
Applied Soft Computing 146 (2023) 110695

a

b

c

a
o
e
c
t
s
t
p
s
T

t
C

b
j

h
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Q -learning-based hyper-heuristic evolutionary algorithm for the
distributed assembly blocking flowshop scheduling problem
Zi-Qi Zhang a,b, Bin Qian a,b,∗, Rong Hu a,b, Jian-Bo Yang c

School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, PR China
Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming, 650500, China
Alliance Manchester Business School, The University of Manchester, Manchester M15 6PB, United Kingdom

a r t i c l e i n f o

Article history:
Received 24 November 2022
Received in revised form 2 July 2023
Accepted 24 July 2023
Available online 9 August 2023

Keywords:
Distributed assembly scheduling
Q-learning
Hyper-heuristic
Speedup strategy
Blocking flowshop scheduling

a b s t r a c t

Distributed shop scheduling problems (DSSPs) have attracted increasing interest in recent years due
to the technical trends of smart manufacturing and Industry 4.0. The distributed assembly blocking
flowshop scheduling problem (DABFSP) is a critical class of DSSPs with widespread applications in
modern supply chains and manufacturing systems. In this paper, a Q -learning-based hyper-heuristic
evolutionary algorithm (QLHHEA) is proposed to solve DABFSP with the objective of minimizing the
makespan. Firstly, a mathematical model of DABFSP is formulated, and two insertion-based speedup
strategies are devised to conserve the computational cost of evaluating solutions and to accelerate
the search efficiency. Secondly, a problem-specific constructive heuristic is developed to produce
high-quality initial solutions. Thirdly, twelve efficient heuristics are designed to construct low-level
heuristics (LLHs). The Q -learning-based evolutionary algorithm is applied as a high-level strategy to
manipulate the LLHs, which are then executed in order to search the solution space. Moreover, suitable
solution encoding and decoding schemes are provided to produce feasible scheduling schedules. The
design of experiments is implemented to investigate the impact of the parameters. Finally, a compre-
hensive comparison campaign is carried out based on a total of 1710 well-known instances to evaluate
the efficacy of the proposed algorithm against several state-of-the-art algorithms. Experimental results
and statistical analysis show that QLHHEA significantly outperforms the existing algorithms by a
significant margin, demonstrating the effectiveness and efficiency of QLHHEA in solving DABFSP.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Scheduling serves to settle on allocating available resources
mong activities, achieving trade-offs amidst multiple conflicting
bjectives, and satisfying the realistic requirements of differ-
nt decision-makers within a specific time frame [1]. It is a
rucial component of contemporary supply chains and manufac-
uring systems since suitable scheduling schemes significantly
trengthen resource utilization and production efficiency. With
he dramatic development of smart manufacturing, real-world
roduction and assembly systems are emerging with various
cheduling problems that have become considerably challenging.
he trend of globalization has prompted enterprises to encounter

∗ Corresponding author at: School of Information Engineering and Automa-
ion, Kunming University of Science and Technology, Kunming 650500, PR
hina.

E-mail addresses: zhangziqi@kust.edu.cn (Z.-Q. Zhang),
in.qian@vip.163.com (B. Qian), ronghu@vip.163.com (R. Hu),
ian-bo.yang@umist.ac.uk (J.-B. Yang).
ttps://doi.org/10.1016/j.asoc.2023.110695
568-4946/© 2023 Elsevier B.V. All rights reserved.
complicated concerns such as dynamic demand, economic effi-
ciency, and production patterns. As a result, manufacturing en-
terprises strive to merge and manage multi-regional fabrication
centers or factories, providing flexibility and adaptability to face
fierce competition. The traditional centralized mono-factory pro-
duction mode has shifted to the emerging paradigm of distributed
production with assembly, inevitably raising three important is-
sues: how to allocate jobs to factories, how to arrange the pro-
cessing of jobs in factories, and how to adjust the assembly of
products. Therefore, it is of both academic and practical inter-
est to develop effective and efficient algorithms with emerg-
ing techniques for solving distributed shop scheduling problems
(DSSPs).

Distributed production has great potential to reasonably re-
duce risks and costs, properly promote productivity, effectively
enhance economic efficiency, and rapidly respond to require-
ments [33]. Due to these significant strengths, it is vital and
valuable to study DSSPs in multi-factory co-production, which
has attracted much attention from researchers and practitioners.
So, substantial scholarly studies have emerged in the last decade
[2–32,34], mainly including flow shop scheduling problems (FSP)

https://doi.org/10.1016/j.asoc.2023.110695
https://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2023.110695&domain=pdf
mailto:zhangziqi@kust.edu.cn
mailto:bin.qian@vip.163.com
mailto:ronghu@vip.163.com
mailto:jian-bo.yang@umist.ac.uk
https://doi.org/10.1016/j.asoc.2023.110695

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695
Table 1
Review of recent related work for DSSPs.
Author(s) Problem Objective(s) Proposed approach

Lei, Yuan, & Cai (2020) DPMSP Makespan Imperialist competitive algorithm (ICA) [2].
Naderi & Ruiz (2010) DPFSP Makespan Constructive heuristics; Variable neighborhood descent (VND) [3].
Wang et al. (2013) DPFSP Makespan Estimation of distribution algorithm (EDA) [4].
Xu et al. (2014) DPFSP Makespan Hybrid immune algorithm (HIA) [5].
Naderi & Ruiz (2014) DPFSP Makespan Scatter search algorithm (SSA) [6].
Ruiz, Pan, & Naderi (2019) DPFSP Makespan Iterated Greedy algorithm (IGA) [7].

Huang et al. (2021) DPFSP Makespan Constructive heuristics; Discrete artificial bee colony (DABC)
algorithm [8].

Pan et al. (2019) DPFSP Total flowtime Constructive heuristics; Discrete artificial bee colony (DABC)
algorithm; Scatter search algorithm (SSA); Iterated greedy
algorithm (IGA) [9].

Khare & Agrawal (2021) DPFSP Total tardiness Discrete Harris hawks optimization (DHHO); Iterated greedy
algorithm (IGA) [10].

Shao, Shao, & Pi (2020) DHFSP Makespan Iterated greedy algorithm (IGA) [11].

Zheng, Wang, & Wang (2020) DHFSP Makespan Estimation of distribution algorithm (EDA); Iterated greedy
algorithm (IGA) [12].

Cai, Zhou, & Lei (2020) DHFSP Makespan Dynamic Shuffled frog-leaping algorithm (DSFLA) [13].

Shao, Shao, & Pi (2021) DHFSP Makespan; Total
weighted earliness and
tardiness; Total workload

Multi-objective evolutionary algorithm based on multiple
neighborhoods local search (MOEA-LS) [14].

Hsu et al. (2016) DJSP Makespan Agent-based fuzzy constraint-directed negotiation (AFCN)
algorithm [15].

Jiang, Wang, & Peng (2020) DJSP Makespan; Energy
consumption

Modified multi-objective evolutionary algorithm with
decomposition (MMOEA/D) [16].

Şahman (2021) DJSP Makespan Discrete spotted hyena algorithm (DSHA) [17].
Chang & Liu (2015) DFJSP Makespan Hybrid genetic algorithm (HGA) [18].

Luo et al. (2020) DFJSP Makespan; Maximum
workload; Total energy
consumption

Efficient memetic algorithm (EMA) [19].

Hatami, Ruiz, &
Andres-Romano (2013)

DAPFSP Makespan Constructive heuristics; Variable neighborhood descent (VND)
[20].

Hatami, Ruiz, &
Andres-Romano (2015)

DAPFSP Makespan Constructive heuristics; Iterated greedy algorithm (IGA) [21].

Wang & Wang (2016) DAPFSP Makespan Estimation of distribution algorithm-based memetic algorithm
(EDAMA) [22].

Lin & Zhang (2016) DAPFSP Makespan Hybrid biogeography-based optimization (HBBO) algorithm [23].
Lin, Wang, & Li (2017) DAPFSP Makespan Backtracking search hyper heuristic (BS-HH) algorithm [24].

Pan et al. (2019) DAPFSP Makespan Constructive heuristics; Variable neighborhood search (VNS)
algorithm; Iterated greedy algorithm (IGA) [25].

Sang et al. (2019) DAPFSP Total flowtime Discrete invasive weed optimization (DIWO) algorithm [26].
Zhang et al. (2021) DAPFSP Makespan Matrix-cube-based estimation of distribution algorithm (MCEDA)

[27].
Shao, Shao, & Pi (2020) DABFSP Makespan Constructive heuristic; Iterated local search (ILS) algorithm [28].
Yang & Li (2022) DABFSP Makespan Knowledge-driven constructive heuristic (KDH) algorithm [29].

Zhao et al. (2022) DABFSP Total tardiness Constructive heuristic (KBNEH); Water wave optimization
algorithm with problem-specific knowledge (KWWO) [30].

Zhao et al. (2022) DABFSP Total flowtime Constructive heuristic (HHNRa); Self-learning hyper-heuristic
(SL-HH) [31].

Wu, Liu, & Zhao (2019) DAFJSP Earliness and tardiness;
Total cost

Improved differential evolution (IDE) algorithm [32].
and job shop scheduling problems (JSP), such as the distributed
parallel machine shop scheduling problem (DPMSP) [2], the dis-
tributed permutation FSP (DPFSP) [3–10], the distributed hybrid
FSP (DHFSP) [11–14], the distributed JSP (DJSP) [15–17], the dis-
tributed flexible JSP (DFJSP) [18,19], the distributed assembly
permutation FSP (DAPFSP) [20–27,34], the distributed assembly
blocking FSP (DABFSP) [28–31], and the distributed assembly
flexible JSP (DAFJSP) [32]. Table 1 provides a succinct synopsis of
DSSPs, categorizing typical work according to the type of prob-
lems. Among the previous studies on DSSPs, one of the research
2

hotspots is DAPFSP, which is encountered in many manufacturing
systems. Numerous real-life production processes can be mod-
eled as DAPFSP, which has been intensively investigated due to
its practical practice [20–27]. The most common cases of DAPFSP
can be found in engine production processes of enterprises such
as Weichai Power and Yuchai Group in China. The automobile
engine, as a final product, is assembled from a series of parts
or components, such as cylinder blocks, cylinder heads, pistons,
and crankshafts. These parts or components are produced in
different factories, which are laid out as flow shops with assembly

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

m
s

p
i
b
b
t
r
d
i
p
l
c
t
s
i
f
a
s
a
p

t
a
m
p
s
a
u
2

t
F
t
c
d
F

1
F
c
i
i
c
p
i
t
p
t
s
a
i
b
c
c
c
b
b
(
p
s
p

achines. All the parts or components are assembled in assembly
hops to form final products [25].
Many existing studies on DAPFSP assume that the buffer ca-

acity between successive processors in the flow shop is infinite,
mplying that jobs can be temporarily stored in the intermediate
uffers. However, in practice, no buffers are available or allowed
etween any adjacent machines due to the process characteris-
ics or technical requirements [35]. The work-in-process has to
emain on the upstream machine and cannot be released to the
ownstream machine once the buffer is stuffed. This situation
s referred to as blocking and often occurs in many practical
roduction processes because of the capacity of buffers or the
imitations of storage devices. Since blocking increases the pro-
essing time of jobs, it is critical to reasonably reduce the blocking
ime to improve machine availability and productivity. In this
tudy, the blocking constraint is considered in DAPFSP, resulting
n an extended problem, i.e., the distributed assembly blocking
lowshop scheduling problem (DABFSP), which is closer to reality
nd can better reflect applications arising in realistic scenarios,
uch as aerospace parts fabrication, shipbuilding, and automotive
ssembly lines. Therefore, the study of DABFSP is not only of
ractical significance but also has potential application prospects.
The DABFSP can be classified into two categories concerning

he layout of assembly machines: one is that assembly machines
re allocated across factories, and the other is that assembly
achines are in a single factory. The former performs parts/jobs
rocessing and products assembly in the same factory, each con-
isting of a flow shop and an assembly machine [25]. The latter
llows parts to be processed in different factories and prod-
cts to be assembled only on specific assembly lines [20–24,
6–31]. According to the three-field notation α1 → α2|β|γ

provided by Framinan et al. [36] (α1, α2 for processing environ-
ments, β and γ for constraints and objectives), the DAPFSP has
the objective of minimizing the makespan criterion, denoted as
Fm → 1, . . ., Fm → 1|prmu|Cmax, where Fm → 1 refers to
he factory layout consisting of flow shop and assembly machine,
m → 1, . . ., Fm → 1 indicates multiple factories in parallel, and
he other two terms prmu and Cmax represent the permutation
onstraint and makespan criterion. Therefore, DABFSP can be
enoted as Fm → 1, . . ., Fm → 1|prmu, blocking|Cmax. Since
m → 1|prmu|Cmax and Fm|prmu, blocking|Cmax are already NP-
hard problems in the strong sense [35], Fm → 1, . . ., Fm →

|prmu, blocking|Cmax can be regarded as the generalization of
m → 1|prmu|Cmax and Fm|prmu, blocking|Cmax, it can be con-
luded that DABFSP with the makespan criterion is also NP-hard
n the strong sense. That is, the DABFSP becomes increasingly
ntractable as the scale of the instances increases. The DABFSP
an be decomposed into two strongly coupled subproblems, job
rocessing and product assembly subproblems, resulting in four
nterdependent subdecisions, such as assigning parts/jobs to fac-
ories, adjusting the order of jobs in each factory, and allocating
roducts to assembly machines, while reducing blocking time be-
ween machines. These four subdecisions are closely coupled and
hould be solved suitably if some satisfactory scheduling schemes
re desired. In general, for large-scale instances of DABFSP, it
s difficult to solve by exact mathematical methods, such as
ranch & bound and column generation, due to their considerable
omputational complexity. Constructive heuristics can commonly
onstruct feasible solutions based on problem-specific rules and
onstraints and quickly provide suitable scheduling schedules,
ut they hardly guarantee the superiority of the solutions. As can
e seen from Table 1, hybrid intelligent optimization algorithms
HIOAs) have emerged as the mainstream method to solve such
roblems. HIOAs usually use effective evolutionary mechanisms,
pecific search strategies, and efficient neighbor operators to

roduce some satisfactory solutions at an acceptable time. They

3

have remarkable benefits in solving strongly coupled complex
problems.

Hyper-heuristic algorithms (HHAs) are attracting attention as
a recently emerged type of HIOAs. HHAs typically have a bilayer
structure consisting of high-level strategy (HLS) and a set of low-
level heuristics (LLHs). Instead of directly searching within the
solution space of problems, HHAs mainly attempt to apply HLS
to manage or manipulate a series of pre-designed LLHs, deter-
mine the optimal order of LLHs in the strategy space or search
space of heuristics, and then execute selected LLHs to search the
solution space to find some superior solutions [37]. The LLHs
are commonly constructed via problem-specific neighborhood
structures, operators, or rules based on domain knowledge [38].
Since HHAs are able to automatically select, integrate, and de-
velop simple but effective heuristics, they have a wide variety
of applications in combinatorial optimization problems (COPs),
such as examination timetabling [39], cutting and packing [40],
vehicle routing [41], and task allocation [42]. Motivated by these
successful applications, most of the HHAs have been applied
to solve several scheduling problems, such as semiconductor
final testing scheduling problem (SFTSP) [43], integrated supply
chain scheduling problem (ISCSP) [44], mixed shop scheduling
problem [45], workflow scheduling problem [46], single machine
scheduling problem [47], resource constrained project schedul-
ing problem (RCPSP) [48–50], dynamic JSP [51,52], FJSP [53],
DAPFSP [24], and DABFSP [31]. The classification of HHAs is given
in Fig. 1. It is clear from the figure that the search behavior
of HHAs can be commonly classified into two categories, i.e.,
heuristic generation and heuristic selection. The former applies
appropriate high-level strategies to construct heuristics by com-
bining existing components, while the latter adopts suitable se-
lection strategies to extract LLHs and evaluate their effectiveness
to obtain optimal options suited to specific problems. According
to previous literature, most studies usually utilize evolutionary
algorithm-based methods or artificial intelligence-based methods
as high-level selection strategies, including backtracking search
(BS) [24,53], Monte Carlo tree search [54], and reinforcement
learning [41–45]. Therefore, it can be concluded that HHAs as
emerging paradigms are an effective way to enhance the efficacy
of traditional HIOAs.

Reinforcement learning (RL) is one of the most promising
paradigms since it integrates perception, adaptive learning, and
autonomous decision-making through goal-oriented learning
mechanisms [55]. RL aims to acquire better behavior through
dynamic interactions between agents and the environment. Gen-
erally, RL has two crucial characteristics: trial-and-error search
and delayed reward policy [56]. In the RL framework, one or
more agents with well-defined goals (i.e., maximizing cumulative
rewards) are able to perceive all aspects of the environment and
then take actions to alter it. As one of the successful strategies in
RL, Q -learning allows agents to determine the best behavior by
learning to acquire an action-value function that expresses the
expected utility of applying appropriate actions in some specific
states. Thus, the Q -learning-based hyper-heuristic can provide
proper policy to select suitable search behaviors and guide search
trends toward promising regions. Due to the advantages of ver-
satility, scalability, and self-adaptability, these insights inspired
the design of a Q -learning-based hyper-heuristic evolutionary
algorithm (QLHHEA) to solve the DABFSP, which has yet to be
studied to the best of the authors’ knowledge.

The main novelties and contributions of this study are sum-
marized as follows.

• Based on the scheduling problem subject to blocking con-
straint, the permutation-based model of DABFSP is formu-
lated. Several properties are derived according to the char-

acteristics of DABFSP. Two suites of speedup strategies based

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

s
t
o
a
S
i
a
p

2

2

D
h
h
o
w
p
w

Fig. 1. Summary of the studies on HHAs.
T
h
e
a
o
a
t

e
m
p
Z
v
a
o
a
d
d
s
D
o
l
t
t
m
p
a
g
s
f
a
e
e
i
a
t
e
a
d
D
(

on the problem’s properties are proposed to reduce the time
complexity of evaluating solutions and speed up the search
efficiency.

• Based on the problem’s characteristics, a constructive heu-
ristic is designed to ensure the quality and the diversity of
the initial population.

• According to the problem-specific neighborhood structures,
twelve heuristics are devised to construct a pool of LLHs.
Transfers between LLHs are defined as available actions.

• The Q -learning algorithm is embedded in QLHHEA as the
HLS that controls the choice of LLHs for selecting suitable
search strategies in the solution space of the problem.

• Comprehensive comparisons show that QLHHEA achieves
better results, surpassing several state-of-the-art algorithms.
Extensive experiments and statistical analysis validate the
efficacy and superiority of QLHHEA in solving DABFSP.

The remainder of this paper is organized as follows. Section 2
ummarizes studies closely related to DABFSP. Section 3 describes
he definition and model of DABFSP. Section 4 presents two types
f speedup strategies for evaluating solutions. Section 5 develops
constructive heuristic based on the problem’s characteristics.
ection 6 details the framework of QLHHEA. Numerical exper-
ments on QLHHEA are reported in Section 7. The conclusions
re summarized, and some suggestions for future studies are
rovided in Section 8.

. Literature review

.1. Related work on the DSSPs

Since DABFSP has received fewer reports, some closely related
SSPs are reviewed. In recent years, many methods for DSSPs
ave been proposed. These methods mainly include constructive
euristics and HIOAs, and most of the existing work has focused
n HIOAs. For the DPFSP with the makespan criterion, pioneering
ork was studied by Naderi and Ruiz [3]. In this work, the authors
rovided six mixed integer linear programming (MILP) models
ith two rules (i.e., NR1, NR2) for assigning jobs to factories

and proposed six constructive heuristics and two VND methods.
Following this work, efforts over the last decade have been de-
voted to attempting to develop high-performance HIOAs to han-
dle DPFSP. These HIOAs include EDA [4], HIA [5], SSA [6], IGA [7],
DABC [8], and DHHO [10]. A comprehensive review of DPFSP with
makespan can be found in [7]. For the DPFSP with other criteria,

Pan et al. [9] devised three constructive heuristics and four HIOAs e

4

(i.e., DABC, SSA, ILS, and IGA) to minimize the total flowtime.
he three constructive heuristics were designed via LR and NEH
euristics, and the four HIOAs combined problem-specific knowl-
dge with several search strategies (i.e., referenced local search
nd enhanced intensive search). Khare and Agrawal [10] devel-
ped DHHO and an enhanced IGA by incorporating path relinking
nd random subsequence or single-point local search to minimize
otal tardiness.

From Table 1, other types of DSSPs have been studied as
xtensions of FSPs or JSPs in distributed production environ-
ents. For the DHFSP with makespan criterion, Shao et al. [11]
roposed a hybrid IGA with a multi-neighborhood local search.
heng et al. [12] studied problem-specific strategies and de-
ised a cooperative coevolution algorithm by combining EDA
nd IGA, in which a cooperative scheme was designed based
n information entropy and diversity. Cai et al. [13] proposed
DSFLA to solve DHFSP for multiprocessor tasks. In DSFLA, the
ynamic multi-neighborhood local search is combined with a
estruction–construction process, and the population shuffling
trategy is used once the shuffling condition is satisfied. For the
HFSP with other criteria, Shao et al. [14] proposed a multi-
bjective evolutionary algorithm based on multi-neighborhood
ocal search (MOEA-LS) to simultaneously optimize three objec-
ives, i.e., makespan, total weighted earliness and tardiness, and
otal workload. For the DJSP with the makespan, Hsu et al. [15]
odeled the problem as a set of fuzzy constraint satisfaction
roblems interconnected by inter-agent constraints and proposed
n agent-based fuzzy constraint-directed negotiation (AFCN) al-
orithm to tackle this problem. Şahman [17] designed a discrete
potted hyena algorithm (DSHA). In DSHA, a workload-based
acility order mechanism and a greedy heuristic approach were
dopted to enhance its performance. Jiang et al. [16] studied the
nergy-efficient DJSP and proposed a modified multi-objective
volutionary algorithm with decomposition (MMOEA/D) to min-
mize both makespan and energy consumption. MMOEA/D uses
collaborative mechanism to exchange information and embeds
hree problem-specific local intensification heuristics to enhance
xploitation capabilities. For another extension of DJSP, Chang
nd Liu [18] proposed a HGA to address the flexible JSP in a
istributed environment. Luo et al. [19] investigated the flexible
JSP with transfers and adopted an efficient memetic algorithm
EMA) to minimize the makespan, maximum workload, and total

nergy consumption of factories.

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

2

e
o
r
m
t
m
a
e
b
a
L
r
s
e
I
s
s
b
m
e
p
c
s
i
M
o
s
p
s
f
s
s
t
e
t
b
a
o
t
e
t
e
b
D
k
t
c
t
p
(
o
Z
N
p

s
3
s
f
t
a
m
l

.2. Related work on the DAPFSP

As an essential extension of DPFSP, DAPFSP further consid-
rs the additional assembly stage, which requires collaborative
ptimization of production and assembly in a distributed envi-
onment. Hatami et al. [20] first introduced and provided a MILP
odel of DAPFSP, and then proposed six constructive heuris-

ics and six VND methods to this problem with minimizing
akespan criterion. Following this work, some state-of-the-art
lgorithms have arisen to address DAPFSP and its variants. Wang
t al. [22] devised an effective EDAMA. In EDAMA, both EDA-
ased global exploration and critical path-based local exploitation
re incorporated into the framework of the memetic algorithm.
in and Zhang [23] put forward a HBBO algorithm. In HBBO, path-
elinking-based and insertion-based heuristics are used as local
earch strategies, and a novel problem-specific local search is
mbedded in HBBO. Lin et al. [24] proposed a BS-HH algorithm.
n BS-HH, ten heuristics are used as LLHs, and the backtracking
earch is used as HLS to manipulate LLHs to produce proper
earch strategies. Zhang et al. [27] developed a matrix-cube-
ased EDA (MCEDA). In MCEDA, a multi-dimensional probabilistic
odel is used to learn promising patterns and guide global
xploration to explore potential high-quality regions, while a
roblem-dependent VND method is employed to perform lo-
al exploitation around these hopeful regions. For the above
tudies, the authors claim that their proposed algorithm signif-
cantly outperforms the VND method proposed in [20], while
CEDA outperforms EDAMA, HBBO, and BS-HH. For other types
f DAPFSP, Hatami et al. [21] extended DAPFSP by considering
equence-dependent setup times (SDSTs) and designed two sim-
le heuristics and two IGAs to solve this problem. Pan et al. [25]
tudied a variant of DAPFSP. The authors considered distributed
actory consisting of a flow shop for job processing plus an as-
embly machine for product processing, and proposed three con-
tructive heuristics, two VNS methods, and an IGA to minimize
he makespan criterion. For the DAPFSP with other criteria, Sang
t al. [26] investigated DAPFSP in [20] to minimize the total flow-
ime. They designed product-sequence-based and job-sequence-
ased neighborhood searches and devised three DIWO-based
lgorithms: two-level DIWO (TDIWO), DIWO with hybrid search
perators (HDIWO), and HDIWO with selection probability. Al-
hough various types of DAPFSPs have been studied after Hatami
t al. [20–27,34], existing efforts on DABFSP with makespan cri-
erion are still scarce. Shao et al. [28] first studied DABFSP, which
xtended the DAPFSP of Hatami et al. [20] by adding additional
locking constraints. They provided a mathematical model for
APFSP and presented an effective ILS based on problem-specific
nowledge. Yang et al. [29] analyzed the crucial characteristics of
he DABFSP and adopted them to design the knowledge-driven
onstructive heuristic (KDH) algorithm. Furthermore, considering
he DABFSP with the total tardiness criterion, Zhao et al. [30]
roposed a MILP model and introduced a constructive heuristic
KBNEH) and a problem-specific knowledge-based water wave
ptimization (KWWO) algorithm to tackle this problem. Recently,
hao et al. [31] further designed a constructive heuristic (HH-
Ra) and a self-learning hyper-heuristic (SL-HH) to solve such
roblem.
According to the above work, the DABFSP considered in this

tudy differs from the DABFSP studied in the existing efforts [28–
1]. This study extends the DAPFSP by considering blocking con-
traints on the problem in [25] instead of [20]; that is, each
actory consists of a flow shop and an assembly machine. For
he production phase, all jobs belonging to the same product
re assigned to the same factory, and no buffers exist between
achines. For the assembly stage, all jobs are collected and de-

ivered to the assembly machine to be assembled into products.
5

Since the research on DABFSP is emerging and can reflect real-
life production and assembly systems, it is worth studying this
problem and developing effective methods to solve it better in
theoretical research and practical applications.

2.3. Related work on the HHAs

As a promising paradigm for solving complex problems, the
literature on the application of HHAs across domains has greatly
grown in the past decades [57]. Burke et al. [58] provided an
overview of HHAs, detailed characteristics and methods of heuris-
tic generation and selection, and discussed the trends and direc-
tions of HHAs. Drake et al. [59] presented a systematic survey
of heuristic selection, reviewed existing selection methods, and
introduced some hyper-heuristic frameworks. Most existing stud-
ies of heuristic generation are about genetic programming (GP).
Lin et al. [48] used a GP-HH to tackle the multi-skill RCPSP. Zhu
et al. [49] developed a decomposition-based GP-HH for multi-
skill RCPSP. Chen et al. [50] proposed a hyper-heuristic-based
ensemble GP (HH-EGP) to solve stochastic RCPSP. Park et al. [52]
also employed an ensemble GP-HH to address dynamic JSP. The
authors asserted that the ensemble GP-HH was more robust than
existing GP-HHs that only evolved single rules. Kieffer et al. [60]
devised a GP-based hyper-heuristic (GP-HH). The authors applied
it to train greedy heuristics, which was effective in solving the
cloud pricing problem and achieving the best transactions be-
tween service providers and customers. Recently, Song et al. [61]
adopted GP-HH to solve the DAPFSP with SDSTs. Sabar et al. [62]
proposed a gene expression programming-based HHA. The results
further validated the superiority via computational comparisons
of the six COPs provided by HyFlex software. As for the heuristic
selection, the soundness of the selection strategies or methods di-
rectly determines the effect of heuristic selection. Sabar et al. [63]
designed a Monte Carlo tree search-based HHA that modeled
the search space of LLHs as a tree and determined the opti-
mal order of LLHs through the tree traversal. In addition, Sabar
et al. [64] put forward a novel HLS, which employed a multi-
armed bandit-extreme value-based reward as an online heuristic
selection method to select suitable LLHs, which performed well
in exam timetabling and vehicle routing, confirming the efficacy
and generality of HHA. Asta et al. [65] proposed an online learn-
ing HHA to tackle nurse rostering, the performance of which
could be self-improving via tensor analysis. Zamli et al. [66]
used tabu search as HLS and directly adopted four IOAs, namely,
teaching learning based optimization, global neighborhood, PSO,
and cuckoo search as LLHs, which enabled to combine the mer-
its of each algorithm yet effectively overcome some drawbacks.
Soria-Alcaraz et al. [38] devised an iterated local search based
HHA that utilized multi-armed bandits coupled with a change
detection mechanism. Experimental results showed that such
HHA with a compact heuristic pool outperformed other HHAs for
course timetabling. Choong et al. [67] developed a reinforcement
learning-based HHA that used Q -learning as HLS to select suit-
able components and automatically design high-level heuristics.
Recently, Ji et al. [42] presented a Q -learning-based HHA to deal
with the task allocation of crowdsensing. The authors defined
the violation of constraints and the degree of convergence as
states and the neighborhood search operators as LLHs, which
correspond to actions.

The straightforward classification of HHAs is illustrated in
Fig. 2. Fig. 2(a) shows the status of using different high-level
strategies in existing HHAs; currently, the most used ones are
still based on GP and RL. From Fig. 2(b), HHAs have been ap-
plied in various fields with remarkable results, but the studies
of HHAs in shop scheduling are still limited, and the relevant
theories and methods should be enriched and expanded. Branke

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695
Fig. 2. Research on HHAs in domains.
et al. [37] summarized the development of HHAs in the field of
production scheduling, reviewed the recent advances, and then
pointed out different directions for the application of HHAs. Lin
et al. [24] proposed a BS-HH to solve DAPFSP. The backtracking
search was used as HLS to search strategy space to obtain the
optimal order of LLHs. Lin et al. [53] also adopted BS-HH to ad-
dress FJSP with fuzzy processing times. Zhao et al. [31] proposed
a self-learning hyper-heuristic (SL-HH) to solve DABFSP. In SL-
HH, a self-learning HLS based on the historical success rate of
LLHs was used to determine LLHs. Fan et al. [51] devised a GP-
HH to solve dynamic JSP. In GP-HH, genetic programming was
employed to generate problem-specific rules. Lin et al. [43] de-
signed a Q -learning-based hyper-heuristic (QHH) to solve SFTSP.
In QHH, Q -learning was used as HLS to self-select LLHs, which
were regarded as actions, and a fitness-based state aggregation
technique was used to limit the range of states. As for applying
HHAs to address multi-objective problems, Mahmud et al. [44]
developed a self-adaptive hyper-heuristic (SA-HH) to solve ISCSP.
In SA-HH, population quality was defined as states and genetic
6

operators were defined as LLHs, which correspond to actions.
Tang et al. [45] proposed a Q -learning-based hyper-heuristic with
bi-criteria selection (QHH-BS) to tackle the energy-aware mixed
shop scheduling problem. In QHH-BS, Q -learning was used to se-
lect suitable optimizers. Recently, Zhao et al. [68] designed a hy-
perheuristic with Q -learning (HHQL) to address energy-efficient
DBFSP. In HHQL, each individual was defined as a state, while
LLHs were defined as actions.

So far, HHAs have been successfully applied to address various
problems; applying HHAs to solve shop scheduling problems is
potentially promising, especially for using Q -learning as the HLS
to guide search. However, for almost all Q -learning-based HHAs,
states are defined as solutions or solution metrics, while actions
are defined as LLHs, focusing only on the execution of actions in
specific states and lacking the study of the linkage relationships
of LLHs in high-level individuals. Thus, this study defines LLHs as
selectable states and transfers between them as available actions.
These insights motivate the design of QLHHEA, which attempts to
address the studied DABFSP.

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

p
a
(
s
m
p
b
a
r
o
t
i
o
d
a
p
p
i
o

Table 2
Notations applied in the model of DABFSP.
Parameters

n Number of jobs.
m Number of machines in production stage.
F Number of factories.
S Number of products.

Indices

f Index for factories, f = 1, 2, . . . , F .
l Index for products in factory f , l = 1, 2, . . . , δf .
i Index for jobs, i = 1, 2, . . . , nl .
j Index for machines, j = 1, 2, . . . ,m.
h Index for products, h = 1, 2, . . . , S.

Sets

J Set of jobs, J = {J1, J2, . . . , Jn}.
M Set of machines, M = {M1,M2, . . . ,Mm}.
P Set of products, P = {P1, P2, . . . , PS}.
Vl Set of jobs belonging to Pl , Vl = {Vl,1, Vl,2, . . . , Vl,nl }.

Variables

nf Number of jobs in factory f , i.e.,
∑F

f=1 nf = n.
δf Number of products in factory f , i.e.,

∑F
f=1 δf = S.

ωh Number of jobs belonging to Ph , i.e.,
∑S

h=1 ωh = n.

nl Number of jobs belonging to Pl , i.e.,
∑δf

l=1 nl = nf .
λ Total order of products, i.e., λ = [λ1, λ2, . . . ,λs].
λh Job order belonging to Pl , i.e., λh = [λh,1, λh,2, . . . , λh,nh].
πf Job order in factory f , i.e., πf = [πf (1), πf (2), . . . , πf (nf)].
π

p
f Product order in factory f , i.e., π

p
f = [π

p
f (1), π

p
f (2), . . . , π

p
f (δf)].

pl,i,j Processing time of job Vl,i on machine Mj .
Ol,i,j Operation of job Vl,i on machine Mj .
pπ

p
f (l),i,j

Processing time of job Vl,i on machine Mj in factory f .

pA
π
p
f (l)

Processing time of Pl on assembly machine MA in factory f .

dπ
p
f (l),i,j

Departure time of job Vl,i on machine Mj in factory f .
qπ

p
f (l),i,j

Duration time of job Vl,i on machine Mj in factory f .

dA
π
p
f (l)

Departure time of Pl on assembly machine MA in factory f .

qA
π
p
f (l)

Duration time of Pl on assembly machine MA in factory f .

π Feasible solution of DABFSP, i.e., π = [π1, π2, . . . ,πF].
Π Set of all feasible schemes.
C f
max(πf) Completion time of πf in factory f .

Cmax(π) Makespan for π.

3. Problem statement

DABFSP is a typical two-stage scheduling problem divided into
rocessing and assembly stages. The DABFSP is illustrated in Fig. 3
nd briefly described as follows. There are F identical factories
or production centers) existing in parallel. Each factory has the
ame layout with a flow shop for job processing and an assembly
achine for product assembly. There are a set of n jobs and S
roducts. Each product consists of different jobs and each job
elongs to only one product. In the production phase, all jobs
re assigned to factories according to the applicable allocation
ules. The same series of operations for each job are performed
n m machines in the same route, i.e., first on machine M1,
hen on machine M2, and so on, up to machine Mm. There is no
ntermediate buffer between any two machines. Due to the lack
f buffers, jobs being processed on one machine cannot imme-
iately leave the current machine until downstream machines
re available. All jobs belonging to the same product must be
rocessed together, no cross-processing of jobs from different
roducts is allowed. That is, jobs belonging to the same product
n the processing order πf cannot be mixed with jobs belonging to
ther products, implying that product order π

p
f is implicit in job

order πf at factory f . Once all ωh jobs for product Ph are completed
in the processing phase and the assembly machine is free, these
jobs can be delivered to the assembly machine immediately. In
7

the assembly phase, all the jobs processed in each factory are
aggregated and assembled into S final products on the assembly
machine. Some necessary notations are listed in Table 2. Note that
dπ

p
f (l),i,0

represents the start time of the ith job in product Pl on

the first machine, and dA
π
p
f (0)

is the start time of the first product

in factory f . Several additional assumptions are also satisfied, as
follows.

• The processing time for jobs and the assembly time for
products are predetermined positive integers. Setup time
and transport time are included in the processing time. The
release time of jobs is not considered.

• Each job can only be processed on at most one machine, and
each machine cannot process more than one job at a time.
Jobs and machines are available from zero onwards.

• Preemption is not permitted. Once the processing process
for jobs and the assembly operation for products have sta-
rted, it must be executed without any interruption.

• Each job can be assigned to any one of the factories, and
all operations for each job must be completed in the same
factory. The assigned jobs cannot be transferred to other
factories.

The purpose of solving DABFSP is to determine the allocation
of products, the processing order of jobs, and the assembly order
of products in each factory, so that the makespan (maximum
completion time across all factories) is minimized. According to
the above assumptions, the permutation-based model of DABFSP
is formulated below.

dπ
p
f ([0]),[0],j

= 0, j = 1, 2, . . . ,m, f = 1, 2, . . . , F , (1)

dπ
p
f ([l]),[i],0

= 0, i = 1, 2, . . . , n[l], l = 1, 2, . . . , δf , f = 1, 2, . . . , F ,

(2)

dA
π
p
f ([0])

= 0, f = 1, 2, . . . , F , (3)

dπ
p
f ([1]),[1],j

= dπ
p
f ([1]),[1],j−1 + pπ

p
f ([1]),[1],j

, j = 1, 2, . . . ,m − 1,

f = 1, 2, . . . , F , (4)

dπ
p
f ([l]),[i],0

=

⎧⎨⎩
0, l = 1, i = 1,

dπ
p
f ([l−1]),[i],1,

{
l = 1, i = 2, 3, . . . , n[l],

l = 2, . . . , δf , i = 1, 2, . . . , n[l],

f = 1, 2, . . . , F , (5)

dπ
p
f ([l]),[i],j

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
{
dπ

p
f ([l]),[i],j−1+pπ

p
f ([l]),[i],j

, dπ
p
f ([l−1]),[n[l−1]],j+1

}
,

i = 1, l = 2, . . . , δf , j = 1, 2, . . . ,m − 1,
f = 1, 2, . . . , F ,

max
{
dπ

p
f ([l]),[i],j−1+pπ

p
f ([l]),[i],j

, dπ
p
f ([l]),[i−1],j+1

}
,

i = 2, 3, . . . , n[l], l = 1, . . . , δf , j = 1, 2, . . . ,m − 1,
f = 1, 2, . . . , F .

,

(6)
dπ

p
f ([l]),[i],m

= dπ
p
f ([l]),[i],m−1 + dπ

p
f ([l]),[i],m

,

l = 1, 2, . . . , δf , i = 2, 3, . . . , n[l], f = 1, 2, . . . , F ,

(7)

dA
π
p
f ([l])

= max
{
dA

π
p
f ([l−1])

, dπ
p
f ([l]),[n[l]],m

}
+pA

π
p
f ([l])

,

l = 1, 2, . . . , δf , f = 1, 2, . . . , F ,

(8)

Cmax(π) = max dA
π
p
f ([δf])

, f = 1, 2, . . . , F . (9)

According to the above formulas, the departure time of jobs

and products can be calculated by Eqs. (1)–(7). To be specific,

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

E
e
f

c
B
t
t
t
D

q

q

q

q

q

q

j
q{

q

Fig. 3. Illustration of the distributed assembly flowshop.
qs. (1)–(3) define the start time of each job and product for
ach factory; Eq. (4) calculates the departure time of the first job
rom the first product on machines M1 to Mm−1 in each factory;
Eq. (5) specifies the start time of each job for each product on
the first machine in factory f ; Eq. (6) ensures that each job’s
departure time must be larger than its completion time and that
of its immediate predecessor; Eq. (7) computes the departure
time of jobs on the last machine in each factory; Eq. (8) deter-
mines the assembly completion time of products on the assembly
machine. Then, Cmax(π) can be calculated by Eq. (9) with the time
omplexity O(mF

∑δf
l=1 nl). Since the permutation-based model of

FSP with makespan criterion has reversibility [69], we extend
his property to DABFSP. That is, Cmax(π) can be calculated by
raversing the product order in reverse, i.e., from the last product
o the first product in each factory. The reverse calculation of
ABFSP is as follows.
A
π
p
f ([δf +1])

= 0, f = 1, 2, . . . , F , (10)

π
p
f ([δf +1]),[1],j = 0, j = m,m − 1, . . . , 1, f = 1, 2, . . . , F , (11)

π
p
f ([l]),[i],m+1 = 0, l = 1, 2, . . . , δf , i = 1, 2, . . . , n[l],

f = 1, 2, . . . , F , (12)
A
π
p
f ([l])

= qA
π
p
f ([l+1])

+pA
π
p
f ([l])

, l = δf , . . . , 1, f = 1, 2, . . . , F , (13)

π
p
f ([δf]),[n[δf]],m+1 = qA

π
p
f ([δf])

, (14)

π
p
f ([δf]),[n[δf]],j

= qπ
p
f ([δf]),[n[δf]],j+1 + pπ

p
f ([δf]),[n[δf]],j

,

= m,m − 1, . . . , 2, f = 1, 2, . . . , F ,

(15)

π
p
f ([l]),[i],m+1 = qπ

p
f ([l]),[i+1],m,

l = δf , i = n[l] − 1, . . . , 2, 1, f = 1, 2, . . . , F .

l = δf − 1, . . . , 1, i = n[l], . . . , 2, 1, f = 1, 2, . . . , F .
,

(16)

π
p
f ([l]),[i],j

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
{
qπ

p
f ([l+1]),[n[l+1]],j−1, qπ

p
f ([l]),[i],j+1+pπ

p
f ([l]),[i],j

,

qA
π
p
f ([l])

}
l = δf − 1, . . . , 1, i = 1, j = m,m − 1, . . . , 2,

f = 1, 2, . . . , F ,

max
{
qπ

p
f ([l]),[i],j+1+pπ

p
f ([l]),[i],j

, qπ
p
f ([l]),[i+1],j−1

}
l = δf , . . . , 1, i = n[l], . . . , 2, j = m,m − 1, . . . , 2,
f = 1, 2, . . . , F .

,

(17)
8

qπ
p
f ([l]),[i],1

= qπ
p
f ([l]),[i],2

+ pπ
p
f ([l]),[i],1

,

l = δf , . . . , 1, i = n[l], . . . , 1, f = 1, 2, . . . , F ,

(18)

Cmax(π) = max qπ
p
f ([1]),[1],1

, f = 1, 2, . . . , F . (19)

In the recursive formula above, for each factory f , the last
product π

p
f (δf) with its nδf jobs are first processed, and then the

second last product π
p
f (δf − 1) and so on until the first product

π
p
f (1). Thus, Cmax(π) can be calculated by Eq. (19) with the time

complexity O(mF
∑δf

l=1 nl). The goal of DABFSP with minimum
makespan is to find the best schedule π∗ in the set of all feasible
schedules Π , that is

Cmax(π∗) ≤ Cmax(π), ∀π ∈ Π . (20)

To clearly describe the problem under consideration, an ex-
ample of two calculation methods is shown in Fig. 4, where
n = 16, m = 3, F = 2, S = 5. The processing times of jobs
and products are provided in Table 3. As seen in Fig. 4, three
products P1, P3 and P5 are assigned to factory 1 and two products
P2 and P4 are assigned to factory 2. The processing orders of
the jobs in two factories are π1 = [1, 6, 2, 3, 8, 5, 14, 4] and
π2 = [9, 11, 10, 7, 13, 15, 12, 16]. The departure times of the
final products P3 and P4 are dA

π
p
1 (3)

=768 and dA
π
p
2 (2)

=777, respec-
tively. Thus, the makespan of the whole system is Cmax(π)=max{
dA

π
p
1 (3)

, dA
π
p
2 (2)

}
=777.

4. Speedup strategies for evaluating solutions

It is of great importance that some suitable speedup strate-
gies can accelerate search efficiency and thus effectively enhance
the performance of HIOAs. Inspired by some speedup strate-
gies devised by Tasgetiren et al. [69] and Pan et al. [25], this
section provides two suites of speedup strategies to reduce the
time complexity of evaluating solutions, including the product
insertion-based speedup strategy and the job insertion-based
speedup strategy.

4.1. Product insertion-based speedup strategy

The product insertion-based speedup strategy consists of eval-
uating all solutions by inserting each product into all possible
positions. Assume that a total of δf ′ products are assigned to
factory f ′ and that an additional product Pl′ is inserted into δf ′ +1
possible positions. The product insertion-based speedup strategy

′
for evaluating all these δf + 1 solutions is described below.

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

o
π

m

o

w

T

d

d

(

C

w∑
i
u
i
e
p
p

Table 3
The processing times and assembly times of jobs and products.
Product Processing time Assembly time Product Processing time Assembly time

Job M1 M2 M3 MA Job M1 M2 M3 MA

P1
J1 26 52 45

214
P4

J12 48 73 66

155J2 84 56 48 J13 46 44 71
J6 62 74 53 J15 48 56 81

P2

J7 64 55 48

196

J16 56 54 76

J9 36 62 56 P5
J3 44 72 65 87J10 63 52 44 J8 35 48 76

J11 53 61 43

P3
J4 48 45 58

148J5 45 68 57
J14 52 67 54
b

π

r

d

Step 1: The departure time of the [i]th job for product π
p
f ′ ([l])

n machine Mj in factory f ′ and the departure time of product
p
f ′ ([l]) on assembly machine MA in factory f ′ are dπ

p
f ′
([l]),[i],j and

dA
π
p
f ′
([l])

, which can be calculated via Eqs. (1)–(8).

Step 2: The duration time of the [i]th job for product π
p
f ′ ([l]) on

achine Mj in factory f ′ and the duration time of product π
p
f ′ ([l])

n assembly machine MA in factory f ′ are qπ
p
f ′
([l]),[i],j and qA

π
p
f ′
([l])

,

hich can be calculated via Eqs. (10)–(18).
Step 3: Suppose that Pl′ is inserted as the lth product of π

p
f′ .

he following formulas hold:

π
p
f ′ ([l

′]),[i],j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

max
{
dπ

p
f ′ ([l

′]),[i],j−1+pπ
p
f ′ ([l

′]),[i],j, dπ
p
f ′ ([l−1]),[n[l−1]],j+1

}
,

i = 1, l = 2, . . . , δf ′ , j = 1, 2, . . . ,m − 1,

max
{
dπ

p
f ′ ([l

′]),[i],j−1+pπ
p
f ′ ([l

′]),[i],j, dπ
p
f ′ ([l

′]),[i−1],j+1

}
,

i = 2, 3, . . . , n[l′], l = 1, . . . , δf ′ + 1, j = 1, 2, . . . ,m

,

(21)

A
π
p
f ′ ([l

′]) = max
{
dA

π
p
f ′ ([l−1]), dπ

p
f ′ ([l

′]),[n[l′]],m

}
+pA

π
p
f ′ ([l

′]),

l = 1, 2, . . . , δf ′ . (22)

Step 4: After inserting product Pl′ , the completion time C f ′
max

πf) in factory f ′ is as follows.

f ′
max(πf) = max

{
max

j=1,...,m

(
dπ

p
f ′
([l′]),[n[l′]],j

+ qπ
p
f ′
([l]),[1],j

)
, dA

π
p
f ′
([l′])

+ qA
π
p
f ′
([l])

}
.

(23)

Step 5: Repeat steps 3 and 4 until all insertion positions are
attempted.

It is clear that the time complexity of both steps 1 and 2 is
O(m

∑δf ′

l=1 n[l]). Since steps 3 and 4 are repeated δf ′ + 1 times to
examine all possible positions, the time complexity is O(δf ′mnl′).
Therefore, the total time complexity is O(m · (δf ′nl′ +

∑δf ′

l=1 n[l])),
hich is much lower than the time complexity O(mδf ′ · (nl′ +
δf ′

l=1 n[l])) for calculating all δf ′ +1 solutions without the product
nsertion-based speedup strategy. Suppose there are three prod-
cts, i.e., P1, P3, P5, included in the first factory and two products,
.e., P2, P4, contained in the second factory (see Fig. 4(a)). We
xtract the product P5 in factory 1 and then reinsert it between
roduct P2 and product P4 in factory 2. The illustration of the

roduct insertion-based speedup strategy is shown in Fig. 5.

9

4.2. Job insertion-based speedup strategy

The job insertion-based speedup strategy is applied to accel-
erate the calculation of the completion time when jobs belonging
to the same product perform the insertion within that product.
Assume that n[l′] − 1 jobs of the l′th product π

p
f ′ ([l

′
]) in π

p
f′ have

een scheduled. Then, the i′th job attempt to be inserted into
all possible n[l′] positions within the product. The job insertion-
based speedup strategy used to evaluate the n[l′] solutions is as
follows.

Step 1: Calculate dπ
p
f ([l]),[i],j

, dA
π
p
f ([l])

, qπ
p
f ([l]),[i],j

, qA
π
p
f ([l])

, l = 1, . . . ,

δf , i =

{
1, . . . , n[l] − 1, l = l′

1, . . . , n[l], otherwise
, and j = 1, . . . ,m.

Step 2: Suppose the job V[l′],i′ is inserted into the ith position
of product π

p
f ′ ([l

′
]). The departure time, dπ

p
f ([l

′]),[i′],j, of job V[l′],i′ on
machine Mj can be obtained below.

dπ
p
f ′ ([l

′]),[i′],j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

max
{
dπ

p
f ′ ([l

′]),[i′],j−1+pπ
p
f ′ ([l

′]),i′,j, dπ
p
f ′ ([l

′−1]),[n
[l′−1]],j+1

}
,

i = 1, l = 2, . . . , δf ′ , j = 1, 2, . . . ,m − 1,

max
{
dπ

p
f ′ ([l

′]),i′,j−1+pπ
p
f ′ ([l

′]),i′,j, dπ
p
f ′ ([l

′]),[i−1],j+1

}
,

i = 2, 3, . . . , n[l′], l = 1, . . . , δf ′ + 1, j = 1, 2, . . . ,m,

.

(24)

Step 3: If the job V[l′],i′ is inserted into the last position of
p
f ′ ([l

′
]), the departure time, dA

π
p
f ′
([l′])

, of product π
p
f ′ ([l

′
]), has to be

ecomputed as follows.

A
π
p
f ′
([l′])

= max
{
dA

π
p
f ′
([l′−1])

, dπ
p
f ′
([l′]),i′,m

}
+pA

π
p
f ′
([l′])

, l = 1, 2, . . . , δf ′ .

(25)

Step 4: The completion time C f ′
max(πf) in factory f ′ after insert-

ing job is as follows:

Cmax(π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
{

max
j=1,...,m

(
dπ

p
f ′
([l′]),i′,j + qπ

p
f ′
([l′]),[i],j

)
, dA

π
p
f ′
([l′−1])

+qA
π
p
f ′
([l′])

}
i = 1, . . . , n[l′] − 1,

max
{

max
j=1,...,m

(
dπ

p
f ′
([l′]),i′,j + qπ

p
f ′
([l′+1]),1,j

)
, dA

π
p
f ′
([l′])

+qA
π
p
f ′
([l′+1])

}
i = n l′ ,

. (26)
[]

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

c

O

e
T

Fig. 4. Gantt chart of the two calculation methods of DABFSP.
m
c
b
p
u
i
i

Step 5: Repeat steps 2 to 4 until all possible positions are
onsidered.
It is obvious that step 1 can be executed in the time complexity

(m
∑δf ′

l=1 n[l]). Since steps 2 and 4 are repeated n[l′] times to

valuate all insertion positions, the time complexity is O(mnl′).
herefore, the total time complexity is O(m

∑δf ′

l=1 n[l]), which is
10
uch smaller than the time complexity O(mn[l′]
∑δf ′

l=1 n[l]) for
alculating all the n[l′] solutions without using the job insertion-
ased speedup strategy. Assuming that there are three jobs in
roduct 3, we extract one job from product 3 and then reinsert it
ntil all insertion positions have been traversed in factory 1. The
llustration of the job insertion-based speedup strategy is shown
n Fig. 6.

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

o

Fig. 5. Illustration of the product insertion-based speedup strategy.
m

σ

2
a
(

5. Constructive heuristic

Constructive heuristics commonly construct feasible solutions
through some specific scheduling strategies or realistic rules
based on problem-specific knowledge. In general, constructive
heuristics aim at producing adequate acceptable solutions or
providing affordable and available solutions for real-time require-
ments, especially effective for complex problems with compli-
cated constraints [25]. As described in Section 3, the problem
studied in this article must tackle three aspects of decisions: the
allocation of jobs to factories, and the arrangement of jobs and
products assigned in each factory. Since the jobs belonging to the
same product cannot be separated, the order of the products is
implicit in the order of the jobs. Unlike the classical construc-
tive heuristics for solving BFSP [69], in this section, the novel
constructive heuristic designed for DABFSP can consider three
aspects: selecting the first product for each factory, assigning
the first job to each product, and allocating the rest of the
products and jobs. Inspired by the pioneering work in [70–72],
comprehensively considering the front delay and total processing
time, as well as the order of jobs for each product as a block, the
specific steps of the designed constructive heuristic are as follows.

Step 1: For the product Ph, h = 1, 2, . . . , S, the initial job order
λh is determined by sorting the ωh jobs of product Ph in ascending
rder of I(h, i) as calculated by Eq. (27). In case of ties, the job

with the smallest ph,i,1 is selected for tie-breaking. The quality of
job order λh is improved by using the NEH heuristic and then the
earliest completion time eh for product Ph is identified.

I(h, i) =
2

m − 1

m∑
j=1

(m − j)ph,i,j +
m∑
j=1

ph,i,j. (27)

Step 2: Establish the complete product order λ by sorting each
product Ph (S products in total) in descending order according to
the corresponding earliest completion time eh.

Step 3: Extract the first F products from λ and assign them to
factories, at least one per factory. The partial sequence of products
already assigned to factory f ′ is denoted as π

p
f′ . Set k = F .

Step 4: Select the first product Ph (F < h ≤ S) if there are
still products in λ to be allocated and k < S. Suppose l ′ products
f o

11
are already arranged in factory f ′. Execute steps 4.1 and 4.2 as
follows.

Step 4.1: For f ′
= 1, 2, . . . , F , try to insert λh as a block into

each slot of π
p
f′ , ensuring that all jobs from the same product are

not separated. Calculate cost function σ (h, l′, f ′) by using Eq. (28)
for the unscheduled product Ph which is to be inserted into slot l′,
l′ = 1, 2, . . . , lf ′ . Select the product with the smallest σ (h, l′, f ′).
The product that results in the minimum earliest completion
time is selected for tie-breaking. Let C f ′

max(π
p
f′) be the minimum

akespan obtained and l∗f ′ be the corresponding slot.

(h, l′, f ′) =

m∑
j=1

⎛⎝dπ
p
f ′
([l′+1]),[n

[l′+1]],j
− dπ

p
f ′
([l′]),[n[l′]],j

−

n
[l′+1]∑
i=1

pπ
p
f ′
([l′+1]),i,j

⎞⎠ +

m∑
j=1

n
[l′+1]∑
i=1

pπ
p
f ′
([l′+1]),i,j.

(28)

Step 4.2: Find factory f ∗ with the earliest completion time, i.e.,
f ∗

= argminf ′=1,...,F C
f ′
max(π

p
f′). Assign product Ph to the factory f ∗

and insert λh into the slot l∗f ′ of π
p
f∗.

Step 5: Set k = k+1, and repeat step 4 until all of the products
are traversed.

It is clear that I(h, i) considers both the front delay yielded by
the first job of product Ph (i.e., the first term in Eq. (27)) and the
contribution to the completion time of all jobs of product Ph (i.e.,
the second term in Eq. (27)). In Eq. (28), σ (h, l′, f ′) weights the to-
tal idle time and the total blocking time in terms of the workload
of all jobs for each product. Therefore, once the factory is selected,
determining the product that minimizes this index is sufficient
to minimize the makespan under the blocking constraint. The
time complexity of sorting all jobs of products and improving
the job order of all products in step 1 are O(

∑S
h=1 ωh logωh) and

O(
∑S

h=1 mωh(ωh−1)2), respectively. The time complexity of steps
and 3 is O(S log S) and O(F). Since the job orders contained in
ll remaining products are inserted into all possible slots of π

p
f′

f ′
= 1, 2, . . . , F) to check the best position, the time complexity

′ ′

∑lf ′
f step 4 is O(Fm · (lf nl + l=1 n[l])). Therefore, the total time

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

f
r
f
f
t
a
π
e

s
s
s
l
s
t
t
p
a
t
o
t
b
h
s
p
[

t
o
i
t
a
a
p
o
b
f
b

Fig. 6. Illustration of the job insertion-based speedup strategy.

complexity of steps 4 and 5 above is O((S − F)Fm · (lf ′ωh +∑lf ′
l=1 n[l])).

6. Q -learning-based hyper-heuristic evolutionary algorithm

In this section, a Q -learning-based hyper-heuristic evolution-
ary algorithm (QLHHEA) is designed to deal with DABFSP. First,
encoding and decoding schemes are provided to represent
12
feasible scheduling solutions and to receive satisfactory schedul-
ing schemes. Subsequently, problem-specific neighborhood struc-
tures are proposed to produce a pool of LLHs, which are referred
to as selectable states. Furthermore, a Q -learning-based HLS is
developed to construct high-level individuals consisting of LLHs.
Details about states, actions, selection strategy of actions, reward
function, and updating mechanism are described in the following
subsections. Finally, the implementation details and framework
of QLHHEA are outlined.

6.1. Encoding and decoding schemes

The encoding and decoding schemes have an important im-
plication for implementing HIOAs and improving their perfor-
mance [27]. According to previous literature, the permutation-
based encoding scheme has been widely applied to represent
scheduling solutions for various DSSPs [4–10,20–28,34], so such
encoding scheme is adopted in this study. As a promising paradi-
gm in HIOAs, QLHHEA has a bi-level framework involving high-
level individuals formed by problem-specific LLHs in strategy
space and feasible scheduling solutions in solution space of the
problem. All high-level individuals can be directly determined
by the designed HLS. Therefore, the high-level strategy space is
formed by high-level individuals consisting of sequences of LLHs.
The same LLHs are allowed to arise in high-level individuals,
the length of which depends on the number of LLHs involved.
In the solution space of the problem, the feasible scheduling
solution refers to the total job order π, which can be considered
as composed of F subsequences, i.e., π = [π1, π2, . . . ,πf, . . . ,πF],

= 1, 2, . . . , F . Each subsequence πf = [πf (1), πf (2), . . . , πf (nf)]
epresents the order of processing nf jobs assigned to factory
, indicating the processing order in which the jobs enter the
actory. Since splitting jobs for the same product is not allowed,
he product order λ in which products are assembled on all
ssembly machines is implicitly included in the total job order
. The makespan value Cmax(π) is used as the fitness to evaluate
ach feasible solution π.
The decoding scheme refers to producing feasible scheduling

chedules that satisfy the priority, dependency, and blocking con-
traints. When decoding the high-level individuals in the strategy
pace, the LLHs included in each high-level individual are se-
ected sequentially to search the solution space and seek superior
olutions. If the obtained candidate solution has better fitness
han the original one, it is replaced by the new solution and
he remaining LLHs are executed; otherwise, the next LLH is
erformed until all the remaining LLHs in high-level individuals
re completed. The population size of the solution space is set
o be the same as that of the strategy space. The effectiveness
f each high-level individual is evaluated through the contribu-
ion rate (CR), which is defined as the average fitness of the
est solution obtained after executing each LLH belonging to the
igh-level individual that acts on the population in the solution
pace. According to an effective decoding scheme named NR2
rovided by Hatami et al. [20], product λh in product order λ =

λ1, λ2, . . . ,λh, . . . ,λs] is allocated to the specific factory that has
he earliest completion time after containing product λh. The job
rder [λh,1, λh,2, . . . , λh,nh] of product λh is the order of process-
ng total nh jobs belonging to product λh. However, it is clear that
he critical to solving DABFSP is to determine the assignment of
ll jobs and the arrangement of the products, especially for the
llocation of the first job of the first product on each factory. For
roduct λh in λ, it can be formed by sorting ωh jobs in ascending
rder based on I(h, i) by Eq. (27), ensuring that the jobs should
e processed as compactly as possible on machines to reduce the
ront delay. The job λh,i with the smallest ph,i,1 is chosen for tie-
reaking. After that, all jobs for the same product are assigned

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

t
j
o
a
π

6

r
t
o
s
U
a
b
b
t
s
s
t
i
t
p
b
T
a
c
F
i
T

l
s
I
o

s
s
I
o

p
j
p
c

Fig. 7. The examples of four neighborhood structures.

i
d
p
c

s
a
j
n

d
d
I
o

p
f
p
t

p
d
p
n

a
p
c
i

a
p
i
p

l
p

l
o

6

a

o the same factory by NR2 based on the order in the total
ob order π. Then, job processing orders and product assembly
rders, i.e., [π1, π2, . . . ,πF] and [π

p
1, π

p
2, . . . ,π

p
F], are available at

ll factories. Therefore, the makespan Cmax(π) for feasible solution
can be calculated as detailed in Section 3.

.2. Low-level heuristics

The low-level heuristics in the search space of heuristics di-
ectly search solution space of problems to seek superior solu-
ions. According to previous literature, the design of LLHs, the
rdering of LLHs, and the creation of the set of LLHs are es-
ential to ensure the effectiveness and efficiency of HHAs [48].
sually, LLHs are designed based on domain-specific knowledge,
nd they can also be devised based on problem-specific neigh-
orhood structures. These neighborhood structures are defined
y describing how some specific operators change current solu-
ions to create candidate solutions. Since different neighborhood
tructures show distinct search behaviors, the selection scheme of
uitable structures has important implications on the efficacy of
he proposed algorithm [73]. According to three types of easy-to-
mplement operators (i.e., Insert, Swap, and Inverse), this subsec-
ion presents twelve simple and effective heuristics to produce a
ool of LLHs. These LLHs can be classified into two categories: one
ased on critical paths and the other based on non-critical paths.
he factory through which the critical path passes is designated
s critical factory fc , and the products and jobs allocated to the
ritical factory are denoted as critical products and critical jobs.
ig. 7 provides an example of critical path-based LLHs (as shown
n Fig. 4(a) with critical factory f2 and critical products P2 and P4).
he details of the devised LLHs are described below.
(1) Critical_Job_Forward_Insert (CJFI or LLH1): Randomly se-

ect a critical product from the critical factory fc and randomly
elect a critical job from the set of jobs belonging to that product.
nsert this job before the position of every other job until all jobs
f the critical product are picked.
(2) Critical_Job_Backward_Insert (CJBI or LLH2): Randomly

elect a critical product from the critical factory fc and randomly
elect a critical job from the set of jobs belonging to that product.
nsert this job after the position of every other job until all jobs
f the critical product are picked.
(3) Critical_Job_Swap (CJS or LLH3): Randomly select a critical

roduct from the critical factory fc and randomly select a critical
ob from the set of jobs belonging to that product. Then, swap the
osition of the selected job with all other jobs until all jobs of the
ritical product are picked.
13
(4) Critical_Job_Inverse (CJI or LLH4): Randomly select a crit-
cal product from the critical factory fc and randomly select two
ifferent critical jobs from the set of jobs belonging to that critical
roduct. Then, inverse the subsequence between the two selected
ritical jobs.
(5) Non-critical_Job_Forward_Insert (NJFI or LLH5): Randomly

elect a product from the non-critical factory and randomly select
job from the set of jobs belonging to that product. Insert this

ob before the position of every other job until all jobs of the
on-critical product are picked.
(6) Non-critical_Job_Backward_Insert (NJBI or LLH6): Ran-

omly select a product from the non-critical factory and ran-
omly select a job from the set of jobs belonging to that product.
nsert this job after the position of every other job until all jobs
f the non-critical product are picked.
(7) Non-critical_Job_Swap (NJS or LLH7): Randomly select a

roduct from the non-critical factory and randomly select a job
rom the set of jobs belonging to that product. Then, swap the
osition of the selected job with all other jobs until all jobs of
he non-critical product are picked.

(8) Non-critical_Job_Inverse (NJI or LLH8): Randomly select a
roduct from the non-critical factory and randomly select two
ifferent jobs from the set of jobs belonging to that non-critical
roduct, Then, inverse the subsequence between the two selected
on-critical jobs.
(9) Critical_Product_Insert (CPI or LLH9): Randomly select
critical product from the critical factory fc . Then, insert the
roduct before or after the position of each product in that
ritical factory until all critical products are selected and all
nsertion-based operations are performed.

(10) Critical_Product_Swap (CPS or LLH10): Randomly select
critical product from the critical factory fc . Then, swap the
osition of that product with each other product until all crit-
cal products are selected and all swap-based operations are
erformed.
(11) Non-critical_Product_Insert (NPI or LLH11): Randomly se-

ect a product from the non-critical factory and insert the picked
roduct before or after the position of all other products.
(12) Non-critical_Product_Swap (NPS or LLH12): Randomly se-

ect a product from the non-critical factory and swap the position
f the picked product with all other products.

.3. Q-learning-based high-level strategy

As one of the most successful strategies in RL, Q -learning is
sequential decision-making strategy based on Markov Decision

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

A
o
o
p
t
s

s
a

p
t
t
t

Fig. 8. The MDP-based interaction between the environment and agent.
Process (MDP) for searching superior selection strategies in some
specific scenarios, aiming to simulate stochastic strategies and
rewards through interactions between dynamic environments
and agents with system states satisfying Markov properties [43].
The Q -learning-based high-level strategies can reasonably recom-
mend appropriate actions for specific situations or states, thus
striking a better balance between exploration and exploitation.
As shown in Fig. 8, agents sense system states and, based on the
knowledge gained from this sense, take adequate actions accord-
ing to some suitable strategies, thereby altering environmental
states and receiving relevant rewards. MDP can be defined and
described as a quadruple (S,A, P,R). S is the state space and

is the action set, where S = {s|s1, s2, . . . , sT } denotes the set
f selectable states and A = {a|a1, a2, . . . , aT } denotes the set
f available actions. P : : S × A × S → R is the state transfer
robability, which refers to the potential possibility that the agent
ransfers to another state after taking action under the current
tate. R : : S × A → R is the reward function that indicates the
immediate reinforced response or reward after performing appro-
priate actions. Therefore, the agent’s goal is to find the optimal
strategy ω by trial and error that maximizes the expectation of
discounted rewards, as described in Eq. (29).

V∗(s) = max
ω

Eω

[
∞∑
t=0

γ t r(st , at)

]
, st ∈ S, at ∈ A. (29)

In Eq. (29), V∗(s) is the action-value function under the optimal
trategy ω. r(st , at) represents the real-time reward received by
gents for acting action at at state st in time step t . γ ∈ [0, 1]

denotes the discount factor that is used to balance the current
and future rewards for state–action pair (st , at). In Q -learning,
the agent senses the specific signal in state st and makes proper
decision to act action at from the action set A via ε − greedy
olicy. After an action at is acted upon, the state st can be changed
o another state st+1, and the reward rt is returned through
he well-designed reward function. Therefore, the state–action
rajectory (s0, a0, s1, a1, . . .) can be obtained at each time step.
The state–action value Qω(st , at) is defined in Eq. (30).

Qω(st , at) = Eω

[
∞∑
t=0

γ t r(st , at)

]
, st ∈ S, at ∈ A. (30)

The best Qω(st , at) of state–action pair (st , at) can be found by
solving the recursive equations for Bellman optimality; that is,
the optimal strategy ω is determined by selecting the available
action with the maximum q-value each time. The q-values for all
state–action pairs are stored in the Q table and updated by using
14
Eq. (31), as follows.

Qt+1(st , at) = (1−λ)·Qt (st , at)+λ·

[
r(st , at) + γ max

a∈A
Q (st+1, a)

]
.

(31)

In Eq. (31), Qt (st , at) refers to the q-value for taking action
at at state st . maxa∈A Q (st+1, a) is the maximum q-value at state
st+1 when all actions are acted upon. λ ∈ [0, 1] is the learning
rate used to balance both exploration and exploitation. The pro-
posed QLHHEA contains five crucial components, including state,
action, action selection strategy, reward function, and update
mechanism, which are designed and described as follows.

(1) Definition of State: As stated in [43,55], states tend to reflect
critical characteristics of external environments. RL relies strongly
on the choice of states, and poor state selection may directly lead
to the curse of dimensionality. Herein, states refer to LLHs, and
the state space is composed of all states or LLHs; therefore, a
novel definition of states is provided. As shown in Section 6.2,
twelve LLHs correspond to twelve states, so the state set consists
of these twelve LLHs. The state set S can be divided into two
subsets related to the types of LLHs, i.e., eight job-based LLHs
(Sjob) and four product-based LLHs (Sproduct), which are depicted
as follows:

Sjob =

{
CJFI, CJBI, CJS, CJI

NJFI,NJBI,NJS,NJI

}
,

Sproduct = {CPI, CPS,NPI,NPS} .

(2) Definition of Action: Actions refer to the act of state transfer
in the state space S, that is, the behavior of transferring from
one state to another state (referred to as ‘‘transfer to’’). Thus, the
action set A consisting of available actions can be represented by
a directed connected network G = {V, E}, where V is the set of v

nodes and E is the set of e directed edges connecting the nodes.
The node vi′ ∈ V represents the specific state (i.e., a low-level
heuristic, LLHi′). Each edge ei′j′ ∈ E represents the precedence
dependency between two states si′ and sj′ (i.e., LLHj′ can be
executed once LLHi′ is done). The weight of each edge indicates
the transfer probability from LLHi′ to LLHj′ . Actions can be repre-
sented as edges connecting the states. Based on the twelve LLHs
provided in Section 6.2, two directed, fully connected networks
corresponding to the job- and product-based LLHs are shown in
Fig. 9, visualizing the relationship between the selectable states
and the available actions.

(3) Selection Strategy of Action: For common challenging cases,
the choice of action affects the current reward, as well as the

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

a

a
a
a
d
p
a
c
d
a

f
a

Fig. 9. The directed fully connected networks of selectable states and available actions.
r

subsequent states and rewards. To reasonably regulate the re-
lationship between exploitation and exploration, for the specific
state st in time step t at the Tcur episode, a modified ε-greedy
policy is used to select either a random action at with probability
ε or an action at that yields the largest reward (i.e., the maximum
q-value) with probability 1 − ε (see Algorithm 1). The pseudo-
code of action selection strategy is shown in Algorithm 2, which
is utilized to determine appropriate actions for the initial state s0
nd all subsequent states.
At the initial iteration, the q-values of all state–action pairs

re set to zero, thereby randomly selecting the initial states and
ctions. For early episodes, larger ε values enable exploration of
wider strategy space for breadth-first search and increasing
iversity, thus finding promising regions. As the learning process
rogresses, agents prefer to adopt acquired knowledge to identify
pplicable actions. It is desirable to detect promising regions
ontaining some superior solutions, and lower ε values favor
epth-first search around potential regions. Hence, we provide
n adaptive adjustment approach of ε for Tcur episode (noted as

εTcur), as shown in Eq. (32).

εTcur = (ε0 − εf) ×
Ttotal − Tcur

Ttotal
+ εf . (32)

In Eq. (32), ε0 is an initial value (i.e., ε0 = 0.15) and εf is a
inal value (i.e., εf = 0.01). Ttotal is the total number of episodes
nd Tcur is the current episode.
15
(4) Reward Function: The reward function is a critical com-
ponent in developing Q -learning-based high-level strategy. It is
usually used to provide preferences for decisions by reinforcing
successful search behaviors and appropriate actions in some spe-
cific states. The design of the reward function directly affects
the agent’s ability to acquire the desired skills and also has
an important impact on the convergence speed and the final
performance of QLHHEA. Since the DABFSP is a single-objective
minimization problem, an adequate action (i.e., transfer from
one state to another) requires reducing the fitness of feasible
solutions. The immediate reward of applying action a in state
s, denoted as r(s, a), is determined by the improvement rate
(IR) to improve the quality of solution π. IR can be calculated
by [Cmax(π) − Cmax(π′)]/Cmax(π), where π′ is the new candidate
solution obtained after executing an action. The reward function
r(s, a) is devised as shown in Eq. (33).

(s, a) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.5,IR ≤ 0.1

1,0.1 < IR ≤ 0.2

2,0.2 < IR ≤ 0.4
. (33)
2.5, otherwise

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

H
c
e
t
s
a
d
m
Q
i

b
p
S
i
S

t
s

c
u

s

s

(
Q

c

s

o

7

c
Q
c
m
D
l
s
i
c

7

k
e
m
f
c
{

(5) Update mechanism: Since the Q table records the knowl-
edge that the agent has learned from the environment, the q-
value of Q (st , at) reflects the priority preference for performing
action at ∈ A at state st ∈ S. For each state–action pair (st , at),
Q (st , at) is updated by weighting the immediate reward r(st , at)
and the discounted q-value via learning rate λ, which can be
calculated by Eq. (31).

6.4. The framework of QLHHEA

This subsection specifies the framework of QLHHEA. In QL-
HEA, the twelve LLHs defined in Section 6.2 are chosen to
onstruct high-level individuals. The high-level individuals are
valuated by executing sequences of LLHs that are used to search
he solution space expecting to obtain optimal solutions. In this
tudy, LLHs are defined as selectable states and state selections
s available actions. The Q -learning is employed as an HLS to
etermine the best linkage relationship between LLHs to find the
ost suitable sequences of heuristics. The schematic diagram of
LHHEA is depicted in Fig. 10. The flowchart of QLHHEA is shown
n Fig. 11 and is described in detail below.

Step 1: Initialize popsize scheduling solutions, one is produced
y using constructive heuristic given in Section 5, and the rest are
roduced randomly. Initialize high-level individuals randomly.
et the q-values to zero and the parameters to the tuned values
n Section 7.2. Evaluate each solution by the decoding scheme in
ection 6.1 to obtain πbest.
Step 2: Extract each LLH of high-level individuals and employ

he LLH to search for popsize × ϕ superior solutions. If the new
olution is improved, replace the old one and update π . Cal-
best

16
ulate CR and select popsize × ϕ high-level individuals by CR to
pdate Q table by Eq. (31). Set count = 0.
Step 3: Generate high-level individuals by Q table. Create a

tate st by Algorithm 2.
Step 3.1: Select state st and obtain action at and the next

tate st+1 by Algorithms 1 and 2.
Step 3.2: Apply st+1 on πbest to get π′

best. Calculate Cmax
πbest), Cmax(π′

best), IR and obtain r(st , at) by Eq. (33). Update
t+1(st , at) by Eq. (31), εt by Eq. (32) and πbest.

Step 3.3: If a complete high-level individual is formed,
ount + +, otherwise skip to step 3.1.

Step 3.4: If count = popsize, then skip to step 2, otherwise
kip to step 3.
Step 4: Examine stop conditions. If it is not met, go to step 3;

therwise, output πbest found so far.

. Experimental results and statistical analysis

In this section, extensive experimental evaluations are exe-
uted to examine the effectiveness and efficiency of the proposed
LHHEA. First, Section 7.1 describes the experimental setup, in-
luding test instances, execution environments, and performance
etrics. Then, the parameters are calibrated and analyzed by
OE and ANOVA in Section 7.2. Afterward, the superiority of Q -
earning-based HLS and the strength of superior strategies are
tudied in Sections 7.3 and 7.4. Finally, computational compar-
sons and analysis of QLHHEA with state-of-the-art algorithms are
onducted and discussed in Section 7.5.

.1. Experimental setup

In order to investigate the performance of QLHHEA, a well-
nown benchmark dataset provided by Hatami et al. [20] is
mployed as a testbed (available at http://soa.iti.es/). This bench-
ark dataset has two subsets that include 1710 instances ranging

rom 8 jobs and 2 machines to 500 jobs and 20 machines. Specifi-
ally, the first subset comprises 900 small-scale instances, i.e., n =

8, 12, 16, 20, 24}, m = {2, 3, 4, 5}, F = {2, 3, 4}, S = {2, 3, 4},
and the second subset contains 810 large-scale instances, i.e., n =

{100, 200, 500}, m = {5, 10, 20}, F = {4, 6, 8}, S = {30, 40, 50}.
For each combination of the instance scale {n,m, F , S}, five dis-
tinct instances are generated for each scale in the first subset
and ten different instances are generated for each scale in the
second subset. The processing time of the jobs in the produc-
tion phase is predetermined and uniformly distributed in the
range of [1, 99], while the assembly time of each product in
the assembly phase depends on the number of jobs belong-
ing to the product Pl in the range of [nl, 99nl]. As mentioned
by Shao et al. [11], all experiments should be carried out and
compared under the same computational conditions. To make
a fair and reasonable comparison, all available algorithms are
coded in the same programming language and conducted in
the same computer configuration, ensuring they have the same
CPU power consumption and available runtime. All experiments
strictly adhered to the parameters listed in the original litera-
ture. Following the common convention in [25], the terminated
criteria of all algorithms are the maximum elapsed CPU time of
ρnm milliseconds, where ρ is a runtime factor to be tested at
three values: 30, 60, and 90 for providing an overall performance
picture. In addition, all algorithms are reimplemented in Pascal
and compiled by Embarcadero Rad Studio (XE8). Each algorithm
is independently run on the PC with Inter(R) Core(TM) i7-8700M
@ 3.2 GHz processor and 32 GB RAM under Windows 7 Operation
System. To fairly derive reliable computation results for each
instance at different ρ, all algorithms are independently tested 30

http://soa.iti.es/

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

f
s
T
a
w

A

w
t
b
s
t
t
m
i

T
H
p
i
l
t
e
t
S
r
r

Fig. 10. The schematic diagram of QLHHEA.

and 10 times for the first and second subsets, respectively. There-
fore, a total of 900×30+810×10=35 100 results can be obtained
or each algorithm under a specific runtime. The numerical re-
ults and computational comparisons are completely comparable.
o evaluate the efficacy of all algorithms, experimental results
re measured via the average relative percent deviation (ARPD),
hich is defined as follows.

RPD =
1
R

R∑
i=1

(
Ci − Cbest

Cbest

)
× 100%, (34)

here R is the total number of runs. Ci is the makespan ob-
ained by a specific algorithm in the ith run and Cbest is the
est makespan value obtained by all algorithms for a given in-
tance. Since this study is the first attempt to address DABFSP,
he minimum makespan found by all algorithms is as Cbest . For
he parameter calibration in the next section, Cbest is the best
akespan found across all parameter configurations for the cal-

bration instance. Obviously, the smaller the value of ARPD, the
better the performance of the algorithm. To highlight the test
results, the best results are marked in bold, the second best
results are underlined in bold, and the third best results are
underlined in italics for the statistical tables in the next sections.

7.2. Parameter calibration

The choices of parameters have an important impact on the
effectiveness and efficiency of HIOAs. As described in Section 6,
17
Fig. 11. The flowchart of QLHHEA for DABFSP.

the proposed QLHHEA contains four controllable parameters, in-
cluding population size (popsize), proportion of superior high-
level individuals (ϕ), learning rate (λ), and discount factor (γ).
o examine the effect of parameters on the efficacy of QLH-
EA, the Design of Experiments (DOE) [74] is used to provide
roper parameters for the proposed algorithm. In order to further
nvestigate the sensitivity and interaction effect on parameter
evels, all experimental results are analyzed by the multifac-
orial Analysis of Variance (ANOVA) technique widely used in
xisting literature [27,28]. Note that calibrating parameters using
he same instances used for computational comparisons (see
ection 7.1) may pose poor practice, possibly resulting in the
isk of overfitting [25]. Therefore, to avoid bias and overfitting
esults in the coming comparisons, we randomly regenerate 270
Table 4
Results of ANOVA for parameters calibration.
Sources Sum of squares Degrees of freedom Mean square F-ratio p-value

popsize 0.19579 3 0.06526 8998.95 0.0000
ϕ 0.05280 3 0.01760 2426.84 0.0000
λ 0.08943 3 0.02981 4110.48 0.0000
γ 0.08502 3 0.02834 3907.53 0.0000
popsize ∗ ϕ 0.00009 9 0.00001 1.39 0.1931
popsize ∗ λ 0.00031 9 0.00003 4.75 0.0000
popsize ∗ γ 0.00005 9 0.00001 0.77 0.6424
ϕ ∗ λ 0.00024 9 0.00003 3.64 0.0003
ϕ ∗ γ 0.00005 9 0.00001 0.82 0.5985
λ ∗ γ 0.00013 9 0.00001 2.06 0.0346
Residual 0.00137 189 0.00001
Total 0.42529 255

Note: All F-ratios are based on the residual mean square error.

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

F

D
t
a
c
E
e
r
2

Table 5
Comparison results of Q -learning and other high-level strategies.
ρ BS-HH SL-HH SA-HH GP-HH QHH QLHHEA

30

F
4 1.595 0.787 0.475 1.783 0.359 0.274
6 1.788 1.075 0.789 1.925 0.574 0.293
8 1.831 1.262 0.973 2.194 0.741 0.357

n
100 1.143 0.761 0.454 1.285 0.313 0.252
200 1.906 1.486 1.077 2.133 0.855 0.365
500 2.215 1.763 1.364 2.386 0.958 0.396

Average 1.746 1.189 0.855 1.951 0.633 0.323

60

F
4 1.297 0.735 0.443 1.413 0.314 0.223
6 1.538 1.023 0.735 1.729 0.526 0.261
8 1.622 1.149 0.926 1.848 0.659 0.308

n
100 1.077 0.706 0.388 1.216 0.222 0.177
200 1.636 1.287 0.968 1.904 0.733 0.272
500 1.985 1.524 1.153 2.183 0.877 0.335

Average 1.526 1.071 0.769 1.716 0.555 0.263

90

F
4 1.183 0.693 0.385 1.239 0.241 0.162
6 1.247 0.965 0.623 1.513 0.434 0.186
8 1.329 1.072 0.744 1.625 0.553 0.238

n
100 0.985 0.658 0.349 1.027 0.146 0.103
200 1.421 1.193 0.856 1.729 0.592 0.151
500 1.766 1.346 0.995 1.932 0.637 0.215

Average 1.322 0.988 0.659 1.511 0.434 0.176
Tot. average 1.531 1.083 0.761 1.726 0.541 0.254

Fig. 12. Main effect plots for each parameter of QLHHEA.

instances for parameter calibration by the same method stated
in Section 7.1. The combinations of calibration instance scales
are set to n = {100}, m = {5, 10, 20}, S = {30, 40, 50}, and

= {4, 6, 8}. There are ten replications for each combination of
instance scales n, m, S and F . Due to the inherent flexibility of
the parameter values, the selection scope should be restricted to
a reasonable range. According to previous literature [27,75] and
preliminary experiments, a reasonable range of potential param-
eter levels can be derived. Afterward, multiple levels (values) of
factors (parameters) are determined by extensive trial and error
experiments. The potential levels of the parameters are deter-
mined as: popsize ∈ {10, 30, 60, 90}, ϕ ∈ {0.1, 0.2, 0.3, 0.4}, λ ∈

{0.1, 0.3, 0.5, 0.7}, and γ ∈ {0.3, 0.5, 0.7, 0.9}. The full factorial
OE is conducted to calibrate these parameters, so there are a
otal of 4×4×4×4=256 configurations depending on the number
nd levels of the parameters. The best choice of parameter values
an be chosen from potential parameter values by calibration.
ach configuration is repeated 10 times independently, with the
lapsed CPU runtime of 60nm (ms) as the termination crite-
ion. As a result, the calibration experiments produce a total of
56×270×10=691200 results. It takes almost 559.99 CPU days

to acquire all the experimental results. Due to the multi-core
architecture of our computing platform, the tuning program can
18
be divided into multiple subroutines and arranged to run on
different cores. Therefore, only about 31.11 days are needed to
complete all calibrations. The average ARPD value for each config-
uration is calculated as the response variable. Obviously, a smaller
value of the response variable implies a better combination of the
parameters. In addition, three main assumptions (i.e., normality,
homoscedasticity, and independence of residuals) are checked
prior to ANOVA. The checked results suggest that no significant
biases are found and all assumptions are accepted. The F-ratio
is a strong signal of significance when the p-value is less than
the confidence level. The larger the F-ratio, the greater the effect
of factors on the response variable [76]. The ANOVA results for
all parameters are provided in Table 4, where the larger the F-
ratio and the smaller the p-value, the greater the significant effect
on the efficacy of QLHHEA. The main effect plots for levels of
parameters are shown in Fig. 12.

As observed from Table 4, the p-values for all parameters are
less than 0.05, which implies that the parameters popsize, ϕ, λ

and γ have important impact on the performance of QLHHEA.
Among all parameters, the most statistically significant factor is
popsize (i.e., F-ratio = 537.00, p < 0.01), which not only directly
defines the number of high-level individuals and solutions, but
also determines the search scope in both strategy space and
solution space. As shown in Fig. 12, popsize = 30 yields the
best results among all potential levels. Clearly, larger population
sizes bring considerable changes, and popsize = 90 gives the
worst results. The reason is that smaller population may lack
diversity, resulting in the failure to generate diverse high-level
individuals (i.e., sequences of LLHs) to execute sufficient searches
in the solution space of the problem. If the population size is too
large, a large number of both LLHs sequences and solutions will
be yielded. It will certainly consume considerable computational
cost to apply these sequences of LLHs on the solution space
to search for superior solutions, while evolutionary generation
will decrease rapidly, so Q -learning-based HLS will not be able
to learn problem-specific knowledge sufficiently to determine
the best behavior in strategy space. This suggests that a moder-
ate population size facilitates a trade-off between computational
costs and evolutionary processes, while enabling a suitable search
scope between strategy space and solution space. The second
significant factor is the proportion of high-level individuals ϕ,
which still has a larger F-ratio (346.13). It indicates that the
number of selected elite individuals significantly affects the ac-
quisition and accumulation of promising patterns in the strategy
space. It is favorable to pick an appropriate value of ϕ to learn
knowledge from the elite individuals in the strategy space. In
addition, the learning rate λ corresponds to the third ranked F-
ratio (538.97). It is obvious that λ = 0.5 works much better than
the other values. A larger λ may lead to premature convergence,
whereas a smaller value may result slow or even no convergence.
Therefore, picking an proper value of learning rate can gradually
accumulate knowledge while balancing previous knowledge with
new rewards. As also seen from Table 4, the significance of γ

is ranked last due to the smallest F-ratio (272.97). The discount
factor γ is employed to estimate the impact of future rewards on
the present. A larger γ is more favorable to adequately account
for future rewards. The best performance of QLHHEA is achieved
at γ = 0.7 against any other levels, showing that a larger γ favors
increasing the chance of the algorithm moving toward promising
regions.

In Table 4, the interactions between the bifactors are also ana-
lyzed. It is noted that the main effects plot may not be meaningful
if there are significant interactions between the parameters [69].
As shown in Table 4, the interactions popsize ∗ ϕ, popsize ∗ γ

and ϕ ∗ γ are statistically significant since their p-values are less
than 0.05 confidence level. The interaction effect plots for each

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

t

Fig. 13. Interaction effect plots for each parameter pair of QLHHEA.
Table 6
Comparison results of QLHHEA with its six variants.
ρ F × n QLHHEAv1 QLHHEAv2 QLHHEAv3 QLHHEAv4 QLHHEAv5 QLHHEAv6 QLHHEA

30

4 × 100 0.263 0.321 0.368 0.332 0.321 0.455 0.233
4 × 200 0.318 0.343 0.395 0.368 0.346 0.487 0.251
4 × 500 0.389 0.417 0.483 0.463 0.395 0.523 0.347
6 × 100 0.316 0.384 0.437 0.416 0.383 0.459 0.265
6 × 200 0.373 0.423 0.485 0.452 0.412 0.521 0.343
6 × 500 0.365 0.405 0.452 0.427 0.425 0.547 0.318
8 × 100 0.352 0.382 0.436 0.411 0.367 0.476 0.295
8 × 200 0.367 0.396 0.443 0.423 0.395 0.515 0.334
8 × 500 0.414 0.453 0.495 0.446 0.411 0.533 0.353
Average 0.351 0.392 0.444 0.415 0.384 0.502 0.304

60

4 × 100 0.249 0.276 0.335 0.311 0.284 0.423 0.218
4 × 200 0.283 0.322 0.354 0.343 0.313 0.456 0.234
4 × 500 0.367 0.385 0.461 0.437 0.376 0.487 0.313
6 × 100 0.284 0.337 0.395 0.384 0.357 0.432 0.232
6 × 200 0.345 0.395 0.449 0.425 0.373 0.485 0.326
6 × 500 0.332 0.378 0.417 0.382 0.385 0.519 0.282
8 × 100 0.324 0.355 0.383 0.367 0.343 0.446 0.267
8 × 200 0.335 0.381 0.415 0.388 0.367 0.477 0.293
8 × 500 0.372 0.417 0.463 0.423 0.373 0.515 0.327
Average 0.321 0.361 0.408 0.385 0.352 0.471 0.277

90

4 × 100 0.215 0.237 0.286 0.269 0.252 0.395 0.183
4 × 200 0.267 0.289 0.323 0.312 0.273 0.423 0.208
4 × 500 0.335 0.353 0.437 0.393 0.348 0.461 0.286
6 × 100 0.243 0.296 0.354 0.356 0.323 0.413 0.195
6 × 200 0.309 0.357 0.423 0.394 0.357 0.463 0.284
6 × 500 0.296 0.351 0.386 0.357 0.364 0.486 0.256
8 × 100 0.291 0.318 0.341 0.325 0.319 0.419 0.239
8 × 200 0.313 0.353 0.387 0.363 0.332 0.442 0.277
8 × 500 0.355 0.385 0.432 0.394 0.357 0.483 0.302
Average 0.292 0.327 0.375 0.352 0.325 0.443 0.248

Tot. average 0.321 0.360 0.409 0.384 0.354 0.472 0.276
parameter pair are depicted in Fig. 13, and it is clear that these
interactions are weak and they do not contradict the conclusions
drawn from Fig. 12. For space reasons, similar adjustments are
made to the parameters of the compared algorithms, but all
experimental results are available upon request from the authors.
After analyzing the above results, the proper parameters are
provided as: popsize = 30, ϕ = 0.2, λ = 0.5, and γ = 0.7 for
he following computational comparisons.
19
7.3. Comparison of high-level strategies with other HHAs

To verify the effectiveness of selecting Q -learning as the HLS
in QLHHEA, in this subsection, the proposed QLHHEA is compared
against several state-of-the-art HHAs, namely, BS-HH [24], SL-
HH [31], SA-HH [44], and GP-HH [48], which employ backtracking
search, self-learning mechanism, self-adaptive mechanism, and
genetic programming as high-level strategies, respectively. These

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

r

H
l
e
n
r
t
e
t
f
Q
H
t
t
r
p
t
a
H
a
H
H
f
o
t
g
a
t
C

Table 7
Comparison results of QLHHEA and 12 state-of-the-art algorithms on small-scale instances at CPU time 30mn milliseconds.
F × n HVNS HGA HDDE ILS IG3 CMA EDAMA HBBO BS-HH HDIWO IGA MCEDA QLHHEA

2 × 8 0.073 0.089 0.065 0.067 0.068 0.093 0.075 0.045 0.032 0.057 0.037 0.013 0.000
2 × 12 0.085 0.101 0.078 0.086 0.096 0.113 0.092 0.063 0.048 0.076 0.055 0.023 0.002
2 × 16 0.107 0.114 0.093 0.094 0.125 0.137 0.115 0.091 0.066 0.094 0.073 0.031 0.004
2 × 20 0.114 0.136 0.134 0.128 0.157 0.155 0.134 0.114 0.084 0.122 0.091 0.047 0.009
2 × 24 0.107 0.123 0.127 0.116 0.133 0.136 0.124 0.090 0.065 0.111 0.078 0.033 0.006
3 × 8 0.083 0.089 0.083 0.084 0.094 0.095 0.077 0.055 0.034 0.065 0.041 0.014 0.000
3 × 12 0.112 0.118 0.109 0.096 0.132 0.125 0.098 0.083 0.061 0.091 0.079 0.032 0.003
3 × 16 0.119 0.124 0.123 0.109 0.151 0.134 0.116 0.101 0.056 0.125 0.085 0.041 0.005
3 × 20 0.133 0.145 0.157 0.138 0.174 0.159 0.132 0.124 0.075 0.137 0.113 0.054 0.008
3 × 24 0.155 0.163 0.171 0.161 0.186 0.177 0.154 0.143 0.093 0.155 0.135 0.063 0.013
4 × 8 0.113 0.134 0.118 0.123 0.147 0.142 0.116 0.096 0.067 0.122 0.083 0.037 0.005
4 × 12 0.124 0.149 0.145 0.147 0.183 0.165 0.133 0.125 0.085 0.143 0.104 0.056 0.012
4 × 16 0.107 0.125 0.137 0.132 0.165 0.153 0.125 0.118 0.074 0.131 0.093 0.048 0.008
4 × 20 0.115 0.133 0.159 0.154 0.172 0.147 0.138 0.142 0.093 0.155 0.122 0.085 0.016
4 × 24 0.143 0.174 0.183 0.181 0.246 0.195 0.169 0.184 0.128 0.187 0.175 0.112 0.025
Average 0.113 0.128 0.125 0.121 0.149 0.142 0.120 0.105 0.071 0.118 0.091 0.046 0.008
g

s
i
a
e
a
b
s
l
i
r
b
g
i
b
r

Fig. 14. Comparisons of Q -learning and other high-level strategies at different
untime factors.

HAs have significant superiority in solving the scheduling prob-
ems studied in the original paper. In addition, to evaluate the
fficacy of the Q -learning-based hyper-heuristic framework, the
ewly proposed Q -learning based-hyper-heuristic (QHH) algo-
ithm [43] is also considered for comparison. The QHH is used
o solve SFTSP successfully. In QHH, the LLHs are defined as
xecutable actions, scheduling solutions are treated as states, and
he state space can be partitioned into several subspaces via a
itness-based state aggregation technique. Notably, our proposed
LHHEA differs from almost all Q -learning-based HHAs. In QL-
HEA, the LLHs are regarded as some selectable states, and the
ransfers between states represent the available actions. For all
ested HHAs, detailed descriptions and partial parameters were
eimplemented and received from the original literature, and the
opulation size was used with the tuned values provided in Sec-
ion 7.2 to ensure fairness. In addition, the DOE in Section 7.2 was
lso applied to adjust the parameter values of these competitive
HAs to achieve the best performance. Since high-level strategies
ct only on the strategy space instead of the solution space,
HAs do not depend on specific problem properties, so these
HAs have strong adaptability and extensibility. Therefore, the
ramework of each compared HHA is directly derived from the
riginal work, and only the high-level strategies are different, and
he calculation methods are modified by the makespan criterion
iven in Section 3. The twelve LLHs provided in Section 6.2 are
lso adopted as a public pool of LLHs. The proposed QLHHEA is
ested with BS-HH, SL-HH, SA-HH, GP-HH, and QHH at the same
PU time ρnm ms, where ρ is set to 30, 60, 90. This subsection
20
selects 810 large-scale instances introduced in Section 7.1 as the
test dataset, and each algorithm independently runs 30 times for
each instance under each termination condition. The statistical
results with ρ = 30, 60, and 90 are reported in Table 5, grouped
by per number of factories (F) and jobs (n). The means plots
with 95% Tukey’s Honest Significant Difference (HSD) confidence
intervals for QLHHEA and other HHAs at different runtime factor
ρ is shown in Fig. 14.

From Table 5, it is clear that our QLHHEA framework outper-
forms its competitors for almost all combinations of F and n. The
experimental results of running time from 30nm to 90nm ms
reveal that the total average ARPD value of QLHHEA (0.254%) is
less than that of the other algorithms, i.e., BS-HH (1.531%), SL-HH
(1.083%), SA-HH (0.761%), GP-HH (1.726%), QHH (0.541%). Overall,
QLHHEA is the first algorithm with the best performance. The
other competitors ranked from best to worst performance are
QHH, SA-HH, SL-HH, BS-HH, and GP-HH. The advantages of QL-
HHEA become more and more obvious with increasing runtime,
clearly clarifying the superiority of the proposed Q -learning-
based HLS over the others. In almost all instances, QLHHEA under
ρ = 30 can obtain better results than other contenders under
ρ = 90. The main reason behind this could be that our Q -
learning-based HLS can achieve the best behavior, recommend-
ing appropriate actions in specific states according to superior
search strategies. On average, the results of QLHHEA and QHH
are significantly superior to SA-HH, SL-HH, BS-HH, and GP-HH at
all instance scales, validating the effectiveness of employing Q -
learning as the HLS. However, QLHHEA has significant advantages
over the traditional QHH. In QHH, only rewards for performing
appropriate actions (i.e., picking LLH from LLHs pool) in specific
states (i.e., feasible solutions divided by fitness-based state ag-
regation technique) are recorded in the Q table. However, in

QLHHEA, the Q table records the rewards for performing the next
tates after the current state (i.e., selecting LLH based on the exist-
ng LLHs). In fact, our QLHHEA framework can reasonably record
nd receive promising patterns of high-level individuals, and
stablish each excellent high-level individual by trial-and-error,
nd then apply specific search strategies on the solution space
ased on these high-level individuals to find superior scheduling
chemes. On the one hand, this novelty avoids breaking the
inkage relationships of promising patterns in these high-level
ndividuals, which is difficult for traditional evolutionary algo-
ithms such as genetic programming and backtracking search to
e selected as high-level strategies; on the other hand, it can
reatly reduce the number of states, learn the knowledge of
nter-state transfers, and return appropriate actions, resulting in
etter heuristics. All comparisons were confirmed by multifacto-
ial ANOVA with 95% Tukey’s HSD confidence intervals, as shown

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

1
t
t
t
H

Fig. 15. Statistical convergence curve of QLHHEA in comparison with other HHAs.
Table 8
Comparison results of QLHHEA and 12 state-of-the-art algorithms on small-scale instances at CPU time 60mn milliseconds.
F × n HVNS HGA HDDE ILS IG3 CMA EDAMA HBBO BS-HH HDIWO IGA MCEDA QLHHEA

2 × 8 0.068 0.072 0.044 0.062 0.054 0.086 0.068 0.037 0.025 0.047 0.025 0.011 0.000
2 × 12 0.077 0.093 0.064 0.077 0.083 0.101 0.084 0.051 0.031 0.056 0.042 0.017 0.001
2 × 16 0.089 0.102 0.079 0.082 0.115 0.125 0.095 0.077 0.053 0.078 0.057 0.022 0.003
2 × 20 0.102 0.125 0.115 0.114 0.136 0.143 0.122 0.091 0.065 0.102 0.074 0.034 0.007
2 × 24 0.096 0.112 0.103 0.102 0.124 0.121 0.106 0.073 0.044 0.094 0.063 0.023 0.004
3 × 8 0.067 0.074 0.074 0.057 0.086 0.083 0.064 0.036 0.026 0.044 0.027 0.011 0.000
3 × 12 0.091 0.103 0.089 0.075 0.127 0.112 0.082 0.064 0.053 0.073 0.055 0.024 0.002
3 × 16 0.097 0.110 0.115 0.083 0.144 0.119 0.096 0.085 0.037 0.108 0.042 0.032 0.003
3 × 20 0.114 0.122 0.139 0.123 0.159 0.137 0.115 0.108 0.055 0.121 0.085 0.041 0.005
3 × 24 0.128 0.146 0.154 0.143 0.165 0.160 0.131 0.122 0.076 0.137 0.107 0.053 0.009
4 × 8 0.104 0.117 0.107 0.111 0.137 0.124 0.103 0.075 0.053 0.094 0.059 0.028 0.003
4 × 12 0.110 0.135 0.132 0.133 0.168 0.148 0.126 0.103 0.069 0.125 0.084 0.043 0.009
4 × 16 0.087 0.112 0.118 0.114 0.149 0.133 0.103 0.097 0.056 0.112 0.072 0.035 0.006
4 × 20 0.081 0.106 0.134 0.137 0.161 0.125 0.124 0.123 0.083 0.135 0.097 0.062 0.013
4 × 24 0.122 0.155 0.162 0.165 0.223 0.172 0.153 0.167 0.095 0.161 0.143 0.085 0.017
Average 0.096 0.112 0.109 0.105 0.136 0.126 0.105 0.087 0.055 0.099 0.069 0.035 0.006
Table 9
Comparison results of QLHHEA and 12 state-of-the-art algorithms on small-scale instances at CPU time 90mn milliseconds.
F × n HVNS HGA HDDE ILS IG3 CMA EDAMA HBBO BS-HH HDIWO IGA MCEDA QLHHEA

2 × 8 0.056 0.064 0.037 0.044 0.048 0.073 0.055 0.026 0.019 0.034 0.019 0.008 0.000
2 × 12 0.068 0.076 0.055 0.057 0.075 0.088 0.067 0.041 0.026 0.045 0.035 0.013 0.000
2 × 16 0.075 0.092 0.063 0.071 0.104 0.113 0.079 0.055 0.043 0.063 0.043 0.017 0.002
2 × 20 0.089 0.107 0.095 0.093 0.127 0.125 0.106 0.067 0.053 0.082 0.056 0.026 0.004
2 × 24 0.078 0.096 0.083 0.085 0.113 0.109 0.093 0.054 0.033 0.076 0.048 0.016 0.003
3 × 8 0.059 0.057 0.057 0.034 0.068 0.066 0.049 0.029 0.021 0.035 0.021 0.008 0.000
3 × 12 0.082 0.103 0.076 0.053 0.105 0.095 0.068 0.045 0.041 0.058 0.039 0.015 0.001
3 × 16 0.077 0.091 0.102 0.066 0.127 0.103 0.073 0.074 0.022 0.087 0.033 0.023 0.002
3 × 20 0.093 0.105 0.115 0.113 0.138 0.126 0.095 0.088 0.039 0.103 0.066 0.031 0.003
3 × 24 0.105 0.123 0.137 0.128 0.154 0.144 0.114 0.101 0.061 0.114 0.083 0.038 0.006
4 × 8 0.081 0.104 0.098 0.102 0.122 0.109 0.093 0.063 0.043 0.075 0.041 0.017 0.002
4 × 12 0.093 0.116 0.113 0.123 0.151 0.128 0.107 0.087 0.052 0.106 0.062 0.032 0.005
4 × 16 0.079 0.099 0.098 0.098 0.135 0.123 0.085 0.079 0.038 0.093 0.054 0.021 0.003
4 × 20 0.065 0.086 0.115 0.125 0.142 0.111 0.103 0.101 0.072 0.115 0.075 0.049 0.008
4 × 24 0.103 0.122 0.144 0.143 0.198 0.148 0.135 0.154 0.081 0.143 0.112 0.067 0.011
Average 0.080 0.096 0.093 0.089 0.121 0.111 0.088 0.071 0.043 0.082 0.053 0.026 0.003
s
t
e

7

c
t
p

in Fig. 14. The statistical histograms with interval plots of overall
ARPD values yielded by QLHHEA and its counterparts further
indicated that these comparisons were statistically significant. As
expected, our proposed QLHHEA performs best for all groups and
termination conditions.

To better show the convergence of QLHHEA, the scales of 100×
0×4×30 and 100×20×6×40 were chosen as examples to plot
he convergence curves. Fig. 15(a) and (b) clearly demonstrate
hat the Q -learning guided HH can expedite convergence toward
he best possible results. QLHHEA is the most rapid among other
HAs. The findings suggest that QLHHEA can lead to superior
b

21
olutions for different sizes of examples, which further confirms
he effectiveness of the new definition of state and action and the
fficacy of the Q -learning-based HHAs.

.4. Performance analysis of improvement strategies

In this subsection, we investigate the effectiveness and effi-
iency for the components of QLHHEA. As stated in Section 6,
here are five crucial components contributing to improve the
erformance of our proposed QLHHEA: (1) the product insertion-
ased speedup strategy designed in Section 4.1; (2) the job

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695
Table 10
Average ARPD values for large-scale instances at CPU time 30mn milliseconds.

HVNS HGA HDDE ILS IG3 CMA EDAMA HBBO BS-HH HDIWO IGA MCEDA QLHHEA

F
4 3.593 3.938 3.212 2.599 1.879 4.309 2.722 1.687 1.456 1.831 1.347 0.937 0.242
6 4.162 4.253 3.701 2.764 1.956 4.776 2.877 1.971 1.627 2.126 1.471 1.192 0.286
8 4.286 4.410 3.898 2.938 2.025 5.293 2.953 2.115 1.772 2.317 1.684 1.305 0.323

S
30 3.346 3.712 3.153 2.545 1.987 4.913 2.682 1.864 1.593 2.114 1.635 1.236 0.344
40 3.257 3.654 3.069 2.461 1.969 4.533 2.523 1.648 1.386 1.925 1.613 1.193 0.291
50 3.161 3.598 2.952 2.318 1.948 4.451 2.497 1.543 1.255 1.823 1.442 1.162 0.242

n
100 3.126 3.631 3.019 2.543 1.976 4.179 2.364 1.496 1.126 1.647 1.445 0.919 0.226
200 3.693 4.073 3.383 3.231 2.342 4.859 3.251 2.162 1.837 2.286 1.826 1.336 0.351
500 3.887 4.364 3.579 2.875 2.574 5.428 3.666 2.534 2.179 2.554 2.023 1.692 0.379

m
5 3.749 3.908 3.414 3.168 2.156 4.520 2.613 1.761 1.418 2.046 1.624 1.361 0.313
10 3.541 3.732 3.255 2.845 2.052 4.445 2.463 1.529 1.115 1.963 1.475 1.234 0.264
20 3.432 3.559 3.197 2.741 1.887 4.247 2.382 1.317 0.973 1.839 1.335 1.188 0.186

Average 3.603 3.903 3.319 2.752 2.063 4.663 2.749 1.802 1.478 2.039 1.577 1.230 0.287
Table 11
Average ARPD values for large-scale instances at CPU time 60mn milliseconds.

HVNS HGA HDDE ILS IG3 CMA EDAMA HBBO BS-HH HDIWO IGA MCEDA QLHHEA

F
4 3.442 3.767 2.946 2.367 1.684 4.164 2.457 1.489 1.217 1.613 1.275 0.866 0.193
6 3.957 4.124 3.426 2.523 1.775 4.359 2.683 1.743 1.439 1.884 1.399 1.059 0.234
8 4.036 4.342 3.673 2.769 1.845 4.836 2.840 1.924 1.525 2.135 1.605 1.185 0.267

S
30 3.121 3.587 3.013 2.405 1.804 4.645 2.547 1.643 1.344 1.952 1.563 1.103 0.272
40 3.052 3.354 2.938 2.360 1.786 4.367 2.372 1.559 1.227 1.847 1.528 1.011 0.255
50 2.926 3.323 2.864 2.199 1.754 4.253 2.237 1.343 1.098 1.752 1.374 0.952 0.197

n
100 3.018 3.586 2.921 2.321 1.787 3.846 2.189 1.275 1.025 1.472 1.367 0.837 0.122
200 3.535 3.911 3.226 3.017 2.151 4.477 2.996 1.953 1.533 2.059 1.752 1.149 0.243
500 3.626 4.153 3.344 2.622 2.383 5.215 3.352 2.417 1.925 2.326 1.936 1.442 0.285

m
5 3.554 3.784 3.254 3.082 1.956 4.258 2.397 1.548 1.329 1.835 1.532 1.168 0.234
10 3.346 3.497 3.113 2.629 1.807 4.103 2.273 1.452 1.052 1.727 1.389 1.043 0.145
20 3.223 3.341 3.023 2.571 1.656 4.048 2.205 1.183 0.894 1.618 1.258 0.936 0.113

Average 3.403 3.731 3.145 2.572 1.866 4.381 2.546 1.627 1.301 1.852 1.498 1.062 0.213
Table 12
Average ARPD values for large-scale instances at CPU time 90mn milliseconds.

HVNS HGA HDDE ILS IG3 CMA EDAMA HBBO BS-HH HDIWO IGA MCEDA QLHHEA

F
4 3.281 3.529 2.838 2.193 1.493 3.876 2.259 1.269 1.032 1.387 1.228 0.735 0.144
6 3.783 3.952 3.268 2.327 1.586 4.127 2.591 1.574 1.189 1.651 1.343 0.942 0.167
8 3.974 4.125 3.543 2.622 1.655 4.489 2.624 1.721 1.273 1.822 1.554 1.047 0.195

S
30 2.945 3.311 2.895 2.249 1.612 4.243 2.357 1.499 1.189 1.753 1.517 0.893 0.228
40 2.813 3.124 2.724 2.136 1.593 4.194 2.232 1.445 1.112 1.727 1.476 0.775 0.182
50 2.754 3.058 2.673 2.029 1.562 4.076 2.058 1.237 0.958 1.586 1.321 0.842 0.131

n
100 2.857 3.492 2.747 2.214 1.595 3.531 1.867 1.112 0.876 1.292 1.317 0.695 0.086
200 3.428 3.789 2.983 2.848 1.952 4.126 2.748 1.793 1.347 1.865 1.688 0.912 0.129
500 3.435 3.948 3.195 2.466 2.187 4.922 3.122 2.332 1.651 2.164 1.843 1.225 0.173

m
5 3.332 3.625 3.065 2.895 1.758 4.036 2.251 1.451 1.272 1.617 1.474 0.937 0.128
10 3.176 3.322 2.913 2.513 1.614 3.917 2.163 1.282 0.891 1.543 1.335 0.826 0.093
20 3.025 3.128 2.846 2.326 1.453 3.839 2.124 1.079 0.813 1.366 1.191 0.753 0.065

Average 3.234 3.534 2.974 2.402 1.672 4.115 2.366 1.483 1.134 1.648 1.441 0.882 0.144
p
F
Q
p

Table 13
Results of DMRT for post-hoc test.
Rank 30mn 60mn 90mn

A {QLHHEA} {QLHHEA} {QLHHEA}
B {MCEDA} {MCEDA} {MCEDA}
C {BS-HH, IGA} {BS-HH, IGA} {BS-HH}
D {HBBO} {HBBO} {IGA, HBBO, HDIWO}
E {HDIWO, IG3} {HDIWO, IG3} {IG3}
F {EDAMA, ILS} {EDAMA, ILS} {EDAMA, ILS}
G {HDDE} {HDDE} {HDDE}
H {HVNS} {HVNS} {HVNS}
I {HGA} {HGA} {HGA}
J {CMA} {CMA} {CMA}
F-ratio 242.560 252.661 242.324
p-value 0.000 0.000 0.000
22
insertion-based speedup strategy devised in Section 4.2; (3) the
constructive heuristic based on problem characteristics devel-
oped in Section 5; (4) the decoding scheme based on blocking
constraints provided in Section 6.1; and (5) the Q -learning-based
high-level strategy presented in Section 6.3. In order to analyze
the efficacy of the above improvement strategies, six versions of
QLHHEA (i.e., QLHHEAv1 ∼ QLHHEAv6) are implemented to in-
vestigate the contribution of each component through controlled
variable tests. QLHHEAv1 and QLHHEAv2 are the QLHHEA without
product insertion-based and job insertion-based speedup strate-
gies, respectively, while QLHHEAv3 is the QLHHEA without both
roduct insertion- and job insertion-based speedup strategies.
or the first three variants, namely QLHHEAv1, QLHHEAv2, and
LHHEAv3, they are adopted to clarify whether the two pro-
osed problem property-based speedup strategies are effective in

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

i
s
e
I
i
t
S
h
l
o
T
u
b
s
3
T
c

f
i
e

a
p
u
p
n
a
l
Q
a
w
t
o
Q
o
T
n
b
t
r
i
t
p
p
r

3
p
s
a
t

7

p
h
a
A
s
s
r
l
T
a
f
B
H
t
t
f
p
d
c
i
o
I
T
H
s
a
t
H
a
l
w
T
f
r
d
i
t
a
m
Q
s
s
s
s
T
s
s
c
i
H
s
o
s
h
h
M

Fig. 16. Interactions plots with 95% Tukey’s HSD confidence interval between
the algorithms and the maximum elapsed CPU time.

improving the search efficiency. In QLHHEAv4, the population of
nitial solutions is randomly produced without using the con-
tructive heuristic proposed in Section 5, so this variant is used to
xamine the effectiveness of the developed constructive heuristic.
n QLHHEAv5, only the NR2 decoding scheme described in [20]
s applied to assign the jobs to which the products belong to
he factory instead of using the decoding scheme proposed in
ection 6.1. In QLHHEAv6, LLHs are randomly chosen to construct
igh-level individuals per generation without employing the Q -
earning-based HLS, and this variant is used to verify the vital role
f the devised Q -learning-based HLS for the presented QLHHEA.
he same 810 large-scale instances introduced in Section 7.1 are
sed as the testbed. The QLHHEA and its six variants are tested
y running 30 replicates per instance independently under the
ame ρnm millisecond elapsed CPU time, where ρ is tested at
0, 60, 90. The parameters are also the same for all algorithms.
he computed results are reported in Table 6, grouped by the
ombination of F × n.
From Table 6, for each termination condition, QLHHEA per-

orms the best with the lowest overall ARPD value among all scale
nstances, indicating that these components contribute consid-
rably to improving the performance of QLHHEA. QLHHEAv1 is

substantially surpassed by QLHHEA, but it still beats QLHHEAv2
nd QLHHEAv3. QLHHEAv2 and QLHHEAv3 are significantly sur-
assed by QLHHEA, demonstrating the effectiveness of the prod-
ct and job insertion-based speedup strategies. In fact, the pro-
osed speedup strategies promote the efficiency of evaluating
eighbor solutions, thus searching for more promising regions
nd improving the chances of finding superior solutions with
ess computational cost. On average, the total average values of
LHHEAv4 (0.384%), QLHHEAv5 (0.354%), and QLHHEAv6 (0.472%)
re inferior to QLHHEA (0.276%). The worst result is in QLHHEAv6,
hich obtains the largest overall mean ARPD values. It suggests
hat the designed Q -learning-based HLS has the strongest effect
n QLHHEA’s performance. However, comparing QLHHEAv4 and
LHHEAv5 to the referenced algorithm in Table 6, the results
f QLHHEAv4 and QLHHEAv5 are also better than QLHHEAv6.
his situation shows that the search scope can be effectively
arrowed and the search behavior can be efficiently enhanced
y embedding the problem’s property-based constructive heuris-
ic and blocking characteristic-based decoding scheme. Fig. 16
eports the interaction plots between the algorithms and max-
mum elapsed CPU time with 95% Tukey’s HSD confidence in-
ervals. If the intervals between algorithms exist overlap, it im-
lies that there is a statistically insignificant difference in their
erformance. As seen in Fig. 16, QLHHEA is significantly supe-
ior to other competitors at each termination condition ρ =
23
0, 60, 90. Therefore, it can be confidently concluded that the
roposed speedup strategies, problem characteristics based con-
tructive heuristic, blocking constraints based decoding scheme,
nd Q -learning-based high-level strategy contribute statistically
o QLHHEA at a considerable margin.

.5. Comparison of QLHHEA and state-of-the-art algorithms

In order to evaluate the effectiveness and efficiency of our
roposed QLHHEA, in this subsection, we conduct a compre-
ensive comparison of QLHHEA against several state-of-the-art
lgorithms to investigate the performance of these algorithms.
s stated in Section 2, few algorithms have been directly de-
igned to deal with DABFSP since the studied problem was first
urveyed in this paper. As a result, almost all available algo-
ithms that attempt to address DABFSP and closely related prob-
ems are chosen for the following computational comparisons.
hese high-performing algorithms include the iterated greedy
lgorithm from Hatami et al. [21] (IG3 for short), the EDAMA
rom Wang et al. [22], the HBBO from Lin and Zhang [23], the
S-HH from Lin et al. [24], the IGA from Pan et al. [25], the
DIWO from Sang et al. [26], the MCEDA from Zhang et al. [27],
he iterated local search (ILS) from Shao et al. [28], the HVNS,
he HGA, and the HDDE from Xiong et al. [77], and the CMA
rom Deng et al. [78]. The HIOAs mentioned above are com-
etitive algorithms that exhibit excellent performance against
ifferent scheduling problems. These twelve algorithms can be
lassified into four categories. The first group has an algorithm,
.e., IG3, which is designed to solve DAPFSP with SDSTs. The sec-
nd group consists of six HIOAs, including EDAMA, HBBO, BS-HH,
GA, HDIWO, and MCEDA, which are devised to address DAPFSP.
he third group contains four algorithms, including HVNS, HGA,
DDE, and CMA, all developed to deal with the two-stage as-
embly flow-shop scheduling problem. The fourth group has an
lgorithm, i.e., ILS, which is designed to tackle DABFSP. Among
he above algorithms, EDAMA, HBBO, BS-HH, HDIWO, MCEDA,
GA, HDDE, and CMA are population-based HIOAs, while IG3
nd IGA are trajectory-based HIOAs. According to their original
iterature, descriptions and details are rigorously reimplemented
ith adequate adjustments to adapt to the considered problem.
he experiments strictly adhered to the parameter values derived
rom their relevant references, with parts of pivotal parameters
ecalibrated by the DOE method described in Section 7.2. In ad-
ition, the speedup strategies stated in Section 4 are incorporated
nto these compared algorithms to enhance search efficiency. All
he experimental results of QLHHEA against other competitors at
ll instance sizes under different terminal conditions are sum-
arized in Tables 7–12. As can be observed from these tables,
LHHEA achieves the lowest values on both small and large-
cale instances at different runtimes, indicating that it has a
tronger search engine that can gain the best behavior in the
trategy space, generate high-quality heuristics, and guide the
earch direction in the solution space to find superior solutions.
hese numerical results reflect that the proposed QLHHEA can
uccessfully solve the studied DABFSP. Probing further into the
tatistics in Tables 7–12, it can be observed that QLHHEA is the
lear champion in terms of overall mean ARPD values across all
nstance sizes for each termination condition. The results for BS-
H and MCEDA are also competitive in most groups, but both are
till inferior to QLHHEA. The reason may mainly be that BS-HH
nly employs DE-like backtracking search as HLS to manipulate a
eries of LLHs, and fails to get better results since some effective
igh-level strategies are not adopted and promising patterns of
igh-level individuals may not be reasonably recorded. Although
CEDA is able to learn structural characteristics or promising

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

p
a
t
m
c

Fig. 17. Violin plots for considered comparisons (ρ = 30).
Fig. 18. Violin plots for considered comparisons (ρ = 60).
Fig. 19. Violin plots for considered comparisons (ρ = 90).
M
o
H
s

atterns from superior solutions in the solution space, it may lack
goal-oriented search strategy to drive searching direction, and

he precision of probabilistic models directly affects its perfor-
ance. In addition, the results of the trajectory-based IG3 are
losely similar to those of the IGA, but both of them are still
24
slightly inferior to the population-based HIOAs, i.e., BS-HH and
CEDA, indicating that the population-based search has obvi-
us advantages over the single-point search approach. EDAMA,
BBO, HDDE, HDIWO, and HGA achieve similar results for small-
cale instances (i.e., from 8 jobs to 24 jobs), while BS-HH yields

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

Fig. 20. Means plots and 95% Tukey’s HSD confidence intervals for the interaction between the algorithms, the maximum elapsed CPU time and the small-scale
instances.

Fig. 21. Means plots and 95% Tukey’s HSD confidence intervals for the interaction between the algorithms, the maximum elapsed CPU time and the large-scale
instances.

Fig. 22. Interaction plot with 95% Tukey’s HSD confidence interval between the algorithms and F .

25

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695
Fig. 23. Interaction plot with 95% Tukey’s HSD confidence interval between the algorithms and S.
Fig. 24. Interaction plot with 95% Tukey’s HSD confidence interval between the algorithms and n.
t
i
a
i
c
Q
s
a
d
ρ

C
g
b

slightly better results than HBBO, HDIWO, and IGA for large-scale
instances (i.e., from 100 jobs to 500 jobs).

The findings in Tables 7–12 have demonstrated the superiority
of our QLHHEA; however, due to the stochastic nature of HIOAs,
a thorough analysis is required to determine whether the ob-
served differences across algorithms are statistically significant.
In the statistical experiments, multifactorial ANOVA is employed
to evaluate each outcome. To be specific, it is used to determine
whether the results obtained by each algorithm differ statistically
significantly from one another. Three primary hypotheses (i.e.,
independence, normality, and homoscedasticity) are checked be-
fore the statistical test with a 95% confidence level (α = 0.05).
All assumptions are easily satisfied by analyzing the residuals
derived from the experimental results. As shown in Figs. 17–19,
the results of the ANOVA test are reported with violin plots under
different termination conditions. It is remarkable that the exis-
tence of overlapping intervals amongst algorithms suggests that
26
the observed differences are not statistically significant, signifying
that there is no significant difference in their performance [76]. As
shown in Figs. 17–19, the confidence intervals for EDAMA, HBBO,
HDDE, HDIWO, and HGA are almost overlapped from ρ = 30
o ρ = 90, which reveals that they have similar performance
n solving the small-scale instances. BS-HH, HBBO, HDIWO, IG3,
nd IGA have overlapping confidence intervals for the large-scale
nstances when ρ = 90. However, for the three termination
onditions (i.e., ρ = 30, 60, 90), there are no overlaps between
LHHEA and all other competitors, demonstrating that the re-
ults achieved by QLHHEA are statistically different from those
cquired by the other algorithms. Furthermore, our QLHHEA pro-
uces similar results that are comparable for each runtime factor
, indicating that QLHHEA converges quickly and the additional
PU time has no beneficial effect on its performance. The other al-
orithms may benefit from more runtime to obtain better results,
ut the effect is still slight. In other words, changing the runtime

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

c
t
a
d
t
o
D

n
a
c
a
H
s
t
(
n
c

Fig. 25. Interaction plot with 95% Tukey’s HSD confidence interval between the algorithms and m.
Fig. 26. Gantt chart of the best solution found by QLHHEA for I_100_10_4_30_6.
M
r
l
t

c
c
t
a
b
t
i
t
i
i
b
e

annot be expected to completely change the search behavior of
hese algorithms. The search strategies and evolutionary mech-
nisms largely affect the algorithms’ search behavior, directly
etermining how well they work. From a statistical perspec-
ive, we can conclude that our QLHHEA significantly outperforms
ther compared algorithms and has a major advantage in solving
ABFSP.
According to the above analysis, it is clear that there are sig-

ificant differences in the performance of the proposed QLHHEA
nd other algorithms at different instance sizes and termination
onditions. In order to further investigate the behaviour of these
lgorithms, Figs. 20–25 provide interaction plots with 95% Tukey’s
SD confidence intervals between the algorithms and instance
cales. As revealed in these figures, all algorithms are sensitive to
he number of factories (F), products (S), jobs (n), and machines
m). Notably, it is depicted from these figures that our QLHHEA is
ot significantly affected by the instance scales and termination
onditions. To be more precise, all algorithms but ILS perform
27
better with increasing S and m, and decreasing with F and n.
eanwhile, it is evident that QLHHEA performs superiorly and

uns stably under different runtimes and instance scales, particu-
arly when handling large-scale instances, which further supports
he superiority and stability of the proposed QLHHEA.

To further statistically justify the efficacy of QLHHEA versus
ompeting algorithms and to make the experimental results more
onvincing and reasonable, we also apply another powerful statis-
ical method, namely Duncan’s Multiple Range Test (DMRT). It is
rigorous post-hoc test that works well for detecting differences
etween pairwise comparison algorithms. DMRT is usually used
o classify all algorithms into various levels. The confidence level
s set to α = 0.05. Table 13 reports the rank results, revealing
hat all algorithms can be classified into ten levels, while QLHHEA
s ranked at the first level (i.e., A) among all runtime factors,
.e., ρ = 30, 60, 90. There are no other algorithms at this level
ut QLHHEA, indicating there are statistically significant differ-
nces between QLHHEA and its competitors and that QLHHEA

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

s
M
s
I
t
i
C
o
r
p
n
f

ignificantly outperforms them by a wide margin. Meanwhile,
CEDA ranks second with B level, indicating that multidimen-
ional probabilistic models are also highly promising paradigm.
t is insightful that BS-HH and IGA are grouped together in the
hird level when ρ = 30 and ρ = 60, while ρ = 90 only BS-HH
s still in this level, which means they have similar performance.
MA is graded at the last level. As also seen in Table 13, the grade
f HDIWO improves with increasing running times. However, the
ank changes for other algorithms are hardly noticeable. Thus, the
airwise comparison of DMRT further confirms the competitive-
ess of QLHHEA. Furthermore, the Gantt chart of the best solution
ound by QLHHEA is depicted in Fig. 26, where [SA, CA

] represents
the start and finish times of the final product on the assembly
machine as SA and CA. The makespan of such scheduling solution
in Fig. 26 is 2448.

8. Discussion

According to the above experimental results and statistical
analysis, it can be confirmed that there is an obvious advantage
of applying Q -learning as the high-level strategy in QLHHEA,
that the crucial components of QLHHEA are effective and nec-
essary, and that QLHHEA has superior performance compared
to the state-of-the-art algorithms. Therefore, it can be credibly
concluded that the proposed QLHHEA is an effective and efficient
algorithm for solving DABFSP. The main innovations and novel-
ties are threefold: (1) The global exploration effectively drives
the search direction by applying Q -learning-based HLS, which
allows automatic selection of appropriate actions under specific
states, and the local exploitation adopts problem-specific LLHs
to efficiently enrich the search behaviours. (2) The QLHHEA, as
a knowledge-driven learning paradigm, makes decisions in the
strategy space through trial-and-error feedback and thus guides
the search towards promising regions in the solution space, which
is surely superior to most of the HIOAs based on random search
in the solution space. (3) The LLHs are defined as selectable states
and the transfers between them are defined as available actions.
The new definition of states and actions provides insight into
the linkage relationship of LLHs, focusing on the crucial charac-
teristics of promising patterns hidden in high-level individuals,
and providing new ideas and approaches to generate high-quality
heuristics. In light of the above discussion, the superiority of
QLHHEA is mainly attributed to the following aspects. (1) The
devised two suites of insertion-based speedup strategies based on
the problem’s properties directly reduce the computational cost
of evaluating solutions and accelerate the search efficiency. (2)
The designed problem-specific constructive heuristics provide the
initial promising points for the evolution process and ensure the
quality and diversity of the initial population. (3) The developed
12 effective heuristics are adopted to construct a pool of LLHs,
and Q -learning-based HLS is applied to control the choice of
LLHs for selecting suitable search strategies, thereby ensuring that
the algorithm can self-learn, self-adapt, and self-decide in the
strategy space of heuristics and the solution space of the problem.
In conclusion, the proposed QLHHEA has promising performance
in solving the problem under study and enables to be extended
to solve other single- and multi-objective problems to expect
excellent efficacy.

9. Conclusion and future work

This paper presents a novel Q -learning-based hyper-heuristic
evolutionary algorithm (QLHHEA) to tackle the distributed assem-
bly blocking flowshop scheduling problem (DABFSP), aiming at
minimizing the makespan of DABFSP, which is a strongly NP-hard
problem widely found in practical production processes. To the
28
best of the authors’ knowledge, this is the first reported work
to research the application of QLHHEA in solving DABFSP. The
major contributions are concluded as follows: (1) the forward
and backward calculation methods based on problem character-
istics are provided to derive speedup strategies; (2) two suites of
speedup strategies based on problem properties are proposed to
decrease computational cost and enhance search efficiency; (3) a
problem-specific constructive heuristic is developed to produce
high-quality initial population; (4) twelve simple and efficient
low-level heuristics (LLHs) are developed, including eight job-
based LLHs and four product-based LLHs, and the LLHs are defined
as selectable states and transfers between them are as available
actions; (5) a Q -learning-based high-level strategy is devised
to guide the search behaviour for superior selection schemes;
(6) the DOE and ANOVA are carried out to analyze the effect
of both parameter settings and experimental results. Extensive
experiments and comprehensive comparisons confirm the advan-
tages of the proposed excellent evolutionary framework and the
delicate design of crucial components. The statistical results show
the superiority of the presented QLHHEA in terms of effective-
ness, efficiency, and efficacy over the state-of-the-art algorithms,
especially for large-scale instances.

The following are three key upcoming works. (1) To con-
sider realistic requirements and constraint conditions in actual
scenarios, such as energy consumption, logistics and transporta-
tion, flexible production, and uncertain processing time and en-
vironment. (2) To develop effective reinforcement learning-based
hyper-heuristic framework for decision makers to solve various
types of problems by analyzing the properties of energy-efficient
distributed assembly scheduling problems. (3) To design high-
quality HLS and LLHs for QLHHEA, some fitness landscape analysis
techniques are used to extract problem-specific knowledge.

CRediT authorship contribution statement

Zi-Qi Zhang: Methodology, Funding acquisition, Investigation,
Methodology, Experiment, Software, Writing – original draft. Bin
Qian: Methodology, Funding acquisition, Supervision, Writing –
review & editing. Rong Hu: Methodology, Funding acquisition,
Investigation, Writing – review & editing. Jian-Bo Yang: Super-
vision, Project administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

The authors do not have permission to share data

Acknowledgments

The authors are sincerely grateful to the anonymous reviewers
for their insightful comments and suggestions, which greatly
improve this paper. This work was financially supported by
the National Natural Science Foundation of China (Grant Nos.
72201115, 62173169, and 61963022), the Yunnan Fundamental
Research Projects, China (Grant No. 202201BE070001-050 and
202301AU070069), and the Basic Research Key Project of Yunnan
Province, China (Grant No. 202201AS070030).

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695

R
eferences

[1] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, Fourth ed.,
Springer, United States, 2012.

[2] D.M. Lei, Y. Yuan, J.C. Cai, D.Y. Bai, An imperialist competitive algorithm
with memory for distributed unrelated parallel machines scheduling, Int.
J. Prod. Res. 58 (2020) 597–614.

[3] B. Naderi, R. Ruiz, The distributed permutation flowshop scheduling
problem, Comput. Oper. Res. 37 (2010) 754–768.

[4] S.Y. Wang, L. Wang, M. Liu, Y. Xu, An effective estimation of distribution
algorithm for solving the distributed permutation flow-shop scheduling
problem, Int. J. Prod. Econ. 145 (2013) 387–396.

[5] Y. Xu, L. Wang, S. Wang, M. Liu, An effective hybrid immune algorithm for
solving the distributed permutation flow-shop scheduling problem, Eng.
Optim. 46 (2013) 1269–1283.

[6] B. Naderi, R. Ruiz, A scatter search algorithm for the distributed permu-
tation flowshop scheduling problem, European J. Oper. Res. 239 (2014)
323–334.

[7] R. Ruiz, Q.K. Pan, B. Naderi, Iterated Greedy methods for the distributed
permutation flowshop scheduling problem, Omega-Int. J. Manage. S. 83
(2019) 213–222.

[8] J.P. Huang, Q.K. Pan, Z.H. Miao, L. Gao, Effective constructive heuristics
and discrete bee colony optimization for distributed flowshop with setup
times, Eng. Appl. Artif. Intell. 97 (2021) 104016.

[9] Q.K. Pan, L. Gao, L. Wang, J. Liang, X.Y. Li, Effective heuristics and
metaheuristics to minimize total flowtime for the distributed permutation
flowshop problem, Expert Syst. Appl. 124 (2019) 309–324.

[10] A. Khare, S. Agrawal, Effective heuristics and metaheuristics to min-
imise total tardiness for the distributed permutation flowshop scheduling
problem, Int. J. Prod. Res. 59 (2021) 7266–7282.

[11] W.S. Shao, Z.S. Shao, D.C. Pi, Modeling and multi-neighborhood iterated
greedy algorithm for distributed hybrid flow shop scheduling problem,
Knowl.-Based Syst. 194 (2020).

[12] J. Zheng, L. Wang, J.J. Wang, A cooperative coevolution algorithm for
multi-objective fuzzy distributed hybrid flow shop, Knowl.-Based Syst. 194
(2020) 105536.

[13] J.C. Cai, R. Zhou, D.M. Lei, Dynamic shuffled frog-leaping algorithm for
distributed hybrid flow shop scheduling with multiprocessor tasks, Eng.
Appl. Artif. Intell. 90 (2020).

[14] W.S. Shao, Z.S. Shao, D.C. Pi, Multi-objective evolutionary algorithm based
on multiple neighborhoods local search for multi-objective distributed
hybrid flow shop scheduling problem, Expert Syst. Appl. 183 (2021).

[15] C.Y. Hsu, B.R. Kao, V.L. Ho, K.R. Lai, Agent-based fuzzy constraint-directed
negotiation mechanism for distributed job shop scheduling, Eng. Appl.
Artif. Intell. 53 (2016) 140–154.

[16] E.D. Jiang, L. Wang, Z.P. Peng, Solving energy-efficient distributed job shop
scheduling via multi-objective evolutionary algorithm with decomposition,
Swarm Evol. Comput. 58 (2020) 100745.

[17] M.A. Şahman, A discrete spotted hyena optimizer for solving distributed
job shop scheduling problems, Appl. Soft Comput. 106 (2021) 107349.

[18] H.-C. Chang, T.-K. Liu, Optimisation of distributed manufacturing flexible
job shop scheduling by using hybrid genetic algorithms, J. Intell. Manuf.
28 (2015) 1973–1986.

[19] Q. Luo, Q.W. Deng, G.L. Gong, L.K. Zhang, W.W. Han, K.X. Li, An efficient
memetic algorithm for distributed flexible job shop scheduling problem
with transfers, Expert Syst. Appl. 160 (2020) 113721.

[20] S. Hatami, R. Ruiz, C. Andres-Romano, The distributed assembly per-
mutation flowshop scheduling problem, Int. J. Prod. Res. 51 (2013)
5292–5308.

[21] S. Hatami, R. Ruiz, C. Andres-Romano, Heuristics and metaheuristics for
the distributed assembly permutation flowshop scheduling problem with
sequence dependent setup times, Int. J. Prod. Econ. 169 (2015) 76–88.

[22] S.Y. Wang, L. Wang, An estimation of distribution algorithm-based memetic
algorithm for the distributed assembly permutation flow-shop scheduling
problem, IEEE Trans. Syst. Man, Cybern. 46 (2016) 139–149.

[23] J. Lin, S. Zhang, An effective hybrid biogeography-based optimization
algorithm for the distributed assembly permutation flow-shop scheduling
problem, Comput. Ind. Eng. 97 (2016) 128–136.

[24] J. Lin, Z.J. Wang, X.D. Li, A backtracking search hyper-heuristic for the
distributed assembly flow-shop scheduling problem, Swarm Evol. Comput.
36 (2017) 124–135.

[25] Q.K. Pan, L. Gao, X.Y. Li, F.M. Jose, Effective constructive heuristics
and meta-heuristics for the distributed assembly permutation flowshop
scheduling problem, Appl. Soft Comput. 81 (2019) 105492.

[26] H.Y. Sang, Q.K. Pan, J.Q. Li, P. Wang, Y.Y. Han, K.Z. Gao, P. Duan, Effective
invasive weed optimization algorithms for distributed assembly permuta-
tion flowshop problem with total flowtime criterion, Swarm Evol. Comput.
44 (2019) 64–73.

[27] Z.Q. Zhang, B. Qian, R. Hu, H.P. Jin, L. Wang, A matrix-cube-based esti-
mation of distribution algorithm for the distributed assembly permutation
flow-shop scheduling problem, Swarm Evol. Comput. 60 (2021) 100785.
29
[28] Z.S. Shao, W.S. Shao, D.C. Pi, Effective constructive heuristic and meta-
heuristic for the distributed assembly blocking flow-shop scheduling
problem, Appl. Intell. 50 (2020) 4647–4669.

[29] Y.H. Yang, X. Li, A knowledge-driven constructive heuristic algorithm for
the distributed assembly blocking flow shop scheduling problem, Expert
Syst. Appl. 202 (2022).

[30] F.Q. Zhao, D.Q. Shao, L. Wang, T.P. Xu, N.N. Zhu, Jonrinaldi, An effec-
tive water wave optimization algorithm with problem-specific knowledge
for the distributed assembly blocking flow-shop scheduling problem,
Knowl.-Based Syst. 243 (2022) 108471.

[31] F.Q. Zhao, S.L. Di, L. Wang, T.P. Xu, N.N. Zhu, Jonrinaldi, A self-learning
hyper-heuristic for the distributed assembly blocking flow shop scheduling
problem with total flowtime criterion, Eng. Appl. Artif. Intell. 116 (2022).

[32] X. Wu, X. Liu, N. Zhao, An improved differential evolution algorithm
for solving a distributed assembly flexible job shop scheduling problem,
Memet. Comput. 11 (2018) 335–355.

[33] F.Q. Zhao, J.L. Zhao, L. Wang, J.X. Tang, An optimal block knowledge driven
backtracking search algorithm for distributed assembly No-wait flow shop
scheduling problem, Appl. Soft Comput. 112 (2021).

[34] F. Zhao, X. Hu, L. Wang, T. Xu, N. Zhu, Jonrinaldi, A reinforcement learning-
driven brain storm optimisation algorithm for multi-objective energy-
efficient distributed assembly no-wait flow shop scheduling problem, Int.
J. Prod. Res. 61 (2022) 2854–2872.

[35] H.H. Miyata, M.S. Nagano, The blocking flow shop scheduling problem:
A comprehensive and conceptual review, Expert Syst. Appl. 137 (2019)
130–156.

[36] J.M. Framinan, P. Perez-Gonzalez, V. Fernandez-Viagas, Deterministic
assembly scheduling problems: A review and classification of concurrent-
type scheduling models and solution procedures, European J. Oper. Res.
273 (2019) 401–417.

[37] J. Branke, S. Nguyen, C.W. Pickardt, M.J. Zhang, Automated design of
production scheduling heuristics: A review, IEEE Trans. Evol. Comput. 20
(2016) 110–124.

[38] J.A. Soria-Alcaraz, G. Ochoa, M.A. Sotelo-Figeroa, E.K. Burke, A method-
ology for determining an effective subset of heuristics in selection
hyper-heuristics, European J. Oper. Res. 260 (2017) 972–983.

[39] M. Alinia Ahandani, M.T. Vakil Baghmisheh, M.A. Badamchi Zadeh, S.
Ghaemi, Hybrid particle swarm optimization transplanted into a hyper-
heuristic structure for solving examination timetabling problem, Swarm
Evol. Comput. 7 (2012) 21–34.

[40] S.N. Chaurasia, J.H. Kim, An evolutionary algorithm based hyper-heuristic
framework for the set packing problem, Inform. Sci. 505 (2019) 1–31.

[41] W. Qin, Z.L. Zhuang, Z.Z. Huang, H.Z. Huang, A novel reinforcement
learning-based hyper-heuristic for heterogeneous vehicle routing problem,
Comput. Ind. Eng. 156 (2021) 107252.

[42] J.J. Ji, Y.N. Guo, X.Z. Gao, D.W. Gong, Y.P. Wang, Q-learning-based
hyperheuristic evolutionary algorithm for dynamic task allocation of
crowdsensing, IEEE Trans. Cybern. 53 (2023) 2211–2224.

[43] J. Lin, Y.-Y. Li, H.-B. Song, Semiconductor final testing scheduling using
Q-learning based hyper-heuristic, Expert Syst. Appl. 187 (2022) 115978.

[44] S. Mahmud, A. Abbasi, R.K. Chakrabortty, M.J. Ryan, A self-adaptive
hyper-heuristic based multi-objective optimisation approach for integrated
supply chain scheduling problems, Knowl.-Based Syst. 251 (2022) 109190.

[45] L.X. Cheng, Q.H. Tang, L.P. Zhang, Z.K. Zhang, Multi-objective Q-learning-
based hyper-heuristic with Bi-criteria selection for energy-aware mixed
shop scheduling, Swarm Evol. Comput. 69 (2022) 100985.

[46] Q.Z. Xiao, J.H. Zhong, L. Feng, L.B. Luo, J.M. Lv, A cooperative coevolution
hyper-heuristic framework for workflow scheduling problem, IEEE Trans.
Serv. Comput. 15 (2022) 150–163.

[47] C.C. Wu, D.Y. Bai, J.H. Chen, W.C. Lin, L.N. Xing, J.C. Lin, S.R. Cheng, Sev-
eral variants of simulated annealing hyper-heuristic for a single-machine
scheduling with two-scenario-based dependent processing times, Swarm
Evol. Comput. 60 (2021) 100765.

[48] J. Lin, L. Zhu, K.Z. Gao, A genetic programming hyper-heuristic approach
for the multi-skill resource constrained project scheduling problem, Expert
Syst. Appl. 140 (2020) 112915.

[49] L. Zhu, J. Lin, Y.Y. Li, Z.J. Wang, A decomposition-based multi-objective
genetic programming hyper-heuristic approach for the multi-skill resource
constrained project scheduling problem, Knowl.-Based Syst. 225 (2021)
107099.

[50] H.J. Chen, G.F. Ding, S.F. Qin, J. Zhang, A hyper-heuristic based ensemble
genetic programming approach for stochastic resource constrained project
scheduling problem, Expert Syst. Appl. 167 (2021) 114174.

[51] H.L. Fan, H.G. Xiong, M. Goh, Genetic programming-based hyper-heuristic
approach for solving dynamic job shop scheduling problem with extended
technical precedence constraints, Comput. Oper. Res. 134 (2021) 105401.

[52] J. Park, Y. Mei, S. Nguyen, G. Chen, M.J. Zhang, An investigation of
ensemble combination schemes for genetic programming based hyper-
heuristic approaches to dynamic job shop scheduling, Appl. Soft Comput.
63 (2018) 72–86.

http://refhub.elsevier.com/S1568-4946(23)00713-5/sb1
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb1
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb1
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb2
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb2
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb2
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb2
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb2
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb3
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb3
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb3
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb4
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb4
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb4
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb4
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb4
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb5
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb5
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb5
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb5
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb5
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb6
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb6
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb6
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb6
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb6
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb7
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb7
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb7
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb7
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb7
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb8
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb8
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb8
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb8
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb8
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb9
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb9
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb9
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb9
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb9
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb10
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb10
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb10
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb10
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb10
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb11
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb11
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb11
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb11
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb11
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb12
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb12
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb12
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb12
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb12
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb13
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb13
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb13
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb13
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb13
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb14
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb14
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb14
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb14
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb14
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb15
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb15
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb15
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb15
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb15
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb16
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb16
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb16
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb16
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb16
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb17
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb17
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb17
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb18
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb18
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb18
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb18
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb18
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb19
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb19
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb19
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb19
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb19
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb20
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb20
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb20
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb20
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb20
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb21
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb21
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb21
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb21
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb21
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb22
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb22
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb22
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb22
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb22
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb23
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb23
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb23
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb23
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb23
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb24
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb24
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb24
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb24
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb24
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb25
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb25
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb25
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb25
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb25
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb26
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb26
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb26
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb26
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb26
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb26
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb26
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb27
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb27
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb27
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb27
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb27
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb28
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb28
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb28
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb28
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb28
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb29
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb29
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb29
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb29
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb29
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb30
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb30
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb30
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb30
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb30
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb30
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb30
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb31
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb31
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb31
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb31
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb31
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb32
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb32
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb32
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb32
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb32
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb33
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb33
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb33
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb33
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb33
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb34
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb34
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb34
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb34
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb34
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb34
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb34
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb35
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb35
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb35
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb35
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb35
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb36
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb36
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb36
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb36
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb36
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb36
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb36
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb37
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb37
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb37
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb37
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb37
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb38
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb38
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb38
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb38
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb38
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb39
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb39
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb39
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb39
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb39
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb39
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb39
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb40
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb40
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb40
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb41
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb41
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb41
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb41
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb41
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb42
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb42
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb42
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb42
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb42
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb43
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb43
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb43
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb44
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb44
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb44
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb44
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb44
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb45
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb45
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb45
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb45
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb45
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb46
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb46
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb46
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb46
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb46
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb47
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb47
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb47
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb47
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb47
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb47
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb47
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb48
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb48
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb48
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb48
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb48
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb49
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb49
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb49
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb49
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb49
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb49
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb49
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb50
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb50
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb50
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb50
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb50
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb51
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb51
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb51
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb51
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb51
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb52
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb52
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb52
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb52
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb52
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb52
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb52

Z.-Q. Zhang, B. Qian, R. Hu et al. Applied Soft Computing 146 (2023) 110695
[53] J. Lin, Backtracking search based hyper-heuristic for the flexible job-shop
scheduling problem with fuzzy processing time, Eng. Appl. Artif. Intell. 77
(2019) 186–196.

[54] S. Asta, D. Karapetyan, A. Kheiri, E. Ozcan, A.J. Parkes, Combining
Monte-Carlo and hyper-heuristic methods for the multi-mode resource-
constrained multi-project scheduling problem, Inform. Sci. 373 (2016)
476–498.

[55] M.A. Lopes Silva, S.R. de Souza, M.J. Freitas Souza, A.L.C. Bazzan, A
reinforcement learning-based multi-agent framework applied for solving
routing and scheduling problems, Expert Syst. Appl. 131 (2019) 148–171.

[56] Q. Wang, C. Tang, Deep reinforcement learning for transportation network
combinatorial optimization: A survey, Knowl.-Based Syst. 233 (2021)
107526.

[57] A. Turky, N.R. Sabar, S. Dunstall, A. Song, Hyper-heuristic local search
for combinatorial optimisation problems, Knowl.-Based Syst. 205 (2020)
106264.

[58] E.K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, R. Qu,
Hyper-heuristics: a survey of the state of the art, J. Oper. Res. Soc. 64
(2017) 1695–1724.

[59] J.H. Drake, A. Kheiri, E. Ozcan, E.K. Burke, Recent advances in selection
hyper-heuristics, European J. Oper. Res. 285 (2020) 405–428.

[60] E. Kieffer, G. Danoy, M.R. Brust, P. Bouvry, A. Nagih, Tackling large-
scale and combinatorial bi-level problems with a genetic programming
hyper-heuristic, IEEE Trans. Evol. Comput. 24 (2020) 44–56.

[61] H.B. Song, J. Lin, A genetic programming hyper-heuristic for the distributed
assembly permutation flow-shop scheduling problem with sequence
dependent setup times, Swarm Evol. Comput. 60 (2021) 100807.

[62] N.R. Sabar, M. Ayob, G. Kendall, R. Qu, Automatic design of a hyper-
heuristic framework with gene expression programming for combinatorial
optimization problems, IEEE Trans. Evol. Comput. 19 (2015) 309–325.

[63] N.R. Sabar, G. Kendall, Population based Monte Carlo tree search hyper-
heuristic for combinatorial optimization problems, Inform. Sci. 314 (2015)
225–239.

[64] N.R. Sabar, M. Ayob, G. Kendall, R. Qu, A dynamic multiarmed bandit-gene
expression programming hyper-heuristic for combinatorial optimization
problems, IEEE T. Cybern. 45 (2015) 217–228.

[65] S. Asta, E. Ozcan, T. Curtois, A tensor based hyper-heuristic for nurse
rostering, Knowl.-Based Syst. 98 (2016) 185–199.
30
[66] K.Z. Zamli, B.Y. Alkazemi, G. Kendall, A Tabu Search hyper-heuristic
strategy for t-way test suite generation, Appl. Soft Comput. 44 (2016)
57–74.

[67] S.S. Choong, L.P. Wong, C.P. Lim, Automatic design of hyper-heuristic based
on reinforcement learning, Inform. Sci. 436 (2018) 89–107.

[68] F. Zhao, S. Di, L. Wang, A hyperheuristic with Q-learning for the multiob-
jective energy-efficient distributed blocking flow shop scheduling problem,
IEEE Trans. Cybern. 53 (2023) 3337–3350.

[69] M.F. Tasgetiren, D. Kizilay, Q.K. Pan, P.N. Suganthan, Iterated greedy
algorithms for the blocking flowshop scheduling problem with makespan
criterion, Comput. Oper. Res. 77 (2017) 111–126.

[70] Q.K. Pan, L. Wang, Effective heuristics for the blocking flowshop scheduling
problem with makespan minimization, Omega-Int. J. Manage. S. 40 (2012)
218–229.

[71] I. Ribas, R. Companys, X. Tort-Martorell, Efficient heuristics for the parallel
blocking flow shop scheduling problem, Expert Syst. Appl. 74 (2017)
41–54.

[72] I. Ribas, R. Companys, X. Tort-Martorell, An efficient Discrete Artificial Bee
Colony algorithm for the blocking flow shop problem with total flowtime
minimization, Expert Syst. Appl. 42 (2015) 6155–6167.

[73] B. Qian, Z.-Q. Zhang, R. Hu, H.-P. Jin, J.-B. Yang, A matrix-cube-based
estimation of distribution algorithm for no-wait flow-shop scheduling with
sequence-dependent setup times and release times, IEEE Trans. Syst. Man,
Cybern. 53 (2023) 1492–1503.

[74] D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons,
2008.

[75] Z.Q. Zhang, R. Hu, B. Qian, H.P. Jin, L. Wang, J.B. Yang, A matrix cube-based
estimation of distribution algorithm for the energy-efficient distributed
assembly permutation flow-shop scheduling problem, Expert Syst. Appl.
194 (2022).

[76] Z.Q. Zhang, B. Qian, R. Hu, H.P. Jin, L. Wang, J.B. Yang, A matrix-cube-based
estimation of distribution algorithm for blocking flow-shop scheduling
problem with sequence-dependent setup times, Expert Syst. Appl. 205
(2022) 117602.

[77] F.L. Xiong, K.Y. Xing, F. Wang, H. Lei, L.B. Han, Minimizing the total
completion time in a distributed two stage assembly system with setup
times, Comput. Oper. Res. 47 (2014) 92–105.

[78] J. Deng, L. Wang, S.-y. Wang, X.-l. Zheng, A competitive memetic algorithm
for the distributed two-stage assembly flow-shop scheduling problem, Int.
J. Prod. Res. 54 (2015) 3561–3577.

http://refhub.elsevier.com/S1568-4946(23)00713-5/sb53
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb53
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb53
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb53
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb53
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb54
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb54
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb54
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb54
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb54
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb54
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb54
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb55
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb55
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb55
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb55
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb55
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb56
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb56
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb56
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb56
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb56
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb57
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb57
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb57
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb57
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb57
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb58
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb58
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb58
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb58
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb58
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb59
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb59
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb59
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb60
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb60
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb60
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb60
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb60
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb61
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb61
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb61
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb61
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb61
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb62
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb62
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb62
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb62
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb62
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb63
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb63
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb63
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb63
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb63
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb64
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb64
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb64
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb64
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb64
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb65
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb65
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb65
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb66
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb66
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb66
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb66
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb66
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb67
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb67
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb67
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb68
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb68
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb68
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb68
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb68
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb69
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb69
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb69
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb69
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb69
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb70
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb70
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb70
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb70
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb70
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb71
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb71
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb71
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb71
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb71
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb72
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb72
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb72
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb72
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb72
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb73
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb73
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb73
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb73
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb73
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb73
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb73
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb74
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb74
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb74
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb75
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb75
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb75
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb75
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb75
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb75
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb75
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb76
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb76
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb76
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb76
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb76
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb76
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb76
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb77
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb77
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb77
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb77
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb77
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb78
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb78
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb78
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb78
http://refhub.elsevier.com/S1568-4946(23)00713-5/sb78

	Q-learning-based hyper-heuristic evolutionary algorithm for the distributed assembly blocking flowshop scheduling problem
	Introduction
	Literature review
	Related Work on the DSSPs
	Related Work on the DAPFSP
	Related Work on the HHAs

	Problem statement
	Speedup strategies for evaluating solutions
	Product insertion-based speedup strategy
	Job insertion-based speedup strategy

	Constructive heuristic
	Q-learning-based hyper-heuristic evolutionary algorithm
	Encoding and decoding schemes
	Low-level heuristics
	Q-learning-based high-level strategy
	The framework of QLHHEA

	Experimental results and statistical analysis
	Experimental setup
	Parameter calibration
	Comparison of high-level strategies with other HHAs
	Performance analysis of improvement strategies
	Comparison of QLHHEA and state-of-the-art algorithms

	Discussion
	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

