
Expert Systems With Applications 205 (2022) 117602

Available online 21 May 2022
0957-4174/© 2022 Elsevier Ltd. All rights reserved.

A matrix-cube-based estimation of distribution algorithm for blocking
flow-shop scheduling problem with sequence-dependent setup times

Zi-Qi Zhang a,b,c, Bin Qian a,b,c,*, Rong Hu a,c, Huai-Ping Jin a, Ling Wang d, Jian-Bo Yang e

a School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, PR China
b School of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
c Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming 650500, PR China
d Department of Automation, Tsinghua University, Beijing 100084, PR China
e Alliance Manchester Business School, The University of Manchester, Manchester M15 6PB, United Kingdom

A R T I C L E I N F O

Keywords:
Blocking flow-shop scheduling
Estimation of distribution algorithm
Setup times
Multi-dimensional probabilistic model
Iterated local search

A B S T R A C T

The blocking flow-shop scheduling problem with sequence-dependent setup times (BFSP_SDST) is a strong NP-
hard problem that exists widely in practice. However, research on this issue is still quite limited. Hence, this
paper presents a novel matrix-cube-based estimation of distribution algorithm (MCEDA) to minimize the
makespan criterion of the BFSP_SDST. In MCEDA’s global search, a matrix cube is devised to reasonably learn the
promising patterns in excellent solutions or individuals, and then a matrix-cube-based probabilistic model is
developed to quickly guide global search toward the potential promising regions in solution space. A diversity
controlling mechanism is also added to avoid the stagnation of global search. In MCEDA’s local search, an
iterated multi-neighborhood local search controlled by the probabilistic model in global search is designed to
execute deeper exploitation from those promising regions. Additionally, two constructive heuristics for gener-
ating high-quality initial individuals and one fast Insert-based neighbor evaluation method for accelerating the
efficiency of local search are presented based on an analysis of the problem’s features. MCEDA’s efficacy and
superiority in solving the BFSP SDST are demonstrated through comprehensive comparisons with 22 state-of-the-
art algorithms.

1. Introduction

Production scheduling has been recognized as a realistic and reliable
decision-making approach for allocating restricted resources within a
certain time period in order to achieve one or more decision-maker-
defined objectives (Pinedo, 2015). As a hot research topic in the field
of production scheduling, the flow-shop scheduling problem (FSP) has a
wide range of applications in numerous manufacturing systems, pro-
duction and assembly lines, and information service facilities. For the
typical FSP, it is commonly assumed that there are infinitely storage
facilities or buffer units between any two adjacent machines, where
finished jobs can be stored in these buffer units for an unlimited amount
of time. However, in many real-world manufacturing situations, due to
production characteristics and technical constraints, there are usually no
intermediate storage units between machines (Grabowski & Pempera,
2007). In this sense, the traditional FSP is converted into the blocking

FSP (BFSP), which is a typical NP-hard problem in the strong sense (Hall
and Sriskandarajah, 1996; Ronconi & Henriques, 2009; Wang, et al.,
2010). As a significant subfield of FSP, BFSP has attracted the consid-
erable attention and interest from both researchers and practitioners in
recent decades. A wide variety of real-world industrial processes and
manufacturing systems can be modeled as the BFSP, such as chemical
and pharmaceutical manufacturing (Ronconi, 2004), iron and steel
manufacturing (Gong, et al., 2010), robotic cells (Elmi & Topaloglu,
2013), serial manufacturing processes (Koren, et al., 2017), and waste
treatment (Riahi, et al., 2017). Nowadays, the BFSP has garnered the
tremendous attention and interest of both researchers and practitioners
(see Section 2).

Setup time is prevalent in a variety of real-life manufacturing sys-
tems. In many factories, setup time is frequently derived from non-
productive activities such as cleaning devices, adjusting equipment,
switching machines, repairing or releasing jobs, especially in chemical

* Corresponding author.
E-mail addresses: zhangziqi@kust.edu.cn (Z.-Q. Zhang), bin.qian@vip.163.com (B. Qian), wangling@tsinghua.edu.cn (L. Wang), jian-bo.yang@umist.ac.uk

(J.-B. Yang).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2022.117602
Received 6 March 2022; Received in revised form 4 May 2022; Accepted 14 May 2022

mailto:zhangziqi@kust.edu.cn
mailto:bin.qian@vip.163.com
mailto:wangling@tsinghua.edu.cn
mailto:jian-bo.yang@umist.ac.uk
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2022.117602
https://doi.org/10.1016/j.eswa.2022.117602
https://doi.org/10.1016/j.eswa.2022.117602
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.117602&domain=pdf

Expert Systems With Applications 205 (2022) 117602

2

or pharmaceutical plants. Although in almost all the existing research
works related to BFSPs, it is usually assumed that the setup time is
negligible or included in processing time, however, substantial setup
times should be separable (Shao, et al., 2018b). Nevertheless, the
improper handling of setup operations may result in the consumption of
more than 20% of the available machine capacity (Pinedo, 2015). To the
best of our knowledge, there are still very few works on BFSP that
involve setup time, especially for sequence-dependent setup times
(SDST) (Shao, et al., 2018b). Therefore, this paper investigates an
extension of the BFSP, namely the BFSP with SDST (BFSP_SDST), whose
criterion is to minimize makespan (i.e., Cmax). The SDST indicates that
the setup time of each job on each machine depends not only on the job
itself but also on its immediately preceding job. According to the widely
used three-field notation α|β|γ proposed by Graham, et al. (1979), the
BFSP under the makespan criterion and the studied problem herein can
be denoted as Fm|blocking|Cmax and Fm|blocking,STsd|Cmax, respectively.
Since Fm|blocking|Cmax is already recognized as strongly NP-hard, and it
is obviously reduced to Fm|blocking,STsd|Cmax, it can be concluded that
Fm|blocking, STsd|Cmax is also NP-hard in the strong sense.

For the NP-hard scheduling problems, existing mathematical algo-
rithms are often of limited use due to their excessive computation time
or poor performance under reasonable runtime. Hence, numerous
hybrid intelligent optimization algorithms (HIOAs) have been devel-
oped to tackle this issue, aiming to achieve satisfactory solutions for a
wide variety of traditional scheduling problems within several seconds
or tens of seconds. Among these algorithms, the hybrid estimation of
distribution algorithm (HEDA) is a unique one. Unlike the crossover and
mutation operators in most existing HIOAs (e.g., hybrid genetic algo-
rithm, hybrid particle swarm optimization algorithm, hybrid differential
evolution algorithm), HEDA generates the offspring population by
sampling an EDA-based probability model, which can learn and accu-
mulate valuable information about excellent individuals from a macro
perspective, as well as establish explicit probability models to effectively
estimate the distribution of superior solutions and to predict promising
regions in the feasible solution space. To a certain extent, such novel
population generation mechanism can avoid the destruction of the
blocks (i.e., the partial ordered patterns) in excellent individuals or so-
lutions to a certain extent (Larranga & Lozano, 2001). Due to its stronger
global exploration, simpler framework, and faster convergence speed,
HEDA has been widely utilized to solve various scheduling problems
(Faraji Amiri & Behnamian, 2020; Jarboui, et al., 2009; Pan & Ruiz,
2012; Qian, et al., 2017; Wang, et al., 2014; Wang, et al., 2013; Wu,
et al., 2021). These successful applications have indicated that HEDA
has considerable competitive advantage against other algorithms.
Therefore, HEDA is selected as the main framework of our proposed
algorithm for Fm|blocking,STsd|Cmax.

Unfortunately, the majority of currently available HEDAs have two
drawbacks. The first drawback is that most existing HEDAs commonly
use one or more two-dimensional probabilistic models or matrices to
learn the characteristic information of excellent individuals. The struc-
ture of two-dimensional matrix directly determines that only the
matrix’s elements and the subscripts of these elements can be utilized to
store information. For the two-dimensional matrix Mn×n, its element
Mn×n(x, y) is used to record the occurrence frequency of the block [x, y] in
excellent individuals, while the subscript (x, y) is only enough to save
the information of one block’s structure or pattern. There is no extra
space to record the position of this block [x, y] in each corresponding
excellent individual. This makes it difficult for two-dimensional proba-
bilistic models to correctly guide the search direction, so that the prac-
tical performance of the existing HEDAs is relatively limited (see
Subsection 4.2.1). The second drawback is that almost all existing
HEDAs and other HIOAs lack substantive interaction between their
global and local searches. In each of these algorithms, the local search
can only execute the neighborhood exploitation by using a very limited
number of pre-defined common neighborhood operators (e.g., Insert,
Swap, and Interchange). The lack of global exploration information to

assist the local search undoubtedly limits the depth of the local search,
resulting in the algorithm’s overall practical performance being con-
strained. To overcome the aforementioned defects, a novel matrix-cube-
based HEDA, namely MCEDA, is proposed to address the considered
problem.

The main characteristics of our MCEDA are summarized as follows.

• A three-dimensional matrix (i.e., matrix cube) is devised to reason-
ably record and reserve the valuable patterns in excellent individuals
or solutions. For a three-dimensional matrix, the z in its subscript (x,
y, z) is used to record the position of job block [x, y] in the corre-
sponding excellent solutions. Meanwhile, a matrix-cube-based
probabilistic model with a sampling strategy is developed to esti-
mate the distribution of excellent solutions in solution space and
correctly guide global search to promising regions. Moreover, a
simple diversity controlling mechanism is designed to avoid the
stagnation of global search.

• Different from most existing HIOA’s local searches that execute local
search independently, a new iterated multi-neighborhood local
search controlled by the matrix-cube-based probabilistic model in
global search is presented to undertake deeper exploitation from
those promising regions. This novel local search utilizes the block
patterns saved in the probability model to approximately evaluate
neighbors and dynamically create promising neighborhoods for
performing fast and rich search.

• Based on the problem’s characteristics, two effective constructive
heuristics are designed to ensure the quality and diversity of the
initial population. Meanwhile, a fast Insert-based neighbor evalua-
tion method is presented to improve search efficiency.

• The proposed MCEDA is compared against twenty-two state-of-the-
art algorithms on different instances. The statistical results demon-
strate the efficacy and superiority of MCEDA.

The remainder of this paper is organized as follows. Section 2 briefly
reviews the related literature. Section 3 describes the model of the
problem. Section 4 presents MCEDA after explaining two effective
heuristics for initialization, the matrix cube based global search, and the
probabilistic model controlled local search. The comparison results and
statistical analysis are provided in Section 5. Finally, Section 6 gives
some concluding remarks and suggestions for future research.

2. Literature review of BFSP and BFSP_SDST

The comprehensive review of the BFSP can be found in (Miyata &
Nagano, 2019). Since 2010, there have been mainly three types of al-
gorithms for the BFSP.

The first is the HIOA. The existing studies have mainly concentrated
on minimizing the makespan criterion. Wang, et al. (2010) presented a
hybrid discrete differential evolution (HDDE), in which a speedup
method was utilized to evaluate the Insert-based neighbor solutions. The
test results showed that HDDE outperformed the famous tabu search
(TS) algorithm (Grabowski & Pempera, 2007). Wang, et al. (2011)
developed a hybrid modified global-best harmony search (hmgHS),
which performed better than HGA (Wang, et al., 2011) and TS (Gra-
bowski & Pempera, 2007). Wang, et al. (2012) devised a three-phase
algorithm (TPA), in which a priority rule, a NEH’s variant, and a
modified simulated annealing are utilized in three phases, respectively.
The comparative results demonstrated that TPA was relatively more
efficient than HDDE (Wang, et al., 2010). Lin and Ying (2013) proposed
a revised artificial immune system (RAIS) algorithm, where a simple
iterated greedy algorithm (IGA) was embedded to intensively exploit
around the better solutions. The test results indicated that the RAIS was
superior to both HDDE (Wang, et al., 2010) and IGA (Ribas, et al., 2011).
Han, et al. (2015) designed a discrete artificial bee colony algorithm
incorporating differential evolution (DE_ABC). The test results demon-
strated that DE_ABC was superior to the compared algorithms.

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

3

Tasgetiren, et al. (2015) presented a populated local search with dif-
ferential evolution (DE_PLS). The test results showed that DE_PLS per-
formed better than some of the best performing algorithms from the
literature. Han, et al. (2016) introduced a modified fruit fly optimization
(MFFO) algorithm, in which a problem-specific heuristic, a neighbor-
hood strategy, and a speedup insert-neighborhood based local search are
employed. Shao, et al. (2018a) developed an EDA with a path relinking
technique (P-EDA). The path relinking technique here is utilized to
avoid performing the blind search. The results compared with various
other high-performing algorithms verified the effectiveness of P-EDA.
Shao, et al. (2019) proposed a discrete invasive weed optimization
(DIWO), in which a random-insertion-based spatial dispersal, a shuffle-
based referenced local search, and an improved competitive exclusion
are devised. The results demonstrated that DIWO outperformed the
compared algorithms. Besides the makespan minimization, Ribas, et al.
(2015) devised an effective discrete artificial bee colony algorithm
(DABC_RCT) for minimizing the total flowtime criterion. Shao, et al.
(2017) presented a self-adaptive discrete invasive weed optimization
(SaDIWO), and Nagano, et al. (2017) designed an evolutionary clus-
tering search (ECS) algorithm to minimize the total tardiness criterion.

The second is the constructive heuristic. As for the makespan mini-
mization, Pan and Wang (2012) introduced six effective heuristics,
namely PF-NEH(x), wPF-NEH(x), PW-NEH(x), PF-NEHLS(x), wPF-
NEHLS(x), and PW-NEHLS(x), in which the variable x is employed to
control the number of sequences generated. The test results demon-
strated that PW-NEHLS(5) beat NEH (Nawaz, et al., 1983), MME (Ron-
coni, 2004), and PFE (Ronconi, 2004). As for the total flowtime
minimization, Tasgetiren, et al. (2016) developed a variable block
insertion heuristic (VBIH), and Fernandez-Viagas, et al. (2016) proposed
an effective beam-search- based heuristic (BSH).

The third is the iterated greedy algorithm (IGA). As for the makespan
minimization, Tasgetiren, et al. (2017) devised two enhanced IGAs, i.e.,
iterated greedy with jumping probability (IG_IJ) and iterated greedy
with RIS local search (IG_RIS), which combined an effective constructive
heuristic and employed two speedup methods for the insert-based and
swap-based neighborhood searches, respectively. Extensive experi-
mental results demonstrated that the devised algorithms achieved better
results than most state-of-the-art algorithms. Ribas, et al. (2013) pro-
posed two competitive variable neighborhood search methods (namely
SVNS_S and SVNS_D). The experimental results revealed that SVNS
outperformed both HDDE (Wang, et al., 2010) and IGA (Ribas, et al.,
2011). Moslehi and Khorasanian (2014) developed a hybrid variable
neighborhood search (HVNS), whose performance surpassed several
state-of-the-art algorithms. As for the total flowtime minimization,
Khorasanian and Moslehi (2012) presented an IGA, in which a modified
NEH was employed to generate the initial solution. Ding, et al. (2016)
investigated several properties of the BFSP and presented an IGA based
on these problem-specific properties.

Recently, several researchers studied the BFSP_SDST and the other
BFSP’s variants, and they all adopted HIOA to address the corresponding
problems. Shao, et al. (2018b) devised a novel discrete water wave
optimization (DWWO) to minimize the makespan of the BFSP_SDST. In
DWWO, a path relinking technique and a variable neighborhood search
(VNS) are employed to further improve the algorithm’s performance.
The test results indicated that DWWO defeated several highly effective
algorithms. Nouri and Ladhari (2018) introduced a multi-objective ge-
netic algorithm (MBGA) for the BFSP that considers minimizing both the
makespan and the total completion time. Gong, et al. (2018) developed a
hybrid artificial bee colony (HABC) to minimize the makespan and the
earliness of the lot-streaming BFSP. Han, et al. (2019) designed a robust
multi-objective evolutionary algorithm to minimize the makespan, the
tardiness and the robustness of the lot-streaming BFSP with machine
breakdowns. Han, et al. (2020) presented an effective multi-objective
discrete evolutionary optimization (MDEO) to minimize the makespan
and the energy consumption of the energy-efficient BFSP_SDST. Ribas,
et al. (2021) proposed an enhanced IGA to minimize the makespan of the

parallel BFSP_SDST. Shao, et al. (2021) devised an effective constructive
heuristic and an IGA to minimize the makespan of the distributed mixed
BFSP. Zhao, et al. (2022) developed an effective water wave optimiza-
tion to minimize the total tardiness of the distributed assembly BFSP.

From the above literature, it can be seen that although researchers
have undertaken much research on the BFSP and its variants, only Shao,
et al. (2018b) considers the SDST in the BFSP. Thus, it is necessary and
meaningful to consider such a significant problem.

3. Problem statement

3.1. permutation-based model

The BFSP_SDST can be briefly described as follows. There are n jobs
and m machines in a flow shop without intermediate buffers. Each job
Ji ∈ J has a sequence of operations {Oi,1,Oi,2, ...,Oi,m} to be processed
sequentially on machine M1, M2, and so on until machine Mm. The
operation Oi,j of job Ji should be executed on machine Mj with a period of
processing time pi,j. Since there are no buffers between consecutive
machines and each machine has to take some time to prepare before
processing, jobs that have completed all operations must remain on the
current machine if the downstream machine is not free or not prepared
for processing. Setup times are considered sequence-dependent and
separable from processing times. In addition, the following assumptions
must be met:

• The processing time of each job on each machine is a positive integer
and predetermined.

• The release time and transportation time of all jobs are negligible. All
jobs are independent and available from zero onwards.

• At any time, each job can be processed on at most one machine, and
each machine can only process at most one job.

• Preemption is not permitted. Each job is processed without inter-
ruption on each machine.

The related notations are provided in Table 1. According to the above
description, the permutation-based model of BFSP_SDST can be estab-
lished as follows.

dπ(0),j = 0, j = 1, 2, ...,m, (1)

dπ(i),0 = dπ(i− 1),1 + Sπ(i− 1),π(i),1, i = 1, 2, ..., n, (2)

Table 1
Notations applied in the model of BFSP_SDST.

Parameters

n The total number of jobs.
m The total number of machines.
J The set of jobs, i.e., J = {J1, J2, ..., Jn}.
M The set of machines, i.e., M = {M1,M2, ...,Mm}.
Indices
i The index of jobs (i = 1,2,…,n).
j The index of machines (j = 1,2,…,m).
Variables
π The processing order of jobs, i.e., π = [π(1),π(2), ...,π(n)].

π(0) is a dummy job.
Π The set of all feasible schedules.
Oi,j The operation corresponding to processing of job Ji on machine Mj .
pπ(i),j The processing time of operation Oπ(i),j.
Sπ(i− 1),π(i),j The setup time between two consecutive jobs π(i − 1) and π(i)

on machine Mj. Sπ(0),π(i),j is the initial setup time of job π(i).
dπ(i),j The departure time of job π(i) on machine Mj.

dπ(i),0 is the start time of job π(i) on machine M1.
fπ(i),j The duration time between the starting time of π(i) on Mj

and the starting time of the last job on the same machine.
Cmax(π) The makespan of a sequence or schedule π.

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

4

dπ(i),j = max
{

dπ(i),j− 1 + pπ(i),j, dπ(i− 1),j+1 + Sπ(i− 1),π(i),j+1
}
,

i = 1, 2, ..., n; j = 1, 2, ...,m − 1, (3)

dπ(i),m = dπ(i),m− 1 + pπ(i),m, i = 1, 2, ..., n, (4)

Cmax(π) = dπ(n),m. (5)

Eq. (1) determines the departure time of the dummy job π(0) on all
machines. Eq. (2) calculates the starting time of each job on the first
machine. Eq. (3) calculates the departure time of each job on all ma-
chines except the last machine. Eq. (4) calculates the departure time or
completion time of each job on the last machine. Eq. (5) is the maximum
completion time (i.e., makespan) of π. The aim of Fm|blocking, STsd|Cmax

is to find an optimal solution π∗ in the schedule set Π such that.

π∗ = argmin
π∈Π

{Cmax(π)}. (6)

In contrast to mathematical models of FSPs, the permutation-based
models have no explicitly expressed constraints. For the permutation-
based model of BFSP_SDST, the constraints are implicit in Eqs. (1)-(4),
which stipulate that each job π(i) on the current machine Mj can only
depart to the next machine Mj+1 under three conditions: (1) the opera-
tion Oπ(i),j has been completed, (2) the job π(i + 1) has already departed
machine Mj+1, and (3) the setup operation between π(i) and π(i + 1) on
machine Mj+1 has been completed. When a solution π contains different
jobs, the departure times of these jobs on each machine are determined
by using Eqs. (1)-(4) and no constraints are violated. Thus, a solution π is
feasible if and only if all jobs in that solution are different from each
other.

In the following proposed MCEDA, both the new population sam-
pling strategy in global search (see Section 4.2) and the new neighbor
generation methods in local search (see Section 4.3) can ensure that the
jobs in each solution π (i.e., individual or neighbor) are different from
each other. That is to say, any solution π obtained in MCEDA is always
feasible. Indeed, the most of existing HIOAs optimize the variables of the
permutation-based models since researchers using such models can
concentrate on the design of the algorithm without considering complex
constraint handling.

3.2. permutation-based model using backward calculation

According to the computational reversibility of the permutation-
based model of FSPs (Tasgetiren, et al., 2017; Wang, et al., 2010), the
makespan (i.e. Cmax(π)) of the solution π can be computed by traversing
the solution π in reverse order. The backward calculation is described as
follows:

fπ(n),m+1 = 0, (7)

fπ(n),j = fπ(n),j+1 + pπ(n),j, j = m,m − 1, ..., 2, (8)

fπ(i),m+1 = fπ(i+1),m + Sπ(i),π(i+1),m,

i = n − 1, ..., 1, 0, (9)

fπ(i),j = max
{

fπ(i),j+1 + pπ(i),j, fπ(i+1),j− 1 + Sπ(i),π(i+1),j

}
,

i = n − 1, ..., 2, 0; j = m,m − 1, ..., 2,
(10)

fπ(i),1 = fπ(i),2 + pπ(i),1, i = n, n − 1, ..., 0, (11)

Cmax(π) = fπ(0),1. (12)

So, Cmax(π) can be calculated not only forward via Eqs. (1)-(5) but
also backward via Eqs. (7)-(12) with complexity of O(nm). With Eqs. (7)-
(12) and Eq. (6), another form of the permutation model of Fm|blocking,
STsd|Cmax can be established.

Furthermore, for 1⩽i⩽n − 1, it has.

Cmax(π) = max
j=1,2,...,m

{
dπ(i),j + Sπ(i),π(i+1),j + fπ(i+1),j

}
. (13)

With Eq. (13), a fast neighbor evaluation method (see Subsection
4.3.1) can be devised to calculate the objective functions of the solutions
in the insertion neighborhood for Fm|blocking, STsd|Cmax. This fast
neighbor evaluation method is adopted to speed up the efficiency in
MCEDA’s local search.

3.3. Small numerical example of the forward and backward calculations

To illustrate the forward and backward calculations, a small example
with three jobs and three machines is provided. Table 2 shows the
processing and setup times of jobs. Let the processing order of jobs be
π = [π(2), π(1), π(3)]. The departure time of each job is determined by
using Eqs. (1)-(4) as follows:

dπ(2),0 = dπ(0),1 + Sπ(0),π(2),1 = 3;dπ(2),1 = max {dπ(0),2 + Sπ(0),π(2),2,

dπ(2),0 + pπ(2),1}= 6;dπ(2),2 = max {dπ(0),3 + Sπ(0),π(2),3, dπ(2),1 + pπ(2),2}=

10;dπ(2),3 = dπ(2),2 + pπ(2),3 = 14;dπ(1),0 = dπ(2),1 + Sπ(2),π(1),1 =

9;dπ(1),1 = max {dπ(2),2 + Sπ(2),π(1),2, dπ(1),0 + pπ(1),1}= 13;dπ(1),2 =

max {dπ(2),3 + Sπ(2),π(1),3,dπ(1),1 + pπ(1),2}= 18;dπ(1),3 = dπ(1),2 + pπ(1),3 =

20;dπ(3),0 = dπ(1),1 + Sπ(1),π(3),1 = 15;dπ(3),1 = max {dπ(1),2 + Sπ(1),π(3),2,

dπ(3),0 + pπ(3),1}= 20;dπ(3),2 = max {dπ(1),3 + Sπ(1),π(3),3,dπ(3),1 + pπ(3),2}=

24;dπ(3),3 = dπ(3),2 + pπ(3),3 = 27.
Then, based on the forward calculation (see Eqs. (1)-(5)), it has

Cmax(π) = dπ(3),3 = 27.
According to Eqs. (7)-(11), the duration time of each job in π can be

computed as follows:
fπ(3),3 = fπ(3),4 + pπ(3),3 = 3;fπ(3),2 = fπ(3),3 + pπ(3),2 = 5;fπ(3),1 =

fπ(3),2 + pπ(3),1 = 7;fπ(1),4 = fπ(3),3 + Sπ(1),π(3),3 = 7;fπ(1),3 = max {fπ(3),2 +

Sπ(1),π(3),2, fπ(1),4 + pπ(1),3}= 9;fπ(1),2 = max {fπ(3),1 + Sπ(1),π(3),1, fπ(1),3 +

pπ(1),2}= 12;fπ(1),1 = fπ(1),2 + pπ(1),1 = 14;fπ(2),4 = fπ(1),3 + Sπ(2),π(1),3 =

13;fπ(2),3 = max {fπ(1),2 + Sπ(2),π(1),2, fπ(2),4 + pπ(2),3}= 17;fπ(2),2 =

max {fπ(1),1 + Sπ(2),π(1),1, fπ(2),3 + pπ(2),2}= 21;fπ(2),1 = fπ(2),2 + pπ(2),1 =

24;fπ(0),4 = fπ(2),3 + Sπ(0),π(2),3 = 20;fπ(0),3 = max {fπ(2),2 + Sπ(0),π(2),2,

fπ(0),4 + pπ(0),3}= 25;fπ(0),2 = max {fπ(2),1 + Sπ(0),π(2),1, fπ(0),3 + pπ(0),2}=

27;fπ(0),1 = fπ(0),2 + pπ(0),1 = 27.
Then, based on the backward calculation (see Eqs. (7)-(12)), it has

Cmax(π) = fπ(0),1 = 27.
To be more intuitive, we draw Gantt charts illustrating the forward

and backward calculations in Fig. 1. As shown in Fig. 1, the front delay is
determined by the first job in π, and the non-processing time of the
machine includes both the blocking time and idle time.

Table 2
Processing and setup times of an example of BFSP_SDST.

Process time
Sequence-dependent setup time

Machine 1 Machine 2 Machine 3

M1 M2 M3 π(1) π(2) π(3) π(1) π(2) π(3) π(1) π(2) π(3)

π(0) 0 0 0 2 1 4 1 2 3 2 3 3
π(1) 1 3 2 0 1 2 0 3 1 0 1 4
π(2) 1 2 1 3 0 4 4 0 2 1 0 1
π(3) 3 2 1 2 2 0 3 4 0 2 3 0

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

5

4. MCEDA for BFSP_SDST

In this section, the matrix-cube-based estimation of distribution al-
gorithm (MCEDA) is proposed to address the BFSP_SDST with makespan
criterion. In the following subsections, the heuristic and initialization,
the multi-dimensional probabilistic model, the diversity controlling
mechanism, the multi-neighborhood based local search are firstly
described in detail, and then the MCEDA’s framework is outlined.
Meanwhile, the analysis of MCEDA’s computational complexity is
provided.

4.1. Heuristic and initialization

The solution representation has a significant effect on the perfor-
mance of HIOAs. As is reported in the literature, the permutation-based
representation has been widely used for various FSPs (Shao, et al., 2017,
2018a, 2018b). Therefore, we utilize the permutation-based encoding
scheme to describe feasible solutions to the BFSP_SDST. Each solution
corresponds to a specific scheduling scheme for the problem under
consideration. Note that the quality of the initial population has an
important impact on the search efficiency of HIOAs. If all initial solu-
tions are generated randomly, their quality cannot be guaranteed.
Conversely, the initial population formed only by constructive heuristics
may be deficient in diversity and dynamism, resulting in premature
convergence (Wang, et al., 2010). Some better initial solutions can
narrow the search scope suitably, especially for the large-scale instances.
Therefore, the initial population should be constructed with a certain
quality, i.e., only a few high-quality individuals should be formed via
heuristics, while the others are generated randomly. To balance quality
and diversity, the population is initialized by using a hybrid strategy. In
this section, combining the problem characteristics of BFSP_SDST, the
PFT_NEH(x) heuristic based on the PFT and NEH heuristics (Tasgetiren,
et al., 2017) and the PFZ_RZ(x) heuristic based on the PFZ and RZ
heuristics (Rajendran & Ziegler, 1997) are proposed to generate some
initial individuals.

4.1.1. PFT_NEH(x) heuristic
The NEH heuristic (Nawaz, et al., 1983) is a straightforward but

pretty powerful constructive heuristic for PFSP and BFSP with makespan
criterion in the literature (Pan & Wang, 2012; Tasgetiren, et al., 2017;
Wang, et al., 2010). The basic idea behind the NEH heuristic is that jobs
with a longer total processing time should be given higher priority.

However, when blocking constraints are taken into account, providing
higher priority to jobs with a longer total processing time may result in
blocking of jobs between machines, yielding in a larger front delay
(Wang, et al., 2010). With a longer front delay, the total idle and
blocking times may be increased, resulting in decreased machine utili-
zation and increased maximum completion time. Therefore, a suitable
strategy for the BFSP is to prioritize jobs with both smaller total pro-
cessing time and shorter front delay. As illustrated in Fig. 1, when
determining the priority of jobs, the total idle and blocking times of
machines, as well as the front delay of jobs, must be considered.
Numerous studies in the existing literature have shown that after pro-
ducing the initial sequence, applying the NEH heuristic (Nawaz, et al.,
1983) may considerably improve the solution quality. Thus, the PF
heuristic (McCormick, et al., 1989) coupled with the NEH heuristic, i.e.,
PF_NEH(x), is proposed to solve the BFSP with makespan criterion (Pan
& Wang, 2012). The outline of the PF heuristic is given in Algorithm 1.
For the PF heuristic, the initial job at the first position in the partial
sequence is determined by the shortest total processing time. Then, it
prioritizes the other jobs by using the total idle and blocking times as a
cost function. However, it is obvious that the front delay of the first job
cannot be ignored and should be taken into account (Ribas, et al., 2015).
Tasgetiren, et al. (2017) tackled such issue by extending the PF heuristic
and developing the PFT heuristic, which is an effective heuristic for
solving Fm/blocking/Cmax. In this subsection, the PFT heuristic is also
adapted to address the Fm/blocking,SDSTs/Cmax. In the PFT heuristic, it
prioritizes the jobs by an indicator I(i) that contains the front delay and
total processing time. After ascending each job according to I(i), an
initial sequence of jobs is obtained. The indicator I(i) can be calculated
by the formula in Eq. (14).

I(i) =

(
∑m

j=1
(m − j)pi,j

)

⋅
2

m − 1
+
∑m

j=1
pi,j,

i = 1, 2, ..., n.

(14)

According to Eq. (14), the job with the lowest priority indicator is
obtained, and such job is chosen as the first job in the initial sequence.
Then, the rest of the jobs are added to the initial sequence via the cost
index σi to produce a complete candidate solution. To be specific, let U
be the set of unscheduled jobs and π̃ = [π̃(1), π̃(2), ..., π̃(i − 1)] be a par-
tial sequence containing i − 1 jobs. In order to determine the job π̃(i) at
the ith position in ̃π, each of the n − i+1 unscheduled jobs is attempted to
be placed at such position, and the job with the lower cost index value is

Fig. 1. The Gantt chart of BFSP_SDST with two calculations.

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

6

placed at the ith position of π̃. The cost index σi is given in Eq. (15).

σi = (n − i − 2)
∑m

j=1

(
di,j − di− 1,j − pi,j

)
+ di,m (15)

Obviously, if job π̃(i) is added to the partial sequence π̃ with a min-
imum cost index σi, it means that the total idle and blocking time, as well
as the departure time of job π̃(i) on the last machine, are all minimized.
Therefore, the PFT heuristic is used to determine an initial feasible so-
lution π = [π(1),π(2), ...,π(n)], and the NEH heuristic is used to further

improve the quality of such solution. Let π̃1
= [π(1), π(2), ..., π(n − λ)]

and π̃2
= [π(n − λ + 1), π(n − λ + 2), ..., π(n)] be two subsequences of π.

Each job in ̃π2 is extracted and reinserted into all possible positions in ̃π1,
and the best position for each job extracted in π̃2 is determined and then
inserted it into π̃1 till a new solution π′ is formed. According to the PF-
NEH(x) proposed by Pan and Wang (2012), the PFT heuristic that in-
corporates the NEH heuristic is denoted as PFT_NEH(x), as detailed in
Algorithm 2.

Algorithm 1: Profile fitting (PF)

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

7

In Algorithm 2, the value of x in the first layer loop directly de-
termines the number of solutions obtained in Π, and the value of λ in the
second loop controls the number of jobs to be inserted by the NEH
heuristic. Note that the tie-breaking strategy is utilized in both the
ordering and constructing phases if two jobs with the same I(i) or two
positions result in the same σi. It is clear that there are (2n − λ+1)λ/2
partial sequences that need to be calculated in the NEH heuristic of the
PFT_NEH(x). It should be noted that the fast Insert-based neighbor
evaluation method explained in Subsection 4.3.1 is employed in the
NEH heuristic, and its complexity can be reduced from O(mn3) to
O(mn2). Thus, Algorithm 2 has a total complexity of about O(xmn2).

4.1.2. PFZ_RZ(x) heuristic
The RZ heuristic is an effective heuristic proposed by Rajendran and

Ziegler (1997). As with the PFT heuristic, the RZ heuristic can construct
a complete solution sequence from a partial sequence by using basic
insertion neighborhood. However, when the RZ heuristic is used to
construct a solution, the jobs to be inserted are chosen according to a
specified reference sequence. Consider two solution sequences
[3,5,4,1,2] and [1,2,3,4,5], each consisting of five jobs, and assume that
the former is a reference sequence and the latter is an incumbent
sequence. The RZ heuristic first removes job 3 from the incumbent
sequence [1,2,3,4,5] and reinserts it into all possible positions of the
incumbent sequence. Then, it removes job 2 from the incumbent
sequence to execute the insertion operation. This procedure is repeated
until all jobs in the reference sequence are already picked and the best
feasible solution is produced. It is crucial to create the reference
sequence of the RZ heuristic as the baseline. As shown in Eq. (14), two
sorts of indicators, namely the front delay of the first job (i.e.,
∑m

j=1(m − j)pi,j) and the total processing time of each job (i.e.,
∑m

j=1pi,j),
have an impact on the performance of heuristics for solving BFSP.
However, besides these two indicators, the average processing time, the
standard deviation of processing time, and the skewness should be
considered depending on the problem’s characteristics. Since the strong

correlation between skewness and front delay, if skewness is small, front
delay may likewise decrease. The formulas for these indicators are given
in Eqs. (16) to (18):

Tavg(i) =
1
m

(
∑m

j=1
pi,j

)

, (16)

Tstd(i) =

̅̅

1
m − 1

∑m

j=1

(
pi,j − Tavg(i)

)2

√
√
√
√ , (17)

Tske(i) =
1
m

(∑m
j=1

(
pi,j − Tavg(i)

)3
)

⎛

⎝

̅̅̅

1
m

(
∑m

j=1

(
pi,j − Tavg(i)

)2

)√
√
√
√

⎞

⎠

3. (18)

Based on Eqs. (17)-(18), the newly proposed job priority indicator
IZ(i) is shown in Eq. (19).

IZ(i) =

(
∑m

j=1
(m − j)pi,j

)

⋅
2

m − 1
+ (Tstd(i) + Tske(i)), i = 1, 2, ..., n. (19)

Each job Ji in the job set J is arranged in ascending order according to
the IZ(i) in Eq. (19) to produce a job sequence that serves as a reference
sequence for the RZ heuristic. As with PFT_NEH(x) in Subsection 4.1.1,
the initial solution for the RZ heuristic is produced by using a newly
presented heuristic, namely the PFZ heuristic, and then the Insert-based
neighborhood search is performed on the initial solution in accordance
with the order of jobs in the reference sequence. If an improvement is
achieved, the worse solution is replaced by a new one and then the cycle
continues. According to the above considerations, the PFZ_RZ(x) heu-
ristic is proposed in this subsection by incorporating the PFZ heuristic
and the RZ heuristic (see Algorithm 3). In PFZ_RZ(x), a total of x feasible
solutions are generated. Each solution produced by PFZ_RZ(x) needs to

Algorithm 2:PFT NEH(x)

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

8

calculate (n − 1)2 neighbor solutions. In order to reduce the computa-
tional cost and speed up the neighborhood search, the fast Insert-based
neighbor evaluation method can be used in the implementation of Al-
gorithm 3 to effectively decrease the total time complexity. It is clear
that the complexity of Algorithm 3 is O(xmn2), which is the same as that
of Algorithm 2. According to the relevant conclusions in the literature
(Pan, et al., 2013), the parameter of two heuristics, PFT_NEH(x) and
PFZ_RZ(x), is set to λ = 20 and x = 5.

To be specific, 10% of the solutions in the initial population are
created by PFT_NEH(x), whereas 10% are produced by PFZ_RZ(x). The
remaining 80% of solutions are randomly generated. Due to the fact that
the two proposed heuristics are designed according to the problem’s
characteristics, the initial population with high-quality individuals or
solutions may contain rich and valuable structural features and prom-
ising patterns. Hence, it may be desirable to expend a certain amount of
computational effort to generate high-quality initial population.

4.2. Global search guided by multi-dimensional probabilistic model

4.2.1. Multi-dimensional probabilistic model
In general, permutation-based solutions have a number of dis-

tinguishing features, including the priority order of jobs and the distri-
bution characteristics of job blocks. In this subsection, a multi-
dimensional probabilistic model is proposed to capture promising pat-
terns and adequately accumulate valuable structural information, which
can effectively drive the search toward high-quality regions.

4.2.1.1. Matrix cube. In order to effectively extract excellent structural
features or promising patterns from quality individuals in a population,
a matrix cube structure is designed to capture these valuable structural
features and to reasonably retain promising patterns. Let Pop(gen) be the
population at generation gen, and SPop(gen) be the high-quality sub-
population or superior solutions derived from Pop(gen), i.e.,SPop(gen) =

{πgen,1
Sbest , πgen,2

Sbest , ..., πgen,spsize
Sbest }, where popsize and spsize respectively repre-

sent the size of Pop(gen) and SPop(gen), gen = 1,2,…,maxgen. maxgen is
the maximum number of runs of the algorithm. Let πgen,k

Sbest be the kth in-
dividual in SPop(gen), i.e., πgen,k

Sbest = [πgen,k
Sbest(1),π

gen,k
Sbest(2), ...,π

gen,k
Sbest(n)], k = 1,

..., spsize. Without loss of generality, MCgen
n×n×n is defined as the matrix

cube at generation gen. MCgen
n×n×n(x, y, z), x, y, z ∈ {1,2, ..., n} is the

element in MCgen
n×n×n with the ternary subscript (x, y, z), where x corre-

sponds to the xth position of the solution sequence, and (y, z) is used to
represent the job block [y, z] at that position. Firstly, for the kth indi-
vidual πgen,k

Sbest in SPop(gen), the sequential relationship of the job

πgen,k
Sbest(x + 1) that appears immediately after the job πgen,k

Sbest(x) located at
the xth position in πgen,k

Sbest can be recorded separately by using the indi-
cator function IFgen,k

n×n×n(x,y, z), as given in Eq. (20).

IFgen,k
n×n×n(x, y, z) =

⎧
⎨

⎩

1, if y = πgen,k
Sbest(x) and z = πgen,k

Sbest(x + 1)
0, else

,

x = 1, ..., n − 1; y, z = 1, ..., n; k = 1, ..., spsize.

(20)

Then, the characteristic information about the order of jobs and the

Algorithm 3:PFZ RZ(x)

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

9

distribution of blocks for each of the selected superior solutions is ob-
tained based on Eq. (21).

MCgen
n×n×n(x, y, z) =

∑spsize

k=1
IFgen,k

n×n×n(x, y, z),

x = 1, ..., n − 1; y, z = 1, ..., n.

(21)

Finally, the detailed definition of the proposed matrix cube is
described below.

MCgen
n×n×n(x, y) =

[
MCgen

n×n×n(x, y, 1),MCgen
n×n×n(x, y, 2), ...,MCgen

n×n×n(x, y, n)
]

1×n,

x = 1, 2, ..., n − 1; y = 1, 2, ..., n.
(22)

MCgen
n×n×n(x) =

⎡

⎢
⎢
⎣

MCgen
n×n×n(x, 1)

⋮
MCgen

n×n×n(x, n)

⎤

⎥
⎥
⎦

n×1

=

⎡

⎢
⎢
⎣

MCgen
n×n×n(x, 1, 1) ⋯ MCgen

n×n×n(x, 1, n)
⋮ ⋱ ⋮

MCgen
n×n×n(x, n, 1) ⋯ MCgen

n×n×n(x, n, n)

⎤

⎥
⎥
⎦. (23)

According to Eq. (23), the two-dimensional submatrix MCgen
n×n×n(x)

can record the characteristic information about job order and job block
distribution at the xth position in all superior solutions. In other words,
the matrix cube structure can exactly determine the priority of each job
and the distribution of the job block [y, z] located in the xth position of
the kth individual in SPop(gen), i.e., [πgen,k

Sbest(x),π
gen,k
Sbest(x + 1)]. it can retain

total order relationships via a series of position-based submatrices, i.e.,
MCgen

n×n×n(1), MCgen
n×n×n(2), ..., MCgen

n×n×n(n). Thus, these advantageous
characteristics or promising patterns derived from superior solutions
can be effectively and intuitively recognized and retained. By adopting
the matrix cube MCgen

n×n×n described above, the multi-dimensional prob-
abilistic model can be established. To illustrate the proposed MCgen

n×n×n,
an example of five superior solutions (spsize = 5) containing four jobs
(n = 4) is used to instantiate it. In this case, the size of SPop(gen) is
spsize = 5 and gen = 1. The selected superior solutions are π1,1

Sbest =

[π1,1
Sbest(1), π

1,1
Sbest(2), π1,1

Sbest(3), π1,1
Sbest(4)] = [1, 2, 3, 4], π1,2

Sbest =

[π1,2
Sbest(1), π

1,2
Sbest(2), π1,2

Sbest(3), π1,2
Sbest(4)] = [2, 3, 1, 4], π1,3

Sbest =

[π1,3
Sbest(1), π

1,3
Sbest(2), π1,3

Sbest(3), π1,3
Sbest(4)] = [3, 2, 1, 4], π1,4

Sbest =

[π1,4
Sbest(1), π1,4

Sbest(2), π1,4
Sbest(3), π1,4

Sbest(4)] = [4, 3, 2, 1], π1,5
Sbest =

[π1,5
Sbest(1), π1,5

Sbest(2), π1,5
Sbest(3), π1,5

Sbest(4)] = [4, 3, 1, 2], respectively. For the
first position (x = 1) of all individuals, it is clear that job blocks [1, 2] (i.
e., y = 1, z = 2), [2, 3] (i.e., y = 2, z = 3), [3, 2] (i.e., y = 3, z = 2), and
[4, 3] (i.e., y = 4, z = 3) appeared in these individuals from πgen,1

Sbest to πgen,5
Sbest ,

is recorded in accordance with Eqs. (20)-(23) as follows:

MC1
4×4×4(1, 1, 2) =

∑5

k=1
IF1,k

4×4×4(1, 1, 2) = IF1,1
4×4×4(1, 1, 2)

+IF1,2
4×4×4(1, 1, 2) + IF1,3

4×4×4(1, 1, 2) + IF1,4
4×4×4(1, 1, 2)

+IF1,5
4×4×4(1, 1, 2) = 1 + 0 + 0 + 0 + 0 = 1,

MC1
4×4×4(1, 2, 3) =

∑5

k=1
IF1,k

4×4×4(1, 2, 3) = IF1,1
4×4×4(1, 2, 3)

+IF1,2
4×4×4(1, 2, 3) + IF1,3

4×4×4(1, 2, 3) + IF1,4
4×4×4(1, 2, 3)

+IF1,5
4×4×4(1, 2, 3) = 0 + 1 + 0 + 0 + 0 = 1,

MC1
4×4×4(1, 3, 2) =

∑5

k=1
IF1,k

4×4×4(1, 3, 2) = IF1,1
4×4×4(1, 3, 2)

+IF1,2
4×4×4(1, 3, 2) + IF1,3

4×4×4(1, 3, 2) + IF1,4
4×4×4(1, 3, 2)

+IF1,5
4×4×4(1, 3, 2) = 0 + 0 + 1 + 0 + 0 = 1,

MC1
4×4×4(1, 4, 3) =

∑5

k=1
IF1,k

4×4×4(1, 4, 3) = IF1,1
4×4×4(1, 4, 3)

+IF1,2
4×4×4(1, 4, 3) + IF1,3

4×4×4(1, 4, 3) + IF1,4
4×4×4(1, 4, 3)

+IF1,5
4×4×4(1, 4, 3) = 0 + 0 + 0 + 1 + 1 = 2.

The remaining elements in MCgen
4×4×4(1) are set to zero. Likewise, for

the second position (x = 2) of all individuals, job blocks [2,1] (i.e., y =

2, z = 1), [2, 3] (i.e., y = 2, z = 3), [3, 1] (i.e., y = 3, z = 1), and [3,2] (i.
e., y = 3, z = 2) can also be recorded, respectively. Then we have.

MC1
4×4×4(2, 2, 1) =

∑5

k=1
IF1,k

4×4×4(2, 2, 1)

= 0 + 0 + 1 + 0 + 0 = 1,

MC1
4×4×4(2, 2, 3) =

∑5

k=1
IF1,k

4×4×4(2, 2, 3)

= 1 + 0 + 0 + 0 + 0 = 1,

MC1
4×4×4(2, 3, 1) =

∑5

k=1
IF1,k

4×4×4(2, 3, 1)

= 0 + 1 + 0 + 0 + 1 = 2,

MC1
4×4×4(2, 3, 2) =

∑5

k=1
IF1,k

4×4×4(2, 3, 2)

= 0 + 0 + 0 + 1 + 0 = 1.

The other cells of MCgen
4×4×4(2) are set to zero. Since four job blocks [1,

2], [1, 4],[2, 1], and [3, 4] are located in the third position (x = 3), the
characteristic information can also be saved, and we have MC1

4×4×4(3,1,
2) = 1, MC1

4×4×4(3,1,4) = 2, MC1
4×4×4(3,2,1) = 1, and MC1

4×4×4(3,3,4) =

1, respectively. It is worth noting that the information about job blocks
in the last position of the job sequence is already included in the
penultimate position. Therefore, the values of all the cells in MCgen

4×4×4(4)
are set to zero. It is indicated that the job blocks at different positions in
superior solutions may be precisely learnt and entirely preserved in
accordance with the position-based submatrices in MCgen

4×4×4. However,
in the aforementioned case, the critical characteristic information about
the similar blocks from πgen,1

Sbest to πgen,5
Sbest , i.e.,[1, 2],[2, 3], and[3, 2], is kept

exclusively in the subscripts (1,2), (2,3), and (3, 2) via utilizing the two-
dimensional probabilistic model (Pan & Ruiz, 2012). Indeed, for each
selected elite solution, the important patterns of the positions in which
similar blocks or job blocks are located have been completely lost and
fused. Then, the two-dimensional probabilistic model’s sampling strat-
egy cannot precisely predict the most proper position to place these
valued similar blocks. To compensate the limitations of two-dimensional
EDAs, we design the matrix cube to learn the structural information
relating to the order relationships of jobs and the position of similar
blocks through the use of different layers of MCgen

n×n×n. To be specific, the
block [2, 3] in πgen,1

Sbest = [1,2, 3,4] can be reserved in MC1
4×4×4(2) (i.e., the

second layer of MC1
4×4×4), but the identical block [2,3]), but the identical

block [2,3] in πgen,2
Sbest = [2,3, 1, 4] can be recorded in MC1

4×4×4(1) (i.e., the
first layer of MC1

4×4×4), but the identical block [2,3]), respectively. It is
clear that MCgen

n×n×n facilitates the accurate identification and differenti-
ation of various interesting similar blocks located at different positions
in job sequences. That is, the distribution characteristics of these similar
blocks in the feasible solution space can be precisely described by a
multi-dimensional probabilistic model, which may be capable of effec-
tively directing the search toward more promising regions and pre-
venting promising patterns from being destroyed or improperly fused.

4.2.1.2. Probabilistic model. Probabilistic models are essential for the
successful application of EDA since they enable for the accurate esti-
mation of the distribution of promising patterns of superior solutions to

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

10

the problem under consideration. In other words, it is highly advanta-
geous to enhance the algorithm’s performance if the proposed proba-
bilistic model correctly learns the structural features from the selected
superior solutions. It should be noted that the proposed matrix cube
MCgen

n×n×n can completely capture the structural features of some superior
solutions, i.e., the ordinal of jobs and the dependency of jobs, during the
iterative process. In contrast to existing two-dimensional probabilistic
models (Jarboui, et al., 2009; Pan & Ruiz, 2012; Wang & Wang, 2016;
Wang, et al., 2013), a matrix-cube-based multi-dimensional probabi-
listic model is devised by taking advantage of promising patterns
derived from superior solutions. The critical characteristic information
implicit in different solution sequences can be effectively extracted and
appropriately accumulated, while valuable information can be inter-
acted with and integrated via an incremental learning mechanism.
Offspring individuals can be generated directly by sampling from the
proposed probabilistic model. Let PMgen

n×n×n be the multi-dimensional
probabilistic model. Detailed definitions are described in Eqs. (24)-(25).

PMgen
n×n×n(x, y) =

[
PMgen

n×n×n(x, y, 1),PMgen
n×n×n(x, y, 2), ...,PMgen

n×n×n(x, y, n)
]

1×n,

x = 1, 2, ..., n − 1; y = 1, 2, ..., n,

(24)

PMgen
n×n×n(x) =

⎡

⎢
⎢
⎢
⎣

PMgen
n×n×n(x, 1)

⋮
PMgen

n×n×n(x, n)

⎤

⎥
⎥
⎥
⎦

n×1

=

⎡

⎢
⎢
⎢
⎣

PMgen
n×n×n(x, 1, 1) ⋯ PMgen

n×n×n(x, 1, n)
⋮ ⋱ ⋮

PMgen
n×n×n(x, n, 1) ⋯ PMgen

n×n×n(x, n, n)

⎤

⎥
⎥
⎥
⎦
.

(25)

Each element PMgen
n×n×n(x, y, z) in PMgen

n×n×n corresponds to a probabil-
ity value for the occurrence of the job block [y, z] at the xth position in
the genth iteration, referring to the job block’s relevance. To clearly
describe the multi-dimensional probabilistic model, let Sgen

MC(x) and
Sgen

PM(x) represent the summation function of the xth layer of MCgen
n×n×n and

PMgen
n×n×n, respectively, where Sgen

MC(x) =
∑n

y=1
∑n

z=1MCgen
n×n×n(x, y, z) and

Sgen
PM(x) =

∑n
y=1
∑n

z=1PMgen
n×n×n(x, y, z). Thus, by utilizing both a matrix

cube and a multi-dimensional probabilistic model, the incremental
learning update mechanism can be stated in Eq. (26).

PMgen+1
n×n×n(x) =

(1 − r) × PMgen
n×n×n(x) + r ×

(
MCgen

n×n×n(x)
/

Sgen
MC(x)

)
,

x = 1, 2, ..., n − 1.
(26)

Note that the parameter r ∈ [0, 1] in Eq. (26), represents the learning
rate. If r = 1, the multi-dimensional probabilistic model is updated only
by using the matrix cube; otherwise, it is updated by using historical
evolutionary information. The proposed updating strategy can
adequately accumulate characteristic information about promising
patterns of superior solutions. That is, the incremental learning mech-
anism can take into account not only the current distribution charac-
teristics of similar blocks, but also make use of the previously obtained
useful historical information, resulting in a suitable trade-off in terms of
learning rate r. Notice that the normalization for each layer of PMgen

n×n×n

in Step 3 should be performed before to sampling, i.e., Sgen
MC(x) = 1, gen >

1, x = 1, ..., n − 1. Moreover, the features of the first job block in the
selected superior subpopulation have a considerable effect on the per-
formance of the developed algorithm for dealing with the considered
problem. If this feature is not well handled, the algorithm’s superiority
will be diminished. Therefore, the steps for developing and updating a
probability model with the aforementioned characteristics are detailed
as follows.

Step 1: Initialize PM0
n×n×n. Set PM0

n×n×n(x, y, z) =
{

0, x = 1; y, z = 1, ..., n,
1/n2, x = 2,3, ..., n − 1; y, z = 1, ..., n. .

Step 2: Obtain MC1
n×n×n by the initial population Pop(0), then

compute

PM1
n×n×n(x, y, z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MC1
n×n×n(x, y, z)
S1

MC(x)
,

x = 1; y, z = 1, ..., n,

PM0
n×n×n(x, y, z) + MC1

n×n×n(x, y, z)
S0

PM(x) + S1
MC(x)

,

x = 2, 3, ..., n − 1; y, z = 1, ..., n.

Step 3: Set gen = 2. Compute MCgen
n×n×n and PMgen

n×n×n(x) using Eq.
(26).

PMgen
n×n×n(x, y, z) =

(1 − r) × PMgen− 1
n×n×n(x, y, z) + r ×

(
MCgen

n×n×n(x, y, z)
Sgen

MC(x)

)

,

x = 1, 2, ..., n − 1; y, z = 1, 2, ..., n.

Step 4: Set gen = gen + 1. If gen < maxgen, then go to Step 3.
Notably, for x = 2,3, ...,n − 1, all values in PM0

n×n×n is initialized to
1/n2, ensuring that the entire solution space is uniformly sampled. In
addition, when x = 1, the cell values in the first layer of PM0

n×n×n are set
to 0, instead of 1/n2, which can highlight potential patterns of job blocks
at the first position of all individuals in the superior subpopulation and
effectively increase guidance to promising regions during the initial
phase. To illustrate, an example of establishing a matrix-cube-based
multi-dimensional probabilistic model is provided below, with the
learning rate set to r = 0.3.

(1) Firstly, MC1
n×n×n is computed by counting the initial subpopula-

tion via Eqs. (20)-(21). For the first layer of PM1
n×n×n, i.e., PM1

n×n×n(1),
the probability values can be calculated as follows: PM1

4×4×4(1, 1, 2) =

PM1
4×4×4(1,2,3)= PM1

4×4×4(1,3,1) = (0 + 1)/5 = 0.2, PM1
4×4×4(1,3,1)

= (0 + 2)/5 = 0.4. The values of the other cells are set to zero.
(2) Secondly, the probability values of the second layer of PM1

n×n×n
can be computed as follows:PM1

4×4×4(2, 2, 1) = PM1
4×4×4(2, 2, 3) =

PM1
4×4×4(2, 3, 2) = (1/16 + 1)/(1 + 5) = 0.177, PM1

4×4×4(2, 3, 1) =

(1/16 + 2)/(1 + 5) = 0.344. Then, all other cell values are set to
(1/16 + 0)/(1 + 5) = 0.010.

(3) Thirdly, the probability values of the third layer of PM1
n×n×n can

be computed as follows: PM1
4×4×4(3, 1,2) = PM1

4×4×4(3, 2,1)
=PM1

4×4×4(3, 3,4) =(1/16 + 1)/(1+5) = 0.177 and PM1
4×4×4(3,1,4)=

(1/16 + 2)/(1 + 5) = 0.344. Similarly, the values of the other cells
are equal to 0.01.

(4) Finally, PMgen
n×n×n (gen > 1) is updated by using the incremental

learning mechanism proposed in Step 3. Considering five superior so-
lutions, each of which contains four jobs, Fig. 2 illustrates the updating
process of a multi-dimensional probabilistic model.

4.2.2. New population generation
According to the above subsection, it is clear that proper probabi-

listic models may be employed to effectively extract excellent features
from the superior solutions. The sampling strategy also has an effect on
the search behavior of EDA-based algorithms, since such sampling
strategy determines how to guide the population’s evolutionary direc-
tion in the search space. Therefore, it is important to set up suitable
sampling strategies for sampling from the multi-dimensional

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

11

probabilistic model to generate a new population.
Let πgen,k = [πgen,k(1), πgen,k(2),…, πgen,k(n)] denote the kth individual

in Pop(gen), k = 1, 2, ..., popsize. Due to the fact that the multi-
dimensional probabilistic model records the probability information of
both the order of jobs and the distribution of blocks, the probability
value of each block or similar block[πgen,k(i − 1),πgen,k(i)], (i = 2,...,n) in
the job sequence πgen,k is stored in the (i − 1)th layer of PMgen

n×n×n, i.
e.,PMgen

n×n×n(i − 1). The selection of job πgen,k(i) at the ith position is
dependent upon the appearance of job πgen,k(i − 1) at the (i − 1)th posi-
tion in πgen,k. Let SelectJob(PMgen

n×n×n,πgen,k, i) be a selection function that
is utilized to determine the candidate job πc at the ith position of πgen,k

(i > 1). That is, the selection of the candidate job πc at the ith position in
the πgen,k should sample from the (πgen,k(i − 1))th row of the (i − 1)th
layer in PMgen

n×n×n, i.e., PMgen
n×n×n(i − 1, πgen,k(i − 1)). To eliminate dupli-

cation to guarantee the generation of feasible solutions, the probability
values of the πcth column from the ith layer to the (n − 1)th layer in

PMgen
n×n×n should be set as 0 and all elements in PMgen

n×n×n need to be
renormalized if the job πc is already scheduled in the ith position of
πgen,k. The procedure of SelectJob(PMgen

n×n×n, πgen,k, i) is described in Al-
gorithm 4.In order to precisely learn the promising patterns of jobs
located at the first position of high-quality individuals in the population,
and to compress the front delay as much as possible, a first position-
based selection strategy (FPBSS) is presented in Algorithm 5 for deter-
mining the first job in the πgen,k. According to Algorithms 4 and 5, the
new population generation method is provided in Algorithm 6. As seen
from Algorithm 6, if i = 1, the job πc is selected by FPBSS(PMgen

n×n×n,

πgen,k), otherwise, the job block [πgen + 1,k(i), πgen + 1,k(i + 1)] at the ith
position of πgen,k is selected by SelectJob(PMgen

n×n×n, πgen,k, i). Thereafter,
job blocks at different positions in the solution sequence are determined,
and these job blocks are connected according to the sequential rela-
tionship among jobs to produce new feasible solutions.

Algorithm 4:SelectJob(PMgen
n×n×n,πgen,k, i)

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

12

4.2.3. Diversity controlling mechanism
As stated in Section 4.1, although the initial population is of high

quality and well distribution, the diversity of the population may decline
as the evolutionary process progresses. In order to maintain a reasonable
balance between global exploration and local exploitation, a diversity
control mechanism is provided to effectively prevent the proposed al-
gorithm from prematurely converging to local optima. Let Pdiv be
defined as the diversity index and δ as the diversity threshold. Pdiv can be
used to measure the similarity between individuals in a population. If
the value of Pdiv is less than δ, the top 20% of high-quality individuals in
the population are retained and the remaining 80% are reinitialized.
Specifically, 20% of the remaining 80% of individuals are formed by
employing two constructive heuristics, i.e., PFT_NEH(x) and PFZ_RZ(x),
described in Subsections 4.1.1 and 4.1.2, while the others are randomly

generated. The corresponding calculation steps are given below.
Step 1: According to Eqs. (20)-(23), MCgen

n×n×n in the genth generation
is determined.

Step 2: Count the number of elements greater than 0 in the ith layer
of MCgen

n×n×n, denoted as αi.
Step 3: The value of diversity index Pdiv is calculated by using Eq.

(27).

Pdiv =
1

n − 1
∑n− 1

i=1

αi − 1
min(n2 − n − 1, spsize − 1)

(27)

Notice that the population size or subpopulation size often exceeds
one. According to Eq. (27), the range of Pdiv is [0,1]. If the Pdiv value is
closer to one, the better the diversity of the population. Conversely, the
closer the value of Pdiv is to zero, the more similar the individuals in the

Algorithm 5:FPBSS(MCgen
n×n×n,πgen,k)

Algorithm 6: New Population Generation

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

13

population are. That is, the population has poor diversity if the in-
dividuals in the population have similar structural features or patterns.
In order to reduce computational effort, the value of diversity index Pdiv

is calculated every ten generations, and the diversity threshold δ is tuned
in detail in the next section (see Subsection 5.2). To facilitate intuitive
comprehension, the example of MC1

n×n×n depicted in Fig. 2 is utilized to
illustrate the diversity mechanism, while still considering those five
high-quality individuals. It is evident from the preceding stages that
α1 = 4, α2 = 4, α3 = 4, and the diversity index

Pdiv = (3/4 + 3/4 + 3/4)/3= 3/4 = 0.75 can be computed by using Eq.
(27).

4.3. Local search controlled by multi-dimensional probabilistic model

4.3.1. Fast Insert-based neighbor evaluation method
It is well known that the insertion neighborhood structure is one of

the most effective neighborhood structures for the permutation-based
models of BFSPs (Pan & Wang, 2012; Schiavinotto & Stutzle, 2007;

Fig. 2. Illustration of updating process of multi-dimensional probabilistic model.

Fig. 3. An example of using the probability model to determine whether to evaluate πt in NSPM_boost.

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

14

Tasgetiren, et al., 2017; Wang, et al., 2010). Therefore, it makes sense to
select the insertion neighborhood to design neighborhood searches in
the next Subsections 4.3.2 and 4.3.3. Since the number of neighbor so-
lutions in the insertion neighborhood is (n − 1)2, the time complexity of
such neighborhood search is O(mn3) by using forward and backward
calculations given in Section 3. Following the reversibility of the
permutation-based model for the BFSP_SDST stated in Section 3, a fast
Insert-based neighbor evaluation method is devised by using a bidirec-
tional calculation method. The devised fast evaluation method is bene-
ficial for enhancing the efficiency of evaluating Insert-based neighbors.
Its procedure is provided in Algorithm 7.

The pivotal point of the proposed fast Insert-based neighbor evalua-
tion method is to remarkably reduce the complexity by appropriately

adding the space storage. Specifically, dπ(i),j and fπ(i),j can be calculated
and conserved at the beginning in Algorithm 7 (see Lines 1–2), and their
numerical values can be treated as constants while evaluating Insert-
based neighbors (see Lines 5–17). Although Algorithm 7 applies to the
basic insertion neighborhood (see Lines 4 and 15), it can be easily
extended to block-based insertion neighborhoods, i.e., picking multiple
jobs to form job blocks and performing neighborhood search based on
those blocks. Therefore, both the job-based insertion neighborhood in
Subsection 4.3.2 (see Lines 2–27 in Algorithm 8) and the block-based
insertion neighborhood in Subsection 4.3.3 (see Lines 4–7 in Algo-
rithm 10) can utilize the above-mentioned fast evaluation method to
quickly calculate neighbors.

Algorithm 7: The fast Insert-based neighbor evaluation method

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

15

4.3.2. Neighborhood search boosted by probabilistic model (NSPM_boost)
Since the multi-dimensional probabilistic model contains complete

information of both the order relations and the block distributions of
excellent individuals (see Subsection 4.2.1), it can be utilized to boost
the neighborhood search. Thus, the Insert-based neighborhood search
boosted by the probabilistic model, denoted as NSPM_boost, is proposed to
perform fast exploitation.

The procedure of the NSPM_boost is provided in Algorithm 8, where
πbest is the best solution obtained so far. In Algorithm 8, when per-
forming the NSPM_boost, the corresponding conditional probability is
calculated via the probabilistic model (see Lines 7 and 14). If the con-
ditional probability value acquired satisfies the predefined condition,

the insertion operation is executed, and then the corresponding new
neighbor is evaluated. Otherwise, a certain probability value is
randomly generated to determine whether to perform the insertion
operation (see Lines 9 and 16). It should be noted that the NSPM_boost can
reasonably utilize the structural patterns of excellent individuals to
adjust the search scope in the Insert-based neighborhood, thereby
avoiding the evaluations of potentially poor neighbors and improving
the search efficiency. In order to facilitate a better understanding, Fig. 3
gives an example of using the probability model to determine whether to
perform the insertion operation on the current neighbor πt = [1,2, 3,4]
in the NSPM_boost.

Algorithm 8:PM NeighborSearch(πbest, PMgen
n×n×n)

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

16

4.3.3. Neighborhood search guided by probabilistic model and reference
sequence (NSPM_RS_guide)

According to Subsection 4.2.1, the probability information related to
the block distribution is saved in a series of position-based probability
matrices, i.e., PMgen

n×n×n(1), PMgen
n×n×n(2),…,PMgen

n×n×n(n). Therefore, the
Insert-based neighborhood search guided by the probabilistic model and
the reference sequence, denoted as NSPM_RS_guide, is designed to execute
deep exploitation.

Let pr be the correlation coefficient of jobs. pr is calculated according
to the following Eq. (28):

pr =

∑n− 1
x=1PMgen

n×n×n(x, πgen(l), πgen(l′))
∑n− 1

x=1
∑n− 1

z=1 PMgen
n×n×n(x, πgen(l), z)

(28)

where l ∕= l′ and l, l′ = 1,2, ..., n. When pr⩾0.2, it indicates that two
jobs πgen,k(i) and πgen,k(i′) in πgen,k are strongly correlated. Obviously, pr

represents the tightness of the connection between the job πgen(l) and the
job πgen(l′) in πgen. Firstly, a block construction strategy is presented in
Algorithm 9, where the block πblock is extracted from the current

individual or solution sequence πgen via utilizing the reference sequence
πbest (i.e., the best solution obtained so far) and the probability model
PMgen

n×n×n. Then, the procedure of the NSPM_RS_guide is outlined in Algo-
rithm 10, where πleft is a partial sequence after removing πblock from πgen

best,
and Insert(πleft, i, πblock) means that πblock is inserted in the ith position in
πleft.

From Algorithm 10, it can be seen that the core idea of the
NSPM_RS_guide is to dynamically construct blocks with strong correlation
and promising pattern in the process of neighborhood search (see Line
7), and then search the Insert-based neighborhood determined by each
block (see Lines 11–17). Since the constructed blocks are different in
most cases, the NSPM_RS_guide can perform rich searches in a variety of
Insert-based neighborhoods, which is conducive to increasing the search
depth. Moreover, the NSPM_RS_guide can ensure that the overall quality of
neighbors in the constructed neighborhood is high, which helps to
improve the search quality.

Fig. 4. The flow chart of the proposed MCEDA.

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

17

Algorithm 10:Reference NeighborSearch(πgen,πbest, PMgen
n×n×n)

Algorithm 9:V ariable Block(k, pos, len, πgen, πbest, PMgen
n×n×n)

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

18

4.3.4. Multi-neighborhood iterated local search
In the last decade, various local search methods based on the VNS

framework have been proposed, among which iterated local search (ILS)
proposed by Lourenco et al. (Lourenço, et al., 2010) is one of the most
effective local search methods. The main idea of ILS is to first perturb the
current best solution for preventing cycle search and jumping out of
local optima, and then to undertake an iterative variable neighborhood
search to find more satisfied solutions. Nowadays, ILS has been widely
applied to solve a variety of scheduling problems. Therefore, a new
multi-neighborhood ILS (MNILS) combing the NSPM_boost (Algorithm 8)
and the NSPM_RS_guide (Algorithm 10) is devised to perform deeper
exploitation from promising regions obtained by the global search in
Section 4.2.

The procedure of the MNILS is given in Algorithm 11, where
Interchange(πgen

t1 , u, v) means interchange the uth job and the vth job in
πgen

t1 , πgen
best is the current best individual or sequence at generation gen,

and T is the temperature control parameter set to T =
∑n

i=1
∑n

j=1pi,j/5nm
in the proposed MCEDA. From Algorithm 11, it can be known that the
MNILS starts the exploitation from the promising regions (i.e., πbest and
πgen

best), and iteratively executes the NSPM_boost (see Lines 1 and 6) and the
NSPM_RS_guide (see Lines 2 and 7) to guide the exploitation down to the
optimal or near optimal solution. Moreover, the hybrid perturbation
strategy combining Interchange-based moves (see Lines 4 and 5) and
simulated annealing mechanism (see Line 13) is used to drive the local
search to jump out of local optima.

4.4. The framework of MCEDA

In general, EDA reproduces offspring by sampling from a well-
designed probabilistic model, which mainly consists of the following
five steps (Pan & Ruiz, 2012): (a) generating initial population, (b)
selecting elite individuals, (c) updating probability model with superior
solutions, (d) sampling from the probability model to create a new
population, and (e) repeating steps (b)-(d) until the termination condi-
tion is satisfied. After covering each component in detail in the pre-
ceding sections, Fig. 4 illustrates the MCEDA framework.

From Fig. 4, it can be seen that the proposed MCEDA consists of two
main aspects, i.e., a breadth global search and a depth local search. First,
two effective constructive heuristics are applied to generate some high-
quality initial individuals. Second, an effective EDA-based global search
is adopted to estimate the distribution of excellent individuals or solu-
tions, which is beneficial to quickly guide the exploration to discover the
promising regions in solution space. Third, a multi-neighborhood iter-
ated local search with a fast Insert-based neighbor evaluation method is
devised to conduct in-depth exploitation in the promising regions found
by global search. Since both global exploration and local exploitation
are well stressed, it is expected that the proposed MCEDA can achieve
good performance in solving BFSP_SDST.

4.5. Computational complexity analysis

According to Fig. 4, the computational complexity (CC) of the pri-

Algorithm 11: Multi-neighborhood iterated local search (MNILS)

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

19

mary parts of the proposed MCEDA is analyzed as follows. At the
initialization phase, since the CC of determining makespan by the for-
ward calculation in Eqs. (1)-(5) or by the backward calculation in Eqs.
(7)-(12) is O(mn), the CC of evaluating the population is O(popsize×
mn). In Algorithm 2, the CCs of calculating I(i) and σi are O(mn), and the
CCs of Line 2, Line 5, Lines 7–10, and Lines 3–12 are O(nlogn), O(mn2),
O(mn3), and O(xmn3), respectively. Hence, the CC of Algorithm 2 is
O(xmn3). In Algorithm 3, the CC of computing IZ(i) is O(mn), and the CCs
of Lines 2–3, Line 6, Lines 7–13, and Lines 4–15 are O(nlogn), O(mn2),
O(mn3), and O(xmn3), respectively. Hence, the CC of Algorithm 3 is
O(xmn3). Since the fast Insert-based neighbor evaluation method given
in Subsection 4.3.1 is used to reduce the CC of evaluating solution from
O(mn) to O(m), the CCs of Algorithms 2 and 3 are also reduced from
O(xmn3) to O(xmn2). In Subsection 4.2.1, the CC of calculating MCgen

n×n×n

is O(n3) when using Eqs. (20)-(23) and the CC of initializing PM0
n×n×n is

O(n3) when using Eqs. (24)-(26).
At the iterative process, since spsize superior solutions are selected

from Pop(gen) to calculate MCgen
n×n×n, the CC of sorting the population via

quick sort method is O(popsize× logpopsize). In Algorithm 4, the CC of
Line 1 is O(n) and that of Lines 2–10 is also O(n). So, the CC of Algorithm
4 is O(n). In Algorithm 5, the CC of Lines 2–6 is O(n). Thus, the CC of
Algorithm 5 is O(n). In Algorithm 6, the CCs of Lines 2–9 and Lines 1–11
are O(n2) and O(popsize× n2), respectively. So, the CC of generating a
new population by sampling PMgen

n×n×n in Subsection 4.2.2 is O(popsize×
n2). Note that the CC of updating PMgen

n×n×n is also O(n3) according to Eq.
(26). Moreover, in Subsection 4.2.3, the CCs of calculating diversity
index value Pdiv and that of reinitializing part of the individuals in the
population are nearly O(n) and O(popsize× n2), respectively. In Algo-
rithm 8, the CCs of Lines 7–12, Lines 14–19, Lines 4–26, and Lines 2–27
are nearly O(n), O(n), O(mn2), and O(mn3), respectively. In Algorithm
10, the CCs of Line 7, Lines 12–17, and Lines 2–19 are nearly O(len),
O(mn2), and O(mn3). In Algorithm 11, the CCs of Line 1, Line 2, and
Lines 3–16 are all approximately equal to O(mn3). Since the fast Insert-
based neighbor evaluation method is used to calculate neighbor solu-
tions and the probabilistic model is employed to guide neighborhood
searches, the CC of conducting MNILS in Algorithm 11 is estimated to be
O(mnl̃ogn), where O(l̃ogn) is less than linear time O(n).

Let TCC be the total CC of MCEDA, and Kgen
1 (Kgen

2) the repeat times of
Algorithms 8 (Algorithms 10) at generation gen for a given instance.
Then, denote K1 =

∑maxgen
gen=1 Kgen

1 and K2 =
∑maxgen

gen=1 Kgen
2 . Since Kgen

1 and
Kgen

2 are no less than one, we have K1,K2⩾maxgen. In general, n is larger
than m and len. According to the above analysis, TCC can be expressed as.

TCC = O(maxgen ×
(
xmn2 + mn2 + n3 + popsize × n2)

+K1 × mnl̃ogn + K2 × mnl̃ogn)
= O

(
maxgen ×

(
n3 + popsize × n2)+ K × mnl̃ogn

)
,

(29)

where K is the average repeat times of executing Algorithms 8 and
10. From Eq. (29), it can be observed that the CC of MCEDA is acceptable
because the highest degree in (maxgen×(n3 +popsize × n2)+K × mnl̃ogn)
is three.

5. Experimental results and statistical analysis

This section implements the extensive experiments to demonstrate
the effectiveness and efficiency of the proposed MCEDA. Firstly, the
experimental setup is briefly described in Section 5.1, including the
testing instances, performance metrics, and experimental environment.
Then, the effects of MCEDA’s parameters are discussed in Section 5.2.
Afterwards, the superiority of multi-dimensional probabilistic model
and the advantages of improvement strategies are investigated in Sec-
tion 5.3 and Section 5.4, respectively. Finally, computational compari-
sons and statistical analysis of MCEDA against several state-of-the-art
algorithms are conducted and discussed.

5.1. Experimental setup

In order to investigate the performance of the proposed MCEDA, a set
of well-known benchmark datasets provided by Ruiz, et al. (2005) for
PFSP_SDST are employed as test sets, which are available at https://soa.
iti.es/. These test sets contain a total of 480 instances with different
sizes, which can be divided into four subsets according to different setup
times, namely SSD-10, SSD-50, SSD-100, and SSD-125. Each subset
consists of 120 different instances, ranging from 20 jobs and 5 machines
to 500 jobs and 20 machines. The processing time of each job is
randomly generated in the uniformly distributed interval [1, 99]. The
setup times in each test subset SSD-K (K = 10, 50, 100 and 125) are
randomly generated in the uniformly distributed interval [1,K − 1]. The
comparison algorithms are all conducted in the same programming
environment and computer configuration. All algorithms are coded in
Pascal language, compiled by Embarcadero Rad Studio (XE8), and
executed independently on a PC equipped with Inter(R) Core(TM) i7-
8700 M @ 3.2 GHz processor and 32 GB of RAM memory under Win-
dows 7 OS. It should be noted that all algorithms have the same termi-
nation condition, i.e., the maximum elapsed CPU time of 60nm
milliseconds. Moreover, to fairly derive reliable computation results in
the same time, each algorithm for each specific instance is performed 30
times independently. Therefore, a total number of 14,400 results are
available for each algorithm, and the computational comparisons are
completely fair and comparable. In order to evaluate the performance of
the algorithms, the average relative percent deviation (ARPD) is used to
measure the average relative quality of the experimental results, as
stated by Eq. (30):

ARPD =
1
R

∑R

i=1

(
Ci − Copt

Copt

)

× 100% (30)

where R is the number of runs. Ci is the makespan obtained by a
specific algorithm in the ith experiment for a given instance. Copt is the
optimal makespan for that instance. Since few algorithms are devised to
solve the problem under consideration, the minimum makespan found
by all algorithms is selected as Copt . For the calibration of the algorithm
parameters, Copt is the best makespan found by all configurations for the
calibration instance. It is obvious that the smaller the value of ARPD, the
better the performance of the algorithm. In the statistical table of the
experimental results, the best values obtained are highlighted in bold
font, the second-best values are indicated in bold and underlined font,
and the third-best values are marked in italic and underlined font.

5.2. Parameter calibration

Parameter calibration has an important impact on the efficacy and
efficiency of HIOAs. As stated in Section 4, the proposed MCEDA con-
tains four controllable parameters, i.e., population size (popsize), pro-
portion of superior solutions (φ), learning rate (r), and diversity
threshold (δ). In order to calibrate these parameters, the Design of Ex-
periments (DOE) approach (Montgomery, 2008) is employed to provide
proper parameters of MCEDA. To further investigate the sensitivity and
interaction of parameters, all of the obtained experiment results are
analyzed by the multi-factor Analysis of Variance (ANOVA) technique,
which has been widely used in the scheduling literature (Shao, et al.,
2018a, 2018b). According to the research in recent years (Shao, et al.,
2018b), if the algorithm’s parameters are calibrated by using the same
instances (see Section 5.1) that will later be used for comparison, the
calibrated parameters may over fit (Shao, et al., 2018b). Thus, the
additional subsets (i.e., ASSD-10, ASSD-50, ASSD-100 and ASSD-125)
are generated for parameter calibration. The instances in each ASSD-K
(K = 10, 50, 100 and 125) are generated in the same way as those in the
corresponding SSD-K in Section 5.1, and each ASSD-K is half the size of
the SSD-K. That is, there are a total of 240 instances. Moreover, since the
range of parameter values is more flexible, it is required to restrict the

Z.-Q. Zhang et al.

https://soa.iti.es/
https://soa.iti.es/

Expert Systems With Applications 205 (2022) 117602

20

selection range of parameters. The reasonable range for each parameter
is determined according to the previous literature (Pan & Ruiz, 2012;
Zhang, et al., 2021; Zhang, et al., 2022) and our preliminary experi-
ments. Following that, the multiple potential levels (values) for each
factor (parameter) are determined by trial and error.

The levels of each parameter are listed in Table 3. The full factorial
experimental design is conducted for the proposed MCEDA with 4 × 4 ×

4 × 4 = 256 distinct configurations. MCEDA is repeated 30 times with a
running time of 60nm milliseconds on each instance. As a result, a total
of 256 × 30 × 240 = 1843200 results are obtained. In consequence, if
the test program runs as a whole single process program. it needs at least
280 CPU days to obtain the entire experimental results. Fortunately, due
to the multi-core architecture in our personal computers, the test pro-
gram was divided into different sub-programs, which were arranged to
run on different cores. So, it actually took about 12.5 days to complete
the calibration.

The parameter is regarded as the controller factor, and the average
ARPD value is regarded as the response variable (RV). Obviously, the
lower the RV value is, the better the performance is. Moreover, three

major hypotheses (i.e., normality, homogeneity of variance, and inde-
pendence of residuals) are checked before ANOVA is conducted. The
checked results reveal that no significant deviations are found, so these
hypotheses can be accepted. Note that the F-ratio is a strong signal of
significance when the p-value is less than the confidence level. The
larger the F-ratio is, the greater the effect of the factor on the RV is. The
ANOVA results are reported in Table 4. The main effects plot for all
parameters is shown in Fig. 5.

It is clearly observed from Table 4 that four parameters popsize, φ, r
and δ are statistically significant since their p-values are smaller than α =

0.05 (α denotes the confidence level). The parameter popsize achieves
the largest F-ratio, indicating that the population size has the most sig-
nificant effect on the performance of the proposed MCEDA. As can be
seen in Fig. 5, the choice of popsize = 100 yields the best result, while
popsize = 200 obtains the worst result. It suggests that a medium-scale
population is advantageous to maintain a proper search scope in solu-
tion space and ensure a certain search efficiency. The second largest F-
ratio value corresponds to the factor φ. As also can be seen in Fig. 5, the
value φ = 0.2 can achieve the best performance, while φ = 0.1 and φ =

0.4 yield worse results. It is obvious that the proportion of superior so-
lutions has a significant effect on the probabilistic model’s ability of
accumulating the valuable information of promising patterns in high-
quality subpopulation. The third significant factor is parameter r. It is
clear from Fig. 5 that too small or too large learning rate r may degrade
algorithm performance, and r = 0.3 is a suitable choice. If the value of r
is set too high, the algorithm may converge prematurely, otherwise it
may lead to slow convergence. Although the diversity threshold δ has
the least impact on the algorithm’s effectiveness, a lack of population
diversity directly results in search stagnation. So, an appropriate di-
versity threshold still favors MCEDA in suitably switching between
exploration and exploitation. Fig. 5 reveals that the proper value of δ is
0.3.

Although the main effects in Fig. 5 show the best choice of each
single parameter, the analysis on single parameter is incomplete if there
are significant interactions between parameters (Tasgetiren, et al.,
2017). Thus, the two-level interactions between the involved parame-
ters are also investigated, and the relevant results are reported in
Table 4. It is observed from Table 4 that the interactions of three
parameter pairs (i.e., popsize*φ, popsize*r, and popsize*δ) are statistically
significant since their p-values are less than 0.05. The interaction effect
plots of these parameter pairs are depicted in Fig. 6. From Fig. 6, it can
be seen that all the interactions of popsize*φ, popsize*r, and popsize*δ are
weak and coincide with the conclusions drawn from Fig. 5. Based on the
above analyses, the parameters of MCEDA are set as: popsize = 100, φ =

0.2, r = 0.3, δ = 0.3.

Table 3
The level of each parameter for MCEDA.

Parameter Factor level
1 2 3 4

popsize 50 100 150 200
φ 0.1 0.2 0.3 0.4
r 0.1 0.2 0.3 0.4
δ 0.2 0.3 0.4 0.5

Table 4
Results of ANOVA for MCEDA’s parameters.

Source Sum of
squares

Degrees of
freedom

Mean
square

F-ratio p-
value

Main effects
popsize 0.016 3 0.005 537.00 0.000
φ 0.010 3 0.003 346.13 0.000
r 0.016 3 0.005 538.97 0.000
δ 0.008 3 0.003 272.97 0.000
Interactions
popsize*φ 0.033 15 0.002 215.487 0.000
popsize*r 0.008 12 0.001 68.555 0.000
popsize*δ 0.010 12 0.001 86.743 0.000
φ*r 0.000 9 0.000 0.039 1.000
φ*δ 0.000 9 0.000 0.590 0.804
r*δ 0.000 9 0.000 0.108 0.999
Residual 0.002 189 0.000
Total 0.053 255

0.495

0.490

0.485

0.480

0.475

M
ea

n

50 100 150 200 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.2 0.3 0.4 0.5

φ r δpopsize

Fig. 5. Main effect plots of parameters.

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

21

5.3. Performance analysis of improvement strategies

As stated in Section 4, there are four important improvement stra-
tegies contributing to improving the performance of our presented
MCEDA: (1) the problem’s characteristics based two constructive heu-
ristics developed in Subsections 4.1.1 and 4.1.2; (2) the diversity con-
trolling mechanism described in Subsection 4.2.3; (3) the fast Insert-
based neighbor evaluation method provided in Subsection 4.3.1; and (4)
the multi-neighborhood local search controlled by multi-dimensional
probabilistic model referred in Subsections 4.3.2–4.3.4. In order to
analyze the performance of these strategies, in this section, six variants
of MCEDA are implemented to investigate and validate their contribu-
tions. Firstly, to evaluate the effectiveness of the initialization method,
we utilize the random initialization method to replace the original one,
yielding a variant named MCEDAv1. In MCEDAv1, the initial population
is randomly generated without using constructive heuristics or sched-
uling rules. Secondly, to validate the proposed diversity controlling
mechanism, the diversity controlling mechanism is removed from
MCEDA and a variant algorithm named MCEDAv2 is developed, in which
the population is never reinitialized throughout the execution of MCE-
DAv2. Thirdly, to determine if the proposed fast evaluation method
promotes the efficiency of local search, we adjust the neighbor calcu-
lation method in local search to produce a variant that does not employ
the fast Insert-based neighbor evaluation method, designated as MCE-
DAv3. Finally, to examine the effectiveness of local search controlled by
the multi-dimensional probabilistic model, we implement three variants
of MCEDA, including MCEDA without NSPM_boost (denoted as MCEDAv4),
MCEDA without NSPM_RS_guide (denoted as MCEDAv5), and MCEDA
without MNILS (denoted as MCEDAv6). Note that for the first two vari-
ants, i.e., MCEDAv4 and MCEDAv5, MNILS is implemented based only on
a single neighborhood search strategy, i.e., NSPM_boost or NSPM_RS_guide.
These two variants are adopted to certify that the proposed two neigh-
borhood search strategies are essential for local search. The last one is

used to verify the vital role of the devised MNILS for the proposed
MCEDA.

To sum up, a total of six MCEDA’s variants are created to demon-
strate the effectiveness of these improvement strategies. The controlled
experiments are conducted in such a way that each variant modifies a
single component of the complete MCEDA. To guarantee a fair com-
parison, the probabilistic model update mechanism and sampling
strategy remain the same in MCEDA and its variants, and the parameters
of the above algorithms are also the same. The MCEDA and all variants
adopt the same 60nm millisecond elapsed CPU time, and they are tested
by running 30 times independently on each instance. The benchmark
instances introduced in Section 5.1 are employed as the testbed. The
statistical results obtained by computational comparisons are reported
in Table 5, grouped by each scenario and per number of jobs.

As shown in Table 5, the proposed MCEDA outperforms the other
variants over a variety of scale instances. The results obtained by
MCEDA are remarkably better in terms of both the average relative
percent deviation (ARPD) and the standard deviation (SD), indicating
that these improvement strategies contribute considerably to improving
the performance of MCEDA. Specifically, MCEDA yields much better
ARPD values than MCEDAv1 for different scales and scenarios, implying
that both constructive heuristics affect algorithm’s performance, espe-
cially for the large-scale instances. The two constructive heuristics (i.e.,
PFT_NEH(x) and PFZ_RZ(x)) utilize problem properties to produce
partially promising solutions, which can provide better starting points
for subsequent searches and notably narrow the search scope. That is,
MCEDA is afforded more opportunities to find promising search regions
within the reduced search space. Moreover, the results of MCEDAv2 is
slightly weaker than MCEDA, indicating that the proposed diversity
mechanism not only ensures the vitality of the search to avoid stagna-
tion, but also preserves the population diversity and evolutionary in-
formation. As can be observed from Table 5, MCEDAv3 is somewhat
inferior to MCEDA in all scenarios, which demonstrates the effectiveness

0.2
0.3
0.4
0.5

0.1
0.2
0.3
0.4

0.1
0.2
0.3
0.4

50
100
150
200

δ

r

φ

popsize

0.50

M
ea

n

popsize φ r δ
50 100 150 200 0.1 0.2 0.3 0.4

0.1 0.2 0.3 0.4 0.2 0.3 0.4 0.5

popsize * δ φ * δ r * δ

popsize * r

popsize * φ

φ * r

φ * popsize r * popsize δ * popsize

r * φ δ * φ

δ * r

0.48

0.46

0.50

0.48

0.46

0.50

0.48

0.46

0.50

0.48

0.46

Fig. 6. Interaction effect plots of parameter pairs.

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

22

of the fast Insert-based neighbor evaluation method. Indeed, the pro-
posed fast evaluation method facilitates the efficiency of evaluating
Insert-based neighbor solutions and reduces the computational cost,
thereby allowing more iterations and raising the chances of discovering
more promising solutions with less computational effort.

From Table 5, it can be seen that the total average values of MCEDAv4
(1.222), MCEDAv5 (0.921) and MCEDAv6 (1.648) are inferior to MCEDA
(0.214). As regards MCEDAv6, it achieves the worst results, remarkably
lags behind other competitors, clearly revealing that the integration of
both NSPM_boost and NSPM_RS_guide in the multi-neighborhood iterated
local search effectively enhances the searchability. Since both neigh-
borhood search strategies, i.e., NSPM_boost and NSPM_RS_guide, can utilize
valuable probability information of promising patterns from superior
solutions to drive neighborhood search, MNILS can fully exploit local
areas in depth by cyclically switching between neighborhood search
strategies through the framework of ILS. If it is eliminated, the capacity
for local exploitation would be greatly diminished. Furthermore, the SD
values of MCEDA are smaller than those of its variants, i.e., MCEDA
produces more stable results across various scale instances, indicating
that MCEDA has good robustness and stability. As a consequence of such
comparison, MCEDA has a stronger and superior search power,
demonstrating the advantages of all well-designed improvement
strategies.

Although the statistical results in Table 5 illustrate the superiority of
incorporating improvement strategies, ANOVA is still used to further
confirm the significance of the observed differences. The results of the
ANOVA are reported in Fig. 7, which depicts the interaction between
algorithms and scenarios with 95% Tukey’s Honest Significant

Difference (HSD) confidence intervals. Note that the overlapping in-
tervals among algorithms imply that there are statistically insignificant
differences in their performances. As shown in Fig. 7, MCEDA is
significantly superior to the other six variants due to the absence of
overlapping intervals, confirming the above conclusion that these
improvement strategies have a great potential to boost the performance
of MCEDA.

Table 5
Comparison results of MCEDA with its six variants.

Scenario n MCEDAv1 MCEDAv2 MCEDAv3 MCEDAv4 MCEDAv5 MCEDAv6 MCEDA
ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD

SSD-0 20 0.027 0.296 0.017 0.286 0.023 0.293 0.193 0.332 0.182 0.361 0.334 0.557 0.013 0.284
50 1.154 0.288 0.843 0.263 1.224 0.282 1.773 0.341 1.569 0.355 2.532 0.584 0.357 0.257
100 1.108 0.282 0.885 0.257 1.182 0.271 1.554 0.336 1.375 0.343 2.375 0.611 0.383 0.248
200 0.579 0.264 0.712 0.253 0.761 0.264 1.141 0.363 0.973 0.376 1.794 0.573 0.362 0.245
500 0.475 0.323 0.555 0.295 0.637 0.295 1.773 0.425 0.825 0.443 1.483 0.607 0.188 0.283

Average 0.669 0.291 0.602 0.271 0.765 0.281 1.287 0.359 0.985 0.376 1.704 0.586 0.261 0.263
SSD-10 20 0.021 0.291 0.015 0.281 0.021 0.286 0.186 0.343 0.176 0.363 0.323 0.561 0.011 0.279

50 1.027 0.298 0.736 0.268 1.207 0.291 1.652 0.347 1.464 0.367 2.434 0.578 0.243 0.265
100 1.054 0.282 0.827 0.262 1.118 0.268 1.478 0.344 1.262 0.355 2.324 0.597 0.335 0.257
200 0.533 0.279 0.652 0.253 0.667 0.272 1.034 0.371 0.918 0.368 1.732 0.566 0.328 0.246
500 0.436 0.323 0.517 0.284 0.541 0.314 1.766 0.432 0.775 0.437 1.426 0.612 0.173 0.258

Average 0.614 0.295 0.549 0.270 0.711 0.286 1.223 0.367 0.919 0.378 1.648 0.583 0.218 0.261
SSD-50 20 0.026 0.288 0.018 0.283 0.024 0.282 0.193 0.345 0.188 0.364 0.338 0.553 0.014 0.271

50 1.112 0.296 0.823 0.264 1.218 0.286 1.742 0.332 1.543 0.373 2.524 0.581 0.345 0.254
100 1.027 0.278 0.746 0.258 1.043 0.272 1.424 0.347 1.215 0.356 2.257 0.594 0.287 0.243
200 0.436 0.267 0.612 0.255 0.634 0.261 1.007 0.355 0.826 0.372 1.671 0.568 0.243 0.246
500 0.413 0.324 0.523 0.276 0.535 0.295 1.731 0.428 0.796 0.445 1.433 0.611 0.186 0.257

Average 0.603 0.291 0.544 0.267 0.691 0.279 1.219 0.361 0.914 0.382 1.645 0.581 0.215 0.254
SSD-100 20 0.022 0.295 0.015 0.287 0.021 0.289 0.186 0.361 0.174 0.355 0.331 0.546 0.013 0.271

50 1.024 0.277 0.752 0.262 1.163 0.268 1.632 0.345 1.438 0.364 2.423 0.576 0.287 0.258
100 1.085 0.273 0.836 0.263 0.985 0.273 1.439 0.353 1.312 0.343 2.354 0.591 0.322 0.255
200 0.417 0.267 0.554 0.252 0.572 0.262 0.976 0.365 0.753 0.368 1.548 0.563 0.167 0.227
500 0.337 0.326 0.473 0.281 0.506 0.295 1.711 0.416 0.762 0.437 1.412 0.603 0.143 0.263

Average 0.577 0.288 0.526 0.269 0.649 0.277 1.189 0.368 0.888 0.373 1.614 0.576 0.186 0.255
SSD-125 20 0.024 0.292 0.017 0.281 0.019 0.285 0.182 0.356 0.167 0.352 0.328 0.552 0.011 0.268

50 1.017 0.288 0.782 0.257 1.183 0.267 1.651 0.348 1.426 0.356 2.513 0.571 0.283 0.252
100 1.021 0.279 0.743 0.251 0.894 0.272 1.374 0.344 1.221 0.338 2.221 0.587 0.245 0.246
200 0.483 0.265 0.615 0.245 0.632 0.257 0.979 0.357 0.864 0.362 1.624 0.553 0.223 0.241
500 0.412 0.323 0.531 0.273 0.546 0.303 1.761 0.422 0.812 0.426 1.457 0.592 0.182 0.254

Average 0.591 0.289 0.538 0.261 0.655 0.277 1.189 0.365 0.898 0.367 1.629 0.571 0.189 0.252
Tot. average 0.611 0.291 0.552 0.268 0.694 0.280 1.222 0.364 0.921 0.375 1.648 0.579 0.214 0.257

M
ea

n

SSD-0
SSD-10
SSD-50
SSD-100
SSD-125

Scenario

MCEDA MCEDAv1 MCEDAv2 MCEDAv3 MCEDAv4 MCEDAv5 MCEDAv6

Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Fig. 7. Interaction plot with 95% Tukey’s HSD confidence interval between
algorithm and scenario.

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

23

5.4. Comparisons of MCEDA and other two-dimensional EDAs

Since most well-performing EDA-based algorithms use two-
dimensional probabilistic models to guide the global search direction,
it is critical to conduct a comprehensive investigation of the global
search performance of EDA-based algorithms. To verify the proposed
MCEDA’s superiority over existing two-dimensional probabilistic
model-based EDAs for BFSP_SDST, we compared it with three recently
proposed two-dimensional probabilistic model-based EDAs, including
the state-of-the-art EDA (JEDA) (Jarboui, et al., 2009), the effective EDA
(EEDA) (Wang, et al., 2013), and the modified JEDA (P-EDA) (Pan &
Ruiz, 2012). To eliminate the effect of local search on the global per-
formance of these EDAs, only the framework of global search for all
EDA-based algorithms is used to perform global exploration without
local search. These variants are abbreviated as MCEDAnls, JEDAnls,
EEDAnls, and P-EDAnls. The parameters of these EDA-based algorithms
are set to the same values as in the original literature. The experimental
results under five different scenarios are summarized in Table 6.

As can be observed from Table 6, MCEDAnls achieves the best results
in almost all instances compared to the existing effective two-
dimensional probabilistic model-based EDAs. Specifically, the global
performance of P-EDAnls is significantly better than that of JEDAnls and
EEDAnls, which indicates that P-EDAnls can attain better search perfor-
mance by using two two-dimensional matrices to preserve information
of both the order of jobs and the number of similar blocks. However, the
proposed MCEDAnls notably outperforms all the existing EDA-based al-
gorithms in terms of ARPD values for five scenarios, SSD-0, SSD-10, SSD-
50, SSD-100, and SSD-125. For different setup time scenarios, the his-
togram including means with 95% Tukey’s HSD confidence interval is
illustrated in Fig. 8. It is clear that, as compared to other EDA-based
algorithms, MCEDAnls can yield significantly lower ARPD and rela-
tively smaller SD with considerable advantages. These findings
demonstrate the benefits of the matrix-cube-based probabilistic model
in improving the performance of MCEDA. The main reason is explained
by the fact that the three-dimensional probabilistic model employed in
MCEDAnls is capable of not only learning valuable information about the
order of jobs that existed in superior solutions, but also accurately and
reasonably recording the relative position of each similar block, which is
difficult to do with two-dimensional probabilistic models. So, for the
two-dimensional probabilistic model-based EDAs, similar blocks cannot
be placed in the correct positions to produce new individuals during the
sampling process, resulting in relatively poor search capability of these
comparison algorithms. According to the above experiments and anal-
ysis, it can be concluded that the proposed matrix-cube-based probabi-
listic model plays an important role in MCEDA. Also, it may be

Ta
bl

e
6

Co
m

pa
ri

so
n

re
su

lts
 o

f E
D

A
’s

 g
lo

ba
l e

xp
lo

ra
tio

n
un

de
r

di
ffe

re
nt

 s
ce

na
ri

os
.

n,
m

SS

D
-0

SS

D
-1

0
SS

D
-5

0
SS

D
-1

00

SS
D

-1
25

JE

D
A

nl
s

EE
D

A
nl

s
P-

ED
A

nl
s

M
CE

D
A n

ls

JE
D

A
nl

s
EE

D
A

nl
s

P-
ED

A
nl

s
M

CE
D

A n
ls

JE

D
A

nl
s

EE
D

A
nl

s
P-

ED
A

nl
s

M
CE

D
A n

ls

JE
D

A
nl

s
EE

D
A

nl
s

P-
ED

A
nl

s
M

CE
D

A n
ls

JE

D
A

nl
s

EE
D

A
nl

s
P-

ED
A

nl
s

M
CE

D
A n

ls

20
,5

0.

24

0.
13

0.

05

0.
03

0.

31

0.
11

0.

04

0.
02

0.

31

0.
15

0.

04

0.
02

0.

36

0.
17

0.

05

0.
03

0.

41

0.
19

0.

05

0.
03

20

,1
0

0.

32

0.
18

0.

08

0.
04

0.

34

0.
14

0.

05

0.
03

0.

39

0.
21

0.

05

0.
03

0.

45

0.
24

0.

04

0.
02

0.

48

0.
25

0.

06

0.
03

20

,2
0

0.

28

0.
15

0.

05

0.
03

0.

39

0.
19

0.

08

0.
04

0.

45

0.
26

0.

08

0.
03

0.

57

0.
29

0.

06

0.
04

0.

35

0.
23

0.

06

0.
04

50

,5

1.
81

1.

54

1.
23

1.

08

1.
72

1.

38

1.
07

0.

72

1.
83

1.

47

1.
31

0.

95

2.
14

1.

65

1.
38

1.

15

2.
21

1.

83

1.
54

1.

26

50
,1

0

1.
95

1.

62

1.
32

1.

15

2.
07

1.

53

1.
23

0.

91

2.
15

1.

54

1.
22

0.

83

2.
19

1.

77

1.
45

1.

24

2.
15

1.

79

1.
47

1.

14

50
,2

0

2.
12

1.

68

1.
39

1.

18

2.
15

1.

46

1.
14

0.

77

1.
87

1.

47

1.
16

0.

76

2.
08

1.

61

1.
37

1.

06

2.
24

1.

69

1.
35

1.

05

10
0,

5

2.
23

1.

87

1.
63

1.

45

1.
91

1.

54

1.
29

1.

06

1.
95

1.

62

1.
43

1.

18

2.
17

1.

71

1.
43

1.

37

2.
17

1.

75

1.
44

1.

28

10
0,

10

2.
18

1.

73

1.
35

1.

24

2.
25

1.

63

1.
38

1.

12

2.
03

1.

75

1.
51

1.

22

2.
14

1.

67

1.
36

1.

25

2.
34

1.

97

1.
63

1.

43

10
0,

20

2.
31

1.

91

1.
56

1.

44

2.
07

1.

51

1.
22

1.

04

2.
12

1.

78

1.
57

1.

29

2.
25

1.

78

1.
47

1.

36

2.
26

1.

89

1.
57

1.

36

20
0,

10

2.
36

1.

98

1.
72

1.

53

2.
24

1.

67

1.
43

1.

17

1.
86

1.

51

1.
34

0.

95

1.
83

1.

39

1.
18

0.

89

2.
15

1.

73

1.
34

0.

93

20
0,

20

2.
13

1.

83

1.
65

1.

36

2.
01

1.

58

1.
32

1.

09

1.
91

1.

59

1.
45

1.

09

1.
91

1.

56

1.
25

1.

08

1.
97

1.

77

1.
45

1.

25

50
0,

20

1.
14

1.

08

0.
84

0.

42

1.
17

1.

09

0.
89

0.

55

1.
28

0.

97

0.
72

0.

47

1.
04

0.

88

0.
69

0.

54

1.
11

0.

98

0.
69

0.

42

A
ve

ra
ge

1.

59

1.
31

1.

07

0.
91

1.

55

1.
15

0.

93

0.
71

1.

51

1.
19

0.

99

0.
74

1.

59

1.
23

0.

98

0.
84

1.

65

1.
34

1.

05

0.
85

MCEDAnlsJEDAnls P-EDAnlsEEDAnls

Fig. 8. Comparisons of EDA’s global performance.

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

24

worthwhile to consider embedding the developed multi-dimensional
probabilistic model into other HIOAs for solving BFSPs in future
research.

5.5. Comparisons of MCEDA and the state-of-the-art methods

To evaluate the effectiveness and efficiency of the proposed MCEDA,
this section aims to compare the performance of MCEDA against several
state-of-the-art algorithms available in the literature. As described in
Section 2, it should be noted that few algorithms are directly designed to
address the BFSP_SDST; accordingly, any algorithms that attempt
addressing the BFSP_SDST and its relevant problems are considered for
computational comparison. For various types of FSPs and BFSPs with
makespan criterion, the efficacy of MCEDA with various high-
performance algorithms is comprehensively compared according to
the same benchmark test sets as SSD-10, SSD-50, SSD-100, and SSD-125
introduced in Section 5.1. These algorithms may be classified into three
categories. The first group has a single algorithm, i.e., DWWO (Shao,
et al., 2018b), which is developed to solve the BFSP_SDST; The second
group contains fourteen algorithms, including HDDE (Wang, et al.,
2010), hmgHS (Wang, et al., 2011), TPA (Wang, et al., 2012), MA (Pan,
et al., 2013), RAIS (Lin & Ying, 2013), SVNS_S and SVNS_D (Ribas, et al.,
2013), HVNS (Moslehi & Khorasanian, 2014), DE_ABC (Han, et al.,
2015), DE_PLS (Tasgetiren, et al., 2015), MFFO (Han, et al., 2016), IG_IJ

and IG_RLS (Tasgetiren, et al., 2017), and P-EDA (Shao, et al., 2018a),
where these algorithms are designed to address the BFSP; The third
group contains six algorithms, including HGA (Ruiz, et al., 2005), PACA
(Gajpal, et al., 2006), IG_RS (Ruiz & Stutzle, 2008), AHA1 and AHA3 (Li
& Zhang, 2012), EMBO (Sioud & Gagne, 2018), all of which are devel-
oped to deal with the PFSP. Additionally, since the proposed MCEDA is
designed based on the multi-dimensional probabilistic model, it is
necessary to further conduct a comparison between MCEDA and an
effective two-dimensional probabilistic-model-based EDA, i.e., EEDA
(Wang, et al., 2013). The total of twenty two typical algorithms
mentioned above are the most effective algorithms available for dealing
with BFSP, PFSP and their extensions. Among these algorithms, DWWO,
HDDE, HMGHS, MA, RAIS, DE_ABC, DE_PLS, MFFO, P-EDA, HGA,
PACA, AHA1, AHA3, EMBO, and EEDA all fall within the category of
population-based HIOAs. All algorithms are re-implemented strictly in
accordance with the original literature, with appropriate adjustments to
adapt the BFSP SDST with makespan criterion. Meanwhile, the fast
Insert-based neighbor evaluation method described in Subsection 4.3.1
is incorporated into these re-implemented algorithms to expedite search
efficiency. The parameters of each algorithm are derived from the sug-
gested settings in the original literature, and the same calibration
method as stated in Section 5.2 is employed to recalibrate the relevant
parameters. The parameter values for all algorithms are reported in
Table 7.

Table 7
Parameters of the compared algorithms for BFSP_SDST.

Algorithm Author(s) Parameter setting

DWWO
Shao, et al. (2018b)

popsize = 5, λmin = 1, λmax = 2, hmax = 10, ω = 40.

HDDE
Wang, et al. (2010)

popsize = 20, F = 0.2, CR = 0.2, Pl = 0.2.

hmgHS
Wang, et al. (2011)

MS = 5, PCR = 0.95, PAR = 0.95.

TPA
Wang, et al. (2012)

Tinit =
∑n

i=1
∑n

j=1pi,j/5nm, Tfinal = 1, Niter = 100000,
α = 0.8, β = (Tinit − Tfinal)/((Niter − 1)× Tinit × Tfinal).

MA
Pan, et al. (2013)

popsize = 10, Pm = 0.8, Pc = 0.2, λ = 20, γ = 20.

RAIS
Lin and Ying (2013)

T0 = 0.6×
∑n

i=1
∑n

j=1pi,j/10n, Dthreshold = 5, GT = 4000,

nc = 6, α = 0.97, MaxT = 60nm.
SVNS_D

Ribas, et al. (2013)
α = 0.75, β = 0.5, d = 8.

HVNS
Moslehi and Khorasanian (2014)

Tinit =
∑n

i=1
∑n

j=1pi,j/5nm, Tfinal = 0.1× Tinit , kmax = 100000,
β = (Tinit − Tfinal)/((Niter − 1)× Tinit × Tfinal).

DE_ABC
Han, et al. (2015)

popsize = 20, Pmu = 0.9, Pc = 0.1, Pls = 0.2.

DE_PLS
Tasgetiren, et al. (2015)

popsize = 10, δ = 20, Pc = 0.1, β = 0.0005, F = 0.1,
Tmax = 60nm.

MFFO
Han, et al. (2016)

popsize = 20, φ = 0.75, pls = 0.6, T = 5, Timemax = 60nm.

IG_RLS
Tasgetiren, et al. (2017)

ds = 8, τP = 0.5, jP = 0.001, Tmax = 60nm.

P-EDA
Shao, et al. (2018a)

popsize = 50, λ = 0.3, t = 60nm.

HGA
Ruiz, et al. (2005)

popsize = 50, Pc = 0.1, Pm = 0.005, Gr = 25.

PACA
Gajpal, et al. (2006)

τip = 1/Mbest , ρ = 0.75.

IG_RS
Ruiz and Stutzle (2008)

Temperature = T×
∑n

i=1
∑n

j=1pi,j/10nm, T = 0.5, d = 4.

AHA3
Li and Zhang (2012)

popsize = 50,α = 20, β = 20, ρ = 1, ηi = 0.7, Pc = 0.6,
Pm = 0.02, Pl = 0.1.

EMBO
Sioud and Gagne (2018)

popsize = 9, m = 100, k = 5, x = 1, age = 100, q0 = 0.7, l = 10.

EEDA
Wang, et al. (2013)

popsize = 150, η = 10, α = 0.1.

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

25

Ta
bl

e
8

St
at

is
tic

al
 r

es
ul

ts
 o

f M
CE

D
A

 c
om

pa
re

d
w

ith
 2

2
di

ffe
re

nt
 a

lg
or

ith
m

s
at

 s
ce

na
ri

o
SS

D
-0

.

n,
m

PA

CA

RA
IS

A

H
A

1
A

H
A

3
H

G
A

D

E_
A

BC

D
E_

PL
S

H
D

D
E

M
FF

O

EM
BO

hm

gH
S

SV
N

S_
S

SV
N

S_
D

P-

ED
A

EE

D
A

TP

A

M
A

H

VN
S

IG
_R

S
IG

_R
LS

IG

_IJ

D
W

W
O

M

CE
D

A

20
,5

0.

24

0.
35

0.

15

0.
14

0.

33

0.
08

0.

03

0.
03

0.

05

0.
04

0.

05

0.
05

0.

04

0.
04

0.

02

0.
02

0.

02

0.
03

0.

02

0.
02

0.

02

0.
02

0.

00

20
,1

0

0.
27

0.

43

0.
19

0.

17

0.
39

0.

07

0.
02

0.

03

0.
07

0.

07

0.
04

0.

05

0.
06

0.

06

0.
04

0.

04

0.
04

0.

04

0.
03

0.

03

0.
04

0.

04

0.
01

20

,2
0

0.

18

0.
37

0.

17

0.
14

0.

42

0.
04

0.

03

0.
03

0.

04

0.
05

0.

03

0.
03

0.

03

0.
05

0.

03

0.
04

0.

02

0.
03

0.

02

0.
02

0.

03

0.
03

0.

01

50
,5

2.

53

1.
85

1.

72

1.
65

1.

71

1.
44

1.

17

1.
51

1.

29

1.
22

1.

07

0.
90

0.

95

0.
96

0.

92

0.
71

0.

68

0.
55

0.

64

0.
44

0.

46

0.
49

0.

35

50
,1

0

2.
46

2.

33

1.
81

1.

72

1.
69

1.

51

1.
28

1.

52

1.
44

1.

27

1.
14

0.

98

1.
05

0.

99

1.
02

0.

76

0.
65

0.

67

0.
59

0.

51

0.
55

0.

62

0.
31

50

,2
0

2.

63

2.
56

1.

91

1.
77

1.

64

1.
58

1.

36

1.
57

1.

56

1.
31

1.

18

1.
04

1.

12

0.
96

1.

08

0.
75

0.

64

0.
53

0.

45

0.
38

0.

42

0.
52

0.

35

10
0,

5

2.
43

1.

94

2.
13

1.

88

1.
82

1.

71

1.
43

1.

76

1.
66

1.

45

1.
45

1.

18

1.
26

1.

14

1.
04

0.

81

0.
85

0.

58

0.
73

0.

43

0.
49

0.

61

0.
36

10

0,
10

2.

79

2.
17

2.

06

1.
85

1.

94

1.
76

1.

54

1.
71

1.

72

1.
48

1.

24

1.
11

1.

19

1.
07

1.

13

0.
77

0.

74

0.
59

0.

64

0.
41

0.

48

0.
57

0.

34

10
0,

20

2.
76

2.

54

2.
17

1.

95

2.
16

1.

73

1.
52

1.

84

1.
67

1.

59

1.
48

1.

41

1.
44

1.

22

1.
24

0.

89

0.
76

0.

66

0.
67

0.

57

0.
62

0.

71

0.
42

20

0,
10

2.

65

2.
11

2.

22

1.
98

1.

81

1.
82

1.

58

1.
89

1.

76

1.
65

1.

54

1.
47

1.

52

1.
26

1.

22

0.
96

0.

67

0.
71

0.

69

0.
52

0.

61

0.
65

0.

34

20
0,

20

2.
38

2.

23

2.
02

1.

81

1.
72

1.

74

1.
52

1.

64

1.
67

1.

53

1.
35

1.

29

1.
34

1.

18

1.
18

0.

79

0.
69

0.

62

0.
63

0.

45

0.
48

0.

61

0.
34

50

0,
20

0.

96

0.
92

1.

27

1.
09

0.

63

0.
71

0.

48

0.
56

0.

69

0.
75

0.

43

0.
47

0.

53

0.
58

0.

63

0.
47

0.

35

0.
39

0.

32

0.
23

0.

25

0.
27

0.

16

A
ve

ra
ge

1.

86

1.
65

1.

48

1.
35

1.

36

1.
18

1.

00

1.
18

1.

14

1.
04

0.

92

0.
83

0.

88

0.
79

0.

80

0.
58

0.

51

0.
45

0.

45

0.
34

0.

37

0.
43

0.

25

Ta
bl

e
9

St
at

is
tic

al
 r

es
ul

ts
 o

f M
CE

D
A

 c
om

pa
re

d
w

ith
 2

2
di

ffe
re

nt
 a

lg
or

ith
m

s
at

 s
ce

na
ri

o
SS

D
-1

0.

n,
m

PA

CA

RA
IS

A

H
A

1
A

H
A

3
H

G
A

D

E_
A

BC

D
E_

PL
S

H
D

D
E

M
FF

O

EM
BO

hm

gH
S

SV
N

S_
S

SV
N

S_
D

P-

ED
A

EE

D
A

TP

A

M
A

H

VN
S

IG
_R

S
IG

_R
LS

IG

_IJ

D
W

W
O

M

CE
D

A

20
,5

0.

22

0.
32

0.

17

0.
16

0.

34

0.
02

0.

03

0.
02

0.

02

0.
06

0.

02

0.
03

0.

02

0.
05

0.

04

0.
03

0.

02

0.
05

0.

02

0.
02

0.

02

0.
01

0.

00

20
,1

0

0.
19

0.

37

0.
19

0.

17

0.
42

0.

03

0.
03

0.

03

0.
05

0.

04

0.
03

0.

03

0.
04

0.

07

0.
04

0.

03

0.
02

0.

04

0.
04

0.

03

0.
02

0.

03

0.
00

20

,2
0

0.

17

0.
36

0.

14

0.
13

0.

46

0.
02

0.

02

0.
04

0.

04

0.
05

0.

04

0.
04

0.

03

0.
06

0.

03

0.
04

0.

02

0.
04

0.

03

0.
04

0.

03

0.
02

0.

01

50
,5

2.

16

1.
71

1.

53

1.
48

1.

84

1.
12

0.

81

1.
23

0.

94

1.
13

0.

72

0.
82

0.

89

0.
83

0.

87

0.
72

0.

45

0.
56

0.

56

0.
39

0.

44

0.
34

0.

27

50
,1

0

2.
44

2.

06

1.
76

1.

68

1.
93

1.

43

1.
22

1.

54

1.
41

1.

35

0.
91

0.

88

0.
95

1.

13

1.
22

0.

84

0.
48

0.

79

0.
54

0.

68

0.
72

0.

37

0.
22

50

,2
0

2.

31

2.
21

1.

85

1.
81

1.

85

1.
47

1.

24

1.
49

1.

37

1.
26

0.

79

0.
98

1.

05

0.
93

1.

03

0.
58

0.

39

0.
43

0.

47

0.
56

0.

62

0.
33

0.

18

10
0,

5

1.
96

1.

81

1.
61

1.

57

1.
27

1.

22

0.
91

1.

27

1.
29

1.

22

1.
07

0.

92

0.
98

0.

88

0.
97

0.

67

0.
71

0.

58

0.
66

0.

38

0.
44

0.

36

0.
33

10

0,
10

2.

13

2.
04

1.

78

1.
76

1.

69

1.
28

1.

03

1.
36

1.

32

1.
37

1.

13

1.
05

1.

08

0.
85

1.

09

0.
71

0.

57

0.
58

0.

48

0.
42

0.

45

0.
39

0.

26

10
0,

20

2.
39

2.

22

1.
95

1.

89

1.
88

1.

45

0.
93

1.

47

1.
27

1.

38

1.
03

1.

13

1.
17

0.

94

1.
18

0.

74

0.
52

0.

64

0.
62

0.

56

0.
59

0.

47

0.
33

20

0,
10

2.

04

1.
93

1.

79

1.
65

1.

62

1.
31

1.

08

1.
32

1.

36

1.
31

1.

18

1.
06

1.

13

1.
13

1.

14

0.
81

0.

48

0.
74

0.

74

0.
63

0.

68

0.
38

0.

26

20
0,

20

2.
35

2.

05

2.
03

1.

96

1.
66

1.

39

1.
19

1.

51

1.
34

1.

36

1.
09

1.

11

1.
17

1.

07

1.
11

0.

74

0.
45

0.

63

0.
57

0.

49

0.
52

0.

41

0.
33

50

0,
20

0.

89

0.
95

1.

12

1.
08

0.

70

0.
57

0.

43

0.
63

0.

66

1.
11

0.

53

0.
42

0.

47

0.
78

0.

79

0.
62

0.

34

0.
47

0.

25

0.
25

0.

27

0.
24

0.

15

A
ve

ra
ge

1.

60

1.
50

1.

33

1.
28

1.

30

0.
94

0.

75

0.
99

0.

92

0.
97

0.

71

0.
71

0.

75

0.
73

0.

79

0.
55

0.

37

0.
46

0.

42

0.
37

0.

40

0.
28

0.

20

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

26

Ta
bl

e
10

St

at
is

tic
al

 r
es

ul
ts

 o
f M

CE
D

A
 c

om
pa

re
d

w
ith

 2
2

di
ffe

re
nt

 a
lg

or
ith

m
s

at
 s

ce
na

ri
o

SS
D

-5
0.

n,
m

PA

CA

RA
IS

A

H
A

1
A

H
A

3
H

G
A

D

E_
A

BC

D
E_

PL
S

H
D

D
E

M
FF

O

EM
BO

hm

gH
S

SV
N

S_
S

SV
N

S_
D

P-

ED
A

EE

D
A

TP

A

M
A

H

VN
S

IG
_R

S
IG

_R
LS

IG

_IJ

D
W

W
O

M

CE
D

A

20
,5

0.

39

0.
32

0.

23

0.
22

0.

49

0.
04

0.

03

0.
04

0.

04

0.
07

0.

02

0.
03

0.

04

0.
07

0.

07

0.
06

0.

02

0.
04

0.

03

0.
02

0.

02

0.
02

0.

00

20
,1

0

0.
57

0.

43

0.
27

0.

24

0.
72

0.

02

0.
03

0.

03

0.
04

0.

06

0.
03

0.

04

0.
05

0.

09

0.
05

0.

08

0.
03

0.

04

0.
03

0.

02

0.
03

0.

03

0.
00

20

,2
0

0.

45

0.
36

0.

22

0.
19

0.

61

0.
04

0.

03

0.
04

0.

03

0.
06

0.

03

0.
03

0.

03

0.
11

0.

09

0.
05

0.

03

0.
03

0.

03

0.
03

0.

04

0.
03

0.

02

50
,5

2.

12

1.
87

1.

52

1.
45

1.

93

1.
26

0.

94

1.
42

1.

12

1.
24

0.

97

1.
04

1.

17

0.
93

0.

99

0.
72

0.

52

0.
66

0.

62

0.
51

0.

55

0.
38

0.

32

50
,1

0

2.
22

2.

13

1.
63

1.

55

1.
82

1.

17

0.
88

1.

49

1.
06

1.

45

0.
84

0.

97

1.
09

1.

23

0.
89

0.

99

0.
45

0.

85

0.
71

0.

44

0.
49

0.

43

0.
36

50

,2
0

2.

13

2.
39

1.

61

1.
49

1.

77

1.
39

1.

03

1.
45

1.

29

1.
34

0.

78

1.
12

1.

28

0.
96

1.

02

0.
84

0.

52

0.
75

0.

66

0.
56

0.

64

0.
51

0.

31

10
0,

5

1.
88

1.

84

1.
45

1.

41

1.
54

1.

48

1.
20

1.

44

1.
36

1.

25

1.
17

1.

17

1.
31

1.

16

0.
98

0.

87

0.
66

0.

76

0.
45

0.

43

0.
45

0.

41

0.
24

10

0,
10

1.

84

2.
03

1.

47

1.
44

1.

69

1.
48

1.

22

1.
42

1.

43

1.
47

1.

22

1.
36

1.

45

0.
96

1.

04

0.
83

0.

68

0.
78

0.

72

0.
61

0.

66

0.
59

0.

35

10
0,

20

2.
13

2.

36

1.
63

1.

58

1.
79

1.

52

1.
19

1.

52

1.
47

1.

51

1.
28

1.

45

1.
56

1.

27

1.
18

1.

03

0.
72

0.

91

0.
81

0.

65

0.
69

0.

45

0.
22

20

0,
10

1.

84

1.
82

1.

48

1.
43

1.

56

1.
55

1.

09

1.
47

1.

29

1.
29

0.

97

1.
42

1.

51

0.
97

1.

11

0.
86

0.

39

0.
66

0.

49

0.
45

0.

53

0.
38

0.

19

20
0,

20

1.
87

1.

94

1.
52

1.

47

1.
53

1.

49

1.
17

1.

42

1.
35

1.

34

1.
06

1.

24

1.
37

1.

15

0.
88

0.

95

0.
43

0.

87

0.
42

0.

39

0.
45

0.

38

0.
24

50

0,
20

1.

27

0.
97

0.

94

0.
91

0.

84

0.
72

0.

49

0.
71

0.

74

1.
13

0.

49

0.
47

0.

57

1.
03

0.

86

0.
82

0.

34

0.
63

0.

27

0.
28

0.

32

0.
34

0.

17

A
ve

ra
ge

1.

56

1.
54

1.

16

1.
12

1.

36

1.
01

0.

78

1.
04

0.

93

1.
02

0.

74

0.
86

0.

95

0.
83

0.

76

0.
68

0.

40

0.
58

0.

44

0.
37

0.

40

0.
33

0.

20

Ta
bl

e
11

St

at
is

tic
al

 r
es

ul
ts

 o
f M

CE
D

A
 c

om
pa

re
d

w
ith

 2
2

di
ffe

re
nt

 a
lg

or
ith

m
s

at
 s

ce
na

ri
o

SS
D

-1
00

.

n,
m

PA

CA

RA
IS

A

H
A

1
A

H
A

3
H

G
A

D

E_
A

BC

D
E_

PL
S

H
D

D
E

M
FF

O

EM
BO

hm

gH
S

SV
N

S_
S

SV
N

S_
D

P-

ED
A

EE

D
A

TP

A

M
A

H

VN
S

IG
_R

S
IG

_R
LS

IG

_IJ

D
W

W
O

M

CE
D

A

20
,5

0.

35

0.
38

0.

27

0.
24

0.

35

0.
05

0.

04

0.
05

0.

04

0.
06

0.

03

0.
05

0.

05

0.
09

0.

05

0.
08

0.

03

0.
05

0.

03

0.
02

0.

03

0.
03

0.

00

20
,1

0

0.
42

0.

45

0.
29

0.

26

0.
55

0.

05

0.
03

0.

04

0.
04

0.

05

0.
02

0.

04

0.
05

0.

08

0.
04

0.

07

0.
02

0.

04

0.
02

0.

02

0.
03

0.

04

0.
02

20

,2
0

0.

48

0.
52

0.

35

0.
33

0.

65

0.
04

0.

04

0.
06

0.

06

0.
07

0.

04

0.
06

0.

06

0.
11

0.

08

0.
09

0.

03

0.
04

0.

05

0.
04

0.

04

0.
03

0.

01

50
,5

1.

95

2.
08

1.

69

1.
64

1.

81

1.
39

1.

23

1.
37

1.

35

1.
59

1.

14

0.
95

1.

08

1.
27

1.

46

1.
09

0.

66

0.
84

0.

76

0.
65

0.

72

0.
53

0.

32

50
,1

0

2.
18

2.

21

1.
73

1.

68

1.
95

1.

52

1.
36

1.

45

1.
58

1.

62

1.
25

1.

11

1.
23

1.

43

1.
41

1.

12

0.
54

0.

93

0.
83

0.

77

0.
82

0.

48

0.
21

50

,2
0

1.

91

2.
15

1.

72

1.
64

1.

84

1.
45

1.

31

1.
45

1.

61

1.
59

1.

05

1.
04

1.

12

1.
24

1.

27

1.
07

0.

47

0.
81

0.

72

0.
69

0.

76

0.
45

0.

24

10
0,

5

2.
06

1.

83

1.
71

1.

67

1.
92

1.

46

1.
24

1.

43

1.
37

1.

63

1.
38

0.

96

1.
07

1.

36

1.
38

1.

09

0.
59

0.

93

0.
58

0.

57

0.
65

0.

57

0.
26

10

0,
10

2.

05

2.
21

1.

68

1.
58

1.

87

1.
48

1.

33

1.
34

1.

55

1.
69

1.

22

0.
92

1.

04

1.
32

1.

43

1.
13

0.

63

0.
88

0.

85

0.
78

0.

83

0.
61

0.

31

10
0,

20

2.
26

2.

17

1.
78

1.

72

2.
12

1.

53

1.
34

1.

49

1.
61

1.

74

1.
37

1.

18

1.
24

1.

43

1.
49

1.

11

0.
57

0.

87

0.
81

0.

75

0.
81

0.

56

0.
32

20

0,
10

1.

83

1.
97

1.

51

1.
45

1.

55

1.
39

1.

22

1.
14

1.

44

1.
68

0.

88

0.
98

1.

13

1.
38

1.

41

1.
12

0.

49

0.
86

0.

63

0.
47

0.

53

0.
46

0.

17

20
0,

20

1.
95

2.

13

1.
59

1.

57

1.
89

1.

43

1.
25

1.

26

1.
49

1.

62

1.
09

1.

06

1.
17

1.

31

1.
22

1.

13

0.
43

0.

93

0.
76

0.

52

0.
59

0.

42

0.
13

50

0,
20

1.

23

1.
02

0.

88

0.
83

0.

93

0.
76

0.

74

0.
64

0.

95

1.
44

0.

56

0.
41

0.

53

1.
09

1.

13

0.
88

0.

35

0.
74

0.

41

0.
35

0.

43

0.
34

0.

12

A
ve

ra
ge

1.

56

1.
59

1.

27

1.
22

1.

45

1.
05

0.

93

0.
98

1.

09

1.
23

0.

84

0.
73

0.

81

1.
01

1.

03

0.
83

0.

40

0.
66

0.

54

0.
47

0.

52

0.
38

0.

18

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

27

The comprehensive comparison results of MCEDA against 22
different algorithms under different scenarios are summarized in Ta-
bles 8-12. Notably, the setup time for all instances in SSD-0 is zero,
implying that the BFSP SDST is reduced to the BFSP in this scenario. As
seen in Table 8, all ARPD values obtained by MCEDA are the smallest
when compared to the other algorithms. These numerical results reflect
that the proposed MCEDA is capable of successfully solving BFSP.
Moreover, it can be observed from Tables 9-12 that MCEDA yields the
lowest ARPD values on the other four test sets, SSD-10, SSD-50, SSD-
100, and SSD-125, indicating that the proposed MCEDA has a stronger
search engine in terms of tackling the problem under consideration.
Furthermore, MCEDA achieves the lowest overall average values of
ARPD on 12 instances spanning a range of scales and scenarios,
demonstrating that MCEDA outperforms the other algorithms in an
average sense.

To further investigate the performance differences amongst algo-
rithms, all results are also analyzed by means of multifactor ANOVA. The
ANOVA is applied to determine whether or not there are indeed statis-
tically significant differences in the ARPD values acquired by all of the
compared algorithms. It is worth mentioning that in statistical trials
with 95% confidence level (α = 0.05), three main hypotheses are
checked, including normality, homoscedasticity, and independence of
residuals. From the analysis of the residuals resulting from the experi-
mental results, all hypotheses are readily satisfied. Figs. 9-13 display the
mean plots with 95% Tukey’s HSD confidence intervals and the corre-
sponding box plots for all test results obtained by MCEDA and 22 al-
gorithms at different scales and scenarios, respectively. It is remarkable
that the presence of overlapping confidence intervals between any two
algorithms signifies that the observed differences are not statistically
significant, signaling that there is no significant difference in the per-
formance of algorithms. As can be seen in Figs. 9-13, there is no overlap
between MCEDA and the other compared algorithms in different sce-
narios, indicating that the results achieved by MCEDA are statistically
significant different from those acquired by other algorithms. In other
words, from a statistical point of view, MCEDA has significant advan-
tages in solving both BFSP and BFSP_SDST.

Moreover, when compared to several two-dimensional probabilistic
model-based EDAs, MCEDA statistically significantly outperforms EEDA
and P-EDA across all test sets, which highlights the fact that the devel-
oped multi-dimensional probabilistic model has obvious advantages in
learning and utilizing promising patterns of superior solutions. It ex-
hibits its prowess in terms of exploration and exploitation. Furthermore,
the recently proposed DWWO and a series of enhanced or hybrid IG
versions, including IG_RS, IG_RLS, and IG_IJ, are also competitive in all
scenarios. It is obvious that the confidence intervals of DWWO and
several extended IG are almost completely overlapped on SSD-0 and
partially overlapped on SSD-10, SSD-50, SSD-100, and SSD-150,
revealing that these algorithms perform similarly in these scenarios. In
this sense, the results obtained by DWWO are slightly better than
IG_RLS, except on the SSD-0, due to its high-performing local search
mechanism, while the proposed MCEDA beats all its competitors by a
considerable margin on small to large-scale instances. Also, as illustrated
in the box plots in Figs. 9-13, MCEDA remarkably outperforms other
state-of-the-art algorithms. In view of the abovementioned observations,
not only the scheduling solutions provided by MCEDA are of higher
quality, but the numerical results also have a narrower fluctuation
range, implying that the proposed MCEDA is competitive and stable.

Additionally, according to the above analysis, it can be seen that
there are significant differences in the performance of the compared
algorithms for different scale instances and scenarios. To further
investigate these behaviors, the interaction plots with 95% Tukey’s HSD
confidence interval between algorithm and n, between algorithm and m,
and between algorithm and scenario, are provided in Figs. 14-16. As
revealed in these figures, all algorithms are sensitive to the number of
jobs, machines, and scenarios. However, as for the proposed MCEDA, it
is depicted in Fig. 16 that the scales and scenarios have slight effect on it. Ta

bl
e

12

St
at

is
tic

al
 r

es
ul

ts
 o

f M
CE

D
A

 c
om

pa
re

d
w

ith
 2

2
di

ffe
re

nt
 a

lg
or

ith
m

s
at

 s
ce

na
ri

o
SS

D
-1

25
.

n,
m

PA

CA

RA
IS

A

H
A

1
A

H
A

3
H

G
A

D

E_
A

BC

D
E_

PL
S

H
D

D
E

M
FF

O

EM
BO

hm

gH
S

SV
N

S_
S

SV
N

S_
D

P-

ED
A

EE

D
A

TP

A

M
A

H

VN
S

IG
_R

S
IG

_R
LS

IG

_IJ

D
W

W
O

M

CE
D

A

20
,5

0.

32

0.
41

0.

29

0.
26

0.

44

0.
06

0.

04

0.
05

0.

05

0.
05

0.

03

0.
06

0.

05

0.
11

0.

25

0.
06

0.

04

0.
05

0.

02

0.
04

0.

05

0.
03

0.

00

20
,1

0

0.
41

0.

47

0.
37

0.

32

0.
57

0.

06

0.
03

0.

06

0.
04

0.

06

0.
04

0.

05

0.
05

0.

09

0.
23

0.

07

0.
04

0.

05

0.
03

0.

03

0.
04

0.

02

0.
02

20

,2
0

0.

27

0.
33

0.

22

0.
18

0.

35

0.
05

0.

03

0.
05

0.

04

0.
05

0.

04

0.
03

0.

04

0.
13

0.

18

0.
05

0.

03

0.
04

0.

03

0.
04

0.

05

0.
04

0.

01

50
,5

2.

03

2.
24

1.

71

1.
66

1.

89

1.
38

1.

25

1.
55

1.

42

1.
62

1.

27

1.
19

1.

21

1.
34

1.

23

0.
93

0.

65

0.
75

0.

69

0.
63

0.

70

0.
51

0.

28

50
,1

0

1.
89

2.

32

1.
64

1.

59

1.
73

1.

28

1.
24

1.

56

1.
37

1.

62

1.
14

1.

09

1.
13

1.

43

1.
32

0.

84

0.
59

0.

73

0.
77

0.

71

0.
75

0.

58

0.
29

50

,2
0

1.

78

2.
26

1.

44

1.
39

1.

61

1.
24

1.

35

1.
37

1.

39

1.
53

1.

04

0.
92

0.

99

1.
39

1.

41

0.
91

0.

54

0.
72

0.

63

0.
54

0.

62

0.
54

0.

24

10
0,

5

1.
86

2.

15

1.
62

1.

54

1.
73

1.

34

1.
33

1.

46

1.
43

1.

57

1.
28

1.

22

1.
28

1.

37

1.
40

0.

95

0.
79

0.

74

0.
56

0.

51

0.
59

0.

49

0.
21

10

0,
10

1.

92

2.
36

1.

72

1.
67

1.

84

1.
32

1.

29

1.
61

1.

55

1.
49

1.

42

1.
12

1.

21

1.
33

1.

42

1.
14

0.

86

0.
83

0.

74

0.
66

0.

71

0.
64

0.

25

10
0,

20

2.
06

2.

25

1.
74

1.

69

2.
17

1.

41

1.
31

1.

56

1.
59

1.

58

1.
35

1.

27

1.
32

1.

43

1.
51

1.

27

0.
65

0.

91

0.
88

0.

72

0.
77

0.

54

0.
22

20

0,
10

1.

74

2.
07

1.

41

1.
34

1.

19

1.
22

1.

19

1.
31

1.

35

1.
55

0.

95

0.
84

0.

93

1.
41

1.

53

1.
09

0.

58

0.
75

0.

57

0.
55

0.

59

0.
53

0.

21

20
0,

20

1.
86

1.

94

1.
53

1.

45

1.
77

1.

27

1.
21

1.

42

1.
53

1.

46

1.
23

1.

02

1.
09

1.

36

1.
25

1.

25

0.
41

0.

83

0.
64

0.

56

0.
64

0.

38

0.
18

50

0,
20

1.

02

1.
12

0.

78

0.
71

0.

89

0.
76

0.

71

0.
68

0.

94

1.
12

0.

46

0.
53

0.

56

0.
95

0.

96

0.
76

0.

32

0.
56

0.

43

0.
34

0.

38

0.
26

0.

17

A
ve

ra
ge

1.

43

1.
66

1.

21

1.
15

1.

35

0.
95

0.

92

1.
06

1.

06

1.
14

0.

86

0.
78

0.

82

1.
03

1.

06

0.
78

0.

46

0.
58

0.

50

0.
44

0.

49

0.
38

0.

18

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

28

Fig. 9. Means plots with 95% Tukey’s HSD confidence interval and box plots for MCEDA compared with 22 different algorithms (SSD-0).

Fig. 10. Means plots with 95% Tukey’s HSD confidence interval and box plots for MCEDA compared with 22 different algorithms (SSD-10).

Fig. 11. Means plots with 95% Tukey’s HSD confidence interval and box plots for MCEDA compared with 22 different algorithms (SSD-50).

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

29

Fig. 12. Means plots with 95% Tukey’s HSD confidence interval and box plots for MCEDA compared with 22 different algorithms (SSD-100).

Fig. 13. Means plots with 95% Tukey’s HSD confidence interval and box plots for MCEDA compared with 22 different algorithms (SSD-125).

PACA
RAIS
AHA1
AHA3
HGA
DE_ABC
DE_PLS
HDDE
MFFO
EMBO
hmgHS
SVNS_S
SVNS_D
P-EDA
EEDA
TPA
MA
HVNS
IG_RS
IG_RLS
IG_IJ
DWWO
MCEDA

Algorithm

20 50 100 200 500
n

2.5

2.0

1.5

1.0

0.5

0.0

M
ea

n

Fig. 14. Interaction plot with 95% Tukey’s HSD confidence interval between
algorithm and n.

PACA
RAIS
AHA1
AHA3
HGA
DE_ABC
DE_PLS
HDDE
MFFO
EMBO
hmgHS
SVNS_S
SVNS_D
P-EDA
EEDA
TPA
MA
HVNS
IG_RS
IG_RLS
IG_IJ
DWWO
MCEDA

Algorithm

5 10 20
m

M
ea

n

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Fig. 15. Interaction plot with 95% Tukey’s HSD confidence interval between
algorithm and m.

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

30

Meanwhile, it is obvious that the proposed MCEDA performs superiorly
and stably under different scale instances and scenarios, particularly
when addressing the large-scale instances with n⩾100, which suggests
that MCEDA has superiority and stability.

Furthermore, to further verify the statistical validity of the numerical
results obtained by these algorithms, the parametric Duncan’s multiple
range test (DMRT) is employed, which is a post hoc test for detecting the
specific differences between pairs of means. Here, DMRT is used to
categorize all comparing algorithms into distinct levels. Table 13 sum-
marizes the results of DMRT under different scenarios with a confidence
level of α = 0.05. As shown in Table 13, all algorithms are graded into
twelve levels. MCEDA ranks the first level (i.e., A) for all scenarios, i.e.,
SSD-0, SSD-10, SSD-50, SSD-100, and SSD-125. There are no other al-
gorithms except MCEDA in the level A, demonstrating that the differ-
ences between MCEDA with other compared algorithms are statistically
significant and underlining the fact that MCEDA delivers the best per-
formance among all compared algorithms. Meanwhile, DWWO, MA,
IG_RLS, IG_IJ, IG_RS, and HVNS are grouped together at the second level,
indicating that they have similar performance, and the remaining
comparison algorithms perform worse. The DMRT further confirms the
competitiveness of MCEDA.

To sum up, according to the above comparative results and statistical
analysis, it can be credibly concluded that MCEDA is an extremely
effective and efficient algorithm for BFSP_SDST aiming at minimizing
makespan. The superiority of MCEDA is mainly attributed to the
following aspects: (1) the designed fast Insert-based neighbor evaluation
method reduces the computational cost and speeds up the search

process; (2) the devised two effective constructive heuristics provide
diversity and quality for the initial population; (3) the presented matrix-
cube-based multi-dimensional probabilistic model accurately estimates
the distribution of promising patterns of superior solutions in the solu-
tion space; (4) the proposed multi-dimensional probabilistic model
based local intensification performs detailed and in-depth multi-neigh-
borhood local search; and (5) the developed diversity controlling
mechanism maintains the search vitality, eliminates the search stagna-
tion and prevents falling into local optima. In summary, MCEDA is
capable of successfully solving the BFSP SDST and BFSP. Additionally,
Table 14 reports the best results so far found by MCEDA for solving the
BFSP for 120 instances of various scales in the Tailliard test set SSD-0.

6. Conclusion and future work

In this paper, a matrix-cube-based estimation of distribution algo-
rithm (MCEDA) is proposed to solve a kind of important scheduling
problem, i.e., the blocking flow-shop scheduling problem with sequence-
dependent setup times (BFSP_SDST). To the best of our knowledge, this
is the first report on the application of EDA to the BFSP problems.

From the extensive test results, it can be concluded that the use of
deep and fast local search is recommended. For non-convex optimiza-
tion problems such as production scheduling, the explicit relationship
between its intrinsic geometric structure and optimal solution is still an
open problem. At present, it is impossible to directly obtain the quan-
titative relationship between them. In consequence, it is impossible to
design a polynomial time algorithm that can obtain the optimal solution
according to this relationship. Due to the objective existence of this
unsolved open problem, how to execute local search as deeply as
possible from the promising regions determined by global search, so as
to obtain the high-quality near optimal solutions, is still the key to the
design of high-performance hybrid intelligent scheduling algorithm.

Under this background, MCEDA utilizes the probability model that
retains the block patterns of excellent solutions to dynamically generate
rich promising neighborhoods in its local search process, which can
ensure that its local search continues to search downward before
reaching the local minimum solution common to all neighborhoods, so
that it can have better performance. Meanwhile, MCEDA also utilizes the
proposed fast neighbor evaluation methods to further improve the effi-
ciency of its local search.

We have also shown that both the initial population and the structure
of probability model have some effects on the performance of MCEDA.
In particular, it is recommended to use the PFT_NEH(x) heuristic and the
PFZ_RZ(x) heuristic to generate some excellent initial individuals, and
employ a three-dimensional probabilistic model to reasonably guide the
direction of global search.

There are two valuable directions for future research. Firstly, it

PACA
RAIS
AHA1
AHA3
HGA
DE_ABC
DE_PLS
HDDE
MFFO
EMBO
hmgHS
SVNS_S
SVNS_D
P-EDA
EEDA
TPA
MA
HVNS
IG_RS
IG_RLS
IG_IJ
DWWO
MCEDA

Algorithm2.0

1.5

1.0

0.5

0.0

M
ea

n

SSD-0 SSD-10 SSD-50 SSD-100 SSD-125
Scenario

Fig. 16. Interaction plot with 95% Tukey’s HSD confidence interval between
algorithm and scenario.

Table 13
Results of Duncan’s multiple range test (α = 0.05).

Rank SSD-0 SSD-10 SSD-50 SSD-100 SSD-125

A {MCEDA} {MCEDA} {MCEDA} {MCEDA} {MCEDA}
B {IG_RLS, IG_IJ, DWWO, HVNS,

IG_RS, MA, TPA, P-EDA, EEDA}
{DWWO, MA, IG_RLS,
IG_IJ, IG_RS, HVNS, TPA}

{DWWO, IG_RLS, MA,
IG_IJ, IG_RS, HVNS}

{DWWO, MA, IG_RLS,
IG_IJ, IG_RS, HVNS}

{DWWO, IG_RLS, MA,
IG_IJ, IG_RS, HVNS}

C {SVNS_S, SVNS_D} {SVNS_S, hmgHS, P-EDA,
DE_PLS, SVNS_D}

{TPA, hmgHS,
EEDA, DE_PLS}

{SVNS_S, SVNS_D,
TPA, hmgHS}

{TPA, SVNS_S,
SVNS_D, hmgHS}

D {hmgHS} {EEDA} {P-EDA} {DE_PLS} {DE_PLS}
E {DE_PLS} {MFFO, DE_ABC} {SVNS_S} {HDDE, P-EDA} {DE_ABC}
F {EMBO} {EMBO, HDDE} {MFFO, SVNS_D,

DE_ABC, EMBO, HDDE}
{EEDA, DE_ABC} {P-EDA, HDDE, EEDA,

MFFO}
G {MFFO} {AHA3, HGA, AHA1} {AHA3} {MFFO} {EMBO, AHA3, AHA1}
H {HDDE, DE_ABC, AHA3, HGA} {RAIS, PACA} {AHA1} {AHA3, EMBO} {HGA}
I {AHA1} {HGA} {AHA1} {PACA}
J {RAIS} {RAIS} {HGA} {RAIS}
K {PACA} {PACA} {PACA}
L {RAIS}
F-ratio 6.752 7.294 6.921 6.322 6.000
p-value 0.000 0.000 0.000 0.000 0.000

Z.-Q. Zhang et al.

Expert Systems With Applications 205 (2022) 117602

31

would be meaningful to design a probability model combined with
reinforcement learning mechanism to further enhance the guidance
ability of global search and the in-depth exploitation ability of local
search. Secondly, the proposed MCEDA can be extended to address other
important scheduling problems, such as the low-carbon production and
transportation integrated scheduling problems.

CRediT authorship contribution statement

Zi-Qi Zhang: Investigation, Methodology, Software, Writing – orig-
inal draft. Bin Qian: Methodology, Funding acquisition, Supervision,
Writing – review & editing. Rong Hu: Methodology, Funding acquisi-
tion, Investigation, Writing – review & editing. Huai-Ping Jin: . Ling
Wang: Supervision, Project administration. Jian-Bo Yang: Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This research is partially supported by the Basic Research Key Project
of Yunnan Province (202201AS070030), and the National Natural Sci-
ence Foundation of China (62173169, 61963022, 61873328).

References

Ding, J. Y., Song, S. J., Gupta, J. N. D., Wang, C., Zhang, R., & Wu, C. (2016). New block
properties for flowshop scheduling with blocking and their application in an iterated
greedy algorithm. International Journal of Production Research, 54, 4759–4772.

Elmi, A., & Topaloglu, S. (2013). A scheduling problem in blocking hybrid flow shop
robotic cells with multiple robots. Computers & Operations Research, 40, 2543–2555.

Faraji Amiri, M., & Behnamian, J. (2020). Multi-objective green flowshop scheduling
problem under uncertainty: Estimation of distribution algorithm. Journal of Cleaner
Production, 251, Article 119734.

Fernandez-Viagas, V., Leisten, R., & Framinan, J. M. (2016). A computational evaluation
of constructive and improvement heuristics for the blocking flow shop to minimise
total flowtime. Expert Systems with Applications, 61, 290–301.

Gajpal, Y., Rajendran, C., & Ziegler, H. (2006). An ant colony algorithm for scheduling in
flowshops with sequence-dependent setup times of jobs. International Journal of
Advanced Manufacturing Technology, 30, 416–424.

Gong, D. W., Han, Y. Y., & Sun, J. Y. (2018). A novel hybrid multi-objective artificial bee
colony algorithm for blocking lot-streaming flow shop scheduling problems.
Knowledge-Based Systems, 148, 115–130.

Gong, H., Tang, L. X., & Duin, C. W. (2010). A two-stage flow shop scheduling problem
on a batching machine and a discrete machine with blocking and shared setup times.
Computers & Operations Research, 37, 960–969.

Grabowski, J., & Pempera, J. (2007). The permutation flow shop problem with blocking.
A tabu search approach. Omega-International Journal of Management Science, 35,
302–311.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. H. G. R. (1979). Optimization and
Approximation in Deterministic Sequencing and Scheduling: A Survey. Annals of
Discrete Mathematics, 5, 287–326.

Hall, N. G., & Sriskandarajah, C. (1996). A Survey of Machine Scheduling Problems with
Blocking and No-Wait in Process. Operations Research, 44, 510-525.

Han, Y., Gong, D., Jin, Y., & Pan, Q. (2019). Evolutionary Multiobjective Blocking Lot-
Streaming Flow Shop Scheduling With Machine Breakdowns. IEEE Trans Cybern, 49,
184–197.

Han, Y. Y., Gong, D. W., Li, J. Q., & Zhang, Y. (2016). Solving the blocking flow shop
scheduling problem with makespan using a modified fruit fly optimisation
algorithm. International Journal of Production Research, 54, 6782–6797.

Table 14
Best solutions for BFSP with makespan criterion.

Instance Best MCEDA Instance Best MCEDA Instance Best MCEDA

Ta1 1374 1374 Ta41 3611 3617 Ta81 7712 7712
Ta2 1408 1408 Ta42 3470 3470 Ta82 7744 7744
Ta3 1280 1280 Ta43 3466 3466 Ta83 7723 7723
Ta4 1448 1448 Ta44 3650 3650 Ta84 7743 7743
Ta5 1341 1341 Ta45 3582 3596 Ta85 7730 7734
Ta6 1363 1363 Ta46 3571 3571 Ta86 7779 7779
Ta7 1381 1381 Ta47 3667 3667 Ta87 7870 7870
Ta8 1379 1379 Ta48 3554 3554 Ta88 7898 7921
Ta9 1373 1373 Ta49 3508 3515 Ta89 7818 7818
Ta10 1283 1283 Ta50 3608 3608 Ta90 7856 7856
Ta11 1698 1698 Ta51 4479 4479 Ta91 13,149 13,149
Ta12 1833 1833 Ta52 4262 4262 Ta92 13,100 13,100
Ta13 1659 1659 Ta53 4261 4261 Ta93 13,204 13,204
Ta14 1535 1535 Ta54 4338 4345 Ta94 13,125 13,125
Ta15 1617 1617 Ta55 4249 4252 Ta95 13,150 13,150
Ta16 1590 1590 Ta56 4271 4274 Ta96 12,922 12,922
Ta17 1622 1622 Ta57 4291 4291 Ta97 13,431 13,445
Ta18 1731 1731 Ta58 4298 4298 Ta98 13,299 13,299
Ta19 1747 1747 Ta59 4304 4304 Ta99 13,105 13,105
Ta20 1782 1782 Ta60 4399 4399 Ta100 13,201 13,201
Ta21 2436 2436 Ta61 6070 6070 Ta101 14,192 14,237
Ta22 2234 2234 Ta62 5943 5943 Ta102 14,749 14,749
Ta23 2479 2479 Ta63 5851 5851 Ta103 14,874 14,874
Ta24 2348 2348 Ta64 5656 5667 Ta104 14,808 14,808
Ta25 2435 2435 Ta65 5901 5908 Ta105 14,628 14,628
Ta26 2383 2383 Ta66 5759 5764 Ta106 14,765 14,793
Ta27 2390 2390 Ta67 5920 5922 Ta107 14,787 14,787
Ta28 2328 2328 Ta68 5809 5809 Ta108 14,836 14,845
Ta29 2363 2363 Ta69 6035 6035 Ta109 14,711 14,711
Ta30 2323 2323 Ta70 6059 6059 Ta110 14,750 14,758
Ta31 2980 2980 Ta71 6916 6916 Ta111 35,513 35,524
Ta32 3182 3182 Ta72 6669 6671 Ta112 35,805 35,805
Ta33 2995 2995 Ta73 6797 6797 Ta113 35,479 35,479
Ta34 3116 3116 Ta74 7039 7039 Ta114 35,030 35,124
Ta35 3139 3139 Ta75 6733 6736 Ta115 35,487 35,487
Ta36 3158 3162 Ta76 6537 6537 Ta116 35,803 35,803
Ta37 3005 3008 Ta77 6707 6707 Ta117 35,451 35,451
Ta38 3042 3044 Ta78 6746 6746 Ta118 35,644 35,644
Ta39 2889 2889 Ta79 6928 6935 Ta119 35,421 35,421
Ta40 3097 3097 Ta80 6844 6851 Ta120 35,761 35,773

Z.-Q. Zhang et al.

http://refhub.elsevier.com/S0957-4174(22)00913-7/h0005
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0005
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0005
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0010
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0010
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0015
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0015
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0015
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0020
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0020
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0020
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0025
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0025
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0025
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0030
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0030
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0030
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0035
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0035
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0035
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0040
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0040
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0040
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0045
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0045
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0045
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0055
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0055
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0055
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0060
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0060
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0060

Expert Systems With Applications 205 (2022) 117602

32

Han, Y. Y., Gong, D. W., & Sun, X. Y. (2015). A discrete artificial bee colony algorithm
incorporating differential evolution for the flow-shop scheduling problem with
blocking. Engineering Optimization, 47, 927–946.

Han, Y. Y., Li, J. Q., Sang, H. Y., Liu, Y. P., Gao, K. Z., & Pan, Q. K. (2020). Discrete
evolutionary multi-objective optimization for energy-efficient blocking flow shop
scheduling with setup time. Applied Soft Computing, 93, Article 106343.

Jarboui, B., Eddaly, M., & Siarry, P. (2009). An estimation of distribution algorithm for
minimizing the total flowtime in permutation flowshop scheduling problems.
Computers & Operations Research, 36, 2638–2646.

Khorasanian, D., & Moslehi, G. (2012). An Iterated Greedy Algorithm for Solving the
Blocking Flow Shop Scheduling Problem with Total Flow Time Criteria. International
Journal of Industrial Engineering, 23, 301–308.

Koren, Y., Wang, W. C., & Gu, X. (2017). Value creation through design for scalability of
reconfigurable manufacturing systems. International Journal of Production Research,
55, 1227–1242.

Larranga, P., & Lozano, J. A. (2001). Estimation of Distribution Algorithms: A New Tool for
Evolutionary Computation. US: Springer.

Li, X. P., & Zhang, Y. (2012). Adaptive Hybrid Algorithms for the Sequence-Dependent
Setup Time Permutation Flow Shop Scheduling Problem. Ieee Transactions on
Automation Science and Engineering, 9, 578–595.

Lin, S. W., & Ying, K. C. (2013). Minimizing makespan in a blocking flowshop using a
revised artificial immune system algorithm. Omega-International Journal of
Management Science, 41, 383–389.

Lourenço, H. R., Martin, O. C., & Stützle, T. (2010). Iterated Local Search: Framework
and Applications. Handbook of Metaheurs, 146, 363–397.

McCormick, S. T., Pinedo, M. L., Shenker, S., & Wolf, B. (1989). Sequencing in an
Assembly Line with Blocking to Minimize Cycle Time. Operations Research, 37,
925–935.

Miyata, H. H., & Nagano, M. S. (2019). The blocking flow shop scheduling problem: A
comprehensive and conceptual review. Expert Systems with Applications, 137,
130–156.

Montgomery, D. C. (2008). Design and Analysis of Experiments. John Wiley & Sons.
Moslehi, G., & Khorasanian, D. (2014). A hybrid variable neighborhood search algorithm

for solving the limited-buffer permutation flow shop scheduling problem with the
makespan criterion. Computers & Operations Research, 52, 260–268.

Nagano, M. S., Komesu, A. S., & Miyata, H. H. (2017). An evolutionary clustering search
for the total tardiness blocking flow shop problem. Journal of Intelligent
Manufacturing, 30, 1843–1857.

Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-
job flow-shop sequencing problem. Omega, 11, 91–95.

Nouri, N., & Ladhari, T. (2018). Evolutionary multiobjective optimization for the multi-
machine flow shop scheduling problem under blocking. Annals of Operations
Research, 267, 413–430.

Pan, Q.-K., & Wang, L. (2012). Effective heuristics for the blocking flowshop scheduling
problem with makespan minimization. Omega, 40, 218–229.

Pan, Q. K., Ling, W., Hong-yan, S., Jun-qing, L., & Min, L. (2013). A High Performing
Memetic Algorithm for the Flowshop Scheduling Problem With Blocking. Ieee
Transactions on Automation Science and Engineering, 10, 741–756.

Pan, Q. K., & Ruiz, R. (2012). An estimation of distribution algorithm for lot-streaming
flow shop problems with setup times. Omega-International Journal of Management
Science, 40, 166–180.

Pinedo, M. (2015). Scheduling: Theory, Algorithms, and Systems (fourth ed.). Springer
Verlag.

Qian, B., Li, Z. C., & Hu, R. (2017). A copula-based hybrid estimation of distribution
algorithm for m-machine reentrant permutation flow-shop scheduling problem.
Applied Soft Computing, 61, 921–934.

Rajendran, C., & Ziegler, H. (1997). An efficient heuristic for scheduling in a flowshop to
minimize total weighted flowtime of jobs. European Journal of Operational Research,
103, 129–138.

Riahi, V., Khorramizadeh, M., Newton, M. A. H., & Sattar, A. (2017). Scatter search for
mixed blocking flowshop scheduling. Expert Systems with Applications, 79, 20–32.

Ribas, I., Companys, R., & Martorell, X. T. (2013). A competitive variable neighbourhood
search algorithm for the blocking flow shop problem. European J. of Industrial
Engineering, 7, 729–754.

Ribas, I., Companys, R., & Tort-Martorell, X. (2011). An iterated greedy algorithm for the
flowshop scheduling problem with blocking. Omega-International Journal of
Management Science, 39, 293–301.

Ribas, I., Companys, R., & Tort-Martorell, X. (2015). An efficient Discrete Artificial Bee
Colony algorithm for the blocking flow shop problem with total flowtime
minimization. Expert Systems with Applications, 42, 6155–6167.

Ribas, I., Companys, R., & Tort-Martorell, X. (2021). An iterated greedy algorithm for the
parallel blocking flow shop scheduling problem and sequence-dependent setup
times. Expert Systems with Applications, 184, Article 115535.

Ronconi, D. P. (2004). A note on constructive heuristics for the flowshop problem with
blocking. International Journal of Production Economics, 87, 39–48.

Ronconi, D. P., & Henriques, L. R. S. (2009). Some heuristic algorithms for total tardiness
minimization in a flowshop with blocking. Omega-International Journal of
Management Science, 37, 272–281.

Ruiz, R., Maroto, C., & Alcaraz, J. (2005). Solving the flowshop scheduling problem with
sequence dependent setup times using advanced metaheuristics - Discrete
optimization. European Journal of Operational Research, 165, 34–54.

Ruiz, R., & Stutzle, T. (2008). An Iterated Greedy heuristic for the sequence dependent
setup times flowshop problem with makespan and weighted tardiness objectives.
European Journal of Operational Research, 187, 1143–1159.

Schiavinotto, T., & Stutzle, T. (2007). A review of metrics on permutations for search
landscape analysis. Computers & Operations Research, 34, 3143–3153.

Shao, Z., Pi, D., Shao, W., & Yuan, P. (2019). An efficient discrete invasive weed
optimization for blocking flow-shop scheduling problem. Engineering Applications of
Artificial Intelligence, 78, 124–141.

Shao, Z., Shao, W., & Pi, D. (2021). Effective constructive heuristic and iterated greedy
algorithm for distributed mixed blocking permutation flow-shop scheduling
problem. Knowledge-Based Systems, 221, Article 106959.

Shao, Z. S., Pi, D. C., & Shao, W. S. (2017). Self-adaptive discrete invasive weed
optimization for the blocking flow-shop scheduling problem to minimize total
tardiness. Computers & Industrial Engineering, 111, 331–351.

Shao, Z. S., Pi, D. C., & Shao, W. S. (2018a). Estimation of distribution algorithm with
path relinking for the blocking flow-shop scheduling problem. Engineering
Optimization, 50, 894–916.

Shao, Z. S., Pi, D. C., & Shao, W. S. (2018b). A novel discrete water wave optimization
algorithm for blocking flow-shop scheduling problem with sequence-dependent
setup times. Swarm and Evolutionary Computation, 40, 53–75.

Sioud, A., & Gagne, C. (2018). Enhanced migrating birds optimization algorithm for the
permutation flow shop problem with sequence dependent setup times. European
Journal of Operational Research, 264, 66–73.

Tasgetiren, M., Pan, Q. K., Kizilay, D., & Gao, K. Z. (2016). A Variable Block Insertion
Heuristic for the Blocking Flowshop Scheduling Problem with Total Flowtime
Criterion. Algorithms, 9, 71–95.

Tasgetiren, M. F., Kizilay, D., Pan, Q. K., & Suganthan, P. N. (2017). Iterated greedy
algorithms for the blocking flowshop scheduling problem with makespan criterion.
Computers & Operations Research, 77, 111–126.

Tasgetiren, M. F., Pan, Q., Kizilay, D., & Suer, G. (2015). A populated local search with
differential evolution for blocking flowshop scheduling problem. In In 2015 IEEE
Congress on Evolutionary Computation (CEC) (pp. 2789–2796).

Wang, C., Song, S. J., Gupta, J. N. D., & Wu, C. (2012). A three-phase algorithm for
flowshop scheduling with blocking to minimize makespan. Computers & Operations
Research, 39, 2880–2887.

Wang, L., Fang, C., Suganthan, P. N., & Liu, M. (2014). Solving system-level synthesis
problem by a multi-objective estimation of distribution algorithm. Expert Systems
with Applications, 41, 2496–2513.

Wang, L., Pan, Q. K., Suganthan, P. N., Wang, W. H., & Wang, Y. M. (2010). A novel
hybrid discrete differential evolution algorithm for blocking flow shop scheduling
problems. Computers & Operations Research, 37, 509–520.

Wang, L., Pan, Q. K., & Tasgetiren, M. F. (2011). A hybrid harmony search algorithm for
the blocking permutation flow shop scheduling problem. Computers & Industrial
Engineering, 61, 76–83.

Wang, S. Y., & Wang, L. (2016). An Estimation of Distribution Algorithm-Based Memetic
Algorithm for the Distributed Assembly Permutation Flow-Shop Scheduling
Problem. Ieee Transactions on Systems Man Cybernetics-Systems, 46, 139–149.

Wang, S. Y., Wang, L., Liu, M., & Xu, Y. (2013). An effective estimation of distribution
algorithm for solving the distributed permutation flow-shop scheduling problem.
International Journal of Production Economics, 145, 387–396.

Wu, C.-G., Wang, L., & Wang, J.-J. (2021). A path relinking enhanced estimation of
distribution algorithm for direct acyclic graph task scheduling problem. Knowledge-
Based Systems, 228, Article 107255.

Zhang, Z.-Q., Qian, B., Hu, R., Jin, H.-P., & Wang, L. (2021). A matrix-cube-based
estimation of distribution algorithm for the distributed assembly permutation flow-
shop scheduling problem. Swarm and Evolutionary Computation, 60, Article 100785.

Zhang, Z. Q., Hu, R., Qian, B., Jin, H. P., Wang, L., & Yang, J. B. (2022). A matrix cube-
based estimation of distribution algorithm for the energy-efficient distributed
assembly permutation flow-shop scheduling problem. Expert Systems with
Applications, 194, Article 116484.

Zhao, F., Shao, D., Wang, L., Xu, T., Zhu, N., & Jonrinaldi.. (2022). An effective water
wave optimization algorithm with problem-specific knowledge for the distributed
assembly blocking flow-shop scheduling problem. Knowledge-Based Systems, 243,
Article 108471.

Z.-Q. Zhang et al.

http://refhub.elsevier.com/S0957-4174(22)00913-7/h0065
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0065
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0065
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0070
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0070
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0070
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0075
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0075
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0075
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0080
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0080
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0080
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0085
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0085
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0085
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0090
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0090
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0095
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0095
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0095
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0100
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0100
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0100
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0105
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0105
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0110
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0110
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0110
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0115
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0115
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0115
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0120
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0125
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0125
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0125
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0130
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0130
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0130
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0135
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0135
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0140
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0140
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0140
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0145
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0145
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0150
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0150
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0150
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0155
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0155
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0155
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0160
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0160
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0165
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0165
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0165
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0170
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0170
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0170
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0175
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0175
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0180
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0180
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0180
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0185
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0185
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0185
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0190
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0190
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0190
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0195
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0195
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0195
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0200
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0200
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0205
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0205
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0205
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0210
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0210
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0210
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0215
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0215
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0215
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0220
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0220
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0225
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0225
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0225
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0230
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0230
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0230
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0235
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0235
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0235
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0240
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0240
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0240
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0245
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0245
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0245
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0250
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0250
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0250
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0255
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0255
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0255
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0260
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0260
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0260
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0265
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0265
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0265
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0270
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0270
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0270
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0275
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0275
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0275
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0280
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0280
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0280
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0285
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0285
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0285
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0290
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0290
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0290
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0295
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0295
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0295
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0300
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0300
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0300
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0305
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0305
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0305
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0310
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0310
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0310
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0310
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0315
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0315
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0315
http://refhub.elsevier.com/S0957-4174(22)00913-7/h0315

	A matrix-cube-based estimation of distribution algorithm for blocking flow-shop scheduling problem with sequence-dependent ...
	1 Introduction
	2 Literature review of BFSP and BFSP_SDST
	3 Problem statement
	3.1 permutation-based model
	3.2 permutation-based model using backward calculation
	3.3 Small numerical example of the forward and backward calculations

	4 MCEDA for BFSP_SDST
	4.1 Heuristic and initialization
	4.1.1 PFT_NEH(x) heuristic
	4.1.2 PFZ_RZ(x) heuristic

	4.2 Global search guided by multi-dimensional probabilistic model
	4.2.1 Multi-dimensional probabilistic model
	4.2.1.1 Matrix cube
	4.2.1.2 Probabilistic model

	4.2.2 New population generation
	4.2.3 Diversity controlling mechanism

	4.3 Local search controlled by multi-dimensional probabilistic model
	4.3.1 Fast Insert-based neighbor evaluation method
	4.3.2 Neighborhood search boosted by probabilistic model (NSPM_boost)
	4.3.3 Neighborhood search guided by probabilistic model and reference sequence (NSPM_RS_guide)
	4.3.4 Multi-neighborhood iterated local search

	4.4 The framework of MCEDA
	4.5 Computational complexity analysis

	5 Experimental results and statistical analysis
	5.1 Experimental setup
	5.2 Parameter calibration
	5.3 Performance analysis of improvement strategies
	5.4 Comparisons of MCEDA and other two-dimensional EDAs
	5.5 Comparisons of MCEDA and the state-of-the-art methods

	6 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References

