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A B S T R A C T   

The blocking flow-shop scheduling problem with sequence-dependent setup times (BFSP_SDST) is a strong NP- 
hard problem that exists widely in practice. However, research on this issue is still quite limited. Hence, this 
paper presents a novel matrix-cube-based estimation of distribution algorithm (MCEDA) to minimize the 
makespan criterion of the BFSP_SDST. In MCEDA’s global search, a matrix cube is devised to reasonably learn the 
promising patterns in excellent solutions or individuals, and then a matrix-cube-based probabilistic model is 
developed to quickly guide global search toward the potential promising regions in solution space. A diversity 
controlling mechanism is also added to avoid the stagnation of global search. In MCEDA’s local search, an 
iterated multi-neighborhood local search controlled by the probabilistic model in global search is designed to 
execute deeper exploitation from those promising regions. Additionally, two constructive heuristics for gener
ating high-quality initial individuals and one fast Insert-based neighbor evaluation method for accelerating the 
efficiency of local search are presented based on an analysis of the problem’s features. MCEDA’s efficacy and 
superiority in solving the BFSP SDST are demonstrated through comprehensive comparisons with 22 state-of-the- 
art algorithms.   

1. Introduction 

Production scheduling has been recognized as a realistic and reliable 
decision-making approach for allocating restricted resources within a 
certain time period in order to achieve one or more decision-maker- 
defined objectives (Pinedo, 2015). As a hot research topic in the field 
of production scheduling, the flow-shop scheduling problem (FSP) has a 
wide range of applications in numerous manufacturing systems, pro
duction and assembly lines, and information service facilities. For the 
typical FSP, it is commonly assumed that there are infinitely storage 
facilities or buffer units between any two adjacent machines, where 
finished jobs can be stored in these buffer units for an unlimited amount 
of time. However, in many real-world manufacturing situations, due to 
production characteristics and technical constraints, there are usually no 
intermediate storage units between machines (Grabowski & Pempera, 
2007). In this sense, the traditional FSP is converted into the blocking 

FSP (BFSP), which is a typical NP-hard problem in the strong sense (Hall 
and Sriskandarajah, 1996; Ronconi & Henriques, 2009; Wang, et al., 
2010). As a significant subfield of FSP, BFSP has attracted the consid
erable attention and interest from both researchers and practitioners in 
recent decades. A wide variety of real-world industrial processes and 
manufacturing systems can be modeled as the BFSP, such as chemical 
and pharmaceutical manufacturing (Ronconi, 2004), iron and steel 
manufacturing (Gong, et al., 2010), robotic cells (Elmi & Topaloglu, 
2013), serial manufacturing processes (Koren, et al., 2017), and waste 
treatment (Riahi, et al., 2017). Nowadays, the BFSP has garnered the 
tremendous attention and interest of both researchers and practitioners 
(see Section 2). 

Setup time is prevalent in a variety of real-life manufacturing sys
tems. In many factories, setup time is frequently derived from non- 
productive activities such as cleaning devices, adjusting equipment, 
switching machines, repairing or releasing jobs, especially in chemical 
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or pharmaceutical plants. Although in almost all the existing research 
works related to BFSPs, it is usually assumed that the setup time is 
negligible or included in processing time, however, substantial setup 
times should be separable (Shao, et al., 2018b). Nevertheless, the 
improper handling of setup operations may result in the consumption of 
more than 20% of the available machine capacity (Pinedo, 2015). To the 
best of our knowledge, there are still very few works on BFSP that 
involve setup time, especially for sequence-dependent setup times 
(SDST) (Shao, et al., 2018b). Therefore, this paper investigates an 
extension of the BFSP, namely the BFSP with SDST (BFSP_SDST), whose 
criterion is to minimize makespan (i.e., Cmax). The SDST indicates that 
the setup time of each job on each machine depends not only on the job 
itself but also on its immediately preceding job. According to the widely 
used three-field notation α|β|γ proposed by Graham, et al. (1979), the 
BFSP under the makespan criterion and the studied problem herein can 
be denoted as Fm|blocking|Cmax and Fm|blocking,STsd|Cmax, respectively. 
Since Fm|blocking|Cmax is already recognized as strongly NP-hard, and it 
is obviously reduced to Fm|blocking,STsd|Cmax, it can be concluded that 
Fm|blocking, STsd|Cmax is also NP-hard in the strong sense. 

For the NP-hard scheduling problems, existing mathematical algo
rithms are often of limited use due to their excessive computation time 
or poor performance under reasonable runtime. Hence, numerous 
hybrid intelligent optimization algorithms (HIOAs) have been devel
oped to tackle this issue, aiming to achieve satisfactory solutions for a 
wide variety of traditional scheduling problems within several seconds 
or tens of seconds. Among these algorithms, the hybrid estimation of 
distribution algorithm (HEDA) is a unique one. Unlike the crossover and 
mutation operators in most existing HIOAs (e.g., hybrid genetic algo
rithm, hybrid particle swarm optimization algorithm, hybrid differential 
evolution algorithm), HEDA generates the offspring population by 
sampling an EDA-based probability model, which can learn and accu
mulate valuable information about excellent individuals from a macro 
perspective, as well as establish explicit probability models to effectively 
estimate the distribution of superior solutions and to predict promising 
regions in the feasible solution space. To a certain extent, such novel 
population generation mechanism can avoid the destruction of the 
blocks (i.e., the partial ordered patterns) in excellent individuals or so
lutions to a certain extent (Larranga & Lozano, 2001). Due to its stronger 
global exploration, simpler framework, and faster convergence speed, 
HEDA has been widely utilized to solve various scheduling problems 
(Faraji Amiri & Behnamian, 2020; Jarboui, et al., 2009; Pan & Ruiz, 
2012; Qian, et al., 2017; Wang, et al., 2014; Wang, et al., 2013; Wu, 
et al., 2021). These successful applications have indicated that HEDA 
has considerable competitive advantage against other algorithms. 
Therefore, HEDA is selected as the main framework of our proposed 
algorithm for Fm|blocking,STsd|Cmax. 

Unfortunately, the majority of currently available HEDAs have two 
drawbacks. The first drawback is that most existing HEDAs commonly 
use one or more two-dimensional probabilistic models or matrices to 
learn the characteristic information of excellent individuals. The struc
ture of two-dimensional matrix directly determines that only the 
matrix’s elements and the subscripts of these elements can be utilized to 
store information. For the two-dimensional matrix Mn×n, its element 
Mn×n(x, y) is used to record the occurrence frequency of the block [x, y] in 
excellent individuals, while the subscript (x, y) is only enough to save 
the information of one block’s structure or pattern. There is no extra 
space to record the position of this block [x, y] in each corresponding 
excellent individual. This makes it difficult for two-dimensional proba
bilistic models to correctly guide the search direction, so that the prac
tical performance of the existing HEDAs is relatively limited (see 
Subsection 4.2.1). The second drawback is that almost all existing 
HEDAs and other HIOAs lack substantive interaction between their 
global and local searches. In each of these algorithms, the local search 
can only execute the neighborhood exploitation by using a very limited 
number of pre-defined common neighborhood operators (e.g., Insert, 
Swap, and Interchange). The lack of global exploration information to 

assist the local search undoubtedly limits the depth of the local search, 
resulting in the algorithm’s overall practical performance being con
strained. To overcome the aforementioned defects, a novel matrix-cube- 
based HEDA, namely MCEDA, is proposed to address the considered 
problem. 

The main characteristics of our MCEDA are summarized as follows. 

• A three-dimensional matrix (i.e., matrix cube) is devised to reason
ably record and reserve the valuable patterns in excellent individuals 
or solutions. For a three-dimensional matrix, the z in its subscript (x,
y, z) is used to record the position of job block [x, y] in the corre
sponding excellent solutions. Meanwhile, a matrix-cube-based 
probabilistic model with a sampling strategy is developed to esti
mate the distribution of excellent solutions in solution space and 
correctly guide global search to promising regions. Moreover, a 
simple diversity controlling mechanism is designed to avoid the 
stagnation of global search.  

• Different from most existing HIOA’s local searches that execute local 
search independently, a new iterated multi-neighborhood local 
search controlled by the matrix-cube-based probabilistic model in 
global search is presented to undertake deeper exploitation from 
those promising regions. This novel local search utilizes the block 
patterns saved in the probability model to approximately evaluate 
neighbors and dynamically create promising neighborhoods for 
performing fast and rich search.  

• Based on the problem’s characteristics, two effective constructive 
heuristics are designed to ensure the quality and diversity of the 
initial population. Meanwhile, a fast Insert-based neighbor evalua
tion method is presented to improve search efficiency.  

• The proposed MCEDA is compared against twenty-two state-of-the- 
art algorithms on different instances. The statistical results demon
strate the efficacy and superiority of MCEDA. 

The remainder of this paper is organized as follows. Section 2 briefly 
reviews the related literature. Section 3 describes the model of the 
problem. Section 4 presents MCEDA after explaining two effective 
heuristics for initialization, the matrix cube based global search, and the 
probabilistic model controlled local search. The comparison results and 
statistical analysis are provided in Section 5. Finally, Section 6 gives 
some concluding remarks and suggestions for future research. 

2. Literature review of BFSP and BFSP_SDST 

The comprehensive review of the BFSP can be found in (Miyata & 
Nagano, 2019). Since 2010, there have been mainly three types of al
gorithms for the BFSP. 

The first is the HIOA. The existing studies have mainly concentrated 
on minimizing the makespan criterion. Wang, et al. (2010) presented a 
hybrid discrete differential evolution (HDDE), in which a speedup 
method was utilized to evaluate the Insert-based neighbor solutions. The 
test results showed that HDDE outperformed the famous tabu search 
(TS) algorithm (Grabowski & Pempera, 2007). Wang, et al. (2011) 
developed a hybrid modified global-best harmony search (hmgHS), 
which performed better than HGA (Wang, et al., 2011) and TS (Gra
bowski & Pempera, 2007). Wang, et al. (2012) devised a three-phase 
algorithm (TPA), in which a priority rule, a NEH’s variant, and a 
modified simulated annealing are utilized in three phases, respectively. 
The comparative results demonstrated that TPA was relatively more 
efficient than HDDE (Wang, et al., 2010). Lin and Ying (2013) proposed 
a revised artificial immune system (RAIS) algorithm, where a simple 
iterated greedy algorithm (IGA) was embedded to intensively exploit 
around the better solutions. The test results indicated that the RAIS was 
superior to both HDDE (Wang, et al., 2010) and IGA (Ribas, et al., 2011). 
Han, et al. (2015) designed a discrete artificial bee colony algorithm 
incorporating differential evolution (DE_ABC). The test results demon
strated that DE_ABC was superior to the compared algorithms. 
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Tasgetiren, et al. (2015) presented a populated local search with dif
ferential evolution (DE_PLS). The test results showed that DE_PLS per
formed better than some of the best performing algorithms from the 
literature. Han, et al. (2016) introduced a modified fruit fly optimization 
(MFFO) algorithm, in which a problem-specific heuristic, a neighbor
hood strategy, and a speedup insert-neighborhood based local search are 
employed. Shao, et al. (2018a) developed an EDA with a path relinking 
technique (P-EDA). The path relinking technique here is utilized to 
avoid performing the blind search. The results compared with various 
other high-performing algorithms verified the effectiveness of P-EDA. 
Shao, et al. (2019) proposed a discrete invasive weed optimization 
(DIWO), in which a random-insertion-based spatial dispersal, a shuffle- 
based referenced local search, and an improved competitive exclusion 
are devised. The results demonstrated that DIWO outperformed the 
compared algorithms. Besides the makespan minimization, Ribas, et al. 
(2015) devised an effective discrete artificial bee colony algorithm 
(DABC_RCT) for minimizing the total flowtime criterion. Shao, et al. 
(2017) presented a self-adaptive discrete invasive weed optimization 
(SaDIWO), and Nagano, et al. (2017) designed an evolutionary clus
tering search (ECS) algorithm to minimize the total tardiness criterion. 

The second is the constructive heuristic. As for the makespan mini
mization, Pan and Wang (2012) introduced six effective heuristics, 
namely PF-NEH(x), wPF-NEH(x), PW-NEH(x), PF-NEHLS(x), wPF- 
NEHLS(x), and PW-NEHLS(x), in which the variable x is employed to 
control the number of sequences generated. The test results demon
strated that PW-NEHLS(5) beat NEH (Nawaz, et al., 1983), MME (Ron
coni, 2004), and PFE (Ronconi, 2004). As for the total flowtime 
minimization, Tasgetiren, et al. (2016) developed a variable block 
insertion heuristic (VBIH), and Fernandez-Viagas, et al. (2016) proposed 
an effective beam-search- based heuristic (BSH). 

The third is the iterated greedy algorithm (IGA). As for the makespan 
minimization, Tasgetiren, et al. (2017) devised two enhanced IGAs, i.e., 
iterated greedy with jumping probability (IG_IJ) and iterated greedy 
with RIS local search (IG_RIS), which combined an effective constructive 
heuristic and employed two speedup methods for the insert-based and 
swap-based neighborhood searches, respectively. Extensive experi
mental results demonstrated that the devised algorithms achieved better 
results than most state-of-the-art algorithms. Ribas, et al. (2013) pro
posed two competitive variable neighborhood search methods (namely 
SVNS_S and SVNS_D). The experimental results revealed that SVNS 
outperformed both HDDE (Wang, et al., 2010) and IGA (Ribas, et al., 
2011). Moslehi and Khorasanian (2014) developed a hybrid variable 
neighborhood search (HVNS), whose performance surpassed several 
state-of-the-art algorithms. As for the total flowtime minimization, 
Khorasanian and Moslehi (2012) presented an IGA, in which a modified 
NEH was employed to generate the initial solution. Ding, et al. (2016) 
investigated several properties of the BFSP and presented an IGA based 
on these problem-specific properties. 

Recently, several researchers studied the BFSP_SDST and the other 
BFSP’s variants, and they all adopted HIOA to address the corresponding 
problems. Shao, et al. (2018b) devised a novel discrete water wave 
optimization (DWWO) to minimize the makespan of the BFSP_SDST. In 
DWWO, a path relinking technique and a variable neighborhood search 
(VNS) are employed to further improve the algorithm’s performance. 
The test results indicated that DWWO defeated several highly effective 
algorithms. Nouri and Ladhari (2018) introduced a multi-objective ge
netic algorithm (MBGA) for the BFSP that considers minimizing both the 
makespan and the total completion time. Gong, et al. (2018) developed a 
hybrid artificial bee colony (HABC) to minimize the makespan and the 
earliness of the lot-streaming BFSP. Han, et al. (2019) designed a robust 
multi-objective evolutionary algorithm to minimize the makespan, the 
tardiness and the robustness of the lot-streaming BFSP with machine 
breakdowns. Han, et al. (2020) presented an effective multi-objective 
discrete evolutionary optimization (MDEO) to minimize the makespan 
and the energy consumption of the energy-efficient BFSP_SDST. Ribas, 
et al. (2021) proposed an enhanced IGA to minimize the makespan of the 

parallel BFSP_SDST. Shao, et al. (2021) devised an effective constructive 
heuristic and an IGA to minimize the makespan of the distributed mixed 
BFSP. Zhao, et al. (2022) developed an effective water wave optimiza
tion to minimize the total tardiness of the distributed assembly BFSP. 

From the above literature, it can be seen that although researchers 
have undertaken much research on the BFSP and its variants, only Shao, 
et al. (2018b) considers the SDST in the BFSP. Thus, it is necessary and 
meaningful to consider such a significant problem. 

3. Problem statement 

3.1. permutation-based model 

The BFSP_SDST can be briefly described as follows. There are n jobs 
and m machines in a flow shop without intermediate buffers. Each job 
Ji ∈ J has a sequence of operations {Oi,1,Oi,2, ...,Oi,m} to be processed 
sequentially on machine M1, M2, and so on until machine Mm. The 
operation Oi,j of job Ji should be executed on machine Mj with a period of 
processing time pi,j. Since there are no buffers between consecutive 
machines and each machine has to take some time to prepare before 
processing, jobs that have completed all operations must remain on the 
current machine if the downstream machine is not free or not prepared 
for processing. Setup times are considered sequence-dependent and 
separable from processing times. In addition, the following assumptions 
must be met:  

• The processing time of each job on each machine is a positive integer 
and predetermined.  

• The release time and transportation time of all jobs are negligible. All 
jobs are independent and available from zero onwards.  

• At any time, each job can be processed on at most one machine, and 
each machine can only process at most one job. 

• Preemption is not permitted. Each job is processed without inter
ruption on each machine. 

The related notations are provided in Table 1. According to the above 
description, the permutation-based model of BFSP_SDST can be estab
lished as follows. 

dπ(0),j = 0, j = 1, 2, ...,m, (1)  

dπ(i),0 = dπ(i− 1),1 + Sπ(i− 1),π(i),1, i = 1, 2, ..., n, (2)  

Table 1 
Notations applied in the model of BFSP_SDST.  

Parameters  

n The total number of jobs. 
m The total number of machines. 
J The set of jobs, i.e., J = {J1, J2, ..., Jn}. 
M The set of machines, i.e., M = {M1,M2, ...,Mm}. 
Indices  
i The index of jobs (i = 1,2,…,n). 
j The index of machines (j = 1,2,…,m). 
Variables  
π The processing order of jobs, i.e., π = [π(1),π(2), ...,π(n)]. 

π(0) is a dummy job. 
Π The set of all feasible schedules. 
Oi,j The operation corresponding to processing of job Ji on machine Mj . 
pπ(i),j The processing time of operation Oπ(i),j. 
Sπ(i− 1),π(i),j The setup time between two consecutive jobs π(i − 1) and π(i)

on machine Mj. Sπ(0),π(i),j is the initial setup time of job π(i). 
dπ(i),j The departure time of job π(i) on machine Mj. 

dπ(i),0 is the start time of job π(i) on machine M1. 
fπ(i),j The duration time between the starting time of π(i) on Mj 

and the starting time of the last job on the same machine. 
Cmax(π) The makespan of a sequence or schedule π.  
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dπ(i),j = max
{

dπ(i),j− 1 + pπ(i),j, dπ(i− 1),j+1 + Sπ(i− 1),π(i),j+1
}
,

i = 1, 2, ..., n; j = 1, 2, ...,m − 1, (3)  

dπ(i),m = dπ(i),m− 1 + pπ(i),m, i = 1, 2, ..., n, (4)  

Cmax(π) = dπ(n),m. (5) 

Eq. (1) determines the departure time of the dummy job π(0) on all 
machines. Eq. (2) calculates the starting time of each job on the first 
machine. Eq. (3) calculates the departure time of each job on all ma
chines except the last machine. Eq. (4) calculates the departure time or 
completion time of each job on the last machine. Eq. (5) is the maximum 
completion time (i.e., makespan) of π. The aim of Fm|blocking, STsd|Cmax 

is to find an optimal solution π∗ in the schedule set Π such that. 

π∗ = argmin
π∈Π

{Cmax(π)}. (6) 

In contrast to mathematical models of FSPs, the permutation-based 
models have no explicitly expressed constraints. For the permutation- 
based model of BFSP_SDST, the constraints are implicit in Eqs. (1)-(4), 
which stipulate that each job π(i) on the current machine Mj can only 
depart to the next machine Mj+1 under three conditions: (1) the opera
tion Oπ(i),j has been completed, (2) the job π(i + 1) has already departed 
machine Mj+1, and (3) the setup operation between π(i) and π(i + 1) on 
machine Mj+1 has been completed. When a solution π contains different 
jobs, the departure times of these jobs on each machine are determined 
by using Eqs. (1)-(4) and no constraints are violated. Thus, a solution π is 
feasible if and only if all jobs in that solution are different from each 
other. 

In the following proposed MCEDA, both the new population sam
pling strategy in global search (see Section 4.2) and the new neighbor 
generation methods in local search (see Section 4.3) can ensure that the 
jobs in each solution π (i.e., individual or neighbor) are different from 
each other. That is to say, any solution π obtained in MCEDA is always 
feasible. Indeed, the most of existing HIOAs optimize the variables of the 
permutation-based models since researchers using such models can 
concentrate on the design of the algorithm without considering complex 
constraint handling. 

3.2. permutation-based model using backward calculation 

According to the computational reversibility of the permutation- 
based model of FSPs (Tasgetiren, et al., 2017; Wang, et al., 2010), the 
makespan (i.e. Cmax(π)) of the solution π can be computed by traversing 
the solution π in reverse order. The backward calculation is described as 
follows: 

fπ(n),m+1 = 0, (7)  

fπ(n),j = fπ(n),j+1 + pπ(n),j, j = m,m − 1, ..., 2, (8)  

fπ(i),m+1 = fπ(i+1),m + Sπ(i),π(i+1),m,

i = n − 1, ..., 1, 0, (9)  

fπ(i),j = max
{

fπ(i),j+1 + pπ(i),j, fπ(i+1),j− 1 + Sπ(i),π(i+1),j

}
,

i = n − 1, ..., 2, 0; j = m,m − 1, ..., 2,
(10)  

fπ(i),1 = fπ(i),2 + pπ(i),1, i = n, n − 1, ..., 0, (11)  

Cmax(π) = fπ(0),1. (12) 

So, Cmax(π) can be calculated not only forward via Eqs. (1)-(5) but 
also backward via Eqs. (7)-(12) with complexity of O(nm). With Eqs. (7)- 
(12) and Eq. (6), another form of the permutation model of Fm|blocking,
STsd|Cmax can be established. 

Furthermore, for 1⩽i⩽n − 1, it has. 

Cmax(π) = max
j=1,2,...,m

{
dπ(i),j + Sπ(i),π(i+1),j + fπ(i+1),j

}
. (13) 

With Eq. (13), a fast neighbor evaluation method (see Subsection 
4.3.1) can be devised to calculate the objective functions of the solutions 
in the insertion neighborhood for Fm|blocking, STsd|Cmax. This fast 
neighbor evaluation method is adopted to speed up the efficiency in 
MCEDA’s local search. 

3.3. Small numerical example of the forward and backward calculations 

To illustrate the forward and backward calculations, a small example 
with three jobs and three machines is provided. Table 2 shows the 
processing and setup times of jobs. Let the processing order of jobs be 
π = [π(2), π(1), π(3)]. The departure time of each job is determined by 
using Eqs. (1)-(4) as follows: 

dπ(2),0 = dπ(0),1 + Sπ(0),π(2),1 = 3;dπ(2),1 = max {dπ(0),2 + Sπ(0),π(2),2,

dπ(2),0 + pπ(2),1}= 6;dπ(2),2 = max {dπ(0),3 + Sπ(0),π(2),3, dπ(2),1 + pπ(2),2}=

10;dπ(2),3 = dπ(2),2 + pπ(2),3 = 14;dπ(1),0 = dπ(2),1 + Sπ(2),π(1),1 =

9;dπ(1),1 = max {dπ(2),2 + Sπ(2),π(1),2, dπ(1),0 + pπ(1),1}= 13;dπ(1),2 =

max {dπ(2),3 + Sπ(2),π(1),3,dπ(1),1 + pπ(1),2}= 18;dπ(1),3 = dπ(1),2 + pπ(1),3 =

20;dπ(3),0 = dπ(1),1 + Sπ(1),π(3),1 = 15;dπ(3),1 = max {dπ(1),2 + Sπ(1),π(3),2,

dπ(3),0 + pπ(3),1}= 20;dπ(3),2 = max {dπ(1),3 + Sπ(1),π(3),3,dπ(3),1 + pπ(3),2}=

24;dπ(3),3 = dπ(3),2 + pπ(3),3 = 27. 
Then, based on the forward calculation (see Eqs. (1)-(5)), it has 

Cmax(π) = dπ(3),3 = 27. 
According to Eqs. (7)-(11), the duration time of each job in π can be 

computed as follows: 
fπ(3),3 = fπ(3),4 + pπ(3),3 = 3;fπ(3),2 = fπ(3),3 + pπ(3),2 = 5;fπ(3),1 =

fπ(3),2 + pπ(3),1 = 7;fπ(1),4 = fπ(3),3 + Sπ(1),π(3),3 = 7;fπ(1),3 = max {fπ(3),2 +

Sπ(1),π(3),2, fπ(1),4 + pπ(1),3}= 9;fπ(1),2 = max {fπ(3),1 + Sπ(1),π(3),1, fπ(1),3 +

pπ(1),2}= 12;fπ(1),1 = fπ(1),2 + pπ(1),1 = 14;fπ(2),4 = fπ(1),3 + Sπ(2),π(1),3 =

13;fπ(2),3 = max {fπ(1),2 + Sπ(2),π(1),2, fπ(2),4 + pπ(2),3}= 17;fπ(2),2 =

max {fπ(1),1 + Sπ(2),π(1),1, fπ(2),3 + pπ(2),2}= 21;fπ(2),1 = fπ(2),2 + pπ(2),1 =

24;fπ(0),4 = fπ(2),3 + Sπ(0),π(2),3 = 20;fπ(0),3 = max {fπ(2),2 + Sπ(0),π(2),2,

fπ(0),4 + pπ(0),3}= 25;fπ(0),2 = max {fπ(2),1 + Sπ(0),π(2),1, fπ(0),3 + pπ(0),2}=

27;fπ(0),1 = fπ(0),2 + pπ(0),1 = 27. 
Then, based on the backward calculation (see Eqs. (7)-(12)), it has 

Cmax(π) = fπ(0),1 = 27. 
To be more intuitive, we draw Gantt charts illustrating the forward 

and backward calculations in Fig. 1. As shown in Fig. 1, the front delay is 
determined by the first job in π, and the non-processing time of the 
machine includes both the blocking time and idle time. 

Table 2 
Processing and setup times of an example of BFSP_SDST.   

Process time  
Sequence-dependent setup time   

Machine 1  Machine 2  Machine 3  

M1 M2 M3  π(1) π(2) π(3) π(1) π(2) π(3) π(1) π(2) π(3)

π(0) 0 0 0  2 1 4  1 2 3  2 3 3 
π(1) 1 3 2  0 1 2  0 3 1  0 1 4 
π(2) 1 2 1  3 0 4  4 0 2  1 0 1 
π(3) 3 2 1  2 2 0  3 4 0  2 3 0  
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4. MCEDA for BFSP_SDST 

In this section, the matrix-cube-based estimation of distribution al
gorithm (MCEDA) is proposed to address the BFSP_SDST with makespan 
criterion. In the following subsections, the heuristic and initialization, 
the multi-dimensional probabilistic model, the diversity controlling 
mechanism, the multi-neighborhood based local search are firstly 
described in detail, and then the MCEDA’s framework is outlined. 
Meanwhile, the analysis of MCEDA’s computational complexity is 
provided. 

4.1. Heuristic and initialization 

The solution representation has a significant effect on the perfor
mance of HIOAs. As is reported in the literature, the permutation-based 
representation has been widely used for various FSPs (Shao, et al., 2017, 
2018a, 2018b). Therefore, we utilize the permutation-based encoding 
scheme to describe feasible solutions to the BFSP_SDST. Each solution 
corresponds to a specific scheduling scheme for the problem under 
consideration. Note that the quality of the initial population has an 
important impact on the search efficiency of HIOAs. If all initial solu
tions are generated randomly, their quality cannot be guaranteed. 
Conversely, the initial population formed only by constructive heuristics 
may be deficient in diversity and dynamism, resulting in premature 
convergence (Wang, et al., 2010). Some better initial solutions can 
narrow the search scope suitably, especially for the large-scale instances. 
Therefore, the initial population should be constructed with a certain 
quality, i.e., only a few high-quality individuals should be formed via 
heuristics, while the others are generated randomly. To balance quality 
and diversity, the population is initialized by using a hybrid strategy. In 
this section, combining the problem characteristics of BFSP_SDST, the 
PFT_NEH(x) heuristic based on the PFT and NEH heuristics (Tasgetiren, 
et al., 2017) and the PFZ_RZ(x) heuristic based on the PFZ and RZ 
heuristics (Rajendran & Ziegler, 1997) are proposed to generate some 
initial individuals. 

4.1.1. PFT_NEH(x) heuristic 
The NEH heuristic (Nawaz, et al., 1983) is a straightforward but 

pretty powerful constructive heuristic for PFSP and BFSP with makespan 
criterion in the literature (Pan & Wang, 2012; Tasgetiren, et al., 2017; 
Wang, et al., 2010). The basic idea behind the NEH heuristic is that jobs 
with a longer total processing time should be given higher priority. 

However, when blocking constraints are taken into account, providing 
higher priority to jobs with a longer total processing time may result in 
blocking of jobs between machines, yielding in a larger front delay 
(Wang, et al., 2010). With a longer front delay, the total idle and 
blocking times may be increased, resulting in decreased machine utili
zation and increased maximum completion time. Therefore, a suitable 
strategy for the BFSP is to prioritize jobs with both smaller total pro
cessing time and shorter front delay. As illustrated in Fig. 1, when 
determining the priority of jobs, the total idle and blocking times of 
machines, as well as the front delay of jobs, must be considered. 
Numerous studies in the existing literature have shown that after pro
ducing the initial sequence, applying the NEH heuristic (Nawaz, et al., 
1983) may considerably improve the solution quality. Thus, the PF 
heuristic (McCormick, et al., 1989) coupled with the NEH heuristic, i.e., 
PF_NEH(x), is proposed to solve the BFSP with makespan criterion (Pan 
& Wang, 2012). The outline of the PF heuristic is given in Algorithm 1. 
For the PF heuristic, the initial job at the first position in the partial 
sequence is determined by the shortest total processing time. Then, it 
prioritizes the other jobs by using the total idle and blocking times as a 
cost function. However, it is obvious that the front delay of the first job 
cannot be ignored and should be taken into account (Ribas, et al., 2015). 
Tasgetiren, et al. (2017) tackled such issue by extending the PF heuristic 
and developing the PFT heuristic, which is an effective heuristic for 
solving Fm/blocking/Cmax. In this subsection, the PFT heuristic is also 
adapted to address the Fm/blocking,SDSTs/Cmax. In the PFT heuristic, it 
prioritizes the jobs by an indicator I(i) that contains the front delay and 
total processing time. After ascending each job according to I(i), an 
initial sequence of jobs is obtained. The indicator I(i) can be calculated 
by the formula in Eq. (14). 

I(i) =

(
∑m

j=1
(m − j)pi,j

)

⋅
2

m − 1
+
∑m

j=1
pi,j,

i = 1, 2, ..., n.

(14) 

According to Eq. (14), the job with the lowest priority indicator is 
obtained, and such job is chosen as the first job in the initial sequence. 
Then, the rest of the jobs are added to the initial sequence via the cost 
index σi to produce a complete candidate solution. To be specific, let U 
be the set of unscheduled jobs and π̃ = [π̃(1), π̃(2), ..., π̃(i − 1)] be a par
tial sequence containing i − 1 jobs. In order to determine the job π̃(i) at 
the ith position in ̃π, each of the n − i+1 unscheduled jobs is attempted to 
be placed at such position, and the job with the lower cost index value is 

Fig. 1. The Gantt chart of BFSP_SDST with two calculations.  
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placed at the ith position of π̃. The cost index σi is given in Eq. (15). 

σi = (n − i − 2)
∑m

j=1

(
di,j − di− 1,j − pi,j

)
+ di,m (15) 

Obviously, if job π̃(i) is added to the partial sequence π̃ with a min
imum cost index σi, it means that the total idle and blocking time, as well 
as the departure time of job π̃(i) on the last machine, are all minimized. 
Therefore, the PFT heuristic is used to determine an initial feasible so
lution π = [π(1),π(2), ...,π(n)], and the NEH heuristic is used to further 

improve the quality of such solution. Let π̃1
= [π(1), π(2), ..., π(n − λ)]

and π̃2
= [π(n − λ + 1), π(n − λ + 2), ..., π(n)] be two subsequences of π. 

Each job in ̃π2 is extracted and reinserted into all possible positions in ̃π1, 
and the best position for each job extracted in π̃2 is determined and then 
inserted it into π̃1 till a new solution π′ is formed. According to the PF- 
NEH(x) proposed by Pan and Wang (2012), the PFT heuristic that in
corporates the NEH heuristic is denoted as PFT_NEH(x), as detailed in 
Algorithm 2. 

Algorithm 1: Profile fitting (PF)  
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In Algorithm 2, the value of x in the first layer loop directly de
termines the number of solutions obtained in Π, and the value of λ in the 
second loop controls the number of jobs to be inserted by the NEH 
heuristic. Note that the tie-breaking strategy is utilized in both the 
ordering and constructing phases if two jobs with the same I(i) or two 
positions result in the same σi. It is clear that there are (2n − λ+1)λ/2 
partial sequences that need to be calculated in the NEH heuristic of the 
PFT_NEH(x). It should be noted that the fast Insert-based neighbor 
evaluation method explained in Subsection 4.3.1 is employed in the 
NEH heuristic, and its complexity can be reduced from O(mn3) to 
O(mn2). Thus, Algorithm 2 has a total complexity of about O(xmn2). 

4.1.2. PFZ_RZ(x) heuristic 
The RZ heuristic is an effective heuristic proposed by Rajendran and 

Ziegler (1997). As with the PFT heuristic, the RZ heuristic can construct 
a complete solution sequence from a partial sequence by using basic 
insertion neighborhood. However, when the RZ heuristic is used to 
construct a solution, the jobs to be inserted are chosen according to a 
specified reference sequence. Consider two solution sequences 
[3,5,4,1,2] and [1,2,3,4,5], each consisting of five jobs, and assume that 
the former is a reference sequence and the latter is an incumbent 
sequence. The RZ heuristic first removes job 3 from the incumbent 
sequence [1,2,3,4,5] and reinserts it into all possible positions of the 
incumbent sequence. Then, it removes job 2 from the incumbent 
sequence to execute the insertion operation. This procedure is repeated 
until all jobs in the reference sequence are already picked and the best 
feasible solution is produced. It is crucial to create the reference 
sequence of the RZ heuristic as the baseline. As shown in Eq. (14), two 
sorts of indicators, namely the front delay of the first job (i.e., 
∑m

j=1(m − j)pi,j) and the total processing time of each job (i.e., 
∑m

j=1pi,j), 
have an impact on the performance of heuristics for solving BFSP. 
However, besides these two indicators, the average processing time, the 
standard deviation of processing time, and the skewness should be 
considered depending on the problem’s characteristics. Since the strong 

correlation between skewness and front delay, if skewness is small, front 
delay may likewise decrease. The formulas for these indicators are given 
in Eqs. (16) to (18): 

Tavg(i) =
1
m

(
∑m

j=1
pi,j

)

, (16)  

Tstd(i) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
m − 1

∑m

j=1

(
pi,j − Tavg(i)

)2

√
√
√
√ , (17)  

Tske(i) =
1
m

(∑m
j=1

(
pi,j − Tavg(i)

)3
)

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
m

(
∑m

j=1

(
pi,j − Tavg(i)

)2

)√
√
√
√

⎞

⎠

3. (18) 

Based on Eqs. (17)-(18), the newly proposed job priority indicator 
IZ(i) is shown in Eq. (19). 

IZ(i) =

(
∑m

j=1
(m − j)pi,j

)

⋅
2

m − 1
+ (Tstd(i) + Tske(i)), i = 1, 2, ..., n. (19) 

Each job Ji in the job set J is arranged in ascending order according to 
the IZ(i) in Eq. (19) to produce a job sequence that serves as a reference 
sequence for the RZ heuristic. As with PFT_NEH(x) in Subsection 4.1.1, 
the initial solution for the RZ heuristic is produced by using a newly 
presented heuristic, namely the PFZ heuristic, and then the Insert-based 
neighborhood search is performed on the initial solution in accordance 
with the order of jobs in the reference sequence. If an improvement is 
achieved, the worse solution is replaced by a new one and then the cycle 
continues. According to the above considerations, the PFZ_RZ(x) heu
ristic is proposed in this subsection by incorporating the PFZ heuristic 
and the RZ heuristic (see Algorithm 3). In PFZ_RZ(x), a total of x feasible 
solutions are generated. Each solution produced by PFZ_RZ(x) needs to 

Algorithm 2:PFT NEH(x)
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calculate (n − 1)2 neighbor solutions. In order to reduce the computa
tional cost and speed up the neighborhood search, the fast Insert-based 
neighbor evaluation method can be used in the implementation of Al
gorithm 3 to effectively decrease the total time complexity. It is clear 
that the complexity of Algorithm 3 is O(xmn2), which is the same as that 
of Algorithm 2. According to the relevant conclusions in the literature 
(Pan, et al., 2013), the parameter of two heuristics, PFT_NEH(x) and 
PFZ_RZ(x), is set to λ = 20 and x = 5. 

To be specific, 10% of the solutions in the initial population are 
created by PFT_NEH(x), whereas 10% are produced by PFZ_RZ(x). The 
remaining 80% of solutions are randomly generated. Due to the fact that 
the two proposed heuristics are designed according to the problem’s 
characteristics, the initial population with high-quality individuals or 
solutions may contain rich and valuable structural features and prom
ising patterns. Hence, it may be desirable to expend a certain amount of 
computational effort to generate high-quality initial population. 

4.2. Global search guided by multi-dimensional probabilistic model 

4.2.1. Multi-dimensional probabilistic model 
In general, permutation-based solutions have a number of dis

tinguishing features, including the priority order of jobs and the distri
bution characteristics of job blocks. In this subsection, a multi- 
dimensional probabilistic model is proposed to capture promising pat
terns and adequately accumulate valuable structural information, which 
can effectively drive the search toward high-quality regions. 

4.2.1.1. Matrix cube. In order to effectively extract excellent structural 
features or promising patterns from quality individuals in a population, 
a matrix cube structure is designed to capture these valuable structural 
features and to reasonably retain promising patterns. Let Pop(gen) be the 
population at generation gen, and SPop(gen) be the high-quality sub
population or superior solutions derived from Pop(gen), i.e.,SPop(gen) =

{πgen,1
Sbest , πgen,2

Sbest , ..., πgen,spsize
Sbest }, where popsize and spsize respectively repre

sent the size of Pop(gen) and SPop(gen), gen = 1,2,…,maxgen. maxgen is 
the maximum number of runs of the algorithm. Let πgen,k

Sbest be the kth in
dividual in SPop(gen), i.e., πgen,k

Sbest = [πgen,k
Sbest(1),π

gen,k
Sbest(2), ...,π

gen,k
Sbest(n)], k = 1,

..., spsize. Without loss of generality, MCgen
n×n×n is defined as the matrix 

cube at generation gen. MCgen
n×n×n(x, y, z), x, y, z ∈ {1,2, ..., n} is the 

element in MCgen
n×n×n with the ternary subscript (x, y, z), where x corre

sponds to the xth position of the solution sequence, and (y, z) is used to 
represent the job block [y, z] at that position. Firstly, for the kth indi
vidual πgen,k

Sbest in SPop(gen), the sequential relationship of the job 

πgen,k
Sbest(x + 1) that appears immediately after the job πgen,k

Sbest(x) located at 
the xth position in πgen,k

Sbest can be recorded separately by using the indi
cator function IFgen,k

n×n×n(x,y, z), as given in Eq. (20). 

IFgen,k
n×n×n(x, y, z) =

⎧
⎨

⎩

1, if y = πgen,k
Sbest(x) and z = πgen,k

Sbest(x + 1)
0, else

,

x = 1, ..., n − 1; y, z = 1, ..., n; k = 1, ..., spsize.

(20) 

Then, the characteristic information about the order of jobs and the 

Algorithm 3:PFZ RZ(x)
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distribution of blocks for each of the selected superior solutions is ob
tained based on Eq. (21). 

MCgen
n×n×n(x, y, z) =

∑spsize

k=1
IFgen,k

n×n×n(x, y, z),

x = 1, ..., n − 1; y, z = 1, ..., n.

(21) 

Finally, the detailed definition of the proposed matrix cube is 
described below. 

MCgen
n×n×n(x, y) =

[
MCgen

n×n×n(x, y, 1),MCgen
n×n×n(x, y, 2), ...,MCgen

n×n×n(x, y, n)
]

1×n,

x = 1, 2, ..., n − 1; y = 1, 2, ..., n.
(22)  

MCgen
n×n×n(x) =

⎡

⎢
⎢
⎣

MCgen
n×n×n(x, 1)

⋮
MCgen

n×n×n(x, n)

⎤

⎥
⎥
⎦

n×1

=

⎡

⎢
⎢
⎣

MCgen
n×n×n(x, 1, 1) ⋯ MCgen

n×n×n(x, 1, n)
⋮ ⋱ ⋮

MCgen
n×n×n(x, n, 1) ⋯ MCgen

n×n×n(x, n, n)

⎤

⎥
⎥
⎦. (23) 

According to Eq. (23), the two-dimensional submatrix MCgen
n×n×n(x)

can record the characteristic information about job order and job block 
distribution at the xth position in all superior solutions. In other words, 
the matrix cube structure can exactly determine the priority of each job 
and the distribution of the job block [y, z] located in the xth position of 
the kth individual in SPop(gen), i.e., [πgen,k

Sbest(x),π
gen,k
Sbest(x + 1)]. it can retain 

total order relationships via a series of position-based submatrices, i.e., 
MCgen

n×n×n(1), MCgen
n×n×n(2), ..., MCgen

n×n×n(n). Thus, these advantageous 
characteristics or promising patterns derived from superior solutions 
can be effectively and intuitively recognized and retained. By adopting 
the matrix cube MCgen

n×n×n described above, the multi-dimensional prob
abilistic model can be established. To illustrate the proposed MCgen

n×n×n, 
an example of five superior solutions (spsize = 5) containing four jobs 
(n = 4) is used to instantiate it. In this case, the size of SPop(gen) is 
spsize = 5 and gen = 1. The selected superior solutions are π1,1

Sbest =

[π1,1
Sbest(1), π

1,1
Sbest(2), π1,1

Sbest(3), π1,1
Sbest(4)] = [1, 2, 3, 4], π1,2

Sbest =

[π1,2
Sbest(1), π

1,2
Sbest(2), π1,2

Sbest(3), π1,2
Sbest(4)] = [2, 3, 1, 4], π1,3

Sbest =

[π1,3
Sbest(1), π

1,3
Sbest(2), π1,3

Sbest(3), π1,3
Sbest(4)] = [3, 2, 1, 4], π1,4

Sbest =

[π1,4
Sbest(1), π1,4

Sbest(2), π1,4
Sbest(3), π1,4

Sbest(4)] = [4, 3, 2, 1], π1,5
Sbest =

[π1,5
Sbest(1), π1,5

Sbest(2), π1,5
Sbest(3), π1,5

Sbest(4)] = [4, 3, 1, 2], respectively. For the 
first position (x = 1) of all individuals, it is clear that job blocks [1, 2] (i. 
e., y = 1, z = 2), [2, 3] (i.e., y = 2, z = 3), [3, 2] (i.e., y = 3, z = 2), and 
[4, 3] (i.e., y = 4, z = 3) appeared in these individuals from πgen,1

Sbest to πgen,5
Sbest , 

is recorded in accordance with Eqs. (20)-(23) as follows: 

MC1
4×4×4(1, 1, 2) =

∑5

k=1
IF1,k

4×4×4(1, 1, 2) = IF1,1
4×4×4(1, 1, 2)

+IF1,2
4×4×4(1, 1, 2) + IF1,3

4×4×4(1, 1, 2) + IF1,4
4×4×4(1, 1, 2)

+IF1,5
4×4×4(1, 1, 2) = 1 + 0 + 0 + 0 + 0 = 1,

MC1
4×4×4(1, 2, 3) =

∑5

k=1
IF1,k

4×4×4(1, 2, 3) = IF1,1
4×4×4(1, 2, 3)

+IF1,2
4×4×4(1, 2, 3) + IF1,3

4×4×4(1, 2, 3) + IF1,4
4×4×4(1, 2, 3)

+IF1,5
4×4×4(1, 2, 3) = 0 + 1 + 0 + 0 + 0 = 1,

MC1
4×4×4(1, 3, 2) =

∑5

k=1
IF1,k

4×4×4(1, 3, 2) = IF1,1
4×4×4(1, 3, 2)

+IF1,2
4×4×4(1, 3, 2) + IF1,3

4×4×4(1, 3, 2) + IF1,4
4×4×4(1, 3, 2)

+IF1,5
4×4×4(1, 3, 2) = 0 + 0 + 1 + 0 + 0 = 1,

MC1
4×4×4(1, 4, 3) =

∑5

k=1
IF1,k

4×4×4(1, 4, 3) = IF1,1
4×4×4(1, 4, 3)

+IF1,2
4×4×4(1, 4, 3) + IF1,3

4×4×4(1, 4, 3) + IF1,4
4×4×4(1, 4, 3)

+IF1,5
4×4×4(1, 4, 3) = 0 + 0 + 0 + 1 + 1 = 2.

The remaining elements in MCgen
4×4×4(1) are set to zero. Likewise, for 

the second position (x = 2) of all individuals, job blocks [2,1] (i.e., y =

2, z = 1), [2, 3] (i.e., y = 2, z = 3), [3, 1] (i.e., y = 3, z = 1), and [3,2] (i. 
e., y = 3, z = 2) can also be recorded, respectively. Then we have. 

MC1
4×4×4(2, 2, 1) =

∑5

k=1
IF1,k

4×4×4(2, 2, 1)

= 0 + 0 + 1 + 0 + 0 = 1,

MC1
4×4×4(2, 2, 3) =

∑5

k=1
IF1,k

4×4×4(2, 2, 3)

= 1 + 0 + 0 + 0 + 0 = 1,

MC1
4×4×4(2, 3, 1) =

∑5

k=1
IF1,k

4×4×4(2, 3, 1)

= 0 + 1 + 0 + 0 + 1 = 2,

MC1
4×4×4(2, 3, 2) =

∑5

k=1
IF1,k

4×4×4(2, 3, 2)

= 0 + 0 + 0 + 1 + 0 = 1.

The other cells of MCgen
4×4×4(2) are set to zero. Since four job blocks [1,

2], [1, 4],[2, 1], and [3, 4] are located in the third position (x = 3), the 
characteristic information can also be saved, and we have MC1

4×4×4(3,1,
2) = 1, MC1

4×4×4(3,1,4) = 2, MC1
4×4×4(3,2,1) = 1, and MC1

4×4×4(3,3,4) =

1, respectively. It is worth noting that the information about job blocks 
in the last position of the job sequence is already included in the 
penultimate position. Therefore, the values of all the cells in MCgen

4×4×4(4)
are set to zero. It is indicated that the job blocks at different positions in 
superior solutions may be precisely learnt and entirely preserved in 
accordance with the position-based submatrices in MCgen

4×4×4. However, 
in the aforementioned case, the critical characteristic information about 
the similar blocks from πgen,1

Sbest to πgen,5
Sbest , i.e.,[1, 2],[2, 3], and[3, 2], is kept 

exclusively in the subscripts (1,2), (2,3), and (3, 2) via utilizing the two- 
dimensional probabilistic model (Pan & Ruiz, 2012). Indeed, for each 
selected elite solution, the important patterns of the positions in which 
similar blocks or job blocks are located have been completely lost and 
fused. Then, the two-dimensional probabilistic model’s sampling strat
egy cannot precisely predict the most proper position to place these 
valued similar blocks. To compensate the limitations of two-dimensional 
EDAs, we design the matrix cube to learn the structural information 
relating to the order relationships of jobs and the position of similar 
blocks through the use of different layers of MCgen

n×n×n. To be specific, the 
block [2, 3] in πgen,1

Sbest = [1,2, 3,4] can be reserved in MC1
4×4×4(2) (i.e., the 

second layer of MC1
4×4×4), but the identical block [2,3]), but the identical 

block [2,3] in πgen,2
Sbest = [2,3, 1, 4] can be recorded in MC1

4×4×4(1) (i.e., the 
first layer of MC1

4×4×4), but the identical block [2,3]), respectively. It is 
clear that MCgen

n×n×n facilitates the accurate identification and differenti
ation of various interesting similar blocks located at different positions 
in job sequences. That is, the distribution characteristics of these similar 
blocks in the feasible solution space can be precisely described by a 
multi-dimensional probabilistic model, which may be capable of effec
tively directing the search toward more promising regions and pre
venting promising patterns from being destroyed or improperly fused. 

4.2.1.2. Probabilistic model. Probabilistic models are essential for the 
successful application of EDA since they enable for the accurate esti
mation of the distribution of promising patterns of superior solutions to 
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the problem under consideration. In other words, it is highly advanta
geous to enhance the algorithm’s performance if the proposed proba
bilistic model correctly learns the structural features from the selected 
superior solutions. It should be noted that the proposed matrix cube 
MCgen

n×n×n can completely capture the structural features of some superior 
solutions, i.e., the ordinal of jobs and the dependency of jobs, during the 
iterative process. In contrast to existing two-dimensional probabilistic 
models (Jarboui, et al., 2009; Pan & Ruiz, 2012; Wang & Wang, 2016; 
Wang, et al., 2013), a matrix-cube-based multi-dimensional probabi
listic model is devised by taking advantage of promising patterns 
derived from superior solutions. The critical characteristic information 
implicit in different solution sequences can be effectively extracted and 
appropriately accumulated, while valuable information can be inter
acted with and integrated via an incremental learning mechanism. 
Offspring individuals can be generated directly by sampling from the 
proposed probabilistic model. Let PMgen

n×n×n be the multi-dimensional 
probabilistic model. Detailed definitions are described in Eqs. (24)-(25). 

PMgen
n×n×n(x, y) =

[
PMgen

n×n×n(x, y, 1),PMgen
n×n×n(x, y, 2), ...,PMgen

n×n×n(x, y, n)
]

1×n,

x = 1, 2, ..., n − 1; y = 1, 2, ..., n,

(24)  

PMgen
n×n×n(x) =

⎡

⎢
⎢
⎢
⎣

PMgen
n×n×n(x, 1)

⋮
PMgen

n×n×n(x, n)

⎤

⎥
⎥
⎥
⎦

n×1

=

⎡

⎢
⎢
⎢
⎣

PMgen
n×n×n(x, 1, 1) ⋯ PMgen

n×n×n(x, 1, n)
⋮ ⋱ ⋮

PMgen
n×n×n(x, n, 1) ⋯ PMgen

n×n×n(x, n, n)

⎤

⎥
⎥
⎥
⎦
.

(25) 

Each element PMgen
n×n×n(x, y, z) in PMgen

n×n×n corresponds to a probabil
ity value for the occurrence of the job block [y, z] at the xth position in 
the genth iteration, referring to the job block’s relevance. To clearly 
describe the multi-dimensional probabilistic model, let Sgen

MC(x) and 
Sgen

PM(x) represent the summation function of the xth layer of MCgen
n×n×n and 

PMgen
n×n×n, respectively, where Sgen

MC(x) =
∑n

y=1
∑n

z=1MCgen
n×n×n(x, y, z) and 

Sgen
PM(x) =

∑n
y=1
∑n

z=1PMgen
n×n×n(x, y, z). Thus, by utilizing both a matrix 

cube and a multi-dimensional probabilistic model, the incremental 
learning update mechanism can be stated in Eq. (26). 

PMgen+1
n×n×n(x) =

(1 − r) × PMgen
n×n×n(x) + r ×

(
MCgen

n×n×n(x)
/

Sgen
MC(x)

)
,

x = 1, 2, ..., n − 1.
(26) 

Note that the parameter r ∈ [0, 1] in Eq. (26), represents the learning 
rate. If r = 1, the multi-dimensional probabilistic model is updated only 
by using the matrix cube; otherwise, it is updated by using historical 
evolutionary information. The proposed updating strategy can 
adequately accumulate characteristic information about promising 
patterns of superior solutions. That is, the incremental learning mech
anism can take into account not only the current distribution charac
teristics of similar blocks, but also make use of the previously obtained 
useful historical information, resulting in a suitable trade-off in terms of 
learning rate r. Notice that the normalization for each layer of PMgen

n×n×n 

in Step 3 should be performed before to sampling, i.e., Sgen
MC(x) = 1, gen >

1, x = 1, ..., n − 1. Moreover, the features of the first job block in the 
selected superior subpopulation have a considerable effect on the per
formance of the developed algorithm for dealing with the considered 
problem. If this feature is not well handled, the algorithm’s superiority 
will be diminished. Therefore, the steps for developing and updating a 
probability model with the aforementioned characteristics are detailed 
as follows. 

Step 1: Initialize PM0
n×n×n. Set PM0

n×n×n(x, y, z) =
{

0, x = 1; y, z = 1, ..., n,
1/n2, x = 2,3, ..., n − 1; y, z = 1, ..., n. . 

Step 2: Obtain MC1
n×n×n by the initial population Pop(0), then 

compute 

PM1
n×n×n(x, y, z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MC1
n×n×n(x, y, z)
S1

MC(x)
,

x = 1; y, z = 1, ..., n,

PM0
n×n×n(x, y, z) + MC1

n×n×n(x, y, z)
S0

PM(x) + S1
MC(x)

,

x = 2, 3, ..., n − 1; y, z = 1, ..., n.

Step 3: Set gen = 2. Compute MCgen
n×n×n and PMgen

n×n×n(x) using Eq. 
(26). 

PMgen
n×n×n(x, y, z) =

(1 − r) × PMgen− 1
n×n×n(x, y, z) + r ×

(
MCgen

n×n×n(x, y, z)
Sgen

MC(x)

)

,

x = 1, 2, ..., n − 1; y, z = 1, 2, ..., n.

Step 4: Set gen = gen + 1. If gen < maxgen, then go to Step 3. 
Notably, for x = 2,3, ...,n − 1, all values in PM0

n×n×n is initialized to 
1/n2, ensuring that the entire solution space is uniformly sampled. In 
addition, when x = 1, the cell values in the first layer of PM0

n×n×n are set 
to 0, instead of 1/n2, which can highlight potential patterns of job blocks 
at the first position of all individuals in the superior subpopulation and 
effectively increase guidance to promising regions during the initial 
phase. To illustrate, an example of establishing a matrix-cube-based 
multi-dimensional probabilistic model is provided below, with the 
learning rate set to r = 0.3. 

(1) Firstly, MC1
n×n×n is computed by counting the initial subpopula

tion via Eqs. (20)-(21). For the first layer of PM1
n×n×n, i.e., PM1

n×n×n(1), 
the probability values can be calculated as follows: PM1

4×4×4(1, 1, 2) =

PM1
4×4×4(1,2,3)= PM1

4×4×4(1,3,1) = (0 + 1)/5 = 0.2, PM1
4×4×4(1,3,1)

= (0 + 2)/5 = 0.4. The values of the other cells are set to zero. 
(2) Secondly, the probability values of the second layer of PM1

n×n×n 
can be computed as follows:PM1

4×4×4(2, 2, 1) = PM1
4×4×4(2, 2, 3) =

PM1
4×4×4(2, 3, 2) = (1/16 + 1)/(1 + 5) = 0.177, PM1

4×4×4(2, 3, 1) =

(1/16 + 2)/(1 + 5) = 0.344. Then, all other cell values are set to 
(1/16 + 0)/(1 + 5) = 0.010. 

(3) Thirdly, the probability values of the third layer of PM1
n×n×n can 

be computed as follows: PM1
4×4×4(3, 1,2) = PM1

4×4×4(3, 2,1)
=PM1

4×4×4(3, 3,4) =(1/16 + 1)/(1+5) = 0.177 and PM1
4×4×4(3,1,4)=

(1/16 + 2)/(1 + 5) = 0.344. Similarly, the values of the other cells 
are equal to 0.01. 

(4) Finally, PMgen
n×n×n (gen > 1) is updated by using the incremental 

learning mechanism proposed in Step 3. Considering five superior so
lutions, each of which contains four jobs, Fig. 2 illustrates the updating 
process of a multi-dimensional probabilistic model. 

4.2.2. New population generation 
According to the above subsection, it is clear that proper probabi

listic models may be employed to effectively extract excellent features 
from the superior solutions. The sampling strategy also has an effect on 
the search behavior of EDA-based algorithms, since such sampling 
strategy determines how to guide the population’s evolutionary direc
tion in the search space. Therefore, it is important to set up suitable 
sampling strategies for sampling from the multi-dimensional 
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probabilistic model to generate a new population. 
Let πgen,k = [πgen,k(1), πgen,k(2),…, πgen,k(n)] denote the kth individual 

in Pop(gen), k = 1, 2, ..., popsize. Due to the fact that the multi- 
dimensional probabilistic model records the probability information of 
both the order of jobs and the distribution of blocks, the probability 
value of each block or similar block[πgen,k(i − 1),πgen,k(i)], (i = 2,...,n) in 
the job sequence πgen,k is stored in the (i − 1)th layer of PMgen

n×n×n, i. 
e.,PMgen

n×n×n(i − 1). The selection of job πgen,k(i) at the ith position is 
dependent upon the appearance of job πgen,k(i − 1) at the (i − 1)th posi
tion in πgen,k. Let SelectJob(PMgen

n×n×n,πgen,k, i) be a selection function that 
is utilized to determine the candidate job πc at the ith position of πgen,k 

(i > 1). That is, the selection of the candidate job πc at the ith position in 
the πgen,k should sample from the (πgen,k(i − 1))th row of the (i − 1)th 
layer in PMgen

n×n×n, i.e., PMgen
n×n×n(i − 1, πgen,k(i − 1)). To eliminate dupli

cation to guarantee the generation of feasible solutions, the probability 
values of the πcth column from the ith layer to the (n − 1)th layer in 

PMgen
n×n×n should be set as 0 and all elements in PMgen

n×n×n need to be 
renormalized if the job πc is already scheduled in the ith position of 
πgen,k. The procedure of SelectJob(PMgen

n×n×n, πgen,k, i) is described in Al
gorithm 4.In order to precisely learn the promising patterns of jobs 
located at the first position of high-quality individuals in the population, 
and to compress the front delay as much as possible, a first position- 
based selection strategy (FPBSS) is presented in Algorithm 5 for deter
mining the first job in the πgen,k. According to Algorithms 4 and 5, the 
new population generation method is provided in Algorithm 6. As seen 
from Algorithm 6, if i = 1, the job πc is selected by FPBSS(PMgen

n×n×n,

πgen,k), otherwise, the job block [πgen + 1,k(i), πgen + 1,k(i + 1)] at the ith 
position of πgen,k is selected by SelectJob(PMgen

n×n×n, πgen,k, i). Thereafter, 
job blocks at different positions in the solution sequence are determined, 
and these job blocks are connected according to the sequential rela
tionship among jobs to produce new feasible solutions.  

Algorithm 4:SelectJob(PMgen
n×n×n,πgen,k, i)
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4.2.3. Diversity controlling mechanism 
As stated in Section 4.1, although the initial population is of high 

quality and well distribution, the diversity of the population may decline 
as the evolutionary process progresses. In order to maintain a reasonable 
balance between global exploration and local exploitation, a diversity 
control mechanism is provided to effectively prevent the proposed al
gorithm from prematurely converging to local optima. Let Pdiv be 
defined as the diversity index and δ as the diversity threshold. Pdiv can be 
used to measure the similarity between individuals in a population. If 
the value of Pdiv is less than δ, the top 20% of high-quality individuals in 
the population are retained and the remaining 80% are reinitialized. 
Specifically, 20% of the remaining 80% of individuals are formed by 
employing two constructive heuristics, i.e., PFT_NEH(x) and PFZ_RZ(x), 
described in Subsections 4.1.1 and 4.1.2, while the others are randomly 

generated. The corresponding calculation steps are given below. 
Step 1: According to Eqs. (20)-(23), MCgen

n×n×n in the genth generation 
is determined. 

Step 2: Count the number of elements greater than 0 in the ith layer 
of MCgen

n×n×n, denoted as αi. 
Step 3: The value of diversity index Pdiv is calculated by using Eq. 

(27). 

Pdiv =
1

n − 1
∑n− 1

i=1

αi − 1
min(n2 − n − 1, spsize − 1)

(27) 

Notice that the population size or subpopulation size often exceeds 
one. According to Eq. (27), the range of Pdiv is [0,1]. If the Pdiv value is 
closer to one, the better the diversity of the population. Conversely, the 
closer the value of Pdiv is to zero, the more similar the individuals in the 

Algorithm 5:FPBSS(MCgen
n×n×n,πgen,k)

Algorithm 6: New Population Generation  
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population are. That is, the population has poor diversity if the in
dividuals in the population have similar structural features or patterns. 
In order to reduce computational effort, the value of diversity index Pdiv 

is calculated every ten generations, and the diversity threshold δ is tuned 
in detail in the next section (see Subsection 5.2). To facilitate intuitive 
comprehension, the example of MC1

n×n×n depicted in Fig. 2 is utilized to 
illustrate the diversity mechanism, while still considering those five 
high-quality individuals. It is evident from the preceding stages that 
α1 = 4, α2 = 4, α3 = 4, and the diversity index 

Pdiv = (3/4 + 3/4 + 3/4)/3= 3/4 = 0.75 can be computed by using Eq. 
(27). 

4.3. Local search controlled by multi-dimensional probabilistic model 

4.3.1. Fast Insert-based neighbor evaluation method 
It is well known that the insertion neighborhood structure is one of 

the most effective neighborhood structures for the permutation-based 
models of BFSPs (Pan & Wang, 2012; Schiavinotto & Stutzle, 2007; 

Fig. 2. Illustration of updating process of multi-dimensional probabilistic model.  

Fig. 3. An example of using the probability model to determine whether to evaluate πt in NSPM_boost.  
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Tasgetiren, et al., 2017; Wang, et al., 2010). Therefore, it makes sense to 
select the insertion neighborhood to design neighborhood searches in 
the next Subsections 4.3.2 and 4.3.3. Since the number of neighbor so
lutions in the insertion neighborhood is (n − 1)2, the time complexity of 
such neighborhood search is O(mn3) by using forward and backward 
calculations given in Section 3. Following the reversibility of the 
permutation-based model for the BFSP_SDST stated in Section 3, a fast 
Insert-based neighbor evaluation method is devised by using a bidirec
tional calculation method. The devised fast evaluation method is bene
ficial for enhancing the efficiency of evaluating Insert-based neighbors. 
Its procedure is provided in Algorithm 7. 

The pivotal point of the proposed fast Insert-based neighbor evalua
tion method is to remarkably reduce the complexity by appropriately 

adding the space storage. Specifically, dπ(i),j and fπ(i),j can be calculated 
and conserved at the beginning in Algorithm 7 (see Lines 1–2), and their 
numerical values can be treated as constants while evaluating Insert- 
based neighbors (see Lines 5–17). Although Algorithm 7 applies to the 
basic insertion neighborhood (see Lines 4 and 15), it can be easily 
extended to block-based insertion neighborhoods, i.e., picking multiple 
jobs to form job blocks and performing neighborhood search based on 
those blocks. Therefore, both the job-based insertion neighborhood in 
Subsection 4.3.2 (see Lines 2–27 in Algorithm 8) and the block-based 
insertion neighborhood in Subsection 4.3.3 (see Lines 4–7 in Algo
rithm 10) can utilize the above-mentioned fast evaluation method to 
quickly calculate neighbors. 

Algorithm 7: The fast Insert-based neighbor evaluation method  

Z.-Q. Zhang et al.                                                                                                                                                                                                                               



Expert Systems With Applications 205 (2022) 117602

15

4.3.2. Neighborhood search boosted by probabilistic model (NSPM_boost) 
Since the multi-dimensional probabilistic model contains complete 

information of both the order relations and the block distributions of 
excellent individuals (see Subsection 4.2.1), it can be utilized to boost 
the neighborhood search. Thus, the Insert-based neighborhood search 
boosted by the probabilistic model, denoted as NSPM_boost, is proposed to 
perform fast exploitation. 

The procedure of the NSPM_boost is provided in Algorithm 8, where 
πbest is the best solution obtained so far. In Algorithm 8, when per
forming the NSPM_boost, the corresponding conditional probability is 
calculated via the probabilistic model (see Lines 7 and 14). If the con
ditional probability value acquired satisfies the predefined condition, 

the insertion operation is executed, and then the corresponding new 
neighbor is evaluated. Otherwise, a certain probability value is 
randomly generated to determine whether to perform the insertion 
operation (see Lines 9 and 16). It should be noted that the NSPM_boost can 
reasonably utilize the structural patterns of excellent individuals to 
adjust the search scope in the Insert-based neighborhood, thereby 
avoiding the evaluations of potentially poor neighbors and improving 
the search efficiency. In order to facilitate a better understanding, Fig. 3 
gives an example of using the probability model to determine whether to 
perform the insertion operation on the current neighbor πt = [1,2, 3,4]
in the NSPM_boost. 

Algorithm 8:PM NeighborSearch(πbest, PMgen
n×n×n)
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4.3.3. Neighborhood search guided by probabilistic model and reference 
sequence (NSPM_RS_guide) 

According to Subsection 4.2.1, the probability information related to 
the block distribution is saved in a series of position-based probability 
matrices, i.e., PMgen

n×n×n(1), PMgen
n×n×n(2),…,PMgen

n×n×n(n). Therefore, the 
Insert-based neighborhood search guided by the probabilistic model and 
the reference sequence, denoted as NSPM_RS_guide, is designed to execute 
deep exploitation. 

Let pr be the correlation coefficient of jobs. pr is calculated according 
to the following Eq. (28): 

pr =

∑n− 1
x=1PMgen

n×n×n(x, πgen(l), πgen(l′ ))
∑n− 1

x=1
∑n− 1

z=1 PMgen
n×n×n(x, πgen(l), z)

(28) 

where l ∕= l′ and l, l′ = 1,2, ..., n. When pr⩾0.2, it indicates that two 
jobs πgen,k(i) and πgen,k(i′ ) in πgen,k are strongly correlated. Obviously, pr 

represents the tightness of the connection between the job πgen(l) and the 
job πgen(l′ ) in πgen. Firstly, a block construction strategy is presented in 
Algorithm 9, where the block πblock is extracted from the current 

individual or solution sequence πgen via utilizing the reference sequence 
πbest (i.e., the best solution obtained so far) and the probability model 
PMgen

n×n×n. Then, the procedure of the NSPM_RS_guide is outlined in Algo
rithm 10, where πleft is a partial sequence after removing πblock from πgen

best, 
and Insert(πleft, i, πblock) means that πblock is inserted in the ith position in 
πleft. 

From Algorithm 10, it can be seen that the core idea of the 
NSPM_RS_guide is to dynamically construct blocks with strong correlation 
and promising pattern in the process of neighborhood search (see Line 
7), and then search the Insert-based neighborhood determined by each 
block (see Lines 11–17). Since the constructed blocks are different in 
most cases, the NSPM_RS_guide can perform rich searches in a variety of 
Insert-based neighborhoods, which is conducive to increasing the search 
depth. Moreover, the NSPM_RS_guide can ensure that the overall quality of 
neighbors in the constructed neighborhood is high, which helps to 
improve the search quality.  

Fig. 4. The flow chart of the proposed MCEDA.  
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Algorithm 10:Reference NeighborSearch(πgen,πbest, PMgen
n×n×n)

Algorithm 9:V ariable Block(k, pos, len, πgen, πbest, PMgen
n×n×n)
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4.3.4. Multi-neighborhood iterated local search 
In the last decade, various local search methods based on the VNS 

framework have been proposed, among which iterated local search (ILS) 
proposed by Lourenco et al. (Lourenço, et al., 2010) is one of the most 
effective local search methods. The main idea of ILS is to first perturb the 
current best solution for preventing cycle search and jumping out of 
local optima, and then to undertake an iterative variable neighborhood 
search to find more satisfied solutions. Nowadays, ILS has been widely 
applied to solve a variety of scheduling problems. Therefore, a new 
multi-neighborhood ILS (MNILS) combing the NSPM_boost (Algorithm 8) 
and the NSPM_RS_guide (Algorithm 10) is devised to perform deeper 
exploitation from promising regions obtained by the global search in 
Section 4.2. 

The procedure of the MNILS is given in Algorithm 11, where 
Interchange(πgen

t1 , u, v) means interchange the uth job and the vth job in 
πgen

t1 , πgen
best is the current best individual or sequence at generation gen, 

and T is the temperature control parameter set to T =
∑n

i=1
∑n

j=1pi,j/5nm 
in the proposed MCEDA. From Algorithm 11, it can be known that the 
MNILS starts the exploitation from the promising regions (i.e., πbest and 
πgen

best), and iteratively executes the NSPM_boost (see Lines 1 and 6) and the 
NSPM_RS_guide (see Lines 2 and 7) to guide the exploitation down to the 
optimal or near optimal solution. Moreover, the hybrid perturbation 
strategy combining Interchange-based moves (see Lines 4 and 5) and 
simulated annealing mechanism (see Line 13) is used to drive the local 
search to jump out of local optima. 

4.4. The framework of MCEDA 

In general, EDA reproduces offspring by sampling from a well- 
designed probabilistic model, which mainly consists of the following 
five steps (Pan & Ruiz, 2012): (a) generating initial population, (b) 
selecting elite individuals, (c) updating probability model with superior 
solutions, (d) sampling from the probability model to create a new 
population, and (e) repeating steps (b)-(d) until the termination condi
tion is satisfied. After covering each component in detail in the pre
ceding sections, Fig. 4 illustrates the MCEDA framework. 

From Fig. 4, it can be seen that the proposed MCEDA consists of two 
main aspects, i.e., a breadth global search and a depth local search. First, 
two effective constructive heuristics are applied to generate some high- 
quality initial individuals. Second, an effective EDA-based global search 
is adopted to estimate the distribution of excellent individuals or solu
tions, which is beneficial to quickly guide the exploration to discover the 
promising regions in solution space. Third, a multi-neighborhood iter
ated local search with a fast Insert-based neighbor evaluation method is 
devised to conduct in-depth exploitation in the promising regions found 
by global search. Since both global exploration and local exploitation 
are well stressed, it is expected that the proposed MCEDA can achieve 
good performance in solving BFSP_SDST. 

4.5. Computational complexity analysis 

According to Fig. 4, the computational complexity (CC) of the pri

Algorithm 11: Multi-neighborhood iterated local search (MNILS)  
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mary parts of the proposed MCEDA is analyzed as follows. At the 
initialization phase, since the CC of determining makespan by the for
ward calculation in Eqs. (1)-(5) or by the backward calculation in Eqs. 
(7)-(12) is O(mn), the CC of evaluating the population is O(popsize×
mn). In Algorithm 2, the CCs of calculating I(i) and σi are O(mn), and the 
CCs of Line 2, Line 5, Lines 7–10, and Lines 3–12 are O(nlogn), O(mn2), 
O(mn3), and O(xmn3), respectively. Hence, the CC of Algorithm 2 is 
O(xmn3). In Algorithm 3, the CC of computing IZ(i) is O(mn), and the CCs 
of Lines 2–3, Line 6, Lines 7–13, and Lines 4–15 are O(nlogn), O(mn2), 
O(mn3), and O(xmn3), respectively. Hence, the CC of Algorithm 3 is 
O(xmn3). Since the fast Insert-based neighbor evaluation method given 
in Subsection 4.3.1 is used to reduce the CC of evaluating solution from 
O(mn) to O(m), the CCs of Algorithms 2 and 3 are also reduced from 
O(xmn3) to O(xmn2). In Subsection 4.2.1, the CC of calculating MCgen

n×n×n 

is O(n3) when using Eqs. (20)-(23) and the CC of initializing PM0
n×n×n is 

O(n3) when using Eqs. (24)-(26). 
At the iterative process, since spsize superior solutions are selected 

from Pop(gen) to calculate MCgen
n×n×n, the CC of sorting the population via 

quick sort method is O(popsize× logpopsize). In Algorithm 4, the CC of 
Line 1 is O(n) and that of Lines 2–10 is also O(n). So, the CC of Algorithm 
4 is O(n). In Algorithm 5, the CC of Lines 2–6 is O(n). Thus, the CC of 
Algorithm 5 is O(n). In Algorithm 6, the CCs of Lines 2–9 and Lines 1–11 
are O(n2) and O(popsize× n2), respectively. So, the CC of generating a 
new population by sampling PMgen

n×n×n in Subsection 4.2.2 is O(popsize×
n2). Note that the CC of updating PMgen

n×n×n is also O(n3) according to Eq. 
(26). Moreover, in Subsection 4.2.3, the CCs of calculating diversity 
index value Pdiv and that of reinitializing part of the individuals in the 
population are nearly O(n) and O(popsize× n2), respectively. In Algo
rithm 8, the CCs of Lines 7–12, Lines 14–19, Lines 4–26, and Lines 2–27 
are nearly O(n), O(n), O(mn2), and O(mn3), respectively. In Algorithm 
10, the CCs of Line 7, Lines 12–17, and Lines 2–19 are nearly O(len), 
O(mn2), and O(mn3). In Algorithm 11, the CCs of Line 1, Line 2, and 
Lines 3–16 are all approximately equal to O(mn3). Since the fast Insert- 
based neighbor evaluation method is used to calculate neighbor solu
tions and the probabilistic model is employed to guide neighborhood 
searches, the CC of conducting MNILS in Algorithm 11 is estimated to be 
O(mnl̃ogn), where O(l̃ogn) is less than linear time O(n). 

Let TCC be the total CC of MCEDA, and Kgen
1 (Kgen

2 ) the repeat times of 
Algorithms 8 (Algorithms 10) at generation gen for a given instance. 
Then, denote K1 =

∑maxgen
gen=1 Kgen

1 and K2 =
∑maxgen

gen=1 Kgen
2 . Since Kgen

1 and 
Kgen

2 are no less than one, we have K1,K2⩾maxgen. In general, n is larger 
than m and len. According to the above analysis, TCC can be expressed as. 

TCC = O(maxgen ×
(
xmn2 + mn2 + n3 + popsize × n2)

+K1 × mnl̃ogn + K2 × mnl̃ogn)
= O

(
maxgen ×

(
n3 + popsize × n2)+ K × mnl̃ogn

)
,

(29) 

where K is the average repeat times of executing Algorithms 8 and 
10. From Eq. (29), it can be observed that the CC of MCEDA is acceptable 
because the highest degree in (maxgen×(n3 +popsize × n2)+K × mnl̃ogn)
is three. 

5. Experimental results and statistical analysis 

This section implements the extensive experiments to demonstrate 
the effectiveness and efficiency of the proposed MCEDA. Firstly, the 
experimental setup is briefly described in Section 5.1, including the 
testing instances, performance metrics, and experimental environment. 
Then, the effects of MCEDA’s parameters are discussed in Section 5.2. 
Afterwards, the superiority of multi-dimensional probabilistic model 
and the advantages of improvement strategies are investigated in Sec
tion 5.3 and Section 5.4, respectively. Finally, computational compari
sons and statistical analysis of MCEDA against several state-of-the-art 
algorithms are conducted and discussed. 

5.1. Experimental setup 

In order to investigate the performance of the proposed MCEDA, a set 
of well-known benchmark datasets provided by Ruiz, et al. (2005) for 
PFSP_SDST are employed as test sets, which are available at https://soa. 
iti.es/. These test sets contain a total of 480 instances with different 
sizes, which can be divided into four subsets according to different setup 
times, namely SSD-10, SSD-50, SSD-100, and SSD-125. Each subset 
consists of 120 different instances, ranging from 20 jobs and 5 machines 
to 500 jobs and 20 machines. The processing time of each job is 
randomly generated in the uniformly distributed interval [1, 99]. The 
setup times in each test subset SSD-K (K = 10, 50, 100 and 125) are 
randomly generated in the uniformly distributed interval [1,K − 1]. The 
comparison algorithms are all conducted in the same programming 
environment and computer configuration. All algorithms are coded in 
Pascal language, compiled by Embarcadero Rad Studio (XE8), and 
executed independently on a PC equipped with Inter(R) Core(TM) i7- 
8700 M @ 3.2 GHz processor and 32 GB of RAM memory under Win
dows 7 OS. It should be noted that all algorithms have the same termi
nation condition, i.e., the maximum elapsed CPU time of 60nm 
milliseconds. Moreover, to fairly derive reliable computation results in 
the same time, each algorithm for each specific instance is performed 30 
times independently. Therefore, a total number of 14,400 results are 
available for each algorithm, and the computational comparisons are 
completely fair and comparable. In order to evaluate the performance of 
the algorithms, the average relative percent deviation (ARPD) is used to 
measure the average relative quality of the experimental results, as 
stated by Eq. (30): 

ARPD =
1
R

∑R

i=1

(
Ci − Copt

Copt

)

× 100% (30) 

where R is the number of runs. Ci is the makespan obtained by a 
specific algorithm in the ith experiment for a given instance. Copt is the 
optimal makespan for that instance. Since few algorithms are devised to 
solve the problem under consideration, the minimum makespan found 
by all algorithms is selected as Copt . For the calibration of the algorithm 
parameters, Copt is the best makespan found by all configurations for the 
calibration instance. It is obvious that the smaller the value of ARPD, the 
better the performance of the algorithm. In the statistical table of the 
experimental results, the best values obtained are highlighted in bold 
font, the second-best values are indicated in bold and underlined font, 
and the third-best values are marked in italic and underlined font. 

5.2. Parameter calibration 

Parameter calibration has an important impact on the efficacy and 
efficiency of HIOAs. As stated in Section 4, the proposed MCEDA con
tains four controllable parameters, i.e., population size (popsize), pro
portion of superior solutions (φ), learning rate (r), and diversity 
threshold (δ). In order to calibrate these parameters, the Design of Ex
periments (DOE) approach (Montgomery, 2008) is employed to provide 
proper parameters of MCEDA. To further investigate the sensitivity and 
interaction of parameters, all of the obtained experiment results are 
analyzed by the multi-factor Analysis of Variance (ANOVA) technique, 
which has been widely used in the scheduling literature (Shao, et al., 
2018a, 2018b). According to the research in recent years (Shao, et al., 
2018b), if the algorithm’s parameters are calibrated by using the same 
instances (see Section 5.1) that will later be used for comparison, the 
calibrated parameters may over fit (Shao, et al., 2018b). Thus, the 
additional subsets (i.e., ASSD-10, ASSD-50, ASSD-100 and ASSD-125) 
are generated for parameter calibration. The instances in each ASSD-K 
(K = 10, 50, 100 and 125) are generated in the same way as those in the 
corresponding SSD-K in Section 5.1, and each ASSD-K is half the size of 
the SSD-K. That is, there are a total of 240 instances. Moreover, since the 
range of parameter values is more flexible, it is required to restrict the 
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selection range of parameters. The reasonable range for each parameter 
is determined according to the previous literature (Pan & Ruiz, 2012; 
Zhang, et al., 2021; Zhang, et al., 2022) and our preliminary experi
ments. Following that, the multiple potential levels (values) for each 
factor (parameter) are determined by trial and error. 

The levels of each parameter are listed in Table 3. The full factorial 
experimental design is conducted for the proposed MCEDA with 4 × 4 ×

4 × 4 = 256 distinct configurations. MCEDA is repeated 30 times with a 
running time of 60nm milliseconds on each instance. As a result, a total 
of 256 × 30 × 240 = 1843200 results are obtained. In consequence, if 
the test program runs as a whole single process program. it needs at least 
280 CPU days to obtain the entire experimental results. Fortunately, due 
to the multi-core architecture in our personal computers, the test pro
gram was divided into different sub-programs, which were arranged to 
run on different cores. So, it actually took about 12.5 days to complete 
the calibration. 

The parameter is regarded as the controller factor, and the average 
ARPD value is regarded as the response variable (RV). Obviously, the 
lower the RV value is, the better the performance is. Moreover, three 

major hypotheses (i.e., normality, homogeneity of variance, and inde
pendence of residuals) are checked before ANOVA is conducted. The 
checked results reveal that no significant deviations are found, so these 
hypotheses can be accepted. Note that the F-ratio is a strong signal of 
significance when the p-value is less than the confidence level. The 
larger the F-ratio is, the greater the effect of the factor on the RV is. The 
ANOVA results are reported in Table 4. The main effects plot for all 
parameters is shown in Fig. 5. 

It is clearly observed from Table 4 that four parameters popsize, φ, r 
and δ are statistically significant since their p-values are smaller than α =

0.05 (α denotes the confidence level). The parameter popsize achieves 
the largest F-ratio, indicating that the population size has the most sig
nificant effect on the performance of the proposed MCEDA. As can be 
seen in Fig. 5, the choice of popsize = 100 yields the best result, while 
popsize = 200 obtains the worst result. It suggests that a medium-scale 
population is advantageous to maintain a proper search scope in solu
tion space and ensure a certain search efficiency. The second largest F- 
ratio value corresponds to the factor φ. As also can be seen in Fig. 5, the 
value φ = 0.2 can achieve the best performance, while φ = 0.1 and φ =

0.4 yield worse results. It is obvious that the proportion of superior so
lutions has a significant effect on the probabilistic model’s ability of 
accumulating the valuable information of promising patterns in high- 
quality subpopulation. The third significant factor is parameter r. It is 
clear from Fig. 5 that too small or too large learning rate r may degrade 
algorithm performance, and r = 0.3 is a suitable choice. If the value of r 
is set too high, the algorithm may converge prematurely, otherwise it 
may lead to slow convergence. Although the diversity threshold δ has 
the least impact on the algorithm’s effectiveness, a lack of population 
diversity directly results in search stagnation. So, an appropriate di
versity threshold still favors MCEDA in suitably switching between 
exploration and exploitation. Fig. 5 reveals that the proper value of δ is 
0.3. 

Although the main effects in Fig. 5 show the best choice of each 
single parameter, the analysis on single parameter is incomplete if there 
are significant interactions between parameters (Tasgetiren, et al., 
2017). Thus, the two-level interactions between the involved parame
ters are also investigated, and the relevant results are reported in 
Table 4. It is observed from Table 4 that the interactions of three 
parameter pairs (i.e., popsize*φ, popsize*r, and popsize*δ) are statistically 
significant since their p-values are less than 0.05. The interaction effect 
plots of these parameter pairs are depicted in Fig. 6. From Fig. 6, it can 
be seen that all the interactions of popsize*φ, popsize*r, and popsize*δ are 
weak and coincide with the conclusions drawn from Fig. 5. Based on the 
above analyses, the parameters of MCEDA are set as: popsize = 100, φ =

0.2, r = 0.3, δ = 0.3. 

Table 3 
The level of each parameter for MCEDA.  

Parameter Factor level 
1 2 3 4 

popsize 50 100 150 200 
φ 0.1 0.2 0.3 0.4 
r 0.1 0.2 0.3 0.4 
δ 0.2 0.3 0.4 0.5  

Table 4 
Results of ANOVA for MCEDA’s parameters.  

Source Sum of 
squares 

Degrees of 
freedom 

Mean 
square 

F-ratio p- 
value 

Main effects      
popsize  0.016 3  0.005  537.00  0.000 
φ  0.010 3  0.003  346.13  0.000 
r  0.016 3  0.005  538.97  0.000 
δ  0.008 3  0.003  272.97  0.000 
Interactions      
popsize*φ  0.033 15  0.002  215.487  0.000 
popsize*r  0.008 12  0.001  68.555  0.000 
popsize*δ  0.010 12  0.001  86.743  0.000 
φ*r  0.000 9  0.000  0.039  1.000 
φ*δ  0.000 9  0.000  0.590  0.804 
r*δ  0.000 9  0.000  0.108  0.999 
Residual  0.002 189  0.000   
Total  0.053 255     
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Fig. 5. Main effect plots of parameters.  
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5.3. Performance analysis of improvement strategies 

As stated in Section 4, there are four important improvement stra
tegies contributing to improving the performance of our presented 
MCEDA: (1) the problem’s characteristics based two constructive heu
ristics developed in Subsections 4.1.1 and 4.1.2; (2) the diversity con
trolling mechanism described in Subsection 4.2.3; (3) the fast Insert- 
based neighbor evaluation method provided in Subsection 4.3.1; and (4) 
the multi-neighborhood local search controlled by multi-dimensional 
probabilistic model referred in Subsections 4.3.2–4.3.4. In order to 
analyze the performance of these strategies, in this section, six variants 
of MCEDA are implemented to investigate and validate their contribu
tions. Firstly, to evaluate the effectiveness of the initialization method, 
we utilize the random initialization method to replace the original one, 
yielding a variant named MCEDAv1. In MCEDAv1, the initial population 
is randomly generated without using constructive heuristics or sched
uling rules. Secondly, to validate the proposed diversity controlling 
mechanism, the diversity controlling mechanism is removed from 
MCEDA and a variant algorithm named MCEDAv2 is developed, in which 
the population is never reinitialized throughout the execution of MCE
DAv2. Thirdly, to determine if the proposed fast evaluation method 
promotes the efficiency of local search, we adjust the neighbor calcu
lation method in local search to produce a variant that does not employ 
the fast Insert-based neighbor evaluation method, designated as MCE
DAv3. Finally, to examine the effectiveness of local search controlled by 
the multi-dimensional probabilistic model, we implement three variants 
of MCEDA, including MCEDA without NSPM_boost (denoted as MCEDAv4), 
MCEDA without NSPM_RS_guide (denoted as MCEDAv5), and MCEDA 
without MNILS (denoted as MCEDAv6). Note that for the first two vari
ants, i.e., MCEDAv4 and MCEDAv5, MNILS is implemented based only on 
a single neighborhood search strategy, i.e., NSPM_boost or NSPM_RS_guide. 
These two variants are adopted to certify that the proposed two neigh
borhood search strategies are essential for local search. The last one is 

used to verify the vital role of the devised MNILS for the proposed 
MCEDA. 

To sum up, a total of six MCEDA’s variants are created to demon
strate the effectiveness of these improvement strategies. The controlled 
experiments are conducted in such a way that each variant modifies a 
single component of the complete MCEDA. To guarantee a fair com
parison, the probabilistic model update mechanism and sampling 
strategy remain the same in MCEDA and its variants, and the parameters 
of the above algorithms are also the same. The MCEDA and all variants 
adopt the same 60nm millisecond elapsed CPU time, and they are tested 
by running 30 times independently on each instance. The benchmark 
instances introduced in Section 5.1 are employed as the testbed. The 
statistical results obtained by computational comparisons are reported 
in Table 5, grouped by each scenario and per number of jobs. 

As shown in Table 5, the proposed MCEDA outperforms the other 
variants over a variety of scale instances. The results obtained by 
MCEDA are remarkably better in terms of both the average relative 
percent deviation (ARPD) and the standard deviation (SD), indicating 
that these improvement strategies contribute considerably to improving 
the performance of MCEDA. Specifically, MCEDA yields much better 
ARPD values than MCEDAv1 for different scales and scenarios, implying 
that both constructive heuristics affect algorithm’s performance, espe
cially for the large-scale instances. The two constructive heuristics (i.e., 
PFT_NEH(x) and PFZ_RZ(x)) utilize problem properties to produce 
partially promising solutions, which can provide better starting points 
for subsequent searches and notably narrow the search scope. That is, 
MCEDA is afforded more opportunities to find promising search regions 
within the reduced search space. Moreover, the results of MCEDAv2 is 
slightly weaker than MCEDA, indicating that the proposed diversity 
mechanism not only ensures the vitality of the search to avoid stagna
tion, but also preserves the population diversity and evolutionary in
formation. As can be observed from Table 5, MCEDAv3 is somewhat 
inferior to MCEDA in all scenarios, which demonstrates the effectiveness 
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of the fast Insert-based neighbor evaluation method. Indeed, the pro
posed fast evaluation method facilitates the efficiency of evaluating 
Insert-based neighbor solutions and reduces the computational cost, 
thereby allowing more iterations and raising the chances of discovering 
more promising solutions with less computational effort. 

From Table 5, it can be seen that the total average values of MCEDAv4 
(1.222), MCEDAv5 (0.921) and MCEDAv6 (1.648) are inferior to MCEDA 
(0.214). As regards MCEDAv6, it achieves the worst results, remarkably 
lags behind other competitors, clearly revealing that the integration of 
both NSPM_boost and NSPM_RS_guide in the multi-neighborhood iterated 
local search effectively enhances the searchability. Since both neigh
borhood search strategies, i.e., NSPM_boost and NSPM_RS_guide, can utilize 
valuable probability information of promising patterns from superior 
solutions to drive neighborhood search, MNILS can fully exploit local 
areas in depth by cyclically switching between neighborhood search 
strategies through the framework of ILS. If it is eliminated, the capacity 
for local exploitation would be greatly diminished. Furthermore, the SD 
values of MCEDA are smaller than those of its variants, i.e., MCEDA 
produces more stable results across various scale instances, indicating 
that MCEDA has good robustness and stability. As a consequence of such 
comparison, MCEDA has a stronger and superior search power, 
demonstrating the advantages of all well-designed improvement 
strategies. 

Although the statistical results in Table 5 illustrate the superiority of 
incorporating improvement strategies, ANOVA is still used to further 
confirm the significance of the observed differences. The results of the 
ANOVA are reported in Fig. 7, which depicts the interaction between 
algorithms and scenarios with 95% Tukey’s Honest Significant 

Difference (HSD) confidence intervals. Note that the overlapping in
tervals among algorithms imply that there are statistically insignificant 
differences in their performances. As shown in Fig. 7, MCEDA is 
significantly superior to the other six variants due to the absence of 
overlapping intervals, confirming the above conclusion that these 
improvement strategies have a great potential to boost the performance 
of MCEDA. 

Table 5 
Comparison results of MCEDA with its six variants.  

Scenario n MCEDAv1 MCEDAv2 MCEDAv3 MCEDAv4 MCEDAv5 MCEDAv6 MCEDA 
ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD 

SSD-0 20  0.027  0.296  0.017  0.286  0.023  0.293  0.193  0.332  0.182  0.361  0.334  0.557  0.013  0.284 
50  1.154  0.288  0.843  0.263  1.224  0.282  1.773  0.341  1.569  0.355  2.532  0.584  0.357  0.257 
100  1.108  0.282  0.885  0.257  1.182  0.271  1.554  0.336  1.375  0.343  2.375  0.611  0.383  0.248 
200  0.579  0.264  0.712  0.253  0.761  0.264  1.141  0.363  0.973  0.376  1.794  0.573  0.362  0.245 
500  0.475  0.323  0.555  0.295  0.637  0.295  1.773  0.425  0.825  0.443  1.483  0.607  0.188  0.283 

Average   0.669  0.291  0.602  0.271  0.765  0.281  1.287  0.359  0.985  0.376  1.704  0.586  0.261  0.263 
SSD-10 20  0.021  0.291  0.015  0.281  0.021  0.286  0.186  0.343  0.176  0.363  0.323  0.561  0.011  0.279 

50  1.027  0.298  0.736  0.268  1.207  0.291  1.652  0.347  1.464  0.367  2.434  0.578  0.243  0.265 
100  1.054  0.282  0.827  0.262  1.118  0.268  1.478  0.344  1.262  0.355  2.324  0.597  0.335  0.257 
200  0.533  0.279  0.652  0.253  0.667  0.272  1.034  0.371  0.918  0.368  1.732  0.566  0.328  0.246 
500  0.436  0.323  0.517  0.284  0.541  0.314  1.766  0.432  0.775  0.437  1.426  0.612  0.173  0.258 

Average   0.614  0.295  0.549  0.270  0.711  0.286  1.223  0.367  0.919  0.378  1.648  0.583  0.218  0.261 
SSD-50 20  0.026  0.288  0.018  0.283  0.024  0.282  0.193  0.345  0.188  0.364  0.338  0.553  0.014  0.271 

50  1.112  0.296  0.823  0.264  1.218  0.286  1.742  0.332  1.543  0.373  2.524  0.581  0.345  0.254 
100  1.027  0.278  0.746  0.258  1.043  0.272  1.424  0.347  1.215  0.356  2.257  0.594  0.287  0.243 
200  0.436  0.267  0.612  0.255  0.634  0.261  1.007  0.355  0.826  0.372  1.671  0.568  0.243  0.246 
500  0.413  0.324  0.523  0.276  0.535  0.295  1.731  0.428  0.796  0.445  1.433  0.611  0.186  0.257 

Average   0.603  0.291  0.544  0.267  0.691  0.279  1.219  0.361  0.914  0.382  1.645  0.581  0.215  0.254 
SSD-100 20  0.022  0.295  0.015  0.287  0.021  0.289  0.186  0.361  0.174  0.355  0.331  0.546  0.013  0.271 

50  1.024  0.277  0.752  0.262  1.163  0.268  1.632  0.345  1.438  0.364  2.423  0.576  0.287  0.258 
100  1.085  0.273  0.836  0.263  0.985  0.273  1.439  0.353  1.312  0.343  2.354  0.591  0.322  0.255 
200  0.417  0.267  0.554  0.252  0.572  0.262  0.976  0.365  0.753  0.368  1.548  0.563  0.167  0.227 
500  0.337  0.326  0.473  0.281  0.506  0.295  1.711  0.416  0.762  0.437  1.412  0.603  0.143  0.263 

Average   0.577  0.288  0.526  0.269  0.649  0.277  1.189  0.368  0.888  0.373  1.614  0.576  0.186  0.255 
SSD-125 20  0.024  0.292  0.017  0.281  0.019  0.285  0.182  0.356  0.167  0.352  0.328  0.552  0.011  0.268 

50  1.017  0.288  0.782  0.257  1.183  0.267  1.651  0.348  1.426  0.356  2.513  0.571  0.283  0.252 
100  1.021  0.279  0.743  0.251  0.894  0.272  1.374  0.344  1.221  0.338  2.221  0.587  0.245  0.246 
200  0.483  0.265  0.615  0.245  0.632  0.257  0.979  0.357  0.864  0.362  1.624  0.553  0.223  0.241 
500  0.412  0.323  0.531  0.273  0.546  0.303  1.761  0.422  0.812  0.426  1.457  0.592  0.182  0.254 

Average   0.591  0.289  0.538  0.261  0.655  0.277  1.189  0.365  0.898  0.367  1.629  0.571  0.189  0.252 
Tot. average   0.611  0.291  0.552  0.268  0.694  0.280  1.222  0.364  0.921  0.375  1.648  0.579  0.214  0.257  
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Fig. 7. Interaction plot with 95% Tukey’s HSD confidence interval between 
algorithm and scenario. 
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5.4. Comparisons of MCEDA and other two-dimensional EDAs 

Since most well-performing EDA-based algorithms use two- 
dimensional probabilistic models to guide the global search direction, 
it is critical to conduct a comprehensive investigation of the global 
search performance of EDA-based algorithms. To verify the proposed 
MCEDA’s superiority over existing two-dimensional probabilistic 
model-based EDAs for BFSP_SDST, we compared it with three recently 
proposed two-dimensional probabilistic model-based EDAs, including 
the state-of-the-art EDA (JEDA) (Jarboui, et al., 2009), the effective EDA 
(EEDA) (Wang, et al., 2013), and the modified JEDA (P-EDA) (Pan & 
Ruiz, 2012). To eliminate the effect of local search on the global per
formance of these EDAs, only the framework of global search for all 
EDA-based algorithms is used to perform global exploration without 
local search. These variants are abbreviated as MCEDAnls, JEDAnls, 
EEDAnls, and P-EDAnls. The parameters of these EDA-based algorithms 
are set to the same values as in the original literature. The experimental 
results under five different scenarios are summarized in Table 6. 

As can be observed from Table 6, MCEDAnls achieves the best results 
in almost all instances compared to the existing effective two- 
dimensional probabilistic model-based EDAs. Specifically, the global 
performance of P-EDAnls is significantly better than that of JEDAnls and 
EEDAnls, which indicates that P-EDAnls can attain better search perfor
mance by using two two-dimensional matrices to preserve information 
of both the order of jobs and the number of similar blocks. However, the 
proposed MCEDAnls notably outperforms all the existing EDA-based al
gorithms in terms of ARPD values for five scenarios, SSD-0, SSD-10, SSD- 
50, SSD-100, and SSD-125. For different setup time scenarios, the his
togram including means with 95% Tukey’s HSD confidence interval is 
illustrated in Fig. 8. It is clear that, as compared to other EDA-based 
algorithms, MCEDAnls can yield significantly lower ARPD and rela
tively smaller SD with considerable advantages. These findings 
demonstrate the benefits of the matrix-cube-based probabilistic model 
in improving the performance of MCEDA. The main reason is explained 
by the fact that the three-dimensional probabilistic model employed in 
MCEDAnls is capable of not only learning valuable information about the 
order of jobs that existed in superior solutions, but also accurately and 
reasonably recording the relative position of each similar block, which is 
difficult to do with two-dimensional probabilistic models. So, for the 
two-dimensional probabilistic model-based EDAs, similar blocks cannot 
be placed in the correct positions to produce new individuals during the 
sampling process, resulting in relatively poor search capability of these 
comparison algorithms. According to the above experiments and anal
ysis, it can be concluded that the proposed matrix-cube-based probabi
listic model plays an important role in MCEDA. Also, it may be 
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Fig. 8. Comparisons of EDA’s global performance.  
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worthwhile to consider embedding the developed multi-dimensional 
probabilistic model into other HIOAs for solving BFSPs in future 
research. 

5.5. Comparisons of MCEDA and the state-of-the-art methods 

To evaluate the effectiveness and efficiency of the proposed MCEDA, 
this section aims to compare the performance of MCEDA against several 
state-of-the-art algorithms available in the literature. As described in 
Section 2, it should be noted that few algorithms are directly designed to 
address the BFSP_SDST; accordingly, any algorithms that attempt 
addressing the BFSP_SDST and its relevant problems are considered for 
computational comparison. For various types of FSPs and BFSPs with 
makespan criterion, the efficacy of MCEDA with various high- 
performance algorithms is comprehensively compared according to 
the same benchmark test sets as SSD-10, SSD-50, SSD-100, and SSD-125 
introduced in Section 5.1. These algorithms may be classified into three 
categories. The first group has a single algorithm, i.e., DWWO (Shao, 
et al., 2018b), which is developed to solve the BFSP_SDST; The second 
group contains fourteen algorithms, including HDDE (Wang, et al., 
2010), hmgHS (Wang, et al., 2011), TPA (Wang, et al., 2012), MA (Pan, 
et al., 2013), RAIS (Lin & Ying, 2013), SVNS_S and SVNS_D (Ribas, et al., 
2013), HVNS (Moslehi & Khorasanian, 2014), DE_ABC (Han, et al., 
2015), DE_PLS (Tasgetiren, et al., 2015), MFFO (Han, et al., 2016), IG_IJ 

and IG_RLS (Tasgetiren, et al., 2017), and P-EDA (Shao, et al., 2018a), 
where these algorithms are designed to address the BFSP; The third 
group contains six algorithms, including HGA (Ruiz, et al., 2005), PACA 
(Gajpal, et al., 2006), IG_RS (Ruiz & Stutzle, 2008), AHA1 and AHA3 (Li 
& Zhang, 2012), EMBO (Sioud & Gagne, 2018), all of which are devel
oped to deal with the PFSP. Additionally, since the proposed MCEDA is 
designed based on the multi-dimensional probabilistic model, it is 
necessary to further conduct a comparison between MCEDA and an 
effective two-dimensional probabilistic-model-based EDA, i.e., EEDA 
(Wang, et al., 2013). The total of twenty two typical algorithms 
mentioned above are the most effective algorithms available for dealing 
with BFSP, PFSP and their extensions. Among these algorithms, DWWO, 
HDDE, HMGHS, MA, RAIS, DE_ABC, DE_PLS, MFFO, P-EDA, HGA, 
PACA, AHA1, AHA3, EMBO, and EEDA all fall within the category of 
population-based HIOAs. All algorithms are re-implemented strictly in 
accordance with the original literature, with appropriate adjustments to 
adapt the BFSP SDST with makespan criterion. Meanwhile, the fast 
Insert-based neighbor evaluation method described in Subsection 4.3.1 
is incorporated into these re-implemented algorithms to expedite search 
efficiency. The parameters of each algorithm are derived from the sug
gested settings in the original literature, and the same calibration 
method as stated in Section 5.2 is employed to recalibrate the relevant 
parameters. The parameter values for all algorithms are reported in 
Table 7. 

Table 7 
Parameters of the compared algorithms for BFSP_SDST.  

Algorithm Author(s) Parameter setting 

DWWO 
Shao, et al. (2018b) 

popsize = 5, λmin = 1, λmax = 2, hmax = 10, ω = 40. 

HDDE 
Wang, et al. (2010) 

popsize = 20, F = 0.2, CR = 0.2, Pl = 0.2. 

hmgHS 
Wang, et al. (2011) 

MS = 5, PCR = 0.95, PAR = 0.95. 

TPA 
Wang, et al. (2012) 

Tinit =
∑n

i=1
∑n

j=1pi,j/5nm, Tfinal = 1, Niter = 100000,  
α = 0.8, β = (Tinit − Tfinal)/((Niter − 1)× Tinit × Tfinal). 

MA 
Pan, et al. (2013) 

popsize = 10, Pm = 0.8, Pc = 0.2, λ = 20, γ = 20. 

RAIS 
Lin and Ying (2013) 

T0 = 0.6×
∑n

i=1
∑n

j=1pi,j/10n, Dthreshold = 5, GT = 4000,   

nc = 6, α = 0.97, MaxT = 60nm. 
SVNS_D 

Ribas, et al. (2013) 
α = 0.75, β = 0.5, d = 8. 

HVNS 
Moslehi and Khorasanian (2014) 

Tinit =
∑n

i=1
∑n

j=1pi,j/5nm, Tfinal = 0.1× Tinit , kmax = 100000,  
β = (Tinit − Tfinal)/((Niter − 1)× Tinit × Tfinal). 

DE_ABC 
Han, et al. (2015) 

popsize = 20, Pmu = 0.9, Pc = 0.1, Pls = 0.2. 

DE_PLS 
Tasgetiren, et al. (2015) 

popsize = 10, δ = 20, Pc = 0.1, β = 0.0005, F = 0.1,  
Tmax = 60nm. 

MFFO 
Han, et al. (2016) 

popsize = 20, φ = 0.75, pls = 0.6, T = 5, Timemax = 60nm. 

IG_RLS 
Tasgetiren, et al. (2017) 

ds = 8, τP = 0.5, jP = 0.001, Tmax = 60nm. 

P-EDA 
Shao, et al. (2018a) 

popsize = 50, λ = 0.3, t = 60nm. 

HGA 
Ruiz, et al. (2005) 

popsize = 50, Pc = 0.1, Pm = 0.005, Gr = 25. 

PACA 
Gajpal, et al. (2006) 

τip = 1/Mbest , ρ = 0.75. 

IG_RS 
Ruiz and Stutzle (2008) 

Temperature = T×
∑n

i=1
∑n

j=1pi,j/10nm, T = 0.5, d = 4. 

AHA3 
Li and Zhang (2012) 

popsize = 50,α = 20, β = 20, ρ = 1, ηi = 0.7, Pc = 0.6,  
Pm = 0.02, Pl = 0.1. 

EMBO 
Sioud and Gagne (2018) 

popsize = 9, m = 100, k = 5, x = 1, age = 100, q0 = 0.7, l = 10. 

EEDA 
Wang, et al. (2013) 

popsize = 150, η = 10, α = 0.1.  
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The comprehensive comparison results of MCEDA against 22 
different algorithms under different scenarios are summarized in Ta
bles 8-12. Notably, the setup time for all instances in SSD-0 is zero, 
implying that the BFSP SDST is reduced to the BFSP in this scenario. As 
seen in Table 8, all ARPD values obtained by MCEDA are the smallest 
when compared to the other algorithms. These numerical results reflect 
that the proposed MCEDA is capable of successfully solving BFSP. 
Moreover, it can be observed from Tables 9-12 that MCEDA yields the 
lowest ARPD values on the other four test sets, SSD-10, SSD-50, SSD- 
100, and SSD-125, indicating that the proposed MCEDA has a stronger 
search engine in terms of tackling the problem under consideration. 
Furthermore, MCEDA achieves the lowest overall average values of 
ARPD on 12 instances spanning a range of scales and scenarios, 
demonstrating that MCEDA outperforms the other algorithms in an 
average sense. 

To further investigate the performance differences amongst algo
rithms, all results are also analyzed by means of multifactor ANOVA. The 
ANOVA is applied to determine whether or not there are indeed statis
tically significant differences in the ARPD values acquired by all of the 
compared algorithms. It is worth mentioning that in statistical trials 
with 95% confidence level (α = 0.05), three main hypotheses are 
checked, including normality, homoscedasticity, and independence of 
residuals. From the analysis of the residuals resulting from the experi
mental results, all hypotheses are readily satisfied. Figs. 9-13 display the 
mean plots with 95% Tukey’s HSD confidence intervals and the corre
sponding box plots for all test results obtained by MCEDA and 22 al
gorithms at different scales and scenarios, respectively. It is remarkable 
that the presence of overlapping confidence intervals between any two 
algorithms signifies that the observed differences are not statistically 
significant, signaling that there is no significant difference in the per
formance of algorithms. As can be seen in Figs. 9-13, there is no overlap 
between MCEDA and the other compared algorithms in different sce
narios, indicating that the results achieved by MCEDA are statistically 
significant different from those acquired by other algorithms. In other 
words, from a statistical point of view, MCEDA has significant advan
tages in solving both BFSP and BFSP_SDST. 

Moreover, when compared to several two-dimensional probabilistic 
model-based EDAs, MCEDA statistically significantly outperforms EEDA 
and P-EDA across all test sets, which highlights the fact that the devel
oped multi-dimensional probabilistic model has obvious advantages in 
learning and utilizing promising patterns of superior solutions. It ex
hibits its prowess in terms of exploration and exploitation. Furthermore, 
the recently proposed DWWO and a series of enhanced or hybrid IG 
versions, including IG_RS, IG_RLS, and IG_IJ, are also competitive in all 
scenarios. It is obvious that the confidence intervals of DWWO and 
several extended IG are almost completely overlapped on SSD-0 and 
partially overlapped on SSD-10, SSD-50, SSD-100, and SSD-150, 
revealing that these algorithms perform similarly in these scenarios. In 
this sense, the results obtained by DWWO are slightly better than 
IG_RLS, except on the SSD-0, due to its high-performing local search 
mechanism, while the proposed MCEDA beats all its competitors by a 
considerable margin on small to large-scale instances. Also, as illustrated 
in the box plots in Figs. 9-13, MCEDA remarkably outperforms other 
state-of-the-art algorithms. In view of the abovementioned observations, 
not only the scheduling solutions provided by MCEDA are of higher 
quality, but the numerical results also have a narrower fluctuation 
range, implying that the proposed MCEDA is competitive and stable. 

Additionally, according to the above analysis, it can be seen that 
there are significant differences in the performance of the compared 
algorithms for different scale instances and scenarios. To further 
investigate these behaviors, the interaction plots with 95% Tukey’s HSD 
confidence interval between algorithm and n, between algorithm and m, 
and between algorithm and scenario, are provided in Figs. 14-16. As 
revealed in these figures, all algorithms are sensitive to the number of 
jobs, machines, and scenarios. However, as for the proposed MCEDA, it 
is depicted in Fig. 16 that the scales and scenarios have slight effect on it. Ta

bl
e 

12
 

St
at

is
tic

al
 r

es
ul

ts
 o

f M
CE

D
A

 c
om

pa
re

d 
w

ith
 2

2 
di

ffe
re

nt
 a

lg
or

ith
m

s 
at

 s
ce

na
ri

o 
SS

D
-1

25
.  

n,
m

 
PA

CA
 

RA
IS

 
A

H
A

1 
A

H
A

3 
H

G
A

 
D

E_
A

BC
 

D
E_

PL
S 

H
D

D
E 

M
FF

O
 

EM
BO

 
hm

gH
S 

SV
N

S_
S 

SV
N

S_
D

 
P-

ED
A

 
EE

D
A

 
TP

A
 

M
A

 
H

VN
S 

IG
_R

S 
IG

_R
LS

 
IG

_IJ
 

D
W

W
O

 
M

CE
D

A
 

20
,5

  
0.

32
  

0.
41

  
0.

29
  

0.
26

  
0.

44
  

0.
06

  
0.

04
  

0.
05

  
0.

05
  

0.
05

  
0.

03
  

0.
06

  
0.

05
  

0.
11

  
0.

25
  

0.
06

  
0.

04
  

0.
05

  
0.

02
  

0.
04

  
0.

05
  

0.
03

  
0.

00
 

20
,1

0 
 

0.
41

  
0.

47
  

0.
37

  
0.

32
  

0.
57

  
0.

06
  

0.
03

  
0.

06
  

0.
04

  
0.

06
  

0.
04

  
0.

05
  

0.
05

  
0.

09
  

0.
23

  
0.

07
  

0.
04

  
0.

05
  

0.
03

  
0.

03
  

0.
04

  
0.

02
  

0.
02

 
20

,2
0 

 
0.

27
  

0.
33

  
0.

22
  

0.
18

  
0.

35
  

0.
05

  
0.

03
  

0.
05

  
0.

04
  

0.
05

  
0.

04
  

0.
03

  
0.

04
  

0.
13

  
0.

18
  

0.
05

  
0.

03
  

0.
04

  
0.

03
  

0.
04

  
0.

05
  

0.
04

  
0.

01
 

50
,5

  
2.

03
  

2.
24

  
1.

71
  

1.
66

  
1.

89
  

1.
38

  
1.

25
  

1.
55

  
1.

42
  

1.
62

  
1.

27
  

1.
19

  
1.

21
  

1.
34

  
1.

23
  

0.
93

  
0.

65
  

0.
75

  
0.

69
  

0.
63

  
0.

70
  

0.
51

  
0.

28
 

50
,1

0 
 

1.
89

  
2.

32
  

1.
64

  
1.

59
  

1.
73

  
1.

28
  

1.
24

  
1.

56
  

1.
37

  
1.

62
  

1.
14

  
1.

09
  

1.
13

  
1.

43
  

1.
32

  
0.

84
  

0.
59

  
0.

73
  

0.
77

  
0.

71
  

0.
75

  
0.

58
  

0.
29

 
50

,2
0 

 
1.

78
  

2.
26

  
1.

44
  

1.
39

  
1.

61
  

1.
24

  
1.

35
  

1.
37

  
1.

39
  

1.
53

  
1.

04
  

0.
92

  
0.

99
  

1.
39

  
1.

41
  

0.
91

  
0.

54
  

0.
72

  
0.

63
  

0.
54

  
0.

62
  

0.
54

  
0.

24
 

10
0,

5 
 

1.
86

  
2.

15
  

1.
62

  
1.

54
  

1.
73

  
1.

34
  

1.
33

  
1.

46
  

1.
43

  
1.

57
  

1.
28

  
1.

22
  

1.
28

  
1.

37
  

1.
40

  
0.

95
  

0.
79

  
0.

74
  

0.
56

  
0.

51
  

0.
59

  
0.

49
  

0.
21

 
10

0,
10

  
1.

92
  

2.
36

  
1.

72
  

1.
67

  
1.

84
  

1.
32

  
1.

29
  

1.
61

  
1.

55
  

1.
49

  
1.

42
  

1.
12

  
1.

21
  

1.
33

  
1.

42
  

1.
14

  
0.

86
  

0.
83

  
0.

74
  

0.
66

  
0.

71
  

0.
64

  
0.

25
 

10
0,

20
  

2.
06

  
2.

25
  

1.
74

  
1.

69
  

2.
17

  
1.

41
  

1.
31

  
1.

56
  

1.
59

  
1.

58
  

1.
35

  
1.

27
  

1.
32

  
1.

43
  

1.
51

  
1.

27
  

0.
65

  
0.

91
  

0.
88

  
0.

72
  

0.
77

  
0.

54
  

0.
22

 
20

0,
10

  
1.

74
  

2.
07

  
1.

41
  

1.
34

  
1.

19
  

1.
22

  
1.

19
  

1.
31

  
1.

35
  

1.
55

  
0.

95
  

0.
84

  
0.

93
  

1.
41

  
1.

53
  

1.
09

  
0.

58
  

0.
75

  
0.

57
  

0.
55

  
0.

59
  

0.
53

  
0.

21
 

20
0,

20
  

1.
86

  
1.

94
  

1.
53

  
1.

45
  

1.
77

  
1.

27
  

1.
21

  
1.

42
  

1.
53

  
1.

46
  

1.
23

  
1.

02
  

1.
09

  
1.

36
  

1.
25

  
1.

25
  

0.
41

  
0.

83
  

0.
64

  
0.

56
  

0.
64

  
0.

38
  

0.
18

 
50

0,
20

  
1.

02
  

1.
12

  
0.

78
  

0.
71

  
0.

89
  

0.
76

  
0.

71
  

0.
68

  
0.

94
  

1.
12

  
0.

46
  

0.
53

  
0.

56
  

0.
95

  
0.

96
  

0.
76

  
0.

32
  

0.
56

  
0.

43
  

0.
34

  
0.

38
  

0.
26

  
0.

17
 

A
ve

ra
ge

  
1.

43
  

1.
66

  
1.

21
  

1.
15

  
1.

35
  

0.
95

  
0.

92
  

1.
06

  
1.

06
  

1.
14

  
0.

86
  

0.
78

  
0.

82
  

1.
03

  
1.

06
  

0.
78

  
0.

46
  

0.
58

  
0.

50
  

0.
44

  
0.

49
  

0.
38

  
0.

18
  

Z.-Q. Zhang et al.                                                                                                                                                                                                                               



Expert Systems With Applications 205 (2022) 117602

28

Fig. 9. Means plots with 95% Tukey’s HSD confidence interval and box plots for MCEDA compared with 22 different algorithms (SSD-0).  

Fig. 10. Means plots with 95% Tukey’s HSD confidence interval and box plots for MCEDA compared with 22 different algorithms (SSD-10).  

Fig. 11. Means plots with 95% Tukey’s HSD confidence interval and box plots for MCEDA compared with 22 different algorithms (SSD-50).  
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Fig. 12. Means plots with 95% Tukey’s HSD confidence interval and box plots for MCEDA compared with 22 different algorithms (SSD-100).  

Fig. 13. Means plots with 95% Tukey’s HSD confidence interval and box plots for MCEDA compared with 22 different algorithms (SSD-125).  
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Meanwhile, it is obvious that the proposed MCEDA performs superiorly 
and stably under different scale instances and scenarios, particularly 
when addressing the large-scale instances with n⩾100, which suggests 
that MCEDA has superiority and stability. 

Furthermore, to further verify the statistical validity of the numerical 
results obtained by these algorithms, the parametric Duncan’s multiple 
range test (DMRT) is employed, which is a post hoc test for detecting the 
specific differences between pairs of means. Here, DMRT is used to 
categorize all comparing algorithms into distinct levels. Table 13 sum
marizes the results of DMRT under different scenarios with a confidence 
level of α = 0.05. As shown in Table 13, all algorithms are graded into 
twelve levels. MCEDA ranks the first level (i.e., A) for all scenarios, i.e., 
SSD-0, SSD-10, SSD-50, SSD-100, and SSD-125. There are no other al
gorithms except MCEDA in the level A, demonstrating that the differ
ences between MCEDA with other compared algorithms are statistically 
significant and underlining the fact that MCEDA delivers the best per
formance among all compared algorithms. Meanwhile, DWWO, MA, 
IG_RLS, IG_IJ, IG_RS, and HVNS are grouped together at the second level, 
indicating that they have similar performance, and the remaining 
comparison algorithms perform worse. The DMRT further confirms the 
competitiveness of MCEDA. 

To sum up, according to the above comparative results and statistical 
analysis, it can be credibly concluded that MCEDA is an extremely 
effective and efficient algorithm for BFSP_SDST aiming at minimizing 
makespan. The superiority of MCEDA is mainly attributed to the 
following aspects: (1) the designed fast Insert-based neighbor evaluation 
method reduces the computational cost and speeds up the search 

process; (2) the devised two effective constructive heuristics provide 
diversity and quality for the initial population; (3) the presented matrix- 
cube-based multi-dimensional probabilistic model accurately estimates 
the distribution of promising patterns of superior solutions in the solu
tion space; (4) the proposed multi-dimensional probabilistic model 
based local intensification performs detailed and in-depth multi-neigh
borhood local search; and (5) the developed diversity controlling 
mechanism maintains the search vitality, eliminates the search stagna
tion and prevents falling into local optima. In summary, MCEDA is 
capable of successfully solving the BFSP SDST and BFSP. Additionally, 
Table 14 reports the best results so far found by MCEDA for solving the 
BFSP for 120 instances of various scales in the Tailliard test set SSD-0. 

6. Conclusion and future work 

In this paper, a matrix-cube-based estimation of distribution algo
rithm (MCEDA) is proposed to solve a kind of important scheduling 
problem, i.e., the blocking flow-shop scheduling problem with sequence- 
dependent setup times (BFSP_SDST). To the best of our knowledge, this 
is the first report on the application of EDA to the BFSP problems. 

From the extensive test results, it can be concluded that the use of 
deep and fast local search is recommended. For non-convex optimiza
tion problems such as production scheduling, the explicit relationship 
between its intrinsic geometric structure and optimal solution is still an 
open problem. At present, it is impossible to directly obtain the quan
titative relationship between them. In consequence, it is impossible to 
design a polynomial time algorithm that can obtain the optimal solution 
according to this relationship. Due to the objective existence of this 
unsolved open problem, how to execute local search as deeply as 
possible from the promising regions determined by global search, so as 
to obtain the high-quality near optimal solutions, is still the key to the 
design of high-performance hybrid intelligent scheduling algorithm. 

Under this background, MCEDA utilizes the probability model that 
retains the block patterns of excellent solutions to dynamically generate 
rich promising neighborhoods in its local search process, which can 
ensure that its local search continues to search downward before 
reaching the local minimum solution common to all neighborhoods, so 
that it can have better performance. Meanwhile, MCEDA also utilizes the 
proposed fast neighbor evaluation methods to further improve the effi
ciency of its local search. 

We have also shown that both the initial population and the structure 
of probability model have some effects on the performance of MCEDA. 
In particular, it is recommended to use the PFT_NEH(x) heuristic and the 
PFZ_RZ(x) heuristic to generate some excellent initial individuals, and 
employ a three-dimensional probabilistic model to reasonably guide the 
direction of global search. 

There are two valuable directions for future research. Firstly, it 

PACA
RAIS
AHA1
AHA3
HGA
DE_ABC
DE_PLS
HDDE
MFFO
EMBO
hmgHS
SVNS_S
SVNS_D
P-EDA
EEDA
TPA
MA
HVNS
IG_RS
IG_RLS
IG_IJ
DWWO
MCEDA

Algorithm2.0

1.5

1.0

0.5

0.0

M
ea

n

SSD-0                  SSD-10                 SSD-50                SSD-100              SSD-125
Scenario

Fig. 16. Interaction plot with 95% Tukey’s HSD confidence interval between 
algorithm and scenario. 

Table 13 
Results of Duncan’s multiple range test (α = 0.05).  

Rank SSD-0 SSD-10 SSD-50 SSD-100 SSD-125 

A {MCEDA} {MCEDA} {MCEDA} {MCEDA} {MCEDA} 
B  {IG_RLS, IG_IJ, DWWO, HVNS, 

IG_RS, MA, TPA, P-EDA, EEDA} 
{DWWO, MA, IG_RLS, 
IG_IJ, IG_RS, HVNS, TPA} 

{DWWO, IG_RLS, MA, 
IG_IJ, IG_RS, HVNS} 

{DWWO, MA, IG_RLS, 
IG_IJ, IG_RS, HVNS} 

{DWWO, IG_RLS, MA, 
IG_IJ, IG_RS, HVNS} 

C  {SVNS_S, SVNS_D} {SVNS_S, hmgHS, P-EDA, 
DE_PLS, SVNS_D} 

{TPA, hmgHS, 
EEDA, DE_PLS} 

{SVNS_S, SVNS_D, 
TPA, hmgHS} 

{TPA, SVNS_S, 
SVNS_D, hmgHS} 

D {hmgHS} {EEDA} {P-EDA} {DE_PLS} {DE_PLS} 
E {DE_PLS} {MFFO, DE_ABC} {SVNS_S} {HDDE, P-EDA} {DE_ABC} 
F  {EMBO}  {EMBO, HDDE}  {MFFO, SVNS_D, 

DE_ABC, EMBO, HDDE} 
{EEDA, DE_ABC}  {P-EDA, HDDE, EEDA, 

MFFO} 
G {MFFO} {AHA3, HGA, AHA1} {AHA3} {MFFO} {EMBO, AHA3, AHA1} 
H {HDDE, DE_ABC, AHA3, HGA} {RAIS, PACA} {AHA1} {AHA3, EMBO} {HGA} 
I {AHA1}  {HGA} {AHA1} {PACA} 
J {RAIS}  {RAIS} {HGA} {RAIS} 
K {PACA}  {PACA} {PACA}  
L    {RAIS}  
F-ratio 6.752 7.294 6.921 6.322 6.000 
p-value 0.000 0.000 0.000 0.000 0.000  
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would be meaningful to design a probability model combined with 
reinforcement learning mechanism to further enhance the guidance 
ability of global search and the in-depth exploitation ability of local 
search. Secondly, the proposed MCEDA can be extended to address other 
important scheduling problems, such as the low-carbon production and 
transportation integrated scheduling problems. 
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Ta24 2348 2348 Ta64 5656 5667 Ta104 14,808 14,808 
Ta25 2435 2435 Ta65 5901 5908 Ta105 14,628 14,628 
Ta26 2383 2383 Ta66 5759 5764 Ta106 14,765 14,793 
Ta27 2390 2390 Ta67 5920 5922 Ta107 14,787 14,787 
Ta28 2328 2328 Ta68 5809 5809 Ta108 14,836 14,845 
Ta29 2363 2363 Ta69 6035 6035 Ta109 14,711 14,711 
Ta30 2323 2323 Ta70 6059 6059 Ta110 14,750 14,758 
Ta31 2980 2980 Ta71 6916 6916 Ta111 35,513 35,524 
Ta32 3182 3182 Ta72 6669 6671 Ta112 35,805 35,805 
Ta33 2995 2995 Ta73 6797 6797 Ta113 35,479 35,479 
Ta34 3116 3116 Ta74 7039 7039 Ta114 35,030 35,124 
Ta35 3139 3139 Ta75 6733 6736 Ta115 35,487 35,487 
Ta36 3158 3162 Ta76 6537 6537 Ta116 35,803 35,803 
Ta37 3005 3008 Ta77 6707 6707 Ta117 35,451 35,451 
Ta38 3042 3044 Ta78 6746 6746 Ta118 35,644 35,644 
Ta39 2889 2889 Ta79 6928 6935 Ta119 35,421 35,421 
Ta40 3097 3097 Ta80 6844 6851 Ta120 35,761 35,773  
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