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HIGHLIGHTS

e Developed MILP model for EE-DFFJSP innovates by novel triple-MDP formulation.
e Introducing the MACMNG framework, multi-agents tackle triple-MDP with subnets.
e Decomposing EE-DFFJSP into subnets sharing experience and knowledge by DPTS.
¢ Balancing criteria in decision-making and network updates by MO-DQN for subnets.
o Experiments verify the superiority of MACMNG in both effectiveness and efficiency.

ARTICLE INFO ABSTRACT
Keywords: The increasing integration of industrial intelligence and the Industrial Internet of Things (IIoT) has promoted
Multi-agent reinforcement learning distributed flexible manufacturing (DFM) as a fundamental component of smart manufacturing systems. How-

Multi-network group framework
Distributed flexible job-shop scheduling
Energy-efficient scheduling

ever, the rising complexity in dynamic demands, production uncertainties, and the urgent need for energy ef-
ficiency pose significant challenges. To address these challenges, this study investigates the energy-efficient
distributed fuzzy flexible job shop scheduling problem (EE-DFFJSP), which aims to minimize both makespan and
total energy consumption (TEC) in DFM environments. To tackle fuzzy uncertainties and complex coupling
characteristics inherent in EE-DFFJSP, a multi-agent cooperative multi-network group (MACMNG) framework is
proposed. First, a mixed-integer linear programming (MILP) model for EE-DFFJSP is formulated, followed by an
analysis of the problem’s properties. A triple Markov decision process formulation adapted to the problem’s
characteristics is designed, enabling problem decoupling and multi-agent decision-making through specific state
representations and reward functions. Next, an innovative multi-network group framework is devised, and
coupled decisions are effectively handled via interaction and collaboration among independent subnets. Based on
problem decomposition method, EE-DFFJSP is decomposed into a set of subproblems represented by subnets
within the network group. These subnets cooperate by sharing experience and knowledge through a domain
parameter transfer strategy (DPTS) to enable efficient training. Finally, MACMNG employs a multi-objective
DQN (MO-DQN) integrated with a dynamic weighting mechanism, enabling subnets to effectively balance be-
tween makespan and TEC during cooperative decision-making and network parameter updating. Experimental
results show that MACMNG achieves superior performance compared with three priority dispatch rules (PDRs)
across various scenarios. The MACMNG outperforms seven state-of-the-art multi-objective algorithms in terms of
different metrics across 69 benchmark instances. This study contributes an efficient learning-driven and multi-
agent collaborative promising paradigm for the energy-efficient scheduling in DFM, providing practical in-
sights for advancing smart manufacturing in IloT architectures.

* Corresponding authors at: School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China.
E-mail addresses: zhangziqi@kust.edu.cn (Z.-Q. Zhang), lixiaowei@stu.kust.edu.cn (X.-W. Li), bin.qian@vip.163.com (B. Qian), ronghu@vip.163.com (R. Hu),
jian-bo.yang@umist.ac.uk (J.-B. Yang).
! The authors contributed equally to this work.

https://doi.org/10.1016/j.as0c.2025.113474
Received 28 January 2025; Received in revised form 30 May 2025; Accepted 9 June 2025

Available online 19 June 2025
1568-4946,/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


https://orcid.org/0000-0002-1281-5763
https://orcid.org/0000-0002-1281-5763
https://orcid.org/0000-0003-2627-431X
https://orcid.org/0000-0003-2627-431X
https://orcid.org/0000-0002-5000-6625
https://orcid.org/0000-0002-5000-6625
https://orcid.org/0000-0001-8953-1550
https://orcid.org/0000-0001-8953-1550
mailto:zhangziqi@kust.edu.cn
mailto:lixiaowei@stu.kust.edu.cn
mailto:bin.qian@vip.163.com
mailto:ronghu@vip.163.com
mailto:jian-bo.yang@umist.ac.uk
www.sciencedirect.com/science/journal/15684946
https://www.elsevier.com/locate/asoc
https://doi.org/10.1016/j.asoc.2025.113474
https://doi.org/10.1016/j.asoc.2025.113474

Z.-Q. Zhang et al.

1. Introduction

Driven by advancements in industrial intelligence, both digitization
and intelligence provide real-time data and decision support for flexible
manufacturing (FM), which has emerged as a cornerstone of smart
manufacturing systems. With the rapid development of industrial Al and
Internet of Things (IloT)—a specialized IoT paradigm providing ubiq-
uitous sensing, connectivity, and computing in industrial environ-
ments—IoT technologies have been increasingly applied in domains [1],
including smart homes [2], healthcare services [3], smart agriculture
[4], and sensing systems [5]. Within smart manufacturing systems,
scheduling has become a critical research focus aimed at optimizing
resource allocation, enhancing operational efficiency and profitability,
and achieving lean production, thereby strengthening market competi-
tiveness [6]. While FM in IIoT enables enhanced production efficiency,
reduced costs, shortened cycles, and improved quality and flexibility, it
faces growing challenges due to the complexities of both dynamic de-
mand and high flexibility. Recent research has emphasized that
cross-regional collaborative production has greatly sparked widespread
interest in distributed FM (DFM) [7]. The distributed flexible job shop
scheduling (DFJS) plays a key vital in enhancing the efficiency of DFM
by providing efficient strategies that enhance adaptability, availability,
and productivity [8]. DFJS has been widely found with extensive ap-
plications in DFM scenarios such as semiconductor manufacturing,
aerospace fabrication, and IIoT-enabled FM [9]. However, dynamic
disruptions, such as machine breakdowns [10], job insertions [11], and
parameter fluctuations, introduce uncertainties into DFJS; additional
consideration of fuzzy processing time is essential to address these un-
certainties. Furthermore, with increasing emphasis on sustainable
manufacturing, it is imperative to balance the economic and environ-
mental effects by integrating energy-efficient strategies (EESs) into DFJS
[12]. Motivated by these challenges, this study investigates the
energy-efficient distributed fuzzy flexible job shop scheduling problem
(EE-DFFJSP), aiming to optimize manufacturing cycle and total energy
consumption (TEC) from both practical and technical perspectives to
ensure sustainable and efficient production practices. Regarding DFJS
challenges in DFM environments, various approaches have emerged,
involving exact methods (e.g., mathematical programming), heuristic
methods (e.g., priority dispatch rules, PDRs), and metaheuristic-based
methods. Exact methods can provide optimal solutions but suffer from
computational complexity and costs [13]. PDRs produce solutions
quickly, but may not ensure the quality of solutions and lack generality
across scenarios. Due to the strengths of metaheuristic-based methods in
emphasizing efficiency and effectiveness, many relevant studies have
emerged in recent years, which have shown remarkable success in
various scheduling problems. Despite their strengths in searching solu-
tion spaces, metaheuristic-based methods may face inherent limitations
in maintaining exploration-exploitation balance and avoiding local op-
tima [14]. However, problem-specific complexities involving processing
uncertainty and energy-efficient requirements in DFM environments
make these traditional approaches unsuitable for solving EE-DFFJSP.

Machine learning has been widely used in materials science [15],
demonstrating robust capabilities in addressing complex challenges,
including property prediction for ultra-high-performance concrete [16]
and foam glass [17]. As a specialized machine learning paradigm, deep
reinforcement learning (DRL) integrates the representation learning
strengths of deep learning with the sequential decision-making frame-
work of reinforcement learning. Recent advances in DRL-based methods
have shown significant potential for scheduling problems, which are
modeled as a Markov decision process (MDP) through iterative
agent-environment interactions, enabling agents to make decisions on
optimal state-action policies via trial-and-error feedback guided by
reward signals [18]. These DRL-based methods achieve a beneficial
balance between immediate and delayed rewards through adaptive
exploration-exploitation trade-offs, while trial-and-error feedback en-
ables learning-driven mechanisms for agents to learn experience from
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environments, enabling to effectively balance exploration and exploi-
tation in interactions [19]. Nevertheless, the effectiveness and efficiency
of DRL-based methods are greatly affected by network architecture
design and state representation [20]. As the extension of FJSPs with
uncertainty in DFM, EE-DFFJSP contains coupled subproblems with
multi-objective optimization, thereby significantly increasing the
complexity of both high-dimensional states and complex decision
spaces. To address these challenges, the development of
problem-specific DRL-based methods with effective state representa-
tions and interaction mechanisms emerges as a crucial research
direction.

Recent advances have witnessed increasing interest in multi-agent
reinforcement learning (MARL) frameworks applied in DFJS domains.
MARL-based methods utilize the advantages of sub-problem decompo-
sition and multi-agent coordination to overcome computational bottle-
necks caused by high-dimensional state-action spaces, thus making them
particularly suitable for dynamic decision-making in DFM environments
[21]. By synchronized training-execution coordination, the multi-agent
system can effectively decompose complex challenges into tractable
sub-tasks while maintaining cooperative optimization [22]. Notably,
there are three principal learning-driven mechanisms for MARL-based
methods, i.e., decentralized learning, communication-based strategies,
and centralized training with decentralized execution (CTDE). The
decentralized learning architectures, which treat peer agents as envi-
ronmental components in independent policy learning, offer computa-
tional efficiency but suffer from suboptimal decisions due to maximizing
local rewards instead of global optimality [23-25]. The
communication-based strategies enable information exchange among
agents to enhance collaborative decisions, yet introduce considerable
costs such as bandwidth consumption and latency, particularly in
complex scenarios. In contrast, the CTDE framework allows global in-
formation utilization during centralized policy training while making
decisions that rely on local observations for decentralized execution [ 26,
27]. Owing to the strengths of global coordination with local interaction,
CTDE has demonstrated superior capability in dealing with dynamic
environments with high-dimensional state representations and complex
decision spaces.

Although many applications of MARL-based methods in addressing
DFJS problems (DFJSPs) have shown strengths, further investigations
are still required due to unresolved theoretical and practical limitations.
Notably, most existing studies have focused on simplified scheduling
scenarios, often not involving complex problem decoupling and multi-
objective optimization with strong constraint handling. Although these
methods show superiority for such situations, they are inadequate for
real-world DFM environments that require the simultaneous treatment
of conflicting objectives, coupled subproblems, and complex constraints.
Motivated by existing efforts and recognizing MARL’s promising po-
tential, developing efficient multi-agent cooperative frameworks to
achieve multi-objective coordination and effectively address coupled
subproblems of DFJSP is still an open research challenge. To the best of
our authors’ knowledge, research on applying MARL-based methods for
EE-DFFJSP has not been reported, with end-to-end learning-driven
mechanisms for tackling the challenge of EE-DFFJSP being scarce.

As an extension of DFJSPs that widely exist in DFM that compre-
hensively consider uncertainty and energy-efficient scheduling con-
straints, EE-DFFJSP requires assigning jobs to suitable factories,
determining fuzzy processing times, selecting available machines, and
adjusting machine speeds. In addition, the complex constraints and
critical characteristics of EE-DFFJSP require multiple agents to acquire
global state information during the centralized training to perform
feature-learning-based joint decisions during the decentralized execu-
tion. Motivated by CTDE-based MARL frameworks, we develop an
innovative framework for a multi-agent cooperative multi-network
group (MACMNG) to handle the EE-DFFJSP. Unlike traditional MARL-
based methods, MACMNG can decompose the EE-DFFJSP into inter-
connected subproblems, each modeled as a subnet in the network group.
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The multi-network group dynamically optimizes multi-objective trade-
offs via adaptive weight allocation across subproblems, thereby
resolving the critical limitations of static and single policy networks in
MARL-based methods that fail to achieve dynamic trade-offs among
multiple objectives.

The main innovations and contributions are outlined as follows:

@ Anovel mixed-integer linear programming (MILP) model is proposed
for EE-DFFJSP, and a typical MDP model for FJSPs is extended to a
novel triple-MDP formulation based on problem characteristics. This
triple-MDP divides states into five specific sets and designs three
rewards, thus explicitly embedding optimization objectives into the
state representation and the reward mechanism design. These ad-
vances facilitate the effective modeling of MDPs for subproblems of
EE-DFFJSP while ensuring coordinated decision-making among the
agents associated with this triple-MDP.

@ To address the complex constraints and coupled characteristics of
EE-DFFJSP, a multi-agent cooperative multi-network group
(MACMNG) framework is introduced to handle triple-MDP. Each
MDP is implemented as a single agent and each agent is configured
with an independent subnet. Agents with different behaviors make
independent decisions and collaborate to form a network group with
specific roles to optimize two conflicting goals through problem-
specific state representations and rewards, thus efficiently handling
coupled decision dynamics through distributed collaborative
learning-driven mechanisms.

@ The application of a problem decomposition method to decompose
EE-DFFJSP into a series of subproblems, each of which is represented
by a subnet in the MACMNG framework. These subnets are trained
cooperatively and aided by the domain parameters transfer strategy
(DPTS), enabling sharing experience and transferring knowledge,
significantly reducing computational overheads and efficiently pro-
ducing high-quality Pareto solutions with enhanced efficiency.

@ By incorporating multi-objective DQN (MO-DQN) into the frame-
work of MACMNG, subnets can adaptively trade-off between both
criteria by employing a dynamic weighting mechanism to handle
rewards from each of them during cooperative decision-making and
network group updating. This ensures the robust adaptation to the
dynamic adjustment of the criteria as a result of changes in solving
these subproblems.

@ Comprehensive comparisons conducted on 69 benchmark instances
demonstrate MACMNG’s statistically significant superiority over
state-of-the-art multi-objective algorithms across three performance
metrics. These statistical results provide promising perspectives and
innovative insights for the research on DFJS in DFM, highlighting
MACMNG's potential to advance both economic and energy-efficient
objectives in industrial applications.

The remainder of this article is organized as follows: Section 2 re-
views foundational advancements in energy-efficient strategies (EESs),
DFJSPs, DRL-based, and MARL-based methods. Section 3 formulates the
MILP model of EE-DFFJSP and defines fuzzy arithmetic operations with
relevant notations. Section 4 presents the details of the framework and
implementation of MACMNG. Section 5 demonstrates experimental
details and results confirming the superiority of MACMNG in solving EE-
DFFJSP. Finally, Section 6 discusses the implications and limitations of
MACMNG and outlines future research directions.

2. Literature review
2.1. Related work on EESs

Recent advances have demonstrated the efficacy of effective energy-
efficient strategies (EESs) in reducing energy consumption (EC) for

energy-efficient DFJS in DFM [28]. EESs can be categorized into three
primary types: machine on/off regulation, time-of-use (TOU) electricity
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pricing measure, and energy-efficient speed control. As for
energy-efficient DFJS, the standby times of machines are inevitable;
however, by rationally controlling of machine’s states, it is possible to
significantly reduce some of the unnecessary waiting time, thereby
reducing TEC. The TOU electricity pricing measure can reduce the
electricity cost and improves cost predictability while enhancing energy
efficlency by encouraging load shifting, such as scheduling
energy-intensive tasks during off-peak periods. The energy-efficient
speed control, as one of the most widely applied EESs, enables ma-
chines to operate flexibly within specified speed levels, thereby reducing
TEC and minimizing makespan. For machine on/off regulation, Zhang
et al. [29] investigated the energy-efficient flexible job shop scheduling
problem (EE-FJSP). Their experimental results demonstrated that
reasonable control of the machine’s operating states can effectively
reduce TEC. Dai et al. [30] solved the energy-efficient flexible flow shop
scheduling problem (EE-FFSP) using a genetic-simulated annealing al-
gorithm (GSA). Their control of machines’ operating states within
feasible schedules significantly reduced the TEC. Meng et al. [31]
addressed the energy-conscious dual-resource constrained FJSP
(DRCFJSP) and proposed a postponing strategy and a turn-on/off
strategy that effectively reduced TEC, further highlighting the critical
role of machine on/off regulation in TEC reduction. However, frequent
switching of machines on/off may lead to wear and potential damage,
which affects the machines’ longevity and reliability [32]. For TOU
electricity pricing measure, Park and Ham [33] established a MILP
model for the EE-FJSP with dual objectives of minimizing both make-
span and TEC. However, TOU electricity pricing measure that encourage
additional tasks during off-peak periods may conflict with the best time
for manufacturing and maintenance decisions, necessitating a trade-off
between production efficiency and energy costs [34]. Regarding
energy-efficient speed control, Zhang et al. [35] introduced a
multi-objective discrete artificial bee colony algorithm (MDABC) for
solving the hybrid flow shop green scheduling problem (HFGSP), and
proposed an energy-saving procedure based on energy-efficient speed
control, which effectively reduced the TEC. Duan et al. [36] proposed an
effective speed control strategy which demonstrated the effectiveness of
the energy-efficient speed control in reducing TEC and makespan. They
developed a multi-objective NSGA-II for EE-FJSP, significantly reducing
TEC and makespan. By implementing energy-efficient speed control, the
machines can operate within a flexible range of speed levels, thereby
balancing EC and minimizing manufacturing cycles. Moreover,
energy-efficient speed control avoids the wear and potential reliability
issues associated with frequent machine on/off switching, while also
avoiding the trade-off between production efficiency and energy costs
resulting from the TOU electricity pricing measure. Given these ad-
vantages, this study adopts the energy-efficient speed control as the
primary EES to address the EE-DFFJSP.

2.2. Related work on DFJSPs

As an extension of FJSPs in DFM, DFJSPs have garnered significant
research attention in recent years. For the DFJSP, Lin et al. [37] devel-
oped a genetic algorithm with a novel chromosome representation
(GA X), which adopted an incomplete chromosome structure to effec-
tively balance the load among manufacturing resources and improve
search efficiency. Xu et al. [38] proposed a hybrid genetic algorithm and
tabu search (H-GA-TS) with three-layer encoding, which tackled the
co-optimization of multiple objectives. Considering crane trans-
portation, Du et al. [39] proposed an estimation of distribution algo-
rithm (EDA) combined with variable neighborhood search (EDA-VNS)
for DFJSP with crane transportations (DFJSPC). Zhang et al. [13]
developed a Q-learning-based hyper-heuristic evolutionary algorithm
(QHHEA) for DFJSPC. Considering factory transfers, Luo et al. [40]
introduced an efficient memetic algorithm (EMA) for DFJSP with
transfers (DFJSPT), aiming to minimize the makespan, maximum
workload, and TEC. Despite these advancements, research on
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Table 1
Summary of the literature on FJSP and related shop scheduling problems.
Author(s) Ref. Problem Objective(s) EES Approach Description
(es)
Zhang et al. 29 EE-FJSP Crmax, TEC Machine off-on eGEP Efficient gene expression programming algorithm.
(2017) [29]
Dai et al. (2013) 130] EE-FFSP Cmax, TEC Machine off-on GSA Genetic-simulated annealing algorithm.
Meng et al. - DRCFJSP TEC Machine off-on VNS Variable neighborhood search algorithm.
(2019) (31]
Park and Ham 33 EE-FJSP Crmax, TEC TOU electricity ILP/CP Integer linear programming and constraint programming.
(2022) 1231 prices
Zhang et al. a5 HFGSP Cmax, TEC Speed control MDABC Multi-objective discrete artificial bee colony algorithm.
(2019) 35]
Duan et al. %6 EE-FJSP Cmax, TEC Speed control NSGA-II Heuristic multi-objective non-dominated ranking genetic algorithm.
(2021) 36]
Lin et al. (2020) 137] DFJSP Cmax None GAX Genetic algorithm with a new chromosome representation.
Xu et al. (2021) a8 DFJSP Cinax, TEC, None H-GA-TS Hybrid genetic algorithm and tabu search with three-layer encoding.
(381 costs,quality
Du et al. (2021) [39] DFJSPC Cmax, TEC None EDA-VNS Hybrid algorithm consisting of EDA and VNS.
Zhang et al. 13 DFJSPC Crmax, TEC None QHHEA Q-learning-based hyper-heuristic evolutionary algorithm.
(2023) s3]
Luo et al. (2020) 1401 DFJSPT Cmax> TEC,workload None EMA Efficient memetic algorithm.
Wang et al. " EE-DFSP Crmax, TEC Speed control KCA Knowledge-based cooperative algorithm.
(2020) [41]
Shao, et al. 49 EE-DFSP Cmax, TEC Speed control MMMA Multi-neighborhood-based multi-objective memetic algorithm.
(2022) 142]
Zhang et al. [43] EE-DFSP Cmax, TEC Speed control MEDHEA Multidimensional estimation of distribution based hyper-heuristic
(2025) ° evolutionary algorithm.
Meng et al. 44 EE-DFJSP Crmax, TEC Machine off-on HSFLA Efficient hybrid shuffled frog-leaping algorithm.
(2020) [44]
Yu et al. (2024) [45] EE-DFJSP Cmax, TEC Speed control KBEA Knowledge-guided bi-population evolutionary algorithm.
9
Zhang et al. 46 EE-DFJSP Cmax, TEC Speed control MPMEA Multidimensional probabilistic model-based evolutionary algorithm.
(2024) (461
Li et al. (2022) [47] DGT2FJSP Cmax, TEC Speed control TSKEA Two-stage knowledge-driven evolutionary algorithm.
Lei et al. (2022) [48] FJSP Cmax None Multi-PPO Multi-proximal policy optimization.
Song et al. (2023) [49] FJSP Cinax None PPO Proximal policy optimization.
Yuan et al. (2024) [50] FJSP Crnax None PPO Proximal policy optimization.
Jing et al. (2024) [22] FJSP Crnax None GMAS Graph-based multi-agent system.
Liu et al. (2022) [56] FJSP TCT None DDOQN Double deep Q-Network algorithm.
ol
Wan et al. (2025) 57 FJSP Crnax None AEA- Automatic entropy adjustment multi-agent proximal policy
(571 MAPPO optimization algorithm.
Huang et al. DFJSP Crnax None PPO Proximal policy optimization.
(2024) (58]

EE-DFFJSP remains sparse. For energy-efficient distributed flow shop
scheduling problem (EE-DFSP), Wang et al. [41] proposed a
knowledge-based cooperative algorithm (KCA), integrating a
multi-operator cooperative search strategy that adapts to solution
characteristics to balance the trade-off between two optimization ob-
jectives. Shao et al. [42] focused on the EE-DFSP with variable machine
speeds and developed a multi-neighborhood-based multi-objective
memetic algorithm (MMMA). In consideration of no-wait constraints,
Zhang et al. [43] developed a multidimensional estimation of
distribution-based hyper-heuristic evolutionary algorithm (MEDHEA) to
tackle the EE-DFSP. To address the energy-efficient DFJSP (EE-DFJSP),
Meng et al. [44] formulated an MILP model and designed a hybrid
shuffled frog-leaping algorithm (HSFLA). Yu et al. [45] proposed a
knowledge-guided bi-population evolutionary algorithm (KBEA) to
simultaneously minimize makespan and TEC. Zhang et al. [46] intro-
duced a multidimensional probabilistic model-based evolutionary al-
gorithm (MPMEA), offering a new paradigm for solving EE-DFJSP.
Considering type-2 fuzzy constraints, Li et al. [47] introduced the
two-stage knowledge-driven evolutionary algorithm (TSKEA) for
distributed green job shop scheduling with type-2 fuzzy processing times
(DGT2FJSP), focusing on minimizing makespan and TEC. Previous

research works have used exact methods, heuristic methods, and
metaheuristic-based methods with promising results in solving DFJSPs,
but all suffer from limitations. Specifically, exact methods and
metaheuristic-based methods are less efficient in handling
high-dimensional dynamic states and complex decision spaces, as
computational costs rise with the increase in problem complexity.

2.3. Related work on DRI and MARL

Recent advances in DRL-based and MARL-based methods have
motivated research to investigate their applications in solving various
scheduling problems. These methods demonstrate exceptional efficacy
in modeling and optimizing problems characterized by high-
dimensional dynamic states and decision spaces. For DRL-based
methods, Lei et al. [48] developed a DRL-based method for the FJSP,
which used a graph neural network (GNN) for feature representation
and adopted a multi-pointer graph network (MPGN) and a
multi-proximal policy optimization algorithm (multi-PPO) to efficiently
learn action policies, achieving superior performance over both heu-
ristic methods and metaheuristic-based methods. Song et al. [49] pro-
posed a DRL-based method for solving the FJSP, which combined
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Table 2
Notation and definition used in the MILP model of EE-DFFJSP.

Notation  Description

Indices

f.f Indices for factories, f.f' =1,2,...,L

i Indices for jobs, i,7 = 1,2,...,n.

J.J Indices for operations of the job, j,j/ = 1,2,...,n;.

k Index for machines, k =1,2,....m.

v Index for speed levels, v =1,2,...;s.

Sets

1 Set of jobs, I = {I1.I,...,I}.

J; Set of operations for job I;, J; = {Oi1,0j2,...,0in }.

F Set of factories, F = {Fy,Fa,....Fj}.

1’4 Set of speed levels, V = {V1,Vs,..., Vs }.

Gy Set of machines in factory Fy, Gy = {MﬁM’;,an}

UM;; Set of available machine indices for operationO;;.

SM Set of speed coefficient, SM = (smy,sma,...,smy).

EM Set of EC coefficient, EM = (em;,ems, ..., em).

Parameters

Fy The f — th factory, F; € F.

M{ The k — th machine in factory Fy, Mfk € Gy.

I The i —thjob, I; € I

0y The j — th operation of job I;, O;; € J;.

v, The v — th speed level, V,, € V.

sm, The v — th speed coefficient, sm, € SM.

em, The v — th EC coefficient, em, € EM.

l Total number of factories.

n Total number of jobs.

n; Total number of operations for job I;.

m Total number of machines in each factory.

s Total number of speed levels.

i The standard fuzzy processing time of O;; on the k — th machine in each
factory.

Drij The actual fuzzy processing time of O;; on the k — th machine in each
factory.

Sp The standby unit EC.

PP The standard unit EC.

P’Eifi,< The total fuzzy processing EC of machine M{

SEE}_k The total fuzzy standby EC of machine M{

E'f,k_i J The fuzzy completion time of operation O;; on machine M{(

E} The fuzzy completion time of all operation in factory Fy.

1 A sufficiently large positive number.

Objective functions

Crmax The maximum fuzzy completion time.

TEC Total fuzzy EC for all machines.

Binary decision variables

1,if0; ,jisprocessedonMi.
Xikij = .

0, otherwise.

—1,if0yisprocessedimmediatelyafterOy,.,

1,ifOy yisprocessedimmediatelyafterO;,
Yijuj
0, otherwise.

7 1,ifo; _jisprocessedonmachinel\/f}(withspeedlevele,
kvij =
vty 0, otherwise.

operation selection and machine assignment with efficient
decision-making using the heterogeneous GNN (HGNN). Yuan et al. [50]
introduced a DRL-based method which simplified state embedding using
a lightweight multi-layer perceptron (MLP). MARL-based methods have
achieved significant success across diverse domains such as collabora-
tive control of unmanned aerial vehicles (UAVs) [51], multi-robot sys-
tems [52], and gaming applications [53-55]. Recent research has
concentrated on multi-agent cooperative strategies and interaction
mechanisms to effectively handle collaboration and competition in
complex environments. For MARL-based methods, Jing et al. [22] in-
tegrated graph convolutional networks (GCNs) with the MARL-based
method to propose a graph-based multi-agent system (GMAS) which
modeled the FJSP as a directed acyclic graph and refined strategies by
predicting edge connections. Liu et al. [56] presented a MARL-based
method to address dynamic constraints for the FJSP, aimed at mini-
mizing the total cumulative tardiness (TCT) of all jobs. They introduced
a novel state and decision representation employing the double deep
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Q-Network algorithm (DDQN) to train scheduling agents and capture
the relationship between production information and scheduling ob-
jectives, capable of managing dynamic FJSPs with different scales and
scenarios. Wan et al. [57] formulated the FJSP as two MDPs using
different agents for operation sequencing and machine allocation. They
developed an automatic entropy-adjusted multi-agent PPO (AEA--
MAPPO) algorithm, which effectively trained the operation and ma-
chine policy networks to optimize operation sequencing and machine
assignment strategies simultaneously. Huang et al. [58] proposed a
multi-action MDP for modeling the dynamic distributed JSP with a hi-
erarchical action space that considers operations and factories, where
the reward function design is based on idle times.

As summarized in Table 1, recent advances reveal that although
metaheuristic-based, DRL-based, and MARL-based methods have been
successfully used for FJSPs, each type of method suffers from funda-
mental limitations. Metaheuristic-based methods in existing efforts still
suffer shortcomings in their reliance on problem feature modeling and
search behavior understanding, and demonstrate poor scalability in
high-dimensional spaces. Although DRL-based methods can adaptively
learn optimal policies from feature states, their effectiveness is limited
by decision spaces and state representations. Up to now, the applications
of these methods for problem solving by a single agent are mainly
limited to simple scheduling situations involving low-coupling features
with single-objective optimization. While MARL-based methods effec-
tively reduce the computational cost of high-dimensional decision and
state spaces through the collaborative decisions of distributed agents,
their framework for end-to-end training and generation of scheduling
schemes poses inherent limitations. The policy network maps any given
state to a specific distribution of actions by means of a deterministic
mapping function. The policy’s deterministic mapping behavior en-
forces end-to-end framework to output only solutions with specific
preferences when dealing with multi-objective problems (MOPs), failing
to dynamically generate multi-preference solutions with dispersion and
diversity along the Pareto front.

To bridge this gap, inspired by the CTDE framework in MARL-based
methods, this study develops an innovative framework for a multi-agent
cooperative multi-network group (MACMNG) to address the limitations
of existing MARL-based methods. Unlike the aforementioned methods,
MACMNG's strength lies in decomposing the EE-DFFJSP into multiple
decoupling subproblems, each modeled as a subnetwork within a
network group. Each subnet generates solutions for specific sub-
problems through cooperative training with shared parameters. The
collective outputs of all subnetworks form a diverse solution set for the
entire network group, thereby effectively overcoming the limitations of
single solution generation inherent in end-to-end models and frame-
works. The MACMNG produces solution sets that cover the Pareto front
in complex constrained multi-objective optimization scenarios, effec-
tively guaranteeing the quality and diversity of scheduling solutions
generated by MALR-based methods and addressing the limitations of
traditional end-to-end models, providing a new perspective on the
design of learning-driven and multi-agent collaborative promising par-
adigms for EE-DFJSPs.

3. Problem statement
3.1. EE-DFFJSP

Under the transformation of intelligent manufacturing driven by
industrial intelligence, the study of DFJS in IloT-enabled DFM holds
significant theoretical and practical importance. As a common challenge
encountered in real-world DFM, the EE-DFFJSP is described as follows,
with the relevant notations defined in Table 2. Consider a set of factories
F = {F,,F,,...,F;}, where each factory F has a flexible job shop with m

heterogeneous machines Gy = {Mg, Mé., an} There are n jobs,
denoted as I = {I, I, ..., I}, allocated across [ factories. Each job I;
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Fig. 1. Disjunctive graph representation of DFFJSP.

Table 3

Details of processing speed levels.
\4 1 2 3 4 5
SM 0.6 0.8 1 1.2 1.4
EM 8 5 3

Table 4

Details of fuzzy processing times.

Jobs Operations Available machines and standard fuzzy processing times.
M M M3
J1 011 (1,2,3) - (3,4,5)
012 - (6,9,11) (4,7,9)
O13 (2,4,9) (4,8,9) -
O14 - (3,4,9) (1,4,5)
Ja 021 (4,5,6) - (2,3,8)
022 - (2,3,5) (2,3,11)
Oz3 (1,2,6) - (1,4,8)
J3 O3 (3,5,6) (3,5,6) -
O3 (1,3,49) - (1,3,6)
O33 - (6,9,11) (4,7,9)
O34 - (4,5,11) (2,3,7)

consists of n; operations, i.e., J; = {0;1,0;2,...,0in,}. Each operation O;;
must be processed on at least one machine in its assigned factory. The
fuzzy processing time f ;; for operation O;; on machine Mf( is determined
via standard operating conditions. Each machine has s adjustable speed
levels, and the actual processing time py;; is modulated by the speed
coefficient sm, associated with the selected speed level V,. Each machine
has a standard unit of fuzzy EC during processing, denoted as PP. When
no operations are processed, the machine remains in standby state with
a nominal EC denoted as SP. Both PP and SP are inherent constants for
machines. The actual EC of each machine is determined by its processing
time, standby time, and selected speed level. To address uncertainties
inherent in real-world processing times, both fuzzy processing times and
fuzzy EC are represented as triangular fuzzy numbers (TFNs), i.e., (81,82,
g3). The assumptions of EE-DFFJSP are given below:

@ All factories are homogeneous flexible job shops with identical ma-
chine layouts, quantities, types, and capacities. All operations must
be processed within the same factory. Cross-factory processing or
dynamic reassignment of operations is strictly prohibited.

@ Once the machine’s speed level is set for an operation, it remains
unaltered for the duration of the process. No adjustments to the
speed levels are allowed during processing.

@ Once an operation starts processing on a machine, it is completed
without pause, rescheduling, or interruption, thus ensuring that
processing processes are predictable and uninterrupted.

@ Only consider the time cost and EC directly associated with ma-
chines; auxiliary factors, such as material handling delays or external
energy expenditures, are excluded from the scope of this study.

Following the pioneering work of Brandimarte [59], disjunctive
graphs & = (@, ¢, ) are used to represent scheduling states for FJSPs,
and this representation can be extended to the EE-DFFJSP. Specifically,
@ = {0;j|Vi,j} U{S,E} denotes the set of job nodes, comprising all
operation nodes and two virtual nodes (S: start, E: end) with zero pro-
cessing time. # is the set of conjunctive arcs, which represent sequential
processing constraints for each job I; from S to E. & = Uy & represents a
set of undirected disjunctive arcs, where &) denotes a subset that
connects operations eligible for the k —th machine. However, the
distributed factories and coupled subproblems inherent to DFFJSP
render the conventional disjunctive graphs ¢ for FJSPs insufficient in
representing states. To address this limitation, we have extended graph
%7 to ¢, defined as &= (&, ¢, 7'1,..., 7,..., 71) where for each
factory Fy: 7y = Z U {M’;,I\/I’;,...,I\/Ifm}. Here, 7 integrates disjunctive
arcs with factory-specific machine nodes, while operation nodes are
connected to their eligible machines via directed edges.

To provide an intuitive understanding of the extended graph 7,
Fig. 1 presents an exemplar case with two factories, three jobs, and three
machines. In Fig. 1(a), solid black lines denote the completed opera-
tions, solid red lines indicate schedulable jobs, and black dashed lines
represent the unprocessed operations. The color lines connections be-
tween job nodes and machine nodes signify factory-specific allocations,
where solid endpoints on these lines denote the assigned machines and
dashed endpoints show potential machine candidates. The actual fuzzy
processing time py;; is marked for completed operations O;;, and un-
processed operations show average processing times across eligible
machines at specific processing speed levels. Fig. 1(b) illustrates a view
of the complete scheduling scheme. Tables 3 and 4 provide the detailed
dataset of the speed levels V and standard fuzzy processing times f;; for
each operation O;j, where the symbol "-" indicates machine-process in-
compatibility. Following the work of Zhang et al. [43], the standard and
standby EC units are set as PP = 3 and SP = 1, respectively. Fig. 2 il-
lustrates a scheduling scheme for an instance given in Table 3, along
with processing speed levels of operations on their corresponding ma-
chines. The feasible solution is represented as 7 = (yg, ¥, ¥y, Wy) Where
yr = [1,1, 2] represents the factory assignment for jobs, y; = [1,1,2,3,
1,2,2,1,3,3, 3] is the order of operations, y,; = [1,3,3,2,2,3,1,3, 3,2,
3] is the order of machines allocated to operations, and y, = [3,2,3,1,1,
3,4,5,3,2,5] is the order of processing speed levels for machines. For
operation O 1, the fuzzy completion time is calculated by 61,1_1‘1 (m) =
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Fig. 2. Fuzzy Gantt charts and processing speed.

Teij X smy =t 11 x smz = (1,2,3). Similarly, the fuzzy completion times
for all other operations can be obtained using the same formula. For
factory Fy, the fuzzy completion time is C; () = (9.6,19.3,35.2), and for

factory F», it is E‘z

(10.4,17.6,28.2), resulting in the maximum fuzzy
completion time across both factories Cpay(7) = max(Ci(r), C2(r)) =
(9.6,19.3,35.2). The machine Mj is active during (4.2,7.6,9.2) to (6.6,
12.4,14.6), thus the fuzzy processing EC is PEAc;_k(zr) =(2.4,4.8,5.4) x
em; X PP = (2.4,4.8,5.4) x 8 x 3=(57.6,115.2,129.6). During standby
periods, machine M} remains in the standby mode, with its fuzzy
standby time determined by C; — 3", P % Y X1y =
(7.2,14.5,29.8), and the corresponding fuzzy standby EC is Sﬁb;k(ﬂ)
(G = 21 XjhaPrig ¥ Lit1 L Xpkig) x SP=(7.2,14.5,29.8) x 1
(7.2, 14.5, 29.8). The total fuzzy EC TEC is derived as: ’fEé(ﬂ') =
(320.6,571.0,883.6) by Eq. (15).

The EE-DFFJSP aims to optimize both E‘max and TEC as objectives and
corresponding formulas in the MILP model are defined as follows:

f = min{fy.folfy = Coan(n).fo = TEC(x)) b
Cinax = max{Crxi; }, V. k.i.], 2)
2’": ixf.k.ij =, Vf,i 3
=1 =

S Ziyij = 1,Yk,i,j (€)]
v=1

. my > 1,vi )
=1
Drij = trij ¥ <izf.k,v,i.j X va) Vfo ko1 j (6)

v=1

Craij1 < Craij —Prag Vf ko 1,j # 0 )

Cf‘k‘ij _ﬁk,i_j Z 0-, Vf, k-, ivj (8)

Crri > Crrij = Prag Y Ko 1,J )]

Crri < Craiy —Pray+ 7 % (1= Yijuy) N k1,1, 10

E‘f‘k‘ij < Ef‘k.ifrl —Drijin ¥ X (1= Yojujir), ¥, k4,7, # g, an
1 m

SO Xpkij=1,Vij (12)

=1 k=1

PEr'E'/f7k = Z Z(Xf*-ii X Drij X sz.v,ij x em,) x PP 13)

=1 j=1 v=1
SECsy = (cf N B )LD X ,) x SP 14)
i=1 j=1 i=1 j=1
—_— l m —_ —_—
TEC =Y > (PEC;x + SECsx) 15)
f=1 k=1

where Eq. (1) aims to minimize both E‘max and TEC. Eq. (2) provides the
formula for calculating E‘max. Eq. (3) and Eq. (4) restrict all operations for
the same job must be processed in the same factory, and processing
speed levels cannot be changed once selected. Eq. (5) ensures opera-
tional feasibility by requiring each operation to have at least one eligible
machine in its assigned factory Fy. Eq. (6) computes actual processing
time based on standard processing time and machine speed levels. Eq.
(7) enforces the precedence relationship among operations of the same
job. Eq.(8) indicates that machine availability at time zero for all op-
erations in factory Fy. Eq. (9) suggests that the completion time of each
operation cannot be earlier than its start time. Eqgs. (10)-(12) demon-
strate the same machine in a factory Fy can process only one operation at

any time. Eqgs. (13)-(15) define the calculation formulas for I;E/Cf‘k,
‘ﬁ‘f‘k, and TEC, respectively.
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Fig. 3. Membership function of the triangular fuzzy number.
3.2. Fuzzy arithmetic principles

Due to the numerous uncertainties frequently found in DFM, the
processing time for each job can only be determined within approximate
ranges. The TEN is typically used to represent this processing time TFN
= (81,82,83)-

The TFN membership function is shown in Fig. 3. g; represents the
ideal processing time, g, is the most probable processing time with a
membership degree of 1, and gs is the most conservative processing
time. The membership function expression for TFN is as follows [60]:

va§g1¢

&1
S g <x<g,
@ -a &1 &2

X) = 16
ﬂTFN() g37xg2<x<g3 (16)
&g < &3,
0,x > gs.

The following special cases exist:When g = g, pmn(X) can be
formulated as:

0,x < g =g,
8 —X -
Hrpn(X) = ¢ ——— 81 = 8§ < X < g, a7)
83— &
0,x > gs.

When g = gs, pirpn(X) can be formulated as:

0,x<g,
X—&
& —&
0,x > g.

Hapn (%) = 81 <X <82 =83, (18)

When g1 = g2 = g3, prpn(X) can be formulated as:

— l7x:g1:g2:g37
Hen (X) = {07otherwise. )

To ensure the effective optimization of E‘max and TEC while main-
taining scheduling feasibility, the addition, max, and ranking methods
for TFN are explicitly defined. These methods are crucial for addressing
the inherent uncertainties in DFFJSP [61].

1) Additional method. Let the fuzzy start time and fuzzy processing time
of operation O;; on machine M{ be fi_i ;= (81,8,8) and iy = (g1,
g2,8'3), respectively. The end time ?fl ; of operation O;; on machine

Mi can be calculated by:

Ei,i.j :ziij“"?k,i.j:(gl +81,821+82,83 +g3) (20)

2) Max method. Let t = (g1, 82, 3) denote the fuzzy completion time of
preceding operation O;;_1, and ¥ = (g1,g>,&3) represent the fuzzy
completion time of the prior operation on the same machine. The
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maximum fuzzy time of £ and ¥ can be derived from fuzzy arithmetic
principles [62]:

~ o~ | tift>7,

tve= {?'7 otherwise. (21)
where the membership function y; ;(z) of t V¥ is defined as:

:uivf/(z) = sup min(ﬂf(x)vl"g(y)) (22)

2=XVy

3) Ranking method. To evaluate fuzzy completion times, the ranking
criterion for comparing TFNs proposed by Sakawa and Kubota [63] is
employed as follows:

&1 t2%0+8
=S

In Eq. (23), Z; serves as the primary ranking criterion. When Z;
values are equal, the secondary ranking criterion Z,(g) = g is utilized. If
both Z; and Z, are equal, the tertiary ranking criterion Z5(g) = g5 —&
resolves ties.

Z:(g) (23)

3.3. Problem property analysis

The EE-DFFJSP aims to simultaneously optimize the maximum fuzzy
completion time (Emax) and reduce total fuzzy EC (TAEJC) to meet low-
carbon manufacturing requirements. The interdependence of objec-
tives and coupling of subproblems with uncertainty handling signifi-
cantly expand the solution space, causing challenges in efficiently
exploring search scopes to identify superior solutions within limited
computational time. To address this, specific characteristics and prop-
erties of the EE-DFFJSP are analyzed in Section 3.3 to provide founda-
tional insights for developing problem-specific EESs.

Property 1.
through decoding, where the critical path directly determines Cpax (7).

Reducing the speed level V, € V for operations on non-critical paths will
lengthen their actual fuzzy processing time p,;;. However, if the

For any feasible solution 7, the critical factory is identified

extended py ;; does not change the critical factory, critical path, or fuzzy
completion time E‘f‘kﬂi 5 on the critical path, Emax () remains unchanged,
while TEC(r) is reduced.

Proof. The critical path is defined as a series of operations without idle
time that determines the maximum fuzzy completion time Z?max(fr). Any
increase in processing time on critical paths directly results in an in-
crease in Emax(ﬂ). However, adjusting processing speeds for operation
O;; on non-critical paths does not affect Cumax (%) provided idle time in-
tervals exist. Within these intervals, delays merely reduce speed levels
V,, thereby decreasing TTE/C(:r). The immediate precedence operations or
machine-precedence operations of the critical operations on the critical
path are defined as related operations, with adjustable fuzzy time
margin AT;j, while all other operations are categorized as unrelated
operations, with adjustable fuzzy time margin defined as UAT;;, which
can be calculated by Eq. (24) and Eq. (25), respectively. Hence, when
reducing the speed level V,, of non-critical path operations, as long as the
adjusted processing time does not exceed the allowable time margins,

the critical path and Cmay(7) remain unaffected, and ﬁi‘(n) is reduced.
ATU = min(MS,J,JS,J) 761', (24)

UAT;j = Cinax — Cij (25)

Here, MS;; represents the fuzzy start time of the operation immedi-

ately following operation O;; on the machine M,, where machine M, is
the processing machine for operation O;j, JS;; denotes the fuzzy start
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Fig. 4. Adjustable time margins for all the non-critical operations.

time of the operation immediately following operation O;; in the oper-

ation sequence y;, and Ci j represents the fuzzy completion time of the
operation O;;. Fig. 4 illustrates the adjustable time margins for all non-
critical paths in the fuzzy Gantt chart. In this case, (011, 012,022,053,
033) are operations on the critical path, with related operations being
0331, O3, and O, and the unrelated operations being O; 3.

4. MACMNG for EE-DFFJSP

In this section, MACMNG is introduced to address the challenges
associated with the EE-DFFJSP, as depicted in Fig. 5. Based on the
decomposition of subproblems, the EE-DFFJSP can be modeled as a
triple-MDP to reflect the complex and coupled decision dynamics. Spe-
cifically, MACMNG comprises three distinct agents: a job agent Agent;, a
machine agent Agenty, and a factory agent Agentr. Both Agent; and
Agenty are equipped with network groups. Agent; is embedded with the
network group Net’ = (SubNet,...,SubNet],...,.SubNet!), and Agenty is
embedded with Net" = (SubNet!',...,SubNet!!,... SubNet). The Agent;
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is designed to handle operation sequences for jobs, while Agenty is
responsible for machine assignment and speed selection. The Agentr
serves to allocate jobs to a suitable factory for processing.

4.1. Subproblem decomposition method

The EE-DFFJSP as a complex MOP contains two conflicting objec-

tives: Cmax and TEC. To cooperatively optimize both objectives, we
employ an effective decomposition method that has been widely applied
for decomposing MOPs across various domains [64,65]. By decompos-
ing the EE-DFFJSP into a set of weighted objective subproblems PB =
(SubPBy,...,SubPBy, ..., SubPB,) and explicitly partitioning them based
on predefined weightings, each subproblem can be independently
resolved within the specific subspace. Each subproblem’s feasible solu-
tion typically corresponds to one solution in Pareto solution set. Once all

SubPB, weight veetor 4

= Reference direction

Target solution

Coax

TEC

Fig. 6. Subproblem decomposition method.
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subproblems are addressed, a set of Pareto solutions can be obtained,
thereby revealing the balance and inherent conflicts between the opti-
mization objectives E’max and TEC.

These subproblems PB = (SubPBy,...,SubPBy, ..., SubPB,) are parti-
tioned through the weighted sum method [66], as shown in Fig. 6. This
method produces a set of uniformly distributed objective weight vectors
A= (A1,...,An, .., A) to decompose MOPs, where A, = (47" ,AZZ,‘..,AZN“”’ ).
Here, Ny represents the number of objectives, and e denotes the number
of decomposed subproblems. For the EE-DFFJSP, the optimization ob-
jectives are Cpay and TEC (Nopj = 2). Specifically, superscript ¢; in-
dicates that the symbol is associated with the objective Cumax, While
superscript ¢, denotes relevance to the objective TEC. The objective
function f” for the h — th subproblem SubPBj, is as Eq. (26).

Nopj

Fr= 30 = Ay 2o, VR,

i=1

(26)

4.2. Domain parameter transfer strategy

In EE-DFFJSP, each subproblem SubPBj is modeled as a corre-
sponding subnet SubNet,. These subnets constitute an integrated
network group Net = (SubNet;, ..., SubNety, ..., SubNet,). With an
increasing number of subproblems, the corresponding number of sub-
nets also expands. In addition, training each subnet as an independent
network makes the training of the network group Net difficult to com-
plete within a feasible timeframe. Without sharing learned experience
and knowledge among subnets, the network group Net training becomes
significantly inefficient. To address this issue, the domain parameter
transfer strategy (DPTS) is implemented to significantly reduce the
training time for each neighboring subnet. The adjacent subproblems
have similar weight configurations, which implies a structural similarity
between subproblems SubPB;, and SubPBy,_; . By transferring the network
parameters of subnet SubNet;, ; to its neighboring subnet SubNet;, for
initialization, the time cost of retraining subnet SubNet,, is avoided. The
DPTS not only shortens training time but also significantly improves the
overall efficiency of the MACMNG in tackling the EE-DFFJSP.
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The network parameters for the subnet SubNet, are denoted as
SubNet, = [07",0/:0;>,0%2], where ¢ and 67" correspond to the on-
line-Q network parameters and target-Q network parameters optimized
for (Nimax, while 0;’:2 and 0’;{2 are for Yr"EVC, respectively. Assuming subnet
SubNet;, ; has been fully trained and is near optimal, the subnet
SubNet,, can share the parameters of SubNet;, i as its initial training
parameters. The subnet parameters SubNet,_, = [0} |, 0% ;07,072 ]
are then sequentially passed to the subsequent subnet SubNet; for
further training, as depicted in Fig. 7 and detailed in Algorithm 1. By
solving each subproblem in Fig. 6 (which corresponds to each subnet in
Fig. 7) to obtain the target solution, all feasible solutions in specific
reference directions form the Pareto solution set. By systematically
solving all subproblems, the MACMNG framework can ultimately
construct an approximate Pareto front, thereby providing an efficient
learning-driven and multi-agent collaborative promising paradigm for
solving complex MOPs.

Algorithm1. : Initialization network parameters for SubNety

Input: SubNet,
for i=1:N,, do

if #=1 then

| Random initialize 8]" . Set 6, =6]" .

else

Set 67'=6]",.6,"=6,", .

end if

end for

1
2
3
4
S:
6
7
Output: SubNet,, .

4.3. Triple Markov decision process formulation

According to the work of Song et al. (2023), addressing the FJSP can
be formulated as the MDP, denoted as .#(S,.#/,.7 ,R,y), where S repre-
sents the set of states, ./ denotes a set of actions, .7 is the state transition
function, R refers to the reward function, and y is the discount factor.
However, the traditional single MDP is inadequate for modeling the
complex characteristics of the EE-DFFJSP. To address this limitation, the
triple-MDP formulation is introduced, denote as (.4, -#p, -ly). Each
MDP is defined as,#r = (S¢,-/F,-7 ,Rp,7), and .y = (Sy , Sz, m,-7,
R%,RY%.7). Unlike traditional MDPs, consisting of only one set of states
and one reward function, the triple-MDP incorporates five sets of states
(89,87,Sp,S4 . S42) and three distinct reward functions (R}, R%%, Rp).
Despite this, the triple-MDP share a common state transition function
(.77). The state transition in triple-MDP is contingent upon the receipt of
the joint action A = (a/ € «/;,af € #/p,a¥ € /), which emerges from
the cooperative decision-making of three agents (Agent;, Agentr, and
Agenty). Fig. 8 provides an illustrative example of the state transition
within the triple-MDP. At the decision time step t = 3, the agents
collectively determine a joint action A, upon which the environment

§3
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_joint action .

O Processed operations

} Unprocessed operations

OOperations to be processed

A=(2,1,13)

a)=2,af =1, =13

P ii ,3,8/)// \E‘":ir' 3,7)

(1.8,3,3.6) 7=(1,3,5) 7=(5810) =

~-~- Available machines in 7,
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e T

\\03. on a machine in F;
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Fig. 8. Illustration of the state transition for triple-MDP.
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Table 5
Details of .2/;(3) with feature mappings.
Features A 5(3)
Action 17# Action 2% Action 3*
CP!" (3) 0 0 0
TPT!* (3) (3,6,9) 3B.47) (1,3,5)
OoCT!" (3) (5,9,12) (0,0,0) (3,5,6)
PD!" (3) (5,9,12) (0,0,0) (3,5,6)
CP(3) 0 0 0
TP’T‘i"2 (3) (9,18,27) (9,12,21) (3,9,15)
OCT?(3) (5,9,12) (0,0,0) (3,5,6)
PD!*(3) (15,27,36) (0,0,0) (9,15,18)
Table 6
Details of ./y(3) with feature mappings.
Features AF(3)
Action 17 Action 2%
FPL¢(3) (5,9,12) (3,5,6)
SPDy(3) (4.2,10.6,15.2) (4,6,19)
Table 7
Details of ./(3) with feature mappings at speed level V3.
Features A m(3)
Action 1% Action 2 Action 3*
URY (3) 100 -1 72
MCTY" (3) 1,2,3) -1 (4.2,7.6,10.2)
MPL? (3) (1,2,3) -1 (3.2,5.6,7.2)
Ty (3) (4,5,6) -1 (2,3,8)
UR"” 3) 100 -1 72
MCT? (3) (1,2,3) -1 (4.2,7.6,10.2)
MPL?(3) (3,6,9) -1 (9.6,16.8,21.6)
PT(3) (36,45,54) -1 (18,27,24)

transitions to the next decision time step t = 4. This transition process is
the foundation for the subsequent description of the triple-MDP. The
detailed formulation of the triple-MDP is presented as follows:

4.3.1. Action sets

The action sets in MARL are crucial as they delineate the scope of
decisions agents can execute, directly impacting their ability to explore
environments, learn knowledge, and optimize policies in complex en-
vironments. These agents Agent;, Agenty and Agentr have independent
action set at decision time step t: .«7;(t), #/u(t), and .//5(t), respectively.
At the initial decision time step t = 0, the first operation of each job is
ready for processing. The action set .«/;(t) involved the dispatching of n
jobs, and as the decision-making progresses, the operations of the jobs
are gradually scheduled, leading to a reduction of the action set .«/;(t).
When the action set .2/,(t) is empty, it indicates that all jobs have been
fully processed and signifies the end of scheduling. The action set .«/F(t)
involved allocating of available factories, allowing each job to be
assigned to the most suitable factory for processing, and the action set
#/u(t) determines the set of eligible machines for the execution of the
operation Oy of the job I; determined by the decision action a; € .«/,(t)
of Agent;. Here, O;; refers to the operation of job I; that is available for
processing at the decision time step t. Meanwhile, the action set .« p(t) is
further expanded by incorporating the relevant actions for selecting
each speed level V, € V of machines and adapting the relevant features
to the speed level V,. For the states at the decision time step t = 3 in
Fig. 8, the action sets.2/,;(3), .#/r(3), and ./ (3) with their corresponding
feature mappings are listed in Tables 5-7, where details of the action set
/m(3) with speed level V3 are given in Table 7.
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4.3.2. State representation

The state representation is crucial in MARL, and capturing critical
characteristics and dynamics from the triple-MDP allows agents to learn
policies efficiently and suitably coordinate their behaviors, thus deter-
mining how agents interpret and respond to the potential actions with
others. At decision time step t, the state s; can be represented as s; =
(577,87 st st sE). 87" = [CPY! (1), TPTY' (1),0CTY" (¢), PDY" (t)
1oy CPO1(8), TPT? (t), OCT (), PD%1 (1)) € S and s> =  [CPV2(t),
TPT{2 (1), OCT{2 (¢) PDY2 (t). .., CPY: (1), TPTY2 (1), OCTY: (1) PD (1)] € S32
represent the feature mappings of each action @/ in the action set .«/(t),
which consist of the following features:

(1) CP{*(t) denotes the completion states of all operations of job ; at
the decision time step t.

1,ifjobLisdone,

0, otherwise. @7)

cpre(6) = cpr (0= {

(2) TPT{'(t) represents the average fuzzy processing time of opera-
tion Oy for all available machines, where operation O;; is processable
operation for job I; at the decision time step t. TPT{? indicates the
average fuzzy EC for processing operation O;; on available machines,
calculated as:

1 ~
TPT{ (t) = i (28)
= |UM1,,|kE%; Peis
TPT!*(t) = TPT! (t) x PP. (29

(3) OCT{*(t) denotes the fuzzy completion time of the predecessor
operation O;;_; for operation O at the decision time step t. If O;; has no
predecessor, then OCT{* (t) = 0. Similarly, OCT{*(t) = OCT{*(t).

(4) PD{" (t) denotes the fuzzy processed time of job I; at the decision
time step t and PD{?(t) is calculated by PD{*(t) = PD{"(t) x PP.

The s""' = [UR]'(t),MCT}' <r>.,MPL’1“< ), PT{(t), ..., URZL,(2),
MCT.,y (), MPLYL,, (), P2 (1)) € Sp and s¢'" = [UR{* (), MCT{: (o),
MPLY (1), PT{* (t), .., UR{2,, (t), MCTZ2 (1), MPL{2,, (t), PT{2,, (b)) € Sif
represent the feature mappings of each action a in the action set ./ (t),
which contain the following features:

(€D) URf1 (t) indicates the utilization rate of machine Mf< with speed
level V, at the decision time step t, where the factory Fy is the
factory to which job I; belongs. The job I; is selected by Agent; via
the decision action a/ € ./,(t), and URJ?(t) = URY (¢).

(2) MCT{ (t) represents the fuzzy ready time of machine M’,: with
speed level V, at the decision time step t, and MCT(t) =
MCT{ (t).

(3) MPLY' (t) denotes the fuzzy load time of machine MZ with speed
level V, at the decision time step t, and MPL{*(t) = MPL{"(t) x
pPp.

(4) PT{ (t) refers to the fuzzy processing time of operation Oy of job
I; selected by the decision action a € .7;(t) of Agent; on the
machine M{( with speed level V, at the decision time step t, and
MPL}*(t) = MPLY* (t) x em, x PP.

The sf = [FPL,(t),SPD;(t), ..., FPLi(t),SPDy(t)] € Sr represents the
feature mappings of each action af in the action set.«/r(t), which consists

of two types of features:

(1) FPLs(t) denotes the fuzzy processing load of factory Fy at the
decision time step t.

FPL(t) Z MPL(t) (30)
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(a) Fuzzy Gantt charts before CPEES

(b) Fuzzy Gantt charts after CPEES

(¢) Machine speed after CPEES

Fig. 9. An example of the implementation of CPEES.

(2) SPDy(t) represents the predicted Cumax Obtained by performing a
complete pre-scheduling in factory F; for job I; selected by the
Agent; via the decision action a/ € +/;(t). The job I; is pre-
scheduled in factory F; by selecting the machine with the short-
est fuzzy processing time for each operation.

4.3.3. Reward function

The design of MARL’s rewards involves considering agents’ in-
teractions and making trade-offs between objectives to ensure that local
behavior is consistent with the global goal. The two agents Agent; and
Agenty share the same global goal of minimizing Cmax and TEC. The
operations to be processed are virtually scheduled, using the average
value of available fuzzy processing times as placeholders until all op-
erations are pre-scheduled, thus yielding the predicted solution 7 at
decision time step t. The reward r’M comprises two parts M- and
pM=vz Mg G (1) —Caax() and #M-"2 = TEC(n) — TEC(w),
where 7 is the expected solution at the decision time step t + 1. Since
Agent; handles the appropriate allocation of jobs to the factories, the
reward rf must keep a balance between the factory’s processing capacity
and efficiency. After Agenty assigning the job I; selected by Agent; via
al € /,(t) to factory Fy via af € ./(t), all unprocessed operations are
scheduled using the designed PDR, i.e., the earliest available operation
with the lowest load machine (EAO-LLM). The reward rf can be calcu-
latedasrf = — 3 |Cy(n) — Cp(n)].

1<f<f<l

State s3 = (s37', 55772, sy " s¥-"2 sf) illustrated in Fig. 8 as an
example. The unprocessed operations O; 3, O14, 021, O22, O23, O3,
O3 3 and O3 4 are pre-scheduled at the decision time step t = 3, resulting
in a feasible solution 7 with Cpax(7) = (15.2,27.6,48.2). The triple-MDP
transition from state s3 to state s4 based on the joint action A = (aé =2,
al =1,a¥ = 13), where the current processable operation O, of the
job I, (job index i is i = a} = 2) is processed on the machine Mé (ma-
chineindexkisk = (a¥|s) +1 =(13|5) + 1 = 3, and factory index f is f
= ag = 1) with the speed level V3 (speed level index visv = a’é” mods =
13 mod 5 = 3), resulting in the next state s4. At the decision time step t
= 4, the unprocessed operations are O; 3, O1 4, O22, O23, O32, O3 3 and
O3 4. Through virtual scheduling, a feasible solution 7 is yielded,
resulting in Cmax(#) = (14.2, 26.6, 47.2). The reward 73"

= Cimax () —Cmax(7) = (1,1,1) and the computation of reward rgM“”z

M_q,

follows a similar method to that of reward ré . In the process of

12

calculating reward r§, based on joint action A = (a} =2,d} =1,d¥ =
13), job I, is assigned to factory F,. Then, the EAO-LLM is used to all
unprocessed operations, resulting in a feasible solution #”. The reward r§
is calculated as 5 = — |Cy(a") — C1(a7)| = — |(6,9,11) — (7.2,14.6,
23.2)|= — (1.2,5.6,12.2).

4.4. Critical-path-based energy-efficient strategy

After decomposing the EE-FFJSP into a set of weighted objective
subproblems using the subproblem decomposition method, the sub-
problem SubPB;, can independently generate a solution, denoted as so-
lution &,. Collectively, the solutions obtained from all subproblems can
constitute the Pareto solution set. Although an appropriate balance
already exists between Cpax (77) and vaC(ﬂh), it is necessary to adjust the
speed levels of operations on non-critical paths for machines M,C to

further reduce ﬁ(ﬂh) (see Section 3.3). This section proposes an
effective critical-path-based-EES (CPEES), building upon Property 1 in
Section 3.3. The following outlines the detailed steps:

Step 1: Critical factories are identified, followed by the determina-
tion of critical paths within critical factories. In cases where multiple
critical paths exist, one path is randomly selected as the critical path.

Step 2: Determine the conditions for speed reduction by traversing
each operation O;; on non-critical paths to verify whether the speed-
down criteria are satisfied: (1) The fuzzy completion time of operation
0;; not exceeds the fuzzy start time of operation O;j.1. (2) The fuzzy
completion time of operation O;; not exceeds the fuzzy start time of the

next operation on the same machine. (3) The processing machine M{ for
operation O;; operates at a speed level V, € V that is higher than V.

Step 3: Calculate adjustable fuzzy time margins AT;; and UAT;; by
Eq. (24) and Eq. (25), respectively.

Step 4: Gradually reduce the processing speed level V, € V of
operation O;; on machine M{ to a level V,, € V, and continue the speed
level reduction until fy;; x smy —tx; x smy, > AT;;(orUAT;y) is satisfied.
After executing speed level adjustment, determine whether the critical
path has changed; If a change is detected, revert the speed level back to
V, and return to Step 2. Repeat this process until all operations on the
non-critical paths have been thoroughly checked.

As depicted in Fig. 9, this schematic illustrates the proposed CPEES,
based on the example in Fig. 2. Fig. 9(b) shows the Gantt chart after
CPEES implementation, while Fig. 9(c) displays the processing speed
level settings of each machine for every operation after executing
CPEES. In Fig. 9(a), factory F; is designated as the critical factory, with
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the critical path being (011,01 2,021,022,01 4). The related operation is
O:3 and the unrelated operations are Oy3, O31, O32, Os3, and Os 4.
However, only operations Os » and O3 3 meet the conditions in Step 2 for
speed adjustment. Following the implementation of CPEES, the speed
level vector yy, =(3,2,3,1,1,3,4,5,3,2,5] in 7 = (yp, ¥, ¥, Wy) is
transformed into wy =(3,2,3,1,1,3,4,5,4,3,5] through the speed
level reduction of O3, and Oss. TEC(n) was reduced from TEC(r) =
(320.6,571.0,883.6) to (302.6, 540, 845.6). The pseudocode for the
CPEES is given in Algorithm 2.

Algorithm 2. Critical-path-based energy-efficient strategy.
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optimization of multiple conflicting objectives and adapting to dynamic
objective weight changes. The MO-DQN algorithm effectively resolves
conflicts between competing objectives while yielding a diverse set of
Pareto solutions, thereby addressing the limitation of traditional
DQN-based method. The implementation of MO-DQN is elaborated on in
two key aspects: decision-making for actions and updating parameters
for networks.

According to subproblem decomposition method (see Section 4.1),
the EE-DFFJSP is decomposed into multiple subproblems (SubPB;, ...,
SubPBy, ..., SubPB,). Each subproblem is aimed at optimizing two ob-

jectives of Crax and TEC. Fi g. 10 provides an illustrative depiction for the

Input: Feasible solution 7z, .

1:  Decode the feasible solution 7z, (see Section 3.1). Set NOs = .
2:  Identify the critical factory as well as the critical path within critical factory.
3:  Sort all operations on norn-critical path in ascending order of completion time.
4:  Save all operations on non-critical path to NOs .

5: While NOs =< do

6: Select the first non-critical operation Q ; from NOs .

7 if O, ; meets the speed down conditions then

8: if Q j is related operation then

9: Calculate the AT; ; of O, ; by Eq. (24).

10: for v'=v+1to s do

11: if 7, xsmy 1 ; ;xsm, > AT, ; then

12: v=yv'—1.

13: end if

14: end for

15: end if

16: if O; ; is unrelated operation then

17: Calculate the UA];J of 011 by Eq. (25).

18: for v'=v+1 to s do

19: if fk’i’j X S, —fk,i’j xsm, >UAT; ; then

20: v=v-1.

21: end if

22: end for

23: end if

24: end if

25: Remove the current operation Q j from NOs .

26: end while

Output: Updated feasible solution 7, .

4.5. Multi-objective DQN algorithm

For EE-DFFJSP, two conflicting objectives TEC and Emax need to be
optimized cooperatively. Traditional DQN-based method select optimal
actions by estimating Q-values [67]. However, the single Q-value update
mechanism is inadequate for balancing two objectives, which makes
traditional DQN-based method difficult to find suitable solutions. This
limitation reduces the diversity of obtainable Pareto solutions and hin-
ders adaptability to dynamic changes in optimization objectives during
subproblem solving. To address this limitation, MACMNG employs an
MO-DQN algorithm during the training phase. In MO-DQN, the Q-values
for optimization objectives are aggregated using uniformly objective
weight vectors A (as detailed in Section 4.1), enabling the cooperative

13

decision-making of MO-DQN. The agent Agent; and Agenty; each contain
a corresponding network group, namely Net’ and Net", respectively.
Each network group consists of multiple subnets, referred to as
(SubNet], ..., SubNet;, ..., SubNet!) and (SubNet}!, ..., SubNet)!, ...,
SubNet), with the number of subnets corresponding to the total
number of subproblems. Each subnet SubNet; is responsible for
handling a specific subproblem SubPBy,. While all subnets share the same
structural design, they have independent network parameters, enabling
the learning of distinct policies corresponding to their respective sub-
problems. At decision time step t, the scheduling environment first ex-
tracts the states s;-”* and s;~"2. These state features are input into the
subnet SubNet; corresponding to the current subproblem SubPB;, within

the job agent’s network group Net’. After calculating the Q-values Q]!
and Q{“"Z for the two optimization objectives E‘max and TTEiC, the action a’
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Fig. 10. Schematic diagram for the decision-making of MO-DQN.

of the job agent Agent; is determined according to the action selecting
function defined in Eq. (31). Subsequently, it is determined whether the
selected job has already been assigned to a factory. If it has, the factory
agent Agentr directly outputs its action af, pointing to the assigned
factory. If not, the factory state features s' are extracted, and the factory
agent Agentp computes the Q-values Q; through its network to determine
action a using Eq. (32). Based on actions a and a , the machine states
sM-7t and M- at the decision time step ¢ are then extracted. These state

features are processed through the relevant subnet SubNet) in the
machine agent’s network group Net" to obtain Q-values Q' "' and
Q"-"2, and the machine agent’s action aM is selected according to Eq.

(33). These three actions collectively form the joint action A = (a/, af,
a), thereby completing the cooperative decision-making process.
al = argmax,c., (/1”1 -softmax (QJ <sf””1 ,a; HJh””‘))
(€3]
+ A42-softmax (Q{-"’2 (s{’“ ,a; 0’,{“’2 ) ) )
af = argmaxee.,Q:(sf, a;0) (32)
@ = argmaXee.y(y (ﬁzl -softmax (Qﬁ"“”l (s'tw""l , @ 0hM"‘">> 33

+ A% -softmax (Qﬁ"’*’/’2 (sﬁ""“ @O ) ) )

Here, 1" and 17* represent the objective weights for E‘mx and TEC of
SubPBy, respectively. The SoftMax function is used to the Q-values of
each action, ensuring that the selection probability of actions is biased
towards those with higher expected utility.

Since subnet SubNet; and subnet SubNet}! share the same structural
design and parameters update mechanism, they are collectively referred
to as subnet SubNet;, in the following discussion. Accordingly, their

corresponding states, actions, and rewards are represented using unified

notation; for instance, symbol s?* is used to denote both s!-** and s}"-"".

14

As illustrated in Fig. 11, ensure that SubNet; can optimize according to
Ap, the update of network parameters [0}, 67" ;0:2,0'22] must take into

account the comprehensive influence of Cpax and TEC. Building upon
the DQN-based method network update mechanism, a weighting
mechanism is introduced to better balance the two objectives Crpay and
TEC. Upon completion of the decision-making processes by Agent; or
Agenty, an experience tuple (s{*,s{?,a;, r{*,r{*,s{!,,s¢?,) is generated by
the scheduling environment and used to replace a corresponding sample
in the replay buffer. Subsequently, a batch of experiences is sampled to
compute the losses (L,, and L,,) associated with the two optimization
objectives E‘max and TAEZ‘, respectively, according to Eqs. (34)-(37). The
total weighted loss Ly, is then calculated by Eq. (38) and employed to
update the online Q-network parameters 7' and 6}. Every u update
iterations, the values of 8" and 6}* are copied to 64" and 6%?, respec-
tively, for updating the target Q-network parameters. The corresponding
pseudocode is detailed in Algorithm 3.

ygul = T[ + v {m( t+17argmaxae// t+1) Qt+1( Ser10 @ le) 0@1 ) (34)
y 2

L, = [E[( QU (st @ o)) ] (35)

yth =r{ +7Q¢2( 11 ATEMAX e oy (¢11) Qt+1( i1, @ ) 9/(/12 ) (36)

L,, = E[(7* — Q" (st*,a:67))"] G7)

Liota = /1? 'er +’1Z2 'L¢2 (38)

While performing network parameters [@,60] updates, the Agenty,
similar to its decision-making process, does not consider the influence of
weight vectors ;. Fig. 12 illustrates the update process of network pa-
rameters for Agentr. After the decision-making process of Agentr is
completed, the scheduling environment generates an experience tuple
(sf,af,rf,sF.;), which is used to replace a corresponding sample in the
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replay buffer. A batch of experiences is then sampled from the replay
buffer to compute the loss Ly according to Eq. (39) and Eq. (40), which is
subsequently used to update the online Q-network parameters 6. After
every u update iterations, the values of the online Q-network parameters
6 are used to update the target Q-network parameters @. The corre-
sponding pseudocode is provided in Algorithm 4. The overall training
process of the MACMNG is provided in Algorithm 5.

Ve =1f +rQe(sh,1, argmaxae v, (011)Qei1 (SE, 1, @ 6); 6) (39)
Ly = E[ (v — (s} d:0))"] (40)

The flowchart of the EE-DFFJSP using the proposed MACMNG is
illustrated in Fig. 13. First, the original EE-DFFJSP is decomposed into e

Applied Soft Computing 181 (2025) 113474

Algorithm 4. Updating network param eters of Agent”

Input: Network parameters [6,8']; Experience tuples (5! ,a/ 1", s/));
update frequency u'.

if s is terminal then

1
Calculate the y, =7, .
else
Calculate the y, by Eq. (39).
end if
Perform a gradient descent with L. by Eq. (40).

A A R cd e

Set 8 =6 every u’ steps.
Output Updated network parameters [6,6'].

Algorithm 5. Training the MACMNG via MO-DQN algorithm

Input: Agent, and Agent,, Network group Net’

Net™ ; Agenty ; Number of

episodes: H ; Uniformly objective weight vectors: 4, 4, ... 4,

1 Random initialize parameters [8,60'].
2 for h=1,....e do
3 Initialize SubNet; and SubNet,' by Algorithm 1.
4 for episode=1,...,H do
5: Generate an instance of EE-DFFJSP, denoted ED .
6 while £D not finish do
7 Collect experience (s~ , -7 a’ , M0 M0 g0 /02
8 Collect experience (57, sM-7 o/ /M2 /M2 stﬁfl 7 ,Afl 23,
9: Collect experience (st ,atF,rtF ,sm).
10: Update network parameters for SubNet,{ by Algorithm 3.
11: Update network parameters for SubNet,” by Algorithm 3.
12: Update network parameters for Agent; by Algorithm 4.
end while
14: end for
15: end for

Output: Agent,, Agent,, and Agent .

subproblems based on a subproblem decomposition method (see Section
4.1). Then, according to Algorithm 5, a set of randomly generated in-
stances is used to train the network parameters of Agent;, Agenty, and
Agentp. After the training phase is completed, the trained agents are
utilized to solve the e subproblems of the original EE-DFFJSP, resulting
in the final solution set denoted as II. The CPEES is performed for each
feasible solution in IT via Algorithm 2, and the Pareto solution set is
updated.

Algorithm 3. Updating network param eters of subnet SubNet;,

Input: Network parameters [6],6,";6{ 6, ]; Experience tuples (s ,

P2 J !Mva .JM«)z s7
ST

s, sP2); 4y 5 update frequency u; 7.

if s/ and 57 is terminal then

1 it
2 | Calculate y =/ and y/? =" .

3 else

4: ‘ Calculate y{ and yf? by Eq. (34) and Eq. (36).
5:  endif

6:  Calculate losses L«a and L¢>z by Eq. (35) and Eq. (37).
7 Perform a gradient descent with L, by Eq. (38).

8 Set 6,"=6",6," =6 every u steps.

Output: Updated network parameters [6]",6,";6;>,6,*].
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5. Experimental comparisons and results analysis

This section provides a comprehensive analysis of the performance of
the MACMNG for solving EE-DFFJSP. Section 5.1 introduces in detail the
benchmark datasets, the experimental setup, and the hyperparameter
settings in MACMNG. Section 5.2 describes the performance evaluation
metrics for multi-objective algorithms. Section 5.3 presents a compar-
ative analysis of MACMNG and composite PDRs across all benchmark
instances. Section 5.4 provides an in-depth and detailed experimental
analysis that compares MACMNG with state-of-the-art multi-objective
algorithms and verifies the effectiveness and efficiency of MACMNG.

5.1. Experimental details
To evaluate the performance of MACMNG in solving the EE-DFFJSP,

three benchmark datasets from existing literature were selected for
validation:
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Fig. 11. Schematic diagram for updating network parameters of subnet SubNet;,.

@ The first dataset, derived from Lei et al. [62,68], comprises five in-
stances (Lei01~Lei05) with the number of jobs n € {10, 10, 10, 10,
15}, the number of operations {40,40,50,50,80}, and the number of
machines m = 10.

@ The second dataset, proposed by Gao et al. [69], includes eight in-
stances (Reman01~Reman08) with the number of jobs n € {5,8,10,
10,15,15,20,20}, the number of operations {23,64,81,100,171,185,
308,355}, and the number of machines m € {4,8,6,10,8,10,10,15}.

@ The third dataset, introduced by Li et al. [70], contains ten instances
(FMK01~FMK10) with the number of jobs n € {10,10,15,15,15,10,
20, 20, 20, 20}, the number of operations {55, 58,150, 90,106,150,
100,225,240,240}, and the number of machines. m € {6,6,8,8,4,15,
5,10,10,15}.

These three types of instances are designed for fuzzy FJSP (FFJSP),
were extended to adapt to the DFFJSP by incorporating the number of
factories | € {2, 3, 4}. These extended instances were renamed with
appended factory identifiers (e.g., FMK01-2 denotes the two-factory
extension of FMKO01). The machine speed configuration included five
discrete levels V = {1,2,3,4,5}, with corresponding speed coefficients
SM = {0.6,0.8,1,1.2,1.4} and energy consumption (EC) coefficients SE
= {8,5,3,2,1}. The fuzzy processing times for all jobs were derived from
the original benchmark instances, while actual fuzzy processing times
were determined by selected speed levels. The standard processing unit
EC is set at PP = 3 and the standby unit EC is set at SP = 1. For instances
Lei01 to Lei05 [62,68], all machines are regarded as available candidate
machines for processing, which implies a fully flexible production
environment. In contrast, for instances Reman01 to Reman08 [69] and
instances FMKO1 to FMK10 [70], each operation is assigned at least one
candidate machine for processing, ensuring partial flexibility in pro-
duction environment. All algorithms, including MACMNG, are imple-
mented in Python and executed on the workstation equipped with a 12th
Gen Intel® Core™ i5-12400F CPU and an NVIDIA GeForce RTX 4060
GPU. All algorithms are independently executed across 10 runs for each
instance, with each run having the same maximum elapsed CPU time of
I xmxnx 0.1 seconds. To validate the convergence and diversity of
Pareto solutions yielded by MACMNG, average results across 10 runs are
collected for comparative analysis using three performance metrics (see
Section 5.2). These benchmark datasets and MACMNG’s
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implementation details are publicly accessible at https://github.com/1-
xw/MACMNG. For MARL-based methods, the selection of hyper-
parameters not only affects the convergence speed of algorithms but also
directly impacts the quality of solutions. To ensure that MACMNG
achieves the best performance in addressing EE-DFFJSP, Table 8 pro-
vides a detailed explanation of the settings of each hyperparameter.

5.2. Performance metrics

To comprehensively evaluate the performance of MACMNG and
comparative algorithms, three widely adopted performance metrics are
employed to assess the quality and diversity of the obtained Pareto so-
lutions:

(1) Hypervolume (HV) [71]: This metric measures the volume of the
objective space spanned by the Pareto front (PF) relative to a
predefined reference point. A larger HV value indicates that the
solution set is closer to the ideal Pareto front (PF*) and exhibits
superior distribution uniformity. Here, PF is a set of the Pareto
solutions obtained by an algorithm, and PF* is the reference set of
the Pareto solutions, which is formed by combining all sets of
Pareto solutions from all algorithms. The HV is calculated as:

HV(PF,Prs) = U V(i,Pry), 41
icPF
where P = (1,1) is defined as the reference point and v(i, Pref)
represents the hypervolume enclosed between the reference point
Prs and the i — th solution in the Pareto front PF.

(2) Generational distance (GD): This metric quantifies the average
minimum Euclidean distance from the obtained PF to PF*. A
smaller GD value implies that the solution set is closer to the ideal
Pareto front PF*. The GD is formulated as:

1 e

—— " dist(i, PF*)?
Prl 2+

GD(PF,PF*) = 42)

where dist(i, PF*) represents the Euclidean distance between the
i — th solution in PF and its nearest neighbor solution in PF*.
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Fig. 12. Schematic diagram for updating network parameters of Agenty.
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Decompose the EE-DFFJSP into e subproblems

PB = (SubPB,,...,SubPB,,...,SubPB,) based on
the subproble decomposition method (Section 4.1),

Subproblem
Decomposition

Ap,..., Ae) and set h =1, where A e (1,...,e)

Randomly initialize network parameters for

Agentr . Initialize SubNet;{ and SubNet;ﬂ” of

!

Let H denote training epoch
H).

and set i =1, where i e (1,...,

\ 4

Randomly generate training data and initialize

energy-efficient distributed fuzzy flexible job
shop scheduling environment.

v

The Agenty, Agent; and Agent), collectively

determine a joint action 4 = (a,J,a,F,a,M).

v
),

(- . . o
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!

[Inltlahze the objective weight vectors 4 = (llj

Agent; and Agent,, according to Algorithm 1.
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Mo gl Iy (sMo sM oM Mo — according to Algorithm 3 and Algorithm 4,
respectively.
JM(/)Z ‘s‘ll‘;[l‘”1 st+1 )and (st :at >t »st+1) P Y

[ é’r]t]éél’-{i&ﬂfﬁés'e?i

energy-efficient strategy
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Perform CPEES via Algorithm 2 for each feasible
solution in 11, and update the Pareto solution set.

Solve the e subproblems using the trained Agent; ,
Agenty,, and Agent;- to obtain the solution set TT.

Check whether /2 > e

Start training the next subnet subnet, ;.
Seth=h+1.

been processed

Fig. 13. The flowchart of MACMNG for EE-DFFJSP.

Table 8
Hyperparameters details.

Hyperparameter Symbol (value)
Number of subproblems e =101
Uniformly objective weight vectors A =(1,0],...,[0,1])
Number of hidden layers 2

Number of neurons in the hidden layer 512

Learning rate r = 0.00001
Discount factor y =09
Exploration rate e =01

Target network update frequency u=10,w =10
Experience replays buffer size 200

Minimum sample size 50

Batch size 32

(3) Inverted generational distance (IGD): The IGD evaluates the
average minimum distance from PF* to PF, serving as a dual
measure to GD. A smaller IGD value implies that PF is not only
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closer to PF* but also has comprehensive coverage. The IGD is
defined as:

IGD(PF, PF*) = (43)

where dist(i, PF) is the Euclidean distance between the i — th solution in
ideal Pareto front PF* and its closest counterpart in PF.

5.3. Comparison of MACMNG with effective PDRs

To evaluate the effectiveness of MACMNG, a comparative analysis
was conducted against three state-of-the-art composite priority dis-
patching rules (PDRs) [50]: FIFO+EET, MWKR+EET, and
MOPNR-+EET. Given that these composite PDRs are designed to opti-
mize the makespan objective (E‘max), these comparisons focused on
contrasting the Pareto solutions yielded by MACMNG (with minimal
Cumax) against those produced by PDRs that achieve the minimization of
Cumax. It is noted that the total energy consumption (TEC) for all solutions
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Table 12

Statistical results of MACMNG versus other comparison algorithms on HV metric for two-factory instances.
Instances MOEA/D NSGA-II NSGA-III KCA MMMA KBEA TSKEA MACMNG
Lei0l — 2 0.087531(+) 0.494092(+) 0.227097(+) 0.032214(+) 0.074568(+) 0.385463(+) 0.173635(+) 0.690154
Lei02 — 2 0.324517(+) 0.741414(+) 0.521762(+) 0.308014(+) 0.220847(+) 0.669506(+) 0.318517(+) 0.793409
Lei03 — 2 0.320653(+) 0.576085(+) 0.502819(+) 0.133029(+) 0.206711(+) 0.565053(+) 0.300827(+) 0.824267
Lei04 — 2 0.281270(+) 0.513076(+) 0.371261(+) 0.300834(+) 0.328726(+) 0.339419(+) 0.116377(+) 0.758543
Lei05 — 2 0.030242(+) 0.279992(+) 0.052692(+) 0.005497(+) 0.000000(+) 0.372213(+) 0.091587(+) 0.554593
FMKO1 — 2 0.156262(+) 0.402439(+) 0.186110(+) 0.149997(+) 0.155291(+) 0.424252(+) 0.388192(+) 0.726711
FMKO02 — 2 0.536725(+) 0.461744(+) 0.355097(+) 0.461101(+) 0.401693(+) 0.463217(+) 0.367246(+) 0.842717
FMKO03 — 2 0.141642(+) 0.145938(+) 0.100767(+) 0.283566(+) 0.187103(+) 0.229547(+) 0.018089(+) 0.645952
FMKO04 — 2 0.000000(+) 0.258894(+) 0.012447(+) 0.012157(+) 0.000000(+) 0.047685(+) 0.012664(+) 0.638268
FMKO5 — 2 0.000000(+) 0.281305(+) 0.176642(+) 0.040635(+) 0.000000(+) 0.408618(+) 0.203358(+) 0.662474
FMKO06 — 2 0.000000(+) 0.149626(+) 0.000000(+) 0.000000(+) 0.000000(+) 0.393899(+) 0.259619(+) 0.609442
FMKO07 — 2 0.022587(+) 0.288010(+) 0.186896(+) 0.049545(+) 0.005688(+) 0.308130(+) 0.199766(+) 0.661085
FMKO08 — 2 0.347167(+) 0.481231(+) 0.408340(+) 0.248606(+) 0.145555(+) 0.527104(+) 0.519127(+) 0.812578
FMKO09 — 2 0.051364(+) 0.127373(+) 0.000000(+) 0.000000(+) 0.000000(+) 0.296051(+) 0.096846 (+) 0.525400
FMK10 — 2 0.198360(+) 0.363466(+) 0.228333(+) 0.189935(+) 0.228818(+) 0.504746(+) 0.215453(+) 0.757637
Reman01 — 2 0.000000(+) 0.342234(+) 0.214625(+) 0.019404(+) 0.000000(+) 0.349722(+) 0.168641(+) 0.534985
Reman02 — 2 0.111784(+) 0.397879(+) 0.167797(+) 0.004857(+) 0.002053(+) 0.491083(+) 0.152674(+) 0.569030
Reman03 — 2 0.043863(+) 0.287209(+) 0.095877(+) 0.004460(+) 0.013796(+) 0.292175(+) 0.289605(+) 0.670915
Reman04 — 2 0.398594(+) 0.591861(+) 0.443119(+) 0.252853(+) 0.302045(+) 0.666416(+) 0.548974(+) 0.861894
Reman05 — 2 0.269665(+) 0.347437(+) 0.266390(+) 0.033443(+) 0.000000(+) 0.597041(+) 0.399246(+) 0.718405
Reman06 — 2 0.333678(+) 0.560409(+) 0.444461(+) 0.219856(+) 0.290382(+) 0.693921(+) 0.452916(+) 0.758776
Reman07 — 2 0.367455(+) 0.512598(+) 0.366114(+) 0.041216(+) 0.266424(+) 0.702518(+) 0.412017(+) 0.735358
Reman08 — 2 0.297619(+) 0.549923(+) 0.430505(+) 0.000000(+) 0.000000(+) 0.748972(-) 0.197493(+) 0.641472

+/~/ - 23/0/0 23/0/0 23/0/0 23/0/0 23/0/0 22/0/1 23/0/0

Table 13

Statistical results of MACMNG versus other comparison algorithms on HV metric for three-factory instances.
Instances MOEA/D NSGA-II NSGA-III KCA MMMA KBEA TSKEA MACMNG
Lei01 — 3 0.140213(+) 0.445011(+) 0.214870(+) 0.208752(+) 0.155451(+) 0.342550(+) 0.147323(+) 0.703619
Lei02 — 3 0.128179(+) 0.390151(+) 0.208021(+) 0.310107(+) 0.159999(+) 0.482138(+) 0.225019(+) 0.724377
Lei03 — 3 0.019124(+) 0.417853(+) 0.298453(+) 0.064168(+) 0.133425(+) 0.368243(+) 0.396846(+) 0.627037
Lei04 — 3 0.203271(+) 0.395737(+) 0.338524(+) 0.047453(+) 0.128111(+) 0.285065(+) 0.379935(+) 0.611446
Lei05 — 3 0.056826(+) 0.323051(+) 0.087202(+) 0.072144(+) 0.000000(+) 0.291098(+) 0.123226(+) 0.694067
FMKO1 — 3 0.066447(+) 0.324986(+) 0.320336(+) 0.200127(+) 0.284140(+) 0.385879(+) 0.309410(+) 0.656338
FMKO02 — 3 0.038507(+) 0.452840(+) 0.137527(+) 0.152822(+) 0.009851(+) 0.371761(+) 0.257815(+) 0.695251
FMKO03 — 3 0.000000(+) 0.219129(+) 0.040590(+) 0.000000(+) 0.000000(+) 0.317194(+) 0.002611(+) 0.729323
FMK04 — 3 0.000000(+) 0.235967(+) 0.000000(+) 0.000000(+) 0.000000(+) 0.128668(+) 0.159073(+) 0.668069
FMKO5 — 3 0.000000(+) 0.263831(+) 0.086369(+) 0.073722(+) 0.000000(+) 0.311943(+) 0.049430(+) 0.523183
FMKO06 — 3 0.322734(+) 0.420386(+) 0.344467(+) 0.000000(+) 0.046956(+) 0.320985(+) 0.410652(+) 0.703107
FMKO07 — 3 0.000000(+) 0.271115(+) 0.353950(+) 0.033173(+) 0.000000(+) 0.374574(+) 0.037556(+) 0.712502
FMKO08 — 3 0.034436(+) 0.193935(+) 0.000000(+) 0.000000(+) 0.000000(+) 0.401938(+) 0.210793(+) 0.703601
FMKO09 — 3 0.151457(+) 0.511366(+) 0.385489(+) 0.164802(+) 0.152155(+) 0.555250(+) 0.434625(+) 0.700726
FMK10 -3 0.204032(+) 0.317740(+) 0.258919(+) 0.112299(+) 0.061974(+) 0.531354(+) 0.383294(+) 0.765737
Reman01 — 3 0.044415(+) 0.375968(+) 0.272282(+) 0.007610(+) 0.000000(+) 0.166244(+) 0.233415(+) 0.544736
Reman02 — 3 0.182185(+) 0.526979(+) 0.336493(+) 0.066417(+) 0.050750(+) 0.488679(+) 0.142682(+) 0.750562
Reman03 — 3 0.173956(+) 0.379461(+) 0.179022(+) 0.003990(+) 0.056357(+) 0.293678(+) 0.195842(+) 0.672932
Reman04 — 3 0.071811(+) 0.372966(+) 0.163252(+) 0.000098(+) 0.011457(+) 0.212705(+) 0.094239(+) 0.729142
Reman05 — 3 0.271574(+) 0.477071(+) 0.390259(+) 0.049277(+) 0.035320(+) 0.665350(+) 0.276801(+) 0.871616
Reman06 — 3 0.132063(+) 0.389655(+) 0.256215(+) 0.000000(+) 0.000000(+) 0.513640(+) 0.118687(+) 0.852399
Reman07 — 3 0.248437(+) 0.433718(+) 0.308485(+) 0.000000(+) 0.000000(+) 0.639640(+) 0.219063(+) 0.731447
Reman08 — 3 0.474395(+) 0.530443(+) 0.426874(+) 0.046042(+) 0.117430(+) 0.474957(+) 0.643091(+) 0.647709
+/~/- 23/0/0 23/0/0 23/0/0 23/0/0 23/0/0 23/0/0 23/0/0

algorithms on HV, GD, and IGD metrics are summarized in Tables 12-20,
grouped by the number of factories. The symbols ¢ 4+ °, ‘~’, and ‘ — °
indicate whether the baseline algorithms (i.e., MOEA/D, NSGA-II,
NSGA-III, KCA, MMMA, TSKEA, and KBEA) are inferior to, similar to,
or superior to the MACMNG, respectively. Furthermore, the Friedman
Test is utilized to provide an overall performance ranking of MACMNG
against other algorithms across all instances to determine the statistical
significance of MACMNG’s superiority.

As illustrated in Tables 12-20 and Fig. 14, MACMNG has demon-
strated statistically significant superiority over state-of-the-art multi-
objective optimization algorithms across various datasets and scenarios
with different numbers of factories, consistently delivering superior re-
sults even in medium- and large-scale cases. In terms of HV and IGD
metrics, MACMNG achieves the best values in all instances, indicating
superior solution quality, diversity, and coverage of the Pareto front.

21

Although MACMNG is slightly less competitive in a few cases in terms of
GD metrics, its overall performance is still deemed to be the best among
all metrics. Specifically, MACMNG yields the highest HV values, indi-
cating superior convergence and diversity, simultaneously achieving the
lowest GD and IGD values, reflecting the fact that the solutions found by
MACMNG are closer to the true Pareto front (PF*). Furthermore,
MACMNG also exhibits remarkable stability, which is a highly desirable
property for its practical multi-objective scheduling applications. As
shown in Table 21 the Wilcoxon Signed-Rank Test results further vali-
date MACMNG'’s superiority over its baseline counterparts, with p —
values < 0.05 indicating statistically significant differences. Here, the
notation R* denotes the sum of positive ranks, which corresponds to
instances that MACMNG outperforms its competitors; while R~ repre-
sents the sum of negative ranks, reflecting instances that all baseline
algorithms outperform MACMNG. The consistently higher R* and lower
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Table 14

Statistical results of MACMNG versus other comparison algorithms on HV metric for four-factory instances.
Instances MOEA/D NSGA-II NSGA-III KCA MMMA KBEA TSKEA MACMNG
Lei01 — 4 0.024379(+) 0.494640(+) 0.241569(+) 0.111834(+) 0.024881(+) 0.416402(+) 0.453951(+) 0.684065
Lei02 — 4 0.113313(+) 0.611337(-) 0.212003(+) 0.061314(+) 0.000000(+) 0.464292(+) 0.144726(+) 0.476064
Lei03 — 4 0.227950(+) 0.578064(-) 0.431874(+) 0.000000(+) 0.090249(+) 0.209650(+) 0.273726(+) 0.453617
Lei04 — 4 0.276406(+) 0.669603(-) 0.470494(+) 0.000000(+) 0.000000(+) 0.500128(-) 0.313963(+) 0.482131
Lei05 — 4 0.000000(+) 0.302039(+) 0.233041(+) 0.000000(+) 0.000000(+) 0.211939(+) 0.142523(+) 0.484159
FMKO1 — 4 0.000000(+) 0.343751(+) 0.000000(+) 0.000000(+) 0.000000(+) 0.370402(+) 0.297324(+) 0.765854
FMKO02 — 4 0.190992(+) 0.463874(+) 0.451150(+) 0.192845(+) 0.318614(+) 0.305756(+) 0.481784(+) 0.683297
FMKO03 — 4 0.000000(+) 0.199589(+) 0.000000(+) 0.000000(+) 0.000000(+) 0.377679(+) 0.212088(+) 0.705123
FMKO04 — 4 0.000000(+) 0.330738(+) 0.135648(+) 0.000000(+) 0.000000(+) 0.414983(+) 0.203957(+) 0.725346
FMKO5 — 4 0.000000(+) 0.190716(+) 0.048415(+) 0.047531(+) 0.000000(+) 0.331191(+) 0.263917(+) 0.601520
FMKO06 — 4 0.021675(+) 0.215988(+) 0.066125(+) 0.000000(+) 0.000000(+) 0.363338(+) 0.031554(+) 0.600555
FMKO07 — 4 0.037610(+) 0.261092(+) 0.035879(+) 0.000000(+) 0.000000(+) 0.296379(+) 0.168628(+) 0.658522
FMKO08 — 4 0.000000(+) 0.064155(+) 0.000000(+) 0.000000(+) 0.000000(+) 0.142196(+) 0.302545(+) 0.684858
FMKO09 — 4 0.000000 (+) 0.267329(+) 0.000000(+) 0.000000(+) 0.000000(+) 0.346433(+) 0.091289(+) 0.575558
FMK10 — 4 0.000000(+) 0.000000(+) 0.000000(+) 0.000000(+) 0.000000(+) 0.245899(+) 0.136216(+) 0.508342
Reman01 — 4 0.041059(+) 0.482212(+) 0.336083(+) 0.087747(+) 0.144142(+) 0.464270(+) 0.250964(+) 0.663708
Reman02 — 4 0.000000(+) 0.448362(+) 0.179424(+) 0.021424(+) 0.000000(+) 0.436868(+) 0.287350(+) 0.634532
Reman03 — 4 0.000000(+) 0.238522(+) 0.040507(+) 0.000000(+) 0.000000(+) 0.328602(+) 0.293428(+) 0.692838
Reman04 — 4 0.131898(+) 0.449824(+) 0.151383(+) 0.000000(+) 0.000000(+) 0.160359(+) 0.203153(+) 0.638720
Reman05 — 4 0.249610(+) 0.397067(+) 0.238978(+) 0.185413(+) 0.232936(+) 0.463852(+) 0.435041(+) 0.811389
Reman06 — 4 0.074977(+) 0.402865(+) 0.229811(+) 0.000000(+) 0.114053(+) 0.448748(+) 0.344117(+) 0.724775
Reman07 — 4 0.000000(+) 0.101888(+) 0.000000(+) 0.000000(+) 0.002480(+) 0.240265(+) 0.157030(+) 0.449302
Reman08 — 4 0.193243(+) 0.301290(+) 0.218624(+) 0.011574(+) 0.000000(+) 0.392357(+) 0.291082(+) 0.449102

+/~/- 23/0/0 20/0/3 23/0/0 23/0/0 23/0/0 22/0/1 23/0/0

Table 15

Statistical results of MACMNG versus other comparison algorithms on GD metric for two-factory instances.
Instances MOEA/D NSGA-II NSGA-III KCA MMMA KBEA TSKEA MACMNG
Lei01 — 2 0.613850(+) 0.332633(+) 0.363106(+) 0.337757(+) 0.402369(+) 0.463351(+) 0.202689(+) 0.000000
Lei02 — 2 0.450926(+) 0.150930(+) 0.244405(+) 0.150265(+) 0.333575(+) 0.262744(+) 0.146900(+) 0.000000
Lei03 — 2 0.381711(+) 0.109262(+) 0.269688(+) 0.235516(+) 0.387688(+) 0.226392(+) 0.137948(+) 0.000000
Lei04 — 2 0.393444(+) 0.072885(+) 0.104940(+) 0.160861(+) 0.173878(+) 0.274827(+) 0.185897(+) 0.006771
Lei05 — 2 0.382673(+) 0.133679(+) 0.293938(+) 0.616022(+) 0.521176(+) 0.125044(+) 0.272483(+) 0.000000
FMKO1 — 2 0.355438(+) 0.227441(+) 0.304265(+) 0.385562(+) 0.435524(+) 0.177410(+) 0.174347(+) 0.000000
FMKO02 — 2 0.157583(+) 0.120509(+) 0.161600(+) 0.181520(+) 0.247094(+) 0.425619(+) 0.092873(+) 0.000000
FMKO03 — 2 0.324209(+) 0.193448(+) 0.196468(+) 0.349734(+) 0.298153(+) 0.709920(+) 0.425078(+) 0.000000
FMK04 — 2 0.928590(+) 0.266978(+) 0.505554(+) 0.524774(+) 0.840276(+) 0.887235(+) 0.335724(+) 0.000000
FMKO5 — 2 0.575921(+) 0.152370(+) 0.169961(+) 0.386193(+) 0.501280(+) 0.300983(+) 0.164486(+) 0.000000
FMKO06 — 2 0.431380(+) 0.115795(+) 0.243604(+) 0.810566(+) 0.661986(+) 0.436197(+) 0.046406(+) 0.023633
FMKO07 — 2 0.490244(+) 0.102246(+) 0.161341(+) 0.530518(+) 0.474064(+) 0.502575(+) 0.165729(+) 0.000000
FMKO08 — 2 0.273012(+) 0.121073(+) 0.208557(+) 0.431033(+) 0.359156(+) 0.148996(+) 0.133382(+) 0.000000
FMKO09 — 2 0.569490(+) 0.204889(+) 0.346404(+) 0.527295(+) 0.748245(+) 0.378660(+) 0.197409(+) 0.000000
FMK10 — 2 0.183060(+) 0.041106(+) 0.051792(+) 0.363090(+) 0.267812(+) 0.133114(+) 0.057005(+) 0.000000
Reman01 — 2 0.499696(+) 0.290682(+) 0.394322(+) 0.541965(+) 0.757197(+) 0.154751(+) 0.235884(+) 0.000000
Reman02 — 2 0.344084(+) 0.120488(-) 0.170174(-) 0.595985(+) 0.739059(+) 0.017760(-) 0.193262(-) 0.275595
Reman03 — 2 0.440491(+) 0.181211(+) 0.290267(+) 0.722202(+) 0.719972(+) 0.225720(+) 0.136614(+) 0.000000
Reman04 — 2 0.158831(+) 0.070026(+) 0.101051(+) 0.436251(+) 0.371501(+) 0.076036(+) 0.051864(+) 0.000000
Reman05 — 2 0.160100(+) 0.030277(+) 0.035960(+) 0.660341(+) 0.379874(+) 0.071948(+) 0.075945(+) 0.009202
Reman06 — 2 0.222162(+) 0.004103(-) 0.081290(+) 0.471133(+) 0.261364(+) 0.019109(+) 0.046403(+) 0.017816
Reman07 — 2 0.091777(+) 0.000000(-) 0.058831(+) 0.652870(+) 0.236733(+) 0.069938(+) 0.078799(+) 0.017525
Reman08 — 2 0.207935(+) 0.014514(-) 0.086049(-) 0.901182(+) 0.503897(+) 0.000000(-) 0.197606(+) 0.107712

+/~/ - 23/0/0 19/0/4 21/0/2 23/0/0 23/0/0 21/0/2 22/0/1
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Table 16

Statistical results of MACMNG versus other comparison algorithms on GD metric for three-factory instances.
Instances MOEA/D NSGA-II NSGA-III KCA MMMA KBEA TSKEA MACMNG
Lei01 — 3 0.505169(+) 0.204777(+) 0.446991(+) 0.157390(+) 0.268286(+) 0.431469(+) 0.168857(+) 0.000000
Lei02 — 3 0.516363(+) 0.268382(+) 0.434028(+) 0.206147(+) 0.331547(+) 0.341359(+) 0.136541(+) 0.000000
Lei03 — 3 0.549768(+) 0.157783(+) 0.171643(+) 0.509101(+) 0.293602(+) 0.239180(+) 0.116873(+) 0.000000
Lei04 — 3 0.551210(+) 0.169588(+) 0.319355(+) 0.420931(+) 0.278568(+) 0.411597(+) 0.139270(+) 0.000000
Lei05 — 3 0.567777(+) 0.170537(+) 0.462369(+) 0.554236(+) 0.581392(+) 0.329988(+) 0.228981(+) 0.000000
FMKO1 — 3 0.416677(+) 0.250175(+) 0.213964(+) 0.374016(+) 0.303217(+) 0.206339(+) 0.278865(+) 0.000000
FMKO02 — 3 0.390581(+) 0.114849(+) 0.252612(+) 0.488652(+) 0.507989(+) 0.294353(+) 0.036592(+) 0.000000
FMKO03 — 3 0.527116(+) 0.233080(+) 0.282011(+) 0.854081(+) 0.595528(+) 0.356481(+) 0.285226(+) 0.000000
FMK04 — 3 0.899630(+) 0.320477(+) 0.475870(+) 0.751464(+) 0.872460(+) 0.704126(+) 0.353527(+) 0.000000
FMKO5 — 3 0.738602(+) 0.237908(+) 0.363560(+) 0.552408(+) 0.707072(+) 0.167607(+) 0.302768(+) 0.000000
FMKO06 — 3 0.241076(+) 0.195767(+) 0.232399(+) 0.944696(+) 0.660048(+) 0.234782(+) 0.094025(+) 0.000000
FMKO07 — 3 0.503021(+) 0.108410(+) 0.106970(+) 0.577444(+) 0.431849(+) 0.125554(+) 0.120828(+) 0.000000
FMKO08 — 3 0.463937(+) 0.197165(+) 0.146304(+) 0.194471(+) 0.454154(+) 0.110734(+) 0.158405(+) 0.000000
FMKO09 — 3 0.475040(+) 0.097347(+) 0.098737(+) 0.408176(+) 0.376741(+) 0.156626(+) 0.078818(+) 0.000000
FMK10 - 3 0.295119(+) 0.134224(+) 0.137228(+) 0.560613(+) 0.284774(+) 0.080787(+) 0.064418(+) 0.001614
Reman01 — 3 0.516788(+) 0.300650(+) 0.359669(+) 0.613982(+) 0.784746(+) 0.345143(+) 0.251699(+) 0.000000
Reman02 — 3 0.333290(+) 0.125892(+) 0.210016(+) 0.567703(+) 0.640726(+) 0.159280(+) 0.235646(+) 0.000000
Reman03 — 3 0.291913(+) 0.131665(+) 0.224284(+) 0.838287(+) 0.449486(+) 0.290936(+) 0.149891(+) 0.000000
Reman04 — 3 0.349751(+) 0.081840(+) 0.148989(+) 0.758472(+) 0.425286(+) 0.129105(+) 0.176173(+) 0.000000
Reman05 — 3 0.171383(+) 0.078694(+) 0.057648(+) 0.649102(+) 0.411243(+) 0.080300(+) 0.059355(+) 0.000000
Reman06 — 3 0.210470(+) 0.131200(+) 0.106830(+) 0.648348(+) 0.347407(+) 0.185126(+) 0.129478(+) 0.000000
Reman07 — 3 0.205761(+) 0.000000(-) 0.085846(-) 0.888761(+) 0.503802(+) 0.034924(-) 0.141483(+) 0.111704
Reman08 — 3 0.140445(+) 0.065598(-) 0.010440(-) 0.610210(+) 0.448566(+) 0.128733(+) 0.000000(-) 0.123417

+/~/ - 23/0/0 21/0/2 21/0/2 23/0/0 23/0/0 22/0/1 22/0/1

Table 17

Statistical results of MACMNG versus other comparison algorithms on GD metric for four-factory instances.
Instances MOEA/D NSGA-II NSGA-III KCA MMMA KBEA TSKEA MACMNG
Lei0l — 4 0.655075(+) 0.184101(+) 0.373730(+) 0.509195(+) 0.550586(+) 0.083900(+) 0.088716(+) 0.006289
Lei02 — 4 0.598395(+) 0.221528(+) 0.458295(+) 0.371279(+) 0.619276(+) 0.404383(+) 0.113365(+) 0.000000
Lei03 — 4 0.404850(+) 0.032891(-) 0.070758(-) 0.793242(+) 0.562286(+) 0.221367(+) 0.128718(+) 0.077529
Lei04 — 4 0.394553(+) 0.099426(-) 0.213767(+) 0.634859(+) 0.777317(+) 0.212361(+) 0.129090(-) 0.162822
Lei05 — 4 0.848949(+) 0.301769(+) 0.271241(+) 0.945336(+) 0.756343(+) 0.287206(+) 0.293823(+) 0.000000
FMKO1 — 4 0.790487(+) 0.385491(+) 0.912348(+) 0.997257(+) 0.986987(+) 0.266235(+) 0.281375(+) 0.000000
FMKO02 — 4 0.313196(+) 0.153092(+) 0.132222(+) 0.393257(+) 0.258585(+) 0.256775(+) 0.141908(+) 0.030968
FMKO03 — 4 0.528948(+) 0.257443(+) 0.374395(+) 0.836415(+) 0.564624(+) 0.239727(+) 0.122896(+) 0.000000
FMKO04 — 4 0.809777(+) 0.233657(+) 0.398984(+) 0.790873(+) 0.768587(+) 0.154994(+) 0.152733(+) 0.000000
FMKO5 — 4 0.803499(+) 0.292247(+) 0.446961(+) 0.568710(+) 0.738957(+) 0.145882(+) 0.130679(+) 0.000000
FMKO06 — 4 0.294315(+) 0.132022(+) 0.267815(+) 0.782237(+) 0.423058(+) 0.119127(+) 0.148809(+) 0.000000
FMKO07 — 4 0.508197(+) 0.200048(+) 0.282623(+) 0.744133(+) 0.597229(+) 0.225657(+) 0.315864(+) 0.000000
FMKO08 — 4 0.729496(+) 0.307651(+) 0.510976(+) 0.775487(+) 0.797300(+) 0.409290(+) 0.168907(+) 0.000000
FMKO09 — 4 0.559376(+) 0.106750(+) 0.301557(+) 0.543694(+) 0.747309(+) 0.141415(+) 0.233883(+) 0.000000
FMK10 — 4 0.626772(+) 0.420758(+) 0.731689(+) 0.722771(+) 0.666480(+) 0.363364(+) 0.150566(+) 0.000000
Reman01 — 4 0.439263(+) 0.295247(+) 0.345779(+) 0.471939(+) 0.421137(+) 0.153569(+) 0.330256(+) 0.000000
Reman02 — 4 0.724874(+) 0.261485(+) 0.410612(+) 0.738434(+) 0.857047(+) 0.538682(+) 0.155753(+) 0.048854
Reman03 — 4 0.570860(+) 0.307647(+) 0.350396(+) 0.954803(+) 0.848105(+) 0.562666(+) 0.253797(+) 0.000000
Reman04 — 4 0.216101(+) 0.096768(+) 0.310036(+) 0.833621(+) 0.733811(+) 0.645044(+) 0.103983(+) 0.000000
Reman05 — 4 0.367231(+) 0.206421(+) 0.124809(+) 0.505543(+) 0.430234(+) 0.243322(+) 0.162043(+) 0.000000
Reman06 — 4 0.484433(+) 0.188109(+) 0.217116(+) 0.800385(+) 0.833843(+) 0.152051(+) 0.211874(+) 0.000000
Reman07 — 4 0.159755(+) 0.019877(+) 0.129293(+) 0.754758(+) 0.624850(+) 0.186807(+) 0.176804(+) 0.000000
Reman08 — 4 0.165927(-) 0.010756(-) 0.071263(-) 0.774911(+) 0.691413(+) 0.309836(+) 0.024669(-) 0.227839

+/~/ - 22/0/1 20/0/3 21/0/2 23/0/0 23/0/0 23/0/0 21/0/2
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Table 18

Statistical results of MACMNG versus other comparison algorithms on IGD metric for two-factory instances.
Instances MOEA/D NSGA-II NSGA-III KCA MMMA KBEA TSKEA MACMNG
Lei0l — 2 0.533975(+) 0.179299(+) 0.364857(+) 0.540691(+) 0.531414(+) 0.289412(+) 0.402491(+) 0.000000
Lei02 — 2 0.435304(+) 0.141379(+) 0.294426(+) 0.424837(+) 0.496850(+) 0.215639(+) 0.404909(+) 0.000000
Lei03 — 2 0.379515(+) 0.244705(+) 0.236562(+) 0.626168(+) 0.508976(+) 0.249146(+) 0.474622(+) 0.000000
Lei04 — 2 0.363158(+) 0.128124(+) 0.240189(+) 0.291322(+) 0.275058(+) 0.273129(+) 0.478203(+) 0.015208
Lei05 — 2 0.576870(+) 0.302654(+) 0.561725(+) 0.680226(+) 0.725859(+) 0.151705(+) 0.504644(+) 0.032531
FMKO01 — 2 0.510982(+) 0.261604(+) 0.473117(+) 0.496995(+) 0.501304(+) 0.260573(+) 0.292865(+) 0.000000
FMKO02 — 2 0.206758(+) 0.239164(+) 0.321351(+) 0.265965(+) 0.312058(+) 0.272139(+) 0.307776(+) 0.000000
FMKO03 — 2 0.491246(+) 0.445961(+) 0.520989(+) 0.379888(+) 0.422150(+) 0.410566(+) 0.577888(+) 0.000000
FMK04 — 2 0.901040(+) 0.396381(+) 0.639999(+) 0.652604(+) 0.928317(+) 0.560189(+) 0.571426(+) 0.000000
FMKO5 — 2 0.751025(+) 0.337995(+) 0.428852(+) 0.592429(+) 0.724326(+) 0.254604(+) 0.388409(+) 0.000000
FMKO06 — 2 0.706791(+) 0.430822(+) 0.604228(+) 0.920384(+) 0.785911(+) 0.193906(+) 0.310183(+) 0.011999
FMKO07 — 2 0.562905(+) 0.319739(+) 0.389645(+) 0.606350(+) 0.633040(+) 0.324557(+) 0.355930(+) 0.000000
FMKO08 — 2 0.390942(+) 0.327663(+) 0.359849(+) 0.470653(+) 0.574407(+) 0.197354(+) 0.295900(+) 0.065686
FMKOQ09 — 2 0.591202(+) 0.433755(+) 0.712877(+) 0.705885(+) 0.824455(+) 0.201127(+) 0.465398(+) 0.020297
FMK10 — 2 0.426853(+) 0.346155(+) 0.429571(+) 0.455395(+) 0.414321(+) 0.213012(+) 0.440766(+) 0.025849
Reman01 — 2 0.652764(+) 0.217887(+) 0.359705(+) 0.646939(+) 0.840811(+) 0.163922(+) 0.396124(+) 0.000000
Reman02 — 2 0.470588(+) 0.243703(+) 0.398024(+) 0.670402(+) 0.762384(+) 0.077830(+) 0.432907(+) 0.043810
Reman03 — 2 0.592085(+) 0.369341(+) 0.540669(+) 0.741295(+) 0.742740(+) 0.296338(+) 0.381216(+) 0.000000
Reman04 — 2 0.369969(+) 0.259520(+) 0.377223(+) 0.486267(+) 0.432348(+) 0.159514(+) 0.300826(+) 0.020644
Reman05 — 2 0.284434(+) 0.206400(+) 0.267774(+) 0.695450(+) 0.674944(+) 0.150227(+) 0.196465(+) 0.089671
Reman06 — 2 0.304915(+) 0.192011(+) 0.253776(+) 0.441545(+) 0.376855(+) 0.106216(+) 0.251220(+) 0.100102
Reman07 — 2 0.346893(+) 0.280390(+) 0.398229(+) 0.727886(+) 0.416112(+) 0.159376(+) 0.321221(+) 0.062476
Reman08 — 2 0.334845(+) 0.224975(-) 0.257152(+) 0.984664(+) 0.763491(+) 0.231018(-) 0.373285(+) 0.233621

+/~/- 23/0/0 22/0/1 23/0/0 23/0/0 23/0/0 22/0/1 23/0/0

Table 19

Statistical results of MACMNG versus other comparison algorithms on IGD metric for three-factory instances.
Instances MOEA/D NSGA-II NSGA-III KCA MMMA KBEA TSKEA MACMNG
Lei01 — 3 0.482582(+) 0.206979(+) 0.406968(+) 0.447616(+) 0.473414(+) 0.274107(+) 0.492600(+) 0.000000
Lei02 — 3 0.513029(+) 0.229169(+) 0.385133(+) 0.321642(+) 0.431864(+) 0.202736(+) 0.393755(+) 0.004366
Lei03 — 3 0.688933(+) 0.195187(+) 0.339990(+) 0.599691(+) 0.516419(+) 0.209304(+) 0.276232(+) 0.005004
Lei04 — 3 0.411945(+) 0.195822(+) 0.216808(+) 0.549981(+) 0.471892(+) 0.228350(+) 0.502402(+) 0.004546
Lei05 — 3 0.622780(+) 0.344129(+) 0.549828(+) 0.621766(+) 0.844234(+) 0.350917(+) 0.520628(+) 0.000000
FMKO1 — 3 0.554497(+) 0.310048(+) 0.312898(+) 0.479266(+) 0.335116(+) 0.188264(+) 0.311101(+) 0.000000
FMKO02 — 3 0.586804(+) 0.265422(+) 0.503230(+) 0.469877(+) 0.632000(+) 0.310081(+) 0.442554(+) 0.000000
FMKO03 — 3 0.682478(+) 0.403153(+) 0.572144(+) 0.967067(+) 0.811696(+) 0.322390(+) 0.614746(+) 0.000000
FMKO04 — 3 1.022100(+) 0.336460(+) 0.627698(+) 0.863471(+) 0.980529(+) 0.442009(+) 0.388660(+) 0.000000
FMKO5 — 3 0.847375(+) 0.365872(+) 0.508530(+) 0.587490(+) 0.862707(+) 0.270073(+) 0.522142(+) 0.000000
FMKO06 — 3 0.336887(+) 0.238446(+) 0.294906(+) 0.992782(+) 0.682136(+) 0.260606(+) 0.303688(+) 0.033250
FMKO07 — 3 0.800904(+) 0.400154(+) 0.365899(+) 0.697767(+) 0.802345(+) 0.303405(+) 0.644463(+) 0.000000
FMKO08 — 3 0.647138(+) 0.498342(+) 0.752006(+) 0.926422(+) 0.872731(+) 0.247709(+) 0.489978(+) 0.000000
FMKO09 — 3 0.514976(+) 0.261172(+) 0.396632(+) 0.517613(+) 0.525074(+) 0.102532(-) 0.343795(+) 0.104668
FMK10 - 3 0.460221(+) 0.391727(+) 0.448761(+) 0.579372(+) 0.625954(+) 0.233146(+) 0.409007(+) 0.028480
Reman01 — 3 0.530204(+) 0.176082(+) 0.266694(+) 0.666391(+) 0.870955(+) 0.324303(+) 0.301980(+) 0.041957
Reman02 — 3 0.473143(+) 0.197221(+) 0.318311(+) 0.660072(+) 0.630151(+) 0.178017(+) 0.533006(+) 0.000000
Reman03 — 3 0.411963(+) 0.251766(+) 0.411299(+) 0.810197(+) 0.577929(+) 0.284152(+) 0.412575(+) 0.000000
Reman04 — 3 0.568339(+) 0.346179(+) 0.518119(+) 0.783977(+) 0.695640(+) 0.451845(+) 0.583473(+) 0.000000
Reman05 — 3 0.500650(+) 0.400052(+) 0.453205(+) 0.774981(+) 0.715117(+) 0.203727(+) 0.528717(+) 0.087621
Reman06 — 3 0.572555(+) 0.362888(+) 0.475255(+) 0.901472(+) 0.923616(+) 0.216313(+) 0.591049(+) 0.049651
Reman07 — 3 0.390590(+) 0.290268(+) 0.385484(+) 0.945961(+) 0.705238(+) 0.133432(+) 0.439272(+) 0.106718
Reman08 — 3 0.212311(+) 0.212790(+) 0.308662(+) 0.691101(+) 0.531461(+) 0.204417(+) 0.242330(+) 0.194168

+/~/ - 23/0/0 23/0/0 23/0/0 23/0/0 23/0/0 22/0/1 23/0/0
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Table 20
Statistical results of MACMNG versus other comparison algorithms on IGD metric for four-factory instances.
Instances MOEA/D NSGA-II NSGA-III KCA MMMA KBEA TSKEA MACMNG
Lei0l — 4 0.693209(+) 0.111830(+) 0.361179(+) 0.548396(+) 0.677917(+) 0.219424(+) 0.194846(+) 0.030937
Lei02 — 4 0.530888(+) 0.048324(-) 0.386745(+) 0.562156(+) 0.779715(+) 0.189772(+) 0.470465(+) 0.176534
Lei03 — 4 0.340010(+) 0.036469(-) 0.201283(+) 0.878328(+) 0.518021(+) 0.286533(+) 0.335934(+) 0.158675
Lei04 — 4 0.412838(+) 0.049650(-) 0.249827(-) 0.924517(+) 0.929971(+) 0.158633(-) 0.449324(+) 0.276423
Lei05 — 4 0.926234(+) 0.201426(+) 0.271103(+) 0.960208(+) 0.848535(+) 0.288106(+) 0.358962(+) 0.000000
FMKO1 — 4 0.955864(+) 0.324135(+) 0.781751(+) 0.959721(+) 0.987733(+) 0.241574(+) 0.378007(+) 0.000000
FMKO02 — 4 0.397661(+) 0.170081(+) 0.177066(+) 0.546515(+) 0.322165(+) 0.221117(+) 0.216176(+) 0.012619
FMKO03 — 4 0.869015(+) 0.439206(+) 0.733141(+) 0.822819(+) 0.834450(+) 0.336659(+) 0.478480(+) 0.000000
FMKO04 — 4 0.814340(+) 0.299367(+) 0.478360(+) 0.689612(+) 0.933998(+) 0.184791(+) 0.406110(+) 0.000000
FMKO5 — 4 0.845196(+) 0.375121(+) 0.532446(+) 0.637898(+) 0.784390(+) 0.267007(+) 0.381562(+) 0.000000
FMKO06 — 4 0.606287(+) 0.414539(+) 0.602154(+) 0.793028(+) 0.798470(+) 0.190303(+) 0.683878(+) 0.000000
FMKO7 — 4 0.666763(+) 0.423304(+) 0.695297(+) 0.744536(+) 0.901574(+) 0.360597(+) 0.518743(+) 0.000000
FMKO08 — 4 0.715294(+) 0.508414(+) 0.728405(+) 0.790510(+) 0.766208(+) 0.458133(+) 0.315634(+) 0.000000
FMKO09 — 4 0.697904(+) 0.267392(+) 0.649259(+) 0.685933(+) 0.911289(+) 0.210140(+) 0.424645(+) 0.000000
FMK10 — 4 0.823280(+) 0.479976(+) 0.756676(+) 0.781348(+) 0.687927(+) 0.197433(+) 0.361833(+) 0.000000
Reman01 — 4 0.618731(+) 0.199573(+) 0.295730(+) 0.563550(+) 0.504519(+) 0.240536(+) 0.370486(+) 0.007495
Reman02 — 4 0.896668(+) 0.164437(+) 0.450131(+) 0.734762(+) 0.884498(+) 0.236255(+) 0.394529(+) 0.048041
Reman03 — 4 0.702020(+) 0.387431(+) 0.560119(+) 0.927009(+) 0.860319(+) 0.315389(+) 0.327372(+) 0.000000
Reman04 — 4 0.355610(+) 0.166989(+) 0.360778(+) 0.833003(+) 0.764824(+) 0.447268(+) 0.352894(+) 0.020542
Reman05 — 4 0.444605(+) 0.330360(+) 0.486198(+) 0.523713(+) 0.468015(+) 0.258598(+) 0.311834(+) 0.022168
Reman06 — 4 0.582006(+) 0.280475(+) 0.405102(+) 0.907548(+) 0.561877(+) 0.270488(+) 0.328099(+) 0.125730
Reman07 — 4 0.390426(+) 0.233903(+) 0.354941(+) 0.793420(+) 0.630871(+) 0.187328(+) 0.437334(+) 0.125094
Reman08 — 4 0.256097(+) 0.140602(-) 0.190276(-) 0.751622(+) 0.730771(+) 0.229663(-) 0.174053(-) 0.232759
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Fig. 14. Performance comparison of MACMNG with seven algorithms on metrics HV, GD, and IGD.
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Table 21

Results of Wilcoxon Test for MACMNG with all compared algorithms on HV, GD, and IGD metrics at = 0.05.
Algorithms HV GD IGD

R* R~ z p — value R* R z p — value R* R z p — value

MOEA/D 2415 0 7.219578 5.214926e—-13 2413 2 7.207620 5.693823e—-13 2415 0 7.219578 5.214926e—-13
NSGA-II 2394 21 7.094020 1.302714e—12 2276 139 6.388504 1.675162e—10 2357 58 6.872799 6.295432e—12
NSGA-III 2415 0 7.219578 5.214926e—13 2355 60 6.860841 6.845636e—12 2410 5 7.189683 6.494193e—13
KCA 2415 0 7.219578 5.214926e—-13 2415 0 7.219578 5.214926e—-13 2415 0 7.219578 5.214926e—-13
MMMA 2415 0 7.219578 5.214926e—-13 2415 0 7.219578 5.214926e—-13 2415 0 7.219578 5.214926e—13
KBEA 2405 10 7.159788 8.080178e—13 2355 60 6.860841 6.845636e—12 2396 19 7.105978 1.194736e—12
TSKEA 2415 0 7.219578 5.214926e—-13 2319 96 6.645599 3.019867e—-11 2413 2 7.207620 5.693833e—13

Table 22 6. Conclusions, limitations, and future research directions

Average Friedman rankings of all algorithms.

Algorithm HV — Ranking GD — Ranking IGD — Ranking
MACMNG 1.072464 1.333333 1.173913
MOEA/D 6.333333 6.376812 6.144928
NSGA-II 2.927536 2.840580 2.724638
NSGA-III 4.963768 4.159420 4.666667
KCA 6.739130 7.028986 6.942029
MMMA 6.934783 6.826087 7.057971
KBEA 2.710145 4.275362 2.637681
TSKEA 4.318841 3.159420 4.637681
p-value 1.172184e-76 9.526443e—-71 5.490583e—78

R~ values across all metrics (HV, GD, IGD) indicate that MACMNG’s
pervasive dominance. It is observed that the standardized test statistic Z
further corroborates these findings, with higher positive Z values
attesting to MACMNG’s superior performance. Table 22 summarizes the
Friedman Test rankings of all algorithms, where MACMNG ranks in the
top-performing position across all metrics. The Friedman test also shows
p — values < 0.05, providing further validation of the superiority of
MACMNG, delivering both stability and scalability.

As depicted in Fig. 15, the Pareto front distributions of MACMNG and
comparative algorithms are visualized across 12 benchmark instances,
demonstrating MACMNG'’s consistent dominance in solution quality and
diversity. It is observed that MACMNG always achieves superior Pareto
fronts across all test cases, outperforming baseline algorithms in both
convergence and coverage. Notably, MACMNG’s dynamic adaptation to
bi-objective optimization (Emax and vaC) during the iterative training
process is illustrated in Fig. 16, which shows how MACMNG adapts to
varying weights to solve subproblems effectively. To illustrate the de-
tails, here we take the training curve of the FMK01-2 case as an example.
The initial objective weight vector A; = (47",4]?) = (1,0) is iteratively
adjusted over 400 training epochs, with training of each subnet Subnet;,
undergoing 20-epoch cycles. The dashed section in the figure marks the
completion of the initial training phase for subnets Subnet; = (Subnet],
Subnet}!). As the weight vector A" gradually decreases, its corre-

sponding increases, while a higher weight vector A7* results in a lower
TEC.

The Fig. 17 presents a visual representation of the fuzzy Gantt charts
for instance FMKO3 — 2. Fig. 17(a) and (b) display the fuzzy Gantt charts
with the best Emax for each factory, yielding Emax values of
(62.6,96.4,126) and TEC values of (7782.6,11705.0,15187.0), respec-
tively. Fig. 17(c) and (d) illustrate the fuzzy Gantt charts fine-tuned for
TEC, resulting in the Cpay values of (147.0,209.0, 264.8) and TEC values
0f(4777.8,7070.0,9196.6). Furthermore, Fig. 18 provides an illustration
of the fuzzy Gantt charts for the instance Reman05 — 2, corresponding to
the best values for Cpax = (47.6,78.8,111.4) and TEC (2547.2,
4227.4,5796.6).
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The MACMNG framework introduced in this study has significant
advantages against traditional advanced approaches, demonstrating
robust adaptability and optimization potential for coping with complex
constraints and coupled correlations. The MACMNG is capable of
decomposing complex challenges into correlated subproblems and
creating subnetworks for cooperative parallel processing. Experimental
findings and statistical insights demonstrate that MACMNG outperforms
state-of-the-art multi-objective algorithms in terms of both economic
and energy efficiency criteria. However, as the number of subproblems
increases, the model’s internal subnets expand accordingly, resulting in
a sharp increase in storage requirements, which poses critical challenges
in resource-limited scenarios.

Future research directions should focus on several key aspects to
enhance MACMNG'’s efficiency and applicability. First, incorporating
GCNs and multi-scale attention mechanisms (MSAMs) into the sched-
uling environment can enhance MACMNG’s capacity to capture com-
plex interdependencies among critical features, thereby enriching multi-
state feature representation and multi-modal feature extraction.
Furthermore, investigating structural optimization of the DNNs and
lightweight surrogate models, particularly focusing on the design of
compact network group architectures, contributes to controlling the
complexity of the models, facilitates cooperative optimization across
network groups, significantly improving the effectiveness and compu-
tational efficiency of MACMNG.

In conclusion, cooperative optimization of multi-network groups for
distributed energy-efficient scheduling through the CTDE-based MARL
framework represents an emerging research direction, with current
research reports remaining nascent. Focusing on EE-DFFJSP within IToT-
enabled smart manufacturing systems, this study provides a solid
foundation and fresh perspective to promote future research and the
development of energy-efficient scheduling research in DFM
environments.
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