure the validity of the analysis. Upon careful checking with experi-
mental results, it was found that all assumptions were satisfied, indi-
cating no significant differences.

The ANOVA results for KMEDHEA’s parameters are presented in
Table 8. For ANOVA results, when the P − Value is less than 0.05, the
F − Ratio will be used as an indicator of significance. In general, a large
F − Ratio suggests that the factor has a significant impact on the RV. As
can be seen in Table 8, the P − Values for all the parameters are below the
confidence level of 0.05, which confirms the significance in the statis-
tical sense. Among these parameters, the low-level population size (pop)
is the most significant one, as evidenced by its largest F − Ratio, indi-
cating its considerable influence on the performance of KMEDHEA.

Fig. 10. Means plots and 95% Tukey’s HSD confidence intervals for the interaction between the algorithms and instances with different sizes.
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According to all F − Ratio values, the impact of the other parameters on
the algorithm follows in descending order: pop, ρ, Hs, α, and ξ. Fig. 8
illustrates the main effects plot for all parameters. It can be seen that
performance deteriorates with increasing pop, with the choice of pop =
20 yielding the best results. The reason for this is that a smaller low-level
population size facilitates greater potential for global exploration. If the
large size of pop is chosen, the algorithm’s ability to perform more it-
erations within the limited CPU time may be compromised. As a result,
the population size (pop) should be set to a slightly smaller value, and
the same reason for the high-level population size (Hs). The percentage
of superior individuals (ρ) emerges as the second most significant factor.
As shown in Fig. 8, the choice ρ = 0.35 achieves the best performance. It
is clear that smaller ρ may lead to inadequate learning of characteristics
and correlation of LLHs from high-quality individuals during iterations,
resulting in potentially missing promising patterns. This mismatch in the
positioning of LLHs among offspring individuals may result in gener-
ating unreasonable LLH sequences, thus failing to produce effective and
efficient problem-specific heuristics. Conversely, the larger ρ can cause
the allocation of LLHs in the newly generated individuals to be too
similar to that of the parent population, thereby making the algorithm
easily trapped into local optima. The third most important factor is the
learning rate (α), as depicted in Fig. 8, with α = 0.2 providing the best
performance, whereas α = 0.05 results in the worst. The learning rate
significantly influences the performance of KMEDHEA by controlling the
updating rate of characteristic information during iterations. It is usually
used as a trade-off between the convergence speed and stability of the
algorithm. A smaller learning rate indicates that KMEDHEA can use
existing information from the 3-D probabilistic model, which promotes
stable convergence but may slow down the process. Conversely, the
larger learning rate will accelerate the acquisition of new characteristic
information but risks missing global optima, thus affecting the algo-
rithm’s overall search behavior. To strike a balance, it is advisable to
start with the larger learning rate in early iterations, favoring large
jumps in the search space to gain more experience and slowly decreasing
the learning rate during the learning process. In later iterations, a
smaller learning rate allows the algorithm to utilize historical experi-
ence to perform a fine-grained search across the solution space. In
addition, the annealing rate (ξ) exerts the slightest significant impact on
the performance of KMEDHEA, as indicated by its smallest F − Ratio. It is
obvious from Fig. 8 that ξ = 0.8 can obtain the best performance, while
ξ = 0.7 leads to the worst results. Therefore, a slightly larger annealing
rate ξ can be beneficial for enhancing the effectiveness of the fine-tuning
search.

Although Fig. 9 has provided the preferred choice of the best levels
for each parameter, it’s important to note that analyzing single param-
eters (as shown in Fig. 8) may not yield meaningful results when sig-
nificant interactions exist between these parameters (Zhang, et al.,

2021). Therefore, we further conducted a more in-depth investigation
into the two-level interactions among these five parameters. The cor-
responding statistical results are reported in Tables 7 and 8, respectively.
As demonstrated in Tables 7–8, the P − Values of almost all pairs of pa-
rameters, regarding their interactions, are below 0.05, suggesting that
the interactions between parameters are not statistically significant. The
interaction effect plots for these parameter pairs are depicted in Fig. 9.
It’s evident from these plots that the interactions between parameters
are quite weak, consistent with the findings from Fig. 8. Furthermore, as
indicated in Table 8, the F − Ratio values for the main effects of each
parameter are greater than those for the interaction effects between the
parameters, implying that the interaction effects can be neglected. Ac-
cording to the parameter experiments and analysis, the suitable values
of KMEDHEA’s parameters are suggested as follows: pop = 20, Hs = 20,
ρ = 0.35,α = 0.2, and ξ = 0.8.

5.3. Effectiveness of critical components

The efficacy of HIOAs is commonly closely coupled to the correla-
tions among critical components, and exploring the effectiveness of each
component is essential not only for analyzing the performance of the
algorithm but also for revealing the underlying mechanisms driving
search behaviors (Zhang, et al., 2022; Zhang, et al., 2022). As detailed
description in Section 4, four critical components and corresponding
improvement strategies were developed to enhance the performance of
the proposed KMEDHEA, including (1) Constrained-separable left-shift
decoding scheme (detailed in Subsection 4.1.1): This innovative
decoding strategy was introduced to dynamically and actively decode all
scheduling solutions, optimizing the sequences of solutions and parsing
and translating them into high-quality scheduling schedules. (2) MEDA-
based high-level strategy (designed in Section 4.2): KMEDHEA
employed the HLS based on MEDA, which effectively enhances the al-
gorithm’s global exploration capabilities. (3) Hybrid initialization
method (HIM) (see Section 4.3 for details): KMEDHEA utilizes HIM to
generate initial populations of high quality and diversity, thereby
accelerating the convergence of the algorithm. (4) SA-embedded low-

Fig. 11. Box plots and 95% Tukey’s HSD confidence intervals for the interaction between the algorithms and instances with different sizes.

Table 11
Parameters of NFOA, HEDA, KMEA, CCIWO, CSRS, and QHH.

Algorithm Parameter setting

NFOA ​ NP = 70, S = 1, P = 0.7
HEDA ​ P = 100, SP = 20, α = 0.1, β = 0.3
KMEA ​ L = 6, α = 0.2, MAX G = 10000
CCIWO ​ ψ0 = 10, samin = 1, samax = 2, ζa0 = n/2, ζaf = 1, ψa

max = 50,
ρ = 0.9, ssmin = 1, ssmax = 2, ζs0 = 5, ζsf = 2, ψs

max = 20
CSRS ​ λ = 1.5, Ti = 150, Np = 30
QHH ​ T0 = 6, EP = 10, ζ = 0.7, γ = 0.7
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level heuristics (devised in Section 4.5): LLHs embedded with a simu-
lated annealing mechanism were developed, enriching the search be-
haviors and promoting more effective local exploitation. In this section,
we aim to validate the robustness and effectiveness of these components
and strategies by creating and analyzing variants of KMEDHEA, each
focusing on one specific component or strategy. Given the critical role of
the design of HLSs in HHEAs, we first validated the strengths and limi-
tations of various HLSs. To be specific, we conducted a comprehensive
comparative analysis, pitting KMEDHEA against several superior
HHEAs, including SA-HH (Lim, et al., 2022), BS-HH (Lin, 2019), and GP-
HH (Song, et al., 2021). To ensure fairness and the validity of compu-
tational comparisons, all algorithms, including KMEDHEA, employed
the same encoding and decoding scheme, hybrid initialization method,
and a consistent set of LLHs (i.e., LLH1 ~ LLH8, as introduced in Section
4.5). The primary distinction among the algorithms only lies in their
respective HLS designs. Moreover, the constrained-separable left-shift
decoding scheme, detailed in Subsection 4.1.1, was uniformly applied
across all algorithms. The parameter settings for these algorithms were
sourced from their original literature, and the recommended values can
be found in Table 9.

To further validate the effectiveness of the other components or
strategies, three variants of KMEDHEA, denoted as KMEDHEA_v1,
KMEDHEA_v2, and KMEDHEA_v3, were created, and their performance
was compared with that of the original KMEDHEA. Specifically, for the
first variant KMEDHEA_v1, we replaced the constrained-separable left-
shift decoding scheme with the random dynamic decoding scheme,
allowing us to evaluate the effect of the proposed decoding scheme. For
the second variant KMEDHEA_v2, we eliminated the hybrid initializa-
tion method (HIM) and substituted HIM with a random initialization
method for generating the initial population. For the simulated
annealing mechanism embedded in LLHs, KMEDHEA_v3 removed the
SA-based acceptance condition from each of the LLHs. It is essential to

emphasize that the components within KMEDHEA are independent of
each other, meaning that modifications to one component do not impact
the others. For each variant, only one component was replaced, while
the others remained unchanged. All variants were independently
executed 20 times on the same set of 10 instances introduced in Section
5.1. The experimental setup was consistent across all tests, with the
stopping condition set at a maximum CPU time of n×m seconds. The
test results obtained by all algorithms for each instance are reported in
Table 10, including the three metrics of best values (BST), average
values (AVG), and standard deviation (STD) in detail, with the dominant
values highlighted in bold.

As demonstrated in Table 10, for almost all instances, our presented
algorithm achieves better results than other algorithms in terms of
metrics, BST, AVG, and STD, underscoring the effectiveness and indis-
pensability of all the components in KMEDHEA for addressing the
SFTSP. Although these results in Table 10 reflect the strong performance
of the proposed algorithm, it is still necessary to confirm whether the
observed differences are statistically significant. For this purpose, we
further employed the ANOVA technique to analyze these experimental
results. Fig. 10 and Fig. 11 show the means plots and the box plots with
95 % Tukey’s Honest Significant Difference (HSD) confidence intervals
for KMEDHEA and other HHEAs, respectively, for solving instances
across various problem scales. Notably, the overlapping intervals indi-
cate statistically insignificant differences between the compared algo-
rithms. As shown in Fig. 10, it is clear that KMEDHEA demonstrates
superior stability compared to the other algorithms.

The box plots provide valuable insights into the stability of the al-
gorithms by revealing the dispersion of test results. As depicted in
Fig. 11, the interquartile range (IQR), represented by the length of the
box, is notably narrower for KMEDHEA compared to all other algo-
rithms, regardless of both small- and large-scale instances. These find-
ings suggest that KMEDHEA yields tightly clustered test results,

Fig. 12. Means plots and 95% Tukey’s HSD confidence intervals for the interaction between the algorithms, runtime factors, and instance sizes.
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suggesting its superior stability. Consequently, KMEDHEA exhibits
robust search capabilities, outperforming other algorithms when tack-
ling SFTSP across various instance sizes. Through careful analysis of
Figs. 10-11 and the results presented in Table 10, it is evident that
KMEDHEA demonstrates significant superiority over SA-HH, BS-HH,
and GP-HH. On the basis of these observations, two conclusions can be
concluded by carefully analyzing these causes. First, the performance of
SA-HH is highly dependent on the quality of the initial solution, and it is
susceptible to getting trapped in local optima during evolution, making
it prone to premature convergence compared to KMEDHEA. Second,
core operations like mutation and crossover, which are commonly used
in backtracking search-based HHEA and genetic programming-based
HHEA (i.e., BS-HH and GP-HH), simply adjust the ordering of LLHs
without incorporating effective and efficient learning mechanisms, and
these operations may inadvertently destroy promising partial patterns.
These limitations and impediments hinder the efficiency and effective-
ness of extracting and estimating the positional and ordinal relationships
of LLHs. Consequently, these traditional HHEAs may face challenges in
capturing critical characteristics from high-quality individuals. In
contrast, KMEDHEA’s strength lies in MEDA-based HLS, which enables
the exploration of high-quality regions within the search space of heu-
ristics by leveraging valuable information stored in the 3-D probabilistic
model. This 3-D model retains valuable information about promising
patterns and structural features found in excellent high-level in-
dividuals, thereby enhancing KMEDHEA’s ability to seek superior
solutions.

As can be expected, KMEDHEA demonstrated the effectiveness of its
critical components by consistently delivering satisfactory results when
compared to its three variants. The detailed statistical results reported in
Table 10 confirm that KMEDHEA outperforms KMEDHEA_v1, empha-
sizing the advantages of the proposed problem-specific decoding scheme
given in Subsection 4.1.1. An in-depth analysis of the problem’s inherent
characteristics reveals that both resource utilization and waiting times
are crucial factors in determining the makespan of scheduling solutions.
Therefore, the design of an efficient decoding strategy becomes espe-
cially essential. Such decoding strategy should be tailored to increase
resource utilization while minimizing waiting time, thus paving the way
for seeking superior solutions that are close to or even consistent with
the optimal ones. Moreover, KMEDHEA beats KMEDHEA_v2 across all

instances, which implies the pivotal role of HIM in KMEDHEA’s success.
Since SFTSP has considerable complexity involving additional con-
straints, which include setup time and multiple resources, it becomes
imperative to devise suitable heuristic rules that cater to these specific
characteristics. The initial solutions, crafted by these heuristic rules,
facilitate the population to swiftly converge towards promising regions
during the early iterations and improve the potential to seek and
converge upon optimal solutions in subsequent iterations. To enrich the
diversity of initial solutions and expand the search scope in the solution
space, the proposed HIM combining both heuristic rules and random
initialization can further improve the quality of initial solutions.
Furthermore, compared to KMEDHEA_v3, the results of BST and AVG
are also lower in most cases for KMEDHEA, indicating that embedding
the SA-based acceptance mechanism in LLHs has a positive effect. These
SA-embedded LLHs allow the acceptance of individuals with relatively
poor fitness values. In contrast, when HHEAs always accept only so-
called best solutions, they may steer the entire population towards
dead ends, resulting in reduced diversity, loss of search vitality, and
trapping into local optima.

5.4. Comparisons of KMEDHEA with state-of-the-art algorithms

In this section, we evaluate the effectiveness and efficiency of
KMEDHEA by conducting comprehensive comparisons and extensive
experiments with six state-of-the-art algorithms for solving SFTSP, i.e.,
NFOA (Zheng, et al., 2014), HEDA (Wang, et al., 2013), KMEA (Wang,
et al., 2015), CCIWO (Sang, et al., 2018), CSRS (Cao, et al., 2019), and
QHH (Lin, et al., 2022). To ensure fairness in computational compari-
sons, we re-implemented these comparison algorithms using the same
programming language and executed them in the same experimental
environment as KMEDHEA. The parameter values for each compared
algorithm were set according to their original literature, as listed in
Table 11. As mentioned in Section 5.1, we adopted the maximum
elapsed CPU time of n×m× λ seconds as the stopping criteria for each
compared algorithm, with the runtime factor of λ, allowing available
values of 1 and 5. Each algorithm was tested 20 times per instance. The
computational results are reported in Tables 12–13, including the values
at the three metrics of BST, AVG, and STD, with the best results for each
metric highlighted in bold.

Fig. 13. Box plots and 95% Tukey’s HSD confidence intervals for the interaction between the algorithms, runtime factors, and instance sizes.
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Fig. 14. Gantt chart of the best solutions found by KMEDHEA on instances LS3 and WR3.

Z.-Q. Zhang et al. Expert Systems With Applications 260 (2025) 125424 

24 



As illustrated in Tables 12 and 13, KMEDHEA consistently out-
performs all other algorithms across all instances regardless of the time
factor λ, with the superiority becoming even more pronounced as the
runtime factor increases. That is, as for 10 instances (i.e., LS1-LS5, and
WR1-WR5), our proposed KMEDHEA always delivers higher-quality
scheduling solutions compared to NFOA, HEDA, KMEA, CCIWO, CSRS,
and QHH, which confirms that KMEDHEA can efficiently address SFTSP.
Specifically, in Table 12, the experimental results obtained by KMED-
HEA under n×m× 1 seconds are overwhelmingly better than those
obtained by the other six state-of-the-art algorithms on the BST metric.
In terms of the AVG metric, KMEDHEA also demonstrates pretty good
performance, with an average AVG value of 150.82, which is superior to
the value of 153.59 obtained by CCIWO and the value of 183.49 ob-
tained by NFOA in average senses, and only slightly suffers on the
instance of WR2 as compared to CCIWO. With respect to the relative
percent deviation of the average AVG, KMEDHEA’s results were better
than the other six algorithms, ranging from 1.8 % (i.e.,
(153.59–150.82)/150.82≈0.018) to 21.7 % (i.e., (183.49–150.82)/
150.82≈0.217), respectively. Regarding STD metric, MEDEA (3.03)
achieved favorable results on average STD versus NFOA (5.04), HEDA
(3.25), KMEA (3.69), CCIWO (4.81), CSRS (7.62), and QHH (3.82),
further observing that all the algorithms obtain the best values on 0, 2, 1,
0, 0, 0, 1, and 7 instances (see bold notation), which account for 0 %, 20

%, 10 %, 0 %, 0 %, 10 %, and 70 %, respectively, (KMEA and QHH
obtained the same results on WR5). Furthermore, from the comparison
results on the three metrics in Table 13, it is clear that KMEDHEA bests
the other six compared algorithms, i.e., NFOA, HEDA, KMEA, CCIWO,
CSRS, and QHH, in terms of BST, AVG, and STD metrics in solving
different scale instance when the running termination time is capped at
n×m× 5 seconds. It is observed that KMEDHEA overwhelmingly out-
performs the other six algorithms in BST, AVG, and STD metrics across
all nine instances except for WR4, with the best results ranging from 7.2
% to 41.2 %, 8.4 % to 35.8 %, and 12.1 % to 461.0 %, respectively. The
reason for excluding WR4 is that the optimal solution has almost been
found, i.e., the best makespan of WR4 may be 185 h. In addition, it is
observed that the average values obtained by KMEDHEA on the STD
metric across all instances in Tables 12 and 13 are also the smallest.
Interestingly, the superiority of KMEDHEA may become more pro-
nounced as the runtime factor λ increases. According to the above
analysis, it can be concluded that the KMEDHEA is capable of mini-
mizing the makespan for the SFTSP with highly efficient reliability and
stability.

To provide comprehensive pictures of the effectiveness and stability
of all compared algorithms in solving various instances under different
termination conditions, the mean plots and box plots with 95 % Tukey’s
HSD confidence intervals for KMEDHEA and the other algorithms are

Fig. 15. Curve chart of remaining resources for instances LS3 and WR3.
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shown in Fig. 12 and Fig. 13, respectively. As shown in Fig. 12, there are
no overlapping intervals between KMEDHEA and the other algorithms.
The upper edges of the intervals for KMEDHEA are significantly lower
than the lower edges of the intervals for the other algorithms. These
details indicate that KMEDHEA exhibits the most outstanding perfor-
mance in terms of statistical significance. Fig. 13 demonstrates that the
box lengths of KMEDHEA are shorter than those of the other compared
algorithms in all scenarios except for WR2 under λ = 1. For the WR2
instance under λ = 1, the length of the box (IQR) obtained by KMEDHEA
is comparable to that of CCIWO, yet still shorter than the other
compared algorithms. Therefore, it can be confidently concluded that
KMEDHEA has superior stability and robustness.

Based on extensive experiments and comparisons, it can be
concluded that the proposed KMEDHEA stands as a newly efficient and
effective learning-based paradigm for solving the SFTSP. This conclu-
sion can be attributed to the following aspects: (1) Unlike population-
based HIOAs such as NFOA, HDEA, KMEA, CCIWO, and CRCS, which
rely on complex local search strategies, KMEDHEA only employs a set of
simple LLHs to evolve effective heuristics, which can not only improve
search efficiency but also be able to exhibit richer search behaviors. (2)
Although QHH is effective, it evolves only for a single individual, which
has lower diversity than KMEDHEA and is prone to premature conver-
gence. KMEDHEA integrates three initialization strategies, resulting in
producing the initial population with both good quality and diversity,
which accelerates the convergence speed of the algorithm. (3) The
global exploration of KMEDHEA can more effectively steer the search
directions by applying the MEDA-based high-level strategy, while its
local exploitation further adopts the most suitable sequences of LLHs to
search for the solution space, especially embedding SA-based acceptance
mechanism to efficiently jump out of local optimal regions. (4) The
multidimensional probabilistic models in KMEDHEA allow for both
extracting and estimating promising pattern features of LLH sequences
to make proper decisions in the heuristic space, which is surely superior
to most of the HHEAs that are based on typical HIOAs used as HLSs
searching in the heuristic space. (5) The bi-layer framework of KMED-
HEA adapts well to handle the complexity of the problem. It allows the
search for superior solutions through the use of proper problem-specific
LLHs, which may avoid search blindness compared to some typical op-
erators commonly used in most of the HIOAs. (6) The constrained-
separable left-shift decoding scheme developed based on critical con-
straints further improves the quality of the superior solutions.

Furthermore, Fig. 14 presents Gantt charts illustrating the best so-
lutions found so far by KMEDHEA for two distinct instances: the large-
scale LS3 (consisting of 100 jobs, 36 machines, and 196 operations)
and the wide-range WR3 (consisting of 60 jobs, 36 machines, and 123
operations). In Fig. 14(a) and 14(b), it is clear that the makespan for the
two feasible scheduling solutions stands at 82 h and 180 h, respectively.
Additionally, Fig. 15 provides a comprehensive view of the remaining
resources (i.e., testers, handlers, and accessories), which serves as
compelling evidence that the derived scheduling solutions are indeed
feasible. As observed in both Figs. 14 and 15, the constrained-separable
left-shift decoding scheme employed ensures that operations on each
machine are shifted to the earliest possible time slots, thereby greatly
reducing machine idle time, effectively improving resource utilization,
and ultimately minimizing production cycles. Moreover, the real-time
residual resource curves depict the best utilization of each resource
while meticulously adhering to multi-resource constraints. These ob-
servations, coupled with the extensive experimental results presented,
can be confidently concluded that the proposed KMEDHEA emerges as a
robust and efficient learning-based paradigm for effectively tackling the
considerable challenges associated with SFTSP.

6. Managerial implications

This study introduces an emerging framework of HHEA (i.e.,
KMEDHEA) that develops a highly effective and efficient MEDA-based

learning paradigm capable of autonomously learning promising pat-
terns, capturing critical characteristics, and enabling collaborative in-
teractions to efficiently address complex challenges posed by SFTSP.
Through thorough computational comparisons, the excellent efficacy of
KMEDHEA is explicitly demonstrated. Furthermore, the detailed case
study of ten instances highlights the potential of KMEDHEA for practical
applications in semiconductor manufacturing environments. This
research contributes significantly to the field of evolutionary computa-
tion and provides valuable insights for practitioners and decision-
makers. Building upon these insightful findings, this section delves
into the managerial implications of implementing KMEDHEA for com-
plex FJSPs with multi-resource constraints, with specific points listed
below:

(1) KMEDHEA, as a newly-emerged learning-based paradigm, is
capable of effectively extracting critical characteristics and efficiently
seeking for superior scheduling solutions within acceptable timeframes,
which not only can enhance test efficiency but also accelerate the
semiconductor manufacturing process. With the ongoing advances in
both HHEAs and SFT domains, various learning-based paradigms are
thriving, and enterprises’ demand for test scheduling is steadily rising.
Therefore, there is substantial value in investigating active learning-
based paradigms and knowledge-enhanced scheduling strategies based
on problem-specific properties.

(2) SFTSP faces significant challenges due to considerations such as
the processing priority of operations, machine assignment, and resource
allocation, resulting in the complex and constantly changing search
space posing difficulties for specific problem-solving approaches.
KMEDHEA’s innovative bi-layer framework is well-equipped not only to
address these complexities but also to provide superior search strengths
that excel in guiding global exploration, facilitating the search for su-
perior solutions through the best sequences of problem-specific LLHs.
Unlike typical operators commonly found in most HIOAs, KMEDHEA’s
framework avoids search futility and flexibly adapts to inter-layer in-
teractions. This adaptability ensures the efficient and effective explo-
ration and exploitation of potential regions in the strategy and solution
spaces, which is crucial in confronting the changing challenges and
multi-resource constraints commonly encountered in real-world
scenarios.

(3) Scheduling for SFT in semiconductor fabrication presents one of
the core challenges due to setup time restrictions and resource con-
straints. To address these challenges, this study introduces a novel
constrained-separable left-shift decoding scheme that takes into account
constraint preferences. This decoding scheme gives priority to the setup
time to ensure that critical preparation steps are promptly executed
before jobs arrive and machines become available, eliminating unnec-
essary waiting time and enabling effective enhancements in test equip-
ment utilization and production efficiency. Once all jobs have arrived
and machines are ready, this scheme shifts its focus to adapting to
resource constraints. This constrained-separable left-shift decoding
scheme enables rapid adaptation of test resources and compact sched-
uling of test operations, even in response to complex and dynamic
constraints. It provides valuable insights and ideas that can be applied to
addressing complex constraints in flexible manufacturing systems.

7. Findings, research limitations, and future work

7.1. Findings

In response to the pressing need for enhanced efficiency in the chip
and integrated circuit industry, the pursuit of scheduling strategies and
solving techniques in semiconductor final testing (SFT) has become a
driving force. However, the inherent intricacies of semiconductor pro-
duction processes present significant challenges for SFT. This insightful
study, which pioneered the application of HHEAs in collaboration with
MEDA tailored to tackle the SFTSP, is the first attempt to adopt a
multidimensional probabilistic model for learning promising patterns
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from sequences of LLHs. It aims to establish a learning-based paradigm
that promotes inter-layer connections and collaboration through the
application of HHEA, signifying a significant step forward in tackling the
complexity of FJSPs with multiple resources. The findings of this study
are summarized below.

(1) Establishing a novel operation-based sequence model for the
SFTSP opens fresh insights for solving such complex problems.

(2) Designing a single-vector encoding scheme and a constrained-
separable left-shift decoding scheme not only represents feasible solu-
tions effectively but also decodes them into scheduling schemes
efficiently.

(3) Developing a hybrid initialization method that consists of three
problem-dependent heuristic rules for generating a high-quality initial
population, ensuring that the algorithm has a strong start in searching
within the solution space.

(4) Creating a set of problem-specific heuristics that serve as an LLH
pool for fine-grained exploration of the solution space. The introduction
of the SA-based acceptance mechanism further enhances the algorithm’s
ability to escape from local optima, ensuring a more adaptive and effi-
cient search process.

(5) Applying MEDA as the HLS of HHEA to manipulate a set of easy-
to-implement LLHs, and employing a 3-D probabilistic model to accu-
rately record the block structure and block distribution of LLHs.

(6) Demonstrating the superiority and stability of MEDA-based
HHEA through extensive computational comparisons. Notably, KMED-
HEA outperforms the existing best solutions in 9 out of the 10 bench-
mark instances, representing a remarkable advance in tackling SFTSP.

7.2. Research limitations

The research limitations are twofold, both in terms of the limitations
of the proposed MEDA-based HHEA and the impediments in its practical
application. Firstly, despite the demonstrated effectiveness of KMED-
HEA, it still showed less stability in almost all test instances when sub-
jected to shorter runtimes. This observation prompts the necessity to
explore adaptive knowledge-driven HLSs that can reduce computational
resource requirements, thereby enhancing the efficiency and stability of
HHEAs. Secondly, fine-tuning the parameters depending on the actual
size of the problem is a time-consuming process, inevitably impacting
the production efficiency of enterprises and posing challenges to the
practical application of MEDA-based HHEA. To address these chal-
lenges, advanced forward-looking strategies should be emphasized, such
as integrating multi-agent deep reinforcement learning (MADRL) and
graph neural networks (GNN) with KMEDHEA, envisioned to facilitate
self-tuning of parameters and self-learning of heuristics, thereby
potentially mitigating the impact of the adjustment process on produc-
tion efficiency.

7.3. Future work

In forthcoming research, the proposed MEDA-based HHEA holds
significant potential for extensions, particularly in addressing multi-
objective SFTSPs. These extensions typically involve integrating opti-
mization objectives, such as electricity cost, energy consumption, and
machine preventive maintenance, reflecting the diverse concerns
commonly confronted in production practice. The study scope of this
work can be further extended to address dynamic SFTSPs, such as sce-
narios with stochastic processing times and machine breakdowns,
considering uncertainties and suddenness in real-life manufacturing
environments. Moreover, it is interesting to investigate effective and
efficient learning-based techniques by incorporating problem-specific
knowledge and promising pattern information into the comprehensive
framework of HHEAs. Furthermore, the proposed innovative learning-
based hyper-heuristic framework can be extended and applied to
address dynamic workflow scheduling in cloud computing environ-
ments and multi-task scheduling in cloud-edge collaborative

manufacturing scenarios. Meanwhile, it is worthwhile to study the
application of deep reinforcement learning-based HHEAs, which can
provide valuable insights into dealing with dynamic scheduling prob-
lems in real-life manufacturing scenarios, providing promising per-
spectives on the design of innovative methods in evolutionary
computation domains.

8. Conclusions

This paper presents an innovative multidimensional EDA-based
hyper-heuristic evolutionary algorithm (HHEA) for solving the SFTSP,
primarily focusing on minimizing the makespan. To the best of the au-
thors’ knowledge, this article is the first attempt to apply HHEA com-
bined with multidimensional EDA to solve the SFTSP. First, based on the
problem characteristics of SFTSP, an operation-based sequence model
for SFTSP is formulated that takes into account operations and machine
constraints. Second, single-vector encoding and constrained-separable
left-shift decoding schemes are designed to represent feasible sched-
uling solutions and transform them into superior scheduling schemes.
Third, eight simple yet effective heuristics are adopted as the LLH set,
and a 3-D probabilistic model is applied to learn and accumulate crucial
information such as the order of LLHs, the similar block of LLHs, and the
positional relationships among LLHs so that MEDA-based HLS enables
estimating promising patterns and predicting LLHs for the next position
based on the current status and to guide the global search towards po-
tential regions through in-depth insights into the patterns of LLHs.
Finally, from extensive computational results, it has been demonstrated
that the proposed KMEDHEA can achieve better performance in terms of
superiority and stability than the existing state-of-the-art algorithms,
especially for large-scale problems.
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