
Multi-agent cooperative multi-network group framework for 
energy-efficient distributed fuzzy flexible job shop scheduling problem

Zi-Qi Zhang a,b,*,1 , Xiao-Wei Li a,b,1, Bin Qian a,b,*, Huai-Ping Jin a,b ,  
Rong Hu a,b , Jian-Bo Yang c

a School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
b The Higher Educational Key Laboratory for Industrial Intelligence and Systems of Yunnan Province, Kunming University of Science and Technology, Kunming 650500, 
China
c Alliance Manchester Business School, The University of Manchester, Manchester M15 6PB, United Kingdom

H I G H L I G H T S

• Developed MILP model for EE-DFFJSP innovates by novel triple-MDP formulation.
• Introducing the MACMNG framework, multi-agents tackle triple-MDP with subnets.
• Decomposing EE-DFFJSP into subnets sharing experience and knowledge by DPTS.
• Balancing criteria in decision-making and network updates by MO-DQN for subnets.
• Experiments verify the superiority of MACMNG in both effectiveness and efficiency.
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A B S T R A C T

The increasing integration of industrial intelligence and the Industrial Internet of Things (IIoT) has promoted 
distributed flexible manufacturing (DFM) as a fundamental component of smart manufacturing systems. How
ever, the rising complexity in dynamic demands, production uncertainties, and the urgent need for energy ef
ficiency pose significant challenges. To address these challenges, this study investigates the energy-efficient 
distributed fuzzy flexible job shop scheduling problem (EE-DFFJSP), which aims to minimize both makespan and 
total energy consumption (TEC) in DFM environments. To tackle fuzzy uncertainties and complex coupling 
characteristics inherent in EE-DFFJSP, a multi-agent cooperative multi-network group (MACMNG) framework is 
proposed. First, a mixed-integer linear programming (MILP) model for EE-DFFJSP is formulated, followed by an 
analysis of the problem’s properties. A triple Markov decision process formulation adapted to the problem’s 
characteristics is designed, enabling problem decoupling and multi-agent decision-making through specific state 
representations and reward functions. Next, an innovative multi-network group framework is devised, and 
coupled decisions are effectively handled via interaction and collaboration among independent subnets. Based on 
problem decomposition method, EE-DFFJSP is decomposed into a set of subproblems represented by subnets 
within the network group. These subnets cooperate by sharing experience and knowledge through a domain 
parameter transfer strategy (DPTS) to enable efficient training. Finally, MACMNG employs a multi-objective 
DQN (MO-DQN) integrated with a dynamic weighting mechanism, enabling subnets to effectively balance be
tween makespan and TEC during cooperative decision-making and network parameter updating. Experimental 
results show that MACMNG achieves superior performance compared with three priority dispatch rules (PDRs) 
across various scenarios. The MACMNG outperforms seven state-of-the-art multi-objective algorithms in terms of 
different metrics across 69 benchmark instances. This study contributes an efficient learning-driven and multi- 
agent collaborative promising paradigm for the energy-efficient scheduling in DFM, providing practical in
sights for advancing smart manufacturing in IIoT architectures.
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1. Introduction

Driven by advancements in industrial intelligence, both digitization 
and intelligence provide real-time data and decision support for flexible 
manufacturing (FM), which has emerged as a cornerstone of smart 
manufacturing systems. With the rapid development of industrial AI and 
Internet of Things (IIoT)—a specialized IoT paradigm providing ubiq
uitous sensing, connectivity, and computing in industrial environ
ments—IoT technologies have been increasingly applied in domains [1], 
including smart homes [2], healthcare services [3], smart agriculture 
[4], and sensing systems [5]. Within smart manufacturing systems, 
scheduling has become a critical research focus aimed at optimizing 
resource allocation, enhancing operational efficiency and profitability, 
and achieving lean production, thereby strengthening market competi
tiveness [6]. While FM in IIoT enables enhanced production efficiency, 
reduced costs, shortened cycles, and improved quality and flexibility, it 
faces growing challenges due to the complexities of both dynamic de
mand and high flexibility. Recent research has emphasized that 
cross-regional collaborative production has greatly sparked widespread 
interest in distributed FM (DFM) [7]. The distributed flexible job shop 
scheduling (DFJS) plays a key vital in enhancing the efficiency of DFM 
by providing efficient strategies that enhance adaptability, availability, 
and productivity [8]. DFJS has been widely found with extensive ap
plications in DFM scenarios such as semiconductor manufacturing, 
aerospace fabrication, and IIoT-enabled FM [9]. However, dynamic 
disruptions, such as machine breakdowns [10], job insertions [11], and 
parameter fluctuations, introduce uncertainties into DFJS; additional 
consideration of fuzzy processing time is essential to address these un
certainties. Furthermore, with increasing emphasis on sustainable 
manufacturing, it is imperative to balance the economic and environ
mental effects by integrating energy-efficient strategies (EESs) into DFJS 
[12]. Motivated by these challenges, this study investigates the 
energy-efficient distributed fuzzy flexible job shop scheduling problem 
(EE-DFFJSP), aiming to optimize manufacturing cycle and total energy 
consumption (TEC) from both practical and technical perspectives to 
ensure sustainable and efficient production practices. Regarding DFJS 
challenges in DFM environments, various approaches have emerged, 
involving exact methods (e.g., mathematical programming), heuristic 
methods (e.g., priority dispatch rules, PDRs), and metaheuristic-based 
methods. Exact methods can provide optimal solutions but suffer from 
computational complexity and costs [13]. PDRs produce solutions 
quickly, but may not ensure the quality of solutions and lack generality 
across scenarios. Due to the strengths of metaheuristic-based methods in 
emphasizing efficiency and effectiveness, many relevant studies have 
emerged in recent years, which have shown remarkable success in 
various scheduling problems. Despite their strengths in searching solu
tion spaces, metaheuristic-based methods may face inherent limitations 
in maintaining exploration-exploitation balance and avoiding local op
tima [14]. However, problem-specific complexities involving processing 
uncertainty and energy-efficient requirements in DFM environments 
make these traditional approaches unsuitable for solving EE-DFFJSP.

Machine learning has been widely used in materials science [15], 
demonstrating robust capabilities in addressing complex challenges, 
including property prediction for ultra-high-performance concrete [16]
and foam glass [17]. As a specialized machine learning paradigm, deep 
reinforcement learning (DRL) integrates the representation learning 
strengths of deep learning with the sequential decision-making frame
work of reinforcement learning. Recent advances in DRL-based methods 
have shown significant potential for scheduling problems, which are 
modeled as a Markov decision process (MDP) through iterative 
agent-environment interactions, enabling agents to make decisions on 
optimal state-action policies via trial-and-error feedback guided by 
reward signals [18]. These DRL-based methods achieve a beneficial 
balance between immediate and delayed rewards through adaptive 
exploration-exploitation trade-offs, while trial-and-error feedback en
ables learning-driven mechanisms for agents to learn experience from 

environments, enabling to effectively balance exploration and exploi
tation in interactions [19]. Nevertheless, the effectiveness and efficiency 
of DRL-based methods are greatly affected by network architecture 
design and state representation [20]. As the extension of FJSPs with 
uncertainty in DFM, EE-DFFJSP contains coupled subproblems with 
multi-objective optimization, thereby significantly increasing the 
complexity of both high-dimensional states and complex decision 
spaces. To address these challenges, the development of 
problem-specific DRL-based methods with effective state representa
tions and interaction mechanisms emerges as a crucial research 
direction.

Recent advances have witnessed increasing interest in multi-agent 
reinforcement learning (MARL) frameworks applied in DFJS domains. 
MARL-based methods utilize the advantages of sub-problem decompo
sition and multi-agent coordination to overcome computational bottle
necks caused by high-dimensional state-action spaces, thus making them 
particularly suitable for dynamic decision-making in DFM environments 
[21]. By synchronized training-execution coordination, the multi-agent 
system can effectively decompose complex challenges into tractable 
sub-tasks while maintaining cooperative optimization [22]. Notably, 
there are three principal learning-driven mechanisms for MARL-based 
methods, i.e., decentralized learning, communication-based strategies, 
and centralized training with decentralized execution (CTDE). The 
decentralized learning architectures, which treat peer agents as envi
ronmental components in independent policy learning, offer computa
tional efficiency but suffer from suboptimal decisions due to maximizing 
local rewards instead of global optimality [23–25]. The 
communication-based strategies enable information exchange among 
agents to enhance collaborative decisions, yet introduce considerable 
costs such as bandwidth consumption and latency, particularly in 
complex scenarios. In contrast, the CTDE framework allows global in
formation utilization during centralized policy training while making 
decisions that rely on local observations for decentralized execution [26, 
27]. Owing to the strengths of global coordination with local interaction, 
CTDE has demonstrated superior capability in dealing with dynamic 
environments with high-dimensional state representations and complex 
decision spaces.

Although many applications of MARL-based methods in addressing 
DFJS problems (DFJSPs) have shown strengths, further investigations 
are still required due to unresolved theoretical and practical limitations. 
Notably, most existing studies have focused on simplified scheduling 
scenarios, often not involving complex problem decoupling and multi- 
objective optimization with strong constraint handling. Although these 
methods show superiority for such situations, they are inadequate for 
real-world DFM environments that require the simultaneous treatment 
of conflicting objectives, coupled subproblems, and complex constraints. 
Motivated by existing efforts and recognizing MARL’s promising po
tential, developing efficient multi-agent cooperative frameworks to 
achieve multi-objective coordination and effectively address coupled 
subproblems of DFJSP is still an open research challenge. To the best of 
our authors’ knowledge, research on applying MARL-based methods for 
EE-DFFJSP has not been reported, with end-to-end learning-driven 
mechanisms for tackling the challenge of EE-DFFJSP being scarce.

As an extension of DFJSPs that widely exist in DFM that compre
hensively consider uncertainty and energy-efficient scheduling con
straints, EE-DFFJSP requires assigning jobs to suitable factories, 
determining fuzzy processing times, selecting available machines, and 
adjusting machine speeds. In addition, the complex constraints and 
critical characteristics of EE-DFFJSP require multiple agents to acquire 
global state information during the centralized training to perform 
feature-learning-based joint decisions during the decentralized execu
tion. Motivated by CTDE-based MARL frameworks, we develop an 
innovative framework for a multi-agent cooperative multi-network 
group (MACMNG) to handle the EE-DFFJSP. Unlike traditional MARL- 
based methods, MACMNG can decompose the EE-DFFJSP into inter
connected subproblems, each modeled as a subnet in the network group. 
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The multi-network group dynamically optimizes multi-objective trade- 
offs via adaptive weight allocation across subproblems, thereby 
resolving the critical limitations of static and single policy networks in 
MARL-based methods that fail to achieve dynamic trade-offs among 
multiple objectives.

The main innovations and contributions are outlined as follows: 

● A novel mixed-integer linear programming (MILP) model is proposed 
for EE-DFFJSP, and a typical MDP model for FJSPs is extended to a 
novel triple-MDP formulation based on problem characteristics. This 
triple-MDP divides states into five specific sets and designs three 
rewards, thus explicitly embedding optimization objectives into the 
state representation and the reward mechanism design. These ad
vances facilitate the effective modeling of MDPs for subproblems of 
EE-DFFJSP while ensuring coordinated decision-making among the 
agents associated with this triple-MDP.

● To address the complex constraints and coupled characteristics of 
EE-DFFJSP, a multi-agent cooperative multi-network group 
(MACMNG) framework is introduced to handle triple-MDP. Each 
MDP is implemented as a single agent and each agent is configured 
with an independent subnet. Agents with different behaviors make 
independent decisions and collaborate to form a network group with 
specific roles to optimize two conflicting goals through problem- 
specific state representations and rewards, thus efficiently handling 
coupled decision dynamics through distributed collaborative 
learning-driven mechanisms.

● The application of a problem decomposition method to decompose 
EE-DFFJSP into a series of subproblems, each of which is represented 
by a subnet in the MACMNG framework. These subnets are trained 
cooperatively and aided by the domain parameters transfer strategy 
(DPTS), enabling sharing experience and transferring knowledge, 
significantly reducing computational overheads and efficiently pro
ducing high-quality Pareto solutions with enhanced efficiency.

● By incorporating multi-objective DQN (MO-DQN) into the frame
work of MACMNG, subnets can adaptively trade-off between both 
criteria by employing a dynamic weighting mechanism to handle 
rewards from each of them during cooperative decision-making and 
network group updating. This ensures the robust adaptation to the 
dynamic adjustment of the criteria as a result of changes in solving 
these subproblems.

● Comprehensive comparisons conducted on 69 benchmark instances 
demonstrate MACMNG’s statistically significant superiority over 
state-of-the-art multi-objective algorithms across three performance 
metrics. These statistical results provide promising perspectives and 
innovative insights for the research on DFJS in DFM, highlighting 
MACMNG’s potential to advance both economic and energy-efficient 
objectives in industrial applications.

The remainder of this article is organized as follows: Section 2 re
views foundational advancements in energy-efficient strategies (EESs), 
DFJSPs, DRL-based, and MARL-based methods. Section 3 formulates the 
MILP model of EE-DFFJSP and defines fuzzy arithmetic operations with 
relevant notations. Section 4 presents the details of the framework and 
implementation of MACMNG. Section 5 demonstrates experimental 
details and results confirming the superiority of MACMNG in solving EE- 
DFFJSP. Finally, Section 6 discusses the implications and limitations of 
MACMNG and outlines future research directions.

2. Literature review

2.1. Related work on EESs

Recent advances have demonstrated the efficacy of effective energy- 
efficient strategies (EESs) in reducing energy consumption (EC) for 
energy-efficient DFJS in DFM [28]. EESs can be categorized into three 
primary types: machine on/off regulation, time-of-use (TOU) electricity 

pricing measure, and energy-efficient speed control. As for 
energy-efficient DFJS, the standby times of machines are inevitable; 
however, by rationally controlling of machine’s states, it is possible to 
significantly reduce some of the unnecessary waiting time, thereby 
reducing TEC. The TOU electricity pricing measure can reduce the 
electricity cost and improves cost predictability while enhancing energy 
efficiency by encouraging load shifting, such as scheduling 
energy-intensive tasks during off-peak periods. The energy-efficient 
speed control, as one of the most widely applied EESs, enables ma
chines to operate flexibly within specified speed levels, thereby reducing 
TEC and minimizing makespan. For machine on/off regulation, Zhang 
et al. [29] investigated the energy-efficient flexible job shop scheduling 
problem (EE-FJSP). Their experimental results demonstrated that 
reasonable control of the machine’s operating states can effectively 
reduce TEC. Dai et al. [30] solved the energy-efficient flexible flow shop 
scheduling problem (EE-FFSP) using a genetic-simulated annealing al
gorithm (GSA). Their control of machines’ operating states within 
feasible schedules significantly reduced the TEC. Meng et al. [31]
addressed the energy-conscious dual-resource constrained FJSP 
(DRCFJSP) and proposed a postponing strategy and a turn-on/off 
strategy that effectively reduced TEC, further highlighting the critical 
role of machine on/off regulation in TEC reduction. However, frequent 
switching of machines on/off may lead to wear and potential damage, 
which affects the machines’ longevity and reliability [32]. For TOU 
electricity pricing measure, Park and Ham [33] established a MILP 
model for the EE-FJSP with dual objectives of minimizing both make
span and TEC. However, TOU electricity pricing measure that encourage 
additional tasks during off-peak periods may conflict with the best time 
for manufacturing and maintenance decisions, necessitating a trade-off 
between production efficiency and energy costs [34]. Regarding 
energy-efficient speed control, Zhang et al. [35] introduced a 
multi-objective discrete artificial bee colony algorithm (MDABC) for 
solving the hybrid flow shop green scheduling problem (HFGSP), and 
proposed an energy-saving procedure based on energy-efficient speed 
control, which effectively reduced the TEC. Duan et al. [36] proposed an 
effective speed control strategy which demonstrated the effectiveness of 
the energy-efficient speed control in reducing TEC and makespan. They 
developed a multi-objective NSGA-II for EE-FJSP, significantly reducing 
TEC and makespan. By implementing energy-efficient speed control, the 
machines can operate within a flexible range of speed levels, thereby 
balancing EC and minimizing manufacturing cycles. Moreover, 
energy-efficient speed control avoids the wear and potential reliability 
issues associated with frequent machine on/off switching, while also 
avoiding the trade-off between production efficiency and energy costs 
resulting from the TOU electricity pricing measure. Given these ad
vantages, this study adopts the energy-efficient speed control as the 
primary EES to address the EE-DFFJSP.

2.2. Related work on DFJSPs

As an extension of FJSPs in DFM, DFJSPs have garnered significant 
research attention in recent years. For the DFJSP, Lin et al. [37] devel
oped a genetic algorithm with a novel chromosome representation 
(GA_X), which adopted an incomplete chromosome structure to effec
tively balance the load among manufacturing resources and improve 
search efficiency. Xu et al. [38] proposed a hybrid genetic algorithm and 
tabu search (H-GA-TS) with three-layer encoding, which tackled the 
co-optimization of multiple objectives. Considering crane trans
portation, Du et al. [39] proposed an estimation of distribution algo
rithm (EDA) combined with variable neighborhood search (EDA-VNS) 
for DFJSP with crane transportations (DFJSPC). Zhang et al. [13]
developed a Q-learning-based hyper-heuristic evolutionary algorithm 
(QHHEA) for DFJSPC. Considering factory transfers, Luo et al. [40]
introduced an efficient memetic algorithm (EMA) for DFJSP with 
transfers (DFJSPT), aiming to minimize the makespan, maximum 
workload, and TEC. Despite these advancements, research on 
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EE-DFFJSP remains sparse. For energy-efficient distributed flow shop 
scheduling problem (EE-DFSP), Wang et al. [41] proposed a 
knowledge-based cooperative algorithm (KCA), integrating a 
multi-operator cooperative search strategy that adapts to solution 
characteristics to balance the trade-off between two optimization ob
jectives. Shao et al. [42] focused on the EE-DFSP with variable machine 
speeds and developed a multi-neighborhood-based multi-objective 
memetic algorithm (MMMA). In consideration of no-wait constraints, 
Zhang et al. [43] developed a multidimensional estimation of 
distribution-based hyper-heuristic evolutionary algorithm (MEDHEA) to 
tackle the EE-DFSP. To address the energy-efficient DFJSP (EE-DFJSP), 
Meng et al. [44] formulated an MILP model and designed a hybrid 
shuffled frog-leaping algorithm (HSFLA). Yu et al. [45] proposed a 
knowledge-guided bi-population evolutionary algorithm (KBEA) to 
simultaneously minimize makespan and TEC. Zhang et al. [46] intro
duced a multidimensional probabilistic model-based evolutionary al
gorithm (MPMEA), offering a new paradigm for solving EE-DFJSP. 
Considering type-2 fuzzy constraints, Li et al. [47] introduced the 
two-stage knowledge-driven evolutionary algorithm (TSKEA) for 
distributed green job shop scheduling with type-2 fuzzy processing times 
(DGT2FJSP), focusing on minimizing makespan and TEC. Previous 

research works have used exact methods, heuristic methods, and 
metaheuristic-based methods with promising results in solving DFJSPs, 
but all suffer from limitations. Specifically, exact methods and 
metaheuristic-based methods are less efficient in handling 
high-dimensional dynamic states and complex decision spaces, as 
computational costs rise with the increase in problem complexity.

2.3. Related work on DRL and MARL

Recent advances in DRL-based and MARL-based methods have 
motivated research to investigate their applications in solving various 
scheduling problems. These methods demonstrate exceptional efficacy 
in modeling and optimizing problems characterized by high- 
dimensional dynamic states and decision spaces. For DRL-based 
methods, Lei et al. [48] developed a DRL-based method for the FJSP, 
which used a graph neural network (GNN) for feature representation 
and adopted a multi-pointer graph network (MPGN) and a 
multi-proximal policy optimization algorithm (multi-PPO) to efficiently 
learn action policies, achieving superior performance over both heu
ristic methods and metaheuristic-based methods. Song et al. [49] pro
posed a DRL-based method for solving the FJSP, which combined 

Table 1 
Summary of the literature on FJSP and related shop scheduling problems.

Author(s) Ref. Problem Objective(s) EES Approach 
(es)

Description

Zhang et al. 
(2017) [29]

EE-FJSP Cmax, TEC Machine off-on eGEP Efficient gene expression programming algorithm.

Dai et al. (2013)
[30]

EE-FFSP Cmax, TEC Machine off-on GSA Genetic-simulated annealing algorithm.

Meng et al. 
(2019) [31]

DRCFJSP TEC Machine off-on VNS Variable neighborhood search algorithm.

Park and Ham 
(2022) [33]

EE-FJSP Cmax, TEC TOU electricity 
prices

ILP/CP Integer linear programming and constraint programming.

Zhang et al. 
(2019) [35]

HFGSP Cmax, TEC Speed control MDABC Multi-objective discrete artificial bee colony algorithm.

Duan et al. 
(2021) [36]

EE-FJSP Cmax, TEC Speed control NSGA-II Heuristic multi-objective non-dominated ranking genetic algorithm.

Lin et al. (2020)
[37]

DFJSP Cmax None GA_X Genetic algorithm with a new chromosome representation.

Xu et al. (2021)
[38]

DFJSP Cmax,TEC, 
costs,quality

None H-GA-TS Hybrid genetic algorithm and tabu search with three-layer encoding.

Du et al. (2021)
[39]

DFJSPC Cmax, TEC None EDA-VNS Hybrid algorithm consisting of EDA and VNS.

Zhang et al. 
(2023) [13]

DFJSPC Cmax, TEC None QHHEA Q-learning-based hyper-heuristic evolutionary algorithm.

Luo et al. (2020)
[40]

DFJSPT Cmax, TEC,workload None EMA Efficient memetic algorithm.

Wang et al. 
(2020) [41]

EE-DFSP Cmax, TEC Speed control KCA Knowledge-based cooperative algorithm.

Shao, et al. 
(2022) [42]

EE-DFSP Cmax, TEC Speed control MMMA Multi-neighborhood-based multi-objective memetic algorithm.

Zhang et al. 
(2025) [43]

EE-DFSP Cmax, TEC Speed control MEDHEA Multidimensional estimation of distribution based hyper-heuristic 
evolutionary algorithm.

Meng et al. 
(2020) [44]

EE-DFJSP Cmax, TEC Machine off-on HSFLA Efficient hybrid shuffled frog-leaping algorithm.

Yu et al. (2024)
[45]

EE-DFJSP Cmax, TEC Speed control KBEA Knowledge-guided bi-population evolutionary algorithm.

Zhang et al. 
(2024) [46]

EE-DFJSP Cmax, TEC Speed control MPMEA Multidimensional probabilistic model-based evolutionary algorithm.

Li et al. (2022)
[47]

DGT2FJSP Cmax, TEC Speed control TSKEA Two-stage knowledge-driven evolutionary algorithm.

Lei et al. (2022)
[48]

FJSP Cmax None Multi-PPO Multi-proximal policy optimization.

Song et al. (2023)
[49]

FJSP Cmax None PPO Proximal policy optimization.

Yuan et al. (2024)
[50]

FJSP Cmax None PPO Proximal policy optimization.

Jing et al. (2024)
[22]

FJSP Cmax None GMAS Graph-based multi-agent system.

Liu et al. (2022)
[56]

FJSP TCT None DDQN Double deep Q-Network algorithm.

Wan et al. (2025)
[57]

FJSP Cmax None AEA- 
MAPPO

Automatic entropy adjustment multi-agent proximal policy 
optimization algorithm.

Huang et al. 
(2024) [58]

DFJSP Cmax None PPO Proximal policy optimization.
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operation selection and machine assignment with efficient 
decision-making using the heterogeneous GNN (HGNN). Yuan et al. [50]
introduced a DRL-based method which simplified state embedding using 
a lightweight multi-layer perceptron (MLP). MARL-based methods have 
achieved significant success across diverse domains such as collabora
tive control of unmanned aerial vehicles (UAVs) [51], multi-robot sys
tems [52], and gaming applications [53–55]. Recent research has 
concentrated on multi-agent cooperative strategies and interaction 
mechanisms to effectively handle collaboration and competition in 
complex environments. For MARL-based methods, Jing et al. [22] in
tegrated graph convolutional networks (GCNs) with the MARL-based 
method to propose a graph-based multi-agent system (GMAS) which 
modeled the FJSP as a directed acyclic graph and refined strategies by 
predicting edge connections. Liu et al. [56] presented a MARL-based 
method to address dynamic constraints for the FJSP, aimed at mini
mizing the total cumulative tardiness (TCT) of all jobs. They introduced 
a novel state and decision representation employing the double deep 

Q-Network algorithm (DDQN) to train scheduling agents and capture 
the relationship between production information and scheduling ob
jectives, capable of managing dynamic FJSPs with different scales and 
scenarios. Wan et al. [57] formulated the FJSP as two MDPs using 
different agents for operation sequencing and machine allocation. They 
developed an automatic entropy-adjusted multi-agent PPO (AEA-
MAPPO) algorithm, which effectively trained the operation and ma
chine policy networks to optimize operation sequencing and machine 
assignment strategies simultaneously. Huang et al. [58] proposed a 
multi-action MDP for modeling the dynamic distributed JSP with a hi
erarchical action space that considers operations and factories, where 
the reward function design is based on idle times.

As summarized in Table 1, recent advances reveal that although 
metaheuristic-based, DRL-based, and MARL-based methods have been 
successfully used for FJSPs, each type of method suffers from funda
mental limitations. Metaheuristic-based methods in existing efforts still 
suffer shortcomings in their reliance on problem feature modeling and 
search behavior understanding, and demonstrate poor scalability in 
high-dimensional spaces. Although DRL-based methods can adaptively 
learn optimal policies from feature states, their effectiveness is limited 
by decision spaces and state representations. Up to now, the applications 
of these methods for problem solving by a single agent are mainly 
limited to simple scheduling situations involving low-coupling features 
with single-objective optimization. While MARL-based methods effec
tively reduce the computational cost of high-dimensional decision and 
state spaces through the collaborative decisions of distributed agents, 
their framework for end-to-end training and generation of scheduling 
schemes poses inherent limitations. The policy network maps any given 
state to a specific distribution of actions by means of a deterministic 
mapping function. The policy’s deterministic mapping behavior en
forces end-to-end framework to output only solutions with specific 
preferences when dealing with multi-objective problems (MOPs), failing 
to dynamically generate multi-preference solutions with dispersion and 
diversity along the Pareto front.

To bridge this gap, inspired by the CTDE framework in MARL-based 
methods, this study develops an innovative framework for a multi-agent 
cooperative multi-network group (MACMNG) to address the limitations 
of existing MARL-based methods. Unlike the aforementioned methods, 
MACMNG’s strength lies in decomposing the EE-DFFJSP into multiple 
decoupling subproblems, each modeled as a subnetwork within a 
network group. Each subnet generates solutions for specific sub
problems through cooperative training with shared parameters. The 
collective outputs of all subnetworks form a diverse solution set for the 
entire network group, thereby effectively overcoming the limitations of 
single solution generation inherent in end-to-end models and frame
works. The MACMNG produces solution sets that cover the Pareto front 
in complex constrained multi-objective optimization scenarios, effec
tively guaranteeing the quality and diversity of scheduling solutions 
generated by MALR-based methods and addressing the limitations of 
traditional end-to-end models, providing a new perspective on the 
design of learning-driven and multi-agent collaborative promising par
adigms for EE-DFJSPs.

3. Problem statement

3.1. EE-DFFJSP

Under the transformation of intelligent manufacturing driven by 
industrial intelligence, the study of DFJS in IIoT-enabled DFM holds 
significant theoretical and practical importance. As a common challenge 
encountered in real-world DFM, the EE-DFFJSP is described as follows, 
with the relevant notations defined in Table 2. Consider a set of factories 
F = {F1,F2,…,Fl}, where each factory Ff has a flexible job shop with m 
heterogeneous machines Gf = {Mf

1, Mf
2, …, Mf

m}. There are n jobs, 
denoted as I = {I1, I2, …, In}, allocated across l factories. Each job Ii 

Table 2 
Notation and definition used in the MILP model of EE-DFFJSP.

Notation Description

Indices ​
f, fʹ Indices for factories, f, fʹ = 1,2,…, l.
i, í Indices for jobs, i, í = 1,2,…,n.
j, j́ Indices for operations of the job, j, j́ = 1,2,…,ni.
k Index for machines, k = 1,2,…,m.
v Index for speed levels, v = 1,2,…, s.
Sets ​
I Set of jobs, I = {I1, I2,…, In}.
Ji Set of operations for job Ii, Ji = {Oi,1,Oi,2,…,Oi,ni }.
F Set of factories, F = {F1,F2,…,Fl}.
V Set of speed levels, V = {V1,V2,…,V5}.
Gf Set of machines in factory Ff , Gf = {Mf

1,M
f
2,…,Mf

m}.
UMi,j Set of available machine indices for operationOi,j.
SM Set of speed coefficient, SM = (sm1, sm2,…, sms).
EM Set of EC coefficient, EM = (em1,em2,…, ems).
Parameters
Ff The f − th factory, Ff ∈ F.

Mf
k The k − th machine in factory Ff , M

f
k ∈ Gf .

Ii The i − th job, Ii ∈ I.
Oi,j The j − th operation of job Ii, Oi,j ∈ Ji.
Vv The v − th speed level, Vv ∈ V.
smv The v − th speed coefficient, smv ∈ SM.
emv The v − th EC coefficient, emv ∈ EM.
l Total number of factories.
n Total number of jobs.
ni Total number of operations for job Ii.
m Total number of machines in each factory.
s Total number of speed levels.
t̃k,i,j The standard fuzzy processing time of Oi,j on the k − th machine in each 

factory.
p̃k,i,j The actual fuzzy processing time of Oi,j on the k − th machine in each 

factory.
SP The standby unit EC.
PP The standard unit EC.
̃PECf ,k The total fuzzy processing EC of machine Mf

k.
̃SECf ,k The total fuzzy standby EC of machine Mf

k.
C̃f,k,i,j The fuzzy completion time of operation Oi,j on machine Mf

k.
C̃f The fuzzy completion time of all operation in factory Ff .
L A sufficiently large positive number.
Objective functions
C̃max The maximum fuzzy completion time.

T̃EC Total fuzzy EC for all machines.
Binary decision variables

Xf ,k,i,j =

{
1, ifOi,jisprocessedonMf

k,

0, otherwise.

Yi,j,í ,j́

⎧
⎨

⎩

1, ifOí ,j́ isprocessedimmediatelyafterOi,j ,

− 1, ifOi,jisprocessedimmediatelyafterOí ,j́ ,

0, otherwise.

Zf ,k,v,i,j =

{
1, ifOi,jisprocessedonmachineMf

kwithspeedlevelVv,

0, otherwise.
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consists of ni operations, i.e., Ji = {Oi,1,Oi,2,…,Oi,ni}. Each operation Oi,j 

must be processed on at least one machine in its assigned factory. The 
fuzzy processing time ̃tk,i,j for operation Oi,j on machine Mf

k is determined 
via standard operating conditions. Each machine has s adjustable speed 
levels, and the actual processing time p̃k,i,j is modulated by the speed 
coefficient smv associated with the selected speed level Vv. Each machine 
has a standard unit of fuzzy EC during processing, denoted as PP. When 
no operations are processed, the machine remains in standby state with 
a nominal EC denoted as SP. Both PP and SP are inherent constants for 
machines. The actual EC of each machine is determined by its processing 
time, standby time, and selected speed level. To address uncertainties 
inherent in real-world processing times, both fuzzy processing times and 
fuzzy EC are represented as triangular fuzzy numbers (TFNs), i.e., (g1,g2,

g3). The assumptions of EE-DFFJSP are given below: 

● All factories are homogeneous flexible job shops with identical ma
chine layouts, quantities, types, and capacities. All operations must 
be processed within the same factory. Cross-factory processing or 
dynamic reassignment of operations is strictly prohibited.

● Once the machine’s speed level is set for an operation, it remains 
unaltered for the duration of the process. No adjustments to the 
speed levels are allowed during processing.

● Once an operation starts processing on a machine, it is completed 
without pause, rescheduling, or interruption, thus ensuring that 
processing processes are predictable and uninterrupted.

● Only consider the time cost and EC directly associated with ma
chines; auxiliary factors, such as material handling delays or external 
energy expenditures, are excluded from the scope of this study.

Following the pioneering work of Brandimarte [59], disjunctive 
graphs G = (O ,C ,D ) are used to represent scheduling states for FJSPs, 
and this representation can be extended to the EE-DFFJSP. Specifically, 
O = {Oi,j|∀i, j} ∪ {S,E} denotes the set of job nodes, comprising all 
operation nodes and two virtual nodes (S: start, E: end) with zero pro
cessing time. C is the set of conjunctive arcs, which represent sequential 
processing constraints for each job Ii from S to E. D = ∪kD k represents a 
set of undirected disjunctive arcs, where D k denotes a subset that 
connects operations eligible for the k − th machine. However, the 
distributed factories and coupled subproblems inherent to DFFJSP 
render the conventional disjunctive graphs G for FJSPs insufficient in 
representing states. To address this limitation, we have extended graph 
G to G , defined as G = (O ,C ,V 1,…,V f ,…,V l) where for each 
factory Ff : V f = D ∪ {Mf

1,M
f
2,…,Mf

m}. Here, V f integrates disjunctive 
arcs with factory-specific machine nodes, while operation nodes are 
connected to their eligible machines via directed edges.

To provide an intuitive understanding of the extended graph G , 
Fig. 1 presents an exemplar case with two factories, three jobs, and three 
machines. In Fig. 1(a), solid black lines denote the completed opera
tions, solid red lines indicate schedulable jobs, and black dashed lines 
represent the unprocessed operations. The color lines connections be
tween job nodes and machine nodes signify factory-specific allocations, 
where solid endpoints on these lines denote the assigned machines and 
dashed endpoints show potential machine candidates. The actual fuzzy 
processing time p̃k,i,j is marked for completed operations Oi,j, and un
processed operations show average processing times across eligible 
machines at specific processing speed levels. Fig. 1(b) illustrates a view 
of the complete scheduling scheme. Tables 3 and 4 provide the detailed 
dataset of the speed levels V and standard fuzzy processing times ̃tk,i,j for 
each operation Oi,j, where the symbol "-" indicates machine-process in
compatibility. Following the work of Zhang et al. [43], the standard and 
standby EC units are set as PP = 3 and SP = 1, respectively. Fig. 2 il
lustrates a scheduling scheme for an instance given in Table 3, along 
with processing speed levels of operations on their corresponding ma
chines. The feasible solution is represented as π = (ψF ,ψJ,ψM,ψV) where 
ψF = [1,1, 2] represents the factory assignment for jobs, ψJ = [1,1, 2,3,
1, 2,2, 1,3, 3,3] is the order of operations, ψM = [1,3, 3,2, 2,3, 1,3, 3,2,
3] is the order of machines allocated to operations, and ψV = [3, 2,3, 1,1,
3, 4,5, 3,2, 5] is the order of processing speed levels for machines. For 
operation O1,1, the fuzzy completion time is calculated by C̃1,1,1,1(π) =

Fig. 1. Disjunctive graph representation of DFFJSP.

Table 3 
Details of processing speed levels.

V 1 2 3 4 5

SM 0.6 0.8 1 1.2 1.4
EM 8 5 3 2 1

Table 4 
Details of fuzzy processing times.

Jobs Operations Available machines and standard fuzzy processing times.

M1 M2 M3

J1 O1,1 (1,2,3) - (3,4,5)
O1,2 - (6,9,11) (4,7,9)
O1,3 (2,4,9) (4,8,9) -
O1,4 - (3,4,9) (1,4,5)

J2 O2,1 (4,5,6) - (2,3,8)
O2,2 - (2,3,5) (2,3,11)
O2,3 (1,2,6) - (1,4,8)

J3 O3,1 (3,5,6) (3,5,6) -
O3,2 (1,3,4) - (1,3,6)
O3,3 - (6,9,11) (4,7,9)
O3,4 - (4,5,11) (2,3,7)
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t̃k,i,j × smv = t̃1,1,1 × sm3 = (1,2,3). Similarly, the fuzzy completion times 
for all other operations can be obtained using the same formula. For 
factory F1, the fuzzy completion time is C̃1(π) = (9.6,19.3,35.2), and for 
factory F2, it is C̃2 = (10.4,17.6,28.2), resulting in the maximum fuzzy 
completion time across both factories C̃max(π) = max(C̃1(π), C̃2(π)) =

(9.6,19.3,35.2). The machine M1
1 is active during (4.2,7.6,9.2) to (6.6,

12.4,14.6), thus the fuzzy processing EC is ̃PECf ,k(π) = (2.4,4.8,5.4) ×
em1 × PP = (2.4,4.8,5.4)× 8× 3= (57.6,115.2,129.6). During standby 
periods, machine M1

1 remains in the standby mode, with its fuzzy 
standby time determined by C̃1 −

∑n
i=1
∑ni

j=1p̃1,i,j ×
∑n

i=1
∑ni

j=1X1,1,i,j =

(7.2,14.5,29.8), and the corresponding fuzzy standby EC is ̃SECf ,k(π) =

(Cf −
∑n

i=1
∑ni

j=1p̃k,i,j ×
∑n

i=1
∑ni

j=1Xf ,k,i,j)× SP= (7.2, 14.5, 29.8)× 1 =

(7.2, 14.5, 29.8). The total fuzzy EC T̃EC is derived as: T̃EC(π) =

(320.6,571.0,883.6) by Eq. (15).
The EE-DFFJSP aims to optimize both ̃Cmax and T̃EC as objectives and 

corresponding formulas in the MILP model are defined as follows: 

f = min
π∈Π

{f1, f2|f1 = C̃max(π), f2 = T̃EC(π)} (1) 

C̃max = max
{
C̃f ,k,i,j

}
, ∀f , k, i, j, (2) 

∑m

k=1

∑ni

j=1
Xf ,k,i,j = ni,∀f , i (3) 

∑s

v=1
Zk,v,i,j = 1,∀k, i, j (4) 

∑ni

j=1
mi,j > 1,∀i (5) 

p̃k,i,j = t̃k,i,j ×

(
∑s

v=1
Zf ,k,v,i,j × smv

)

,∀f , k, i, j (6) 

C̃f ,k,i,j− 1 < C̃f ,k,i,j − p̃k,i,j, ∀f , k, i, j ∕= 0 (7) 

C̃f ,k,i,j − p̃k,i,j ≥ 0,∀f , k, i, j (8) 

C̃f ,k,i,j > C̃f ,k,i,j − p̃k,i,j, ∀f , k, i, j (9) 

C̃f ,k,i,j ≤ C̃f ,k,í ,j́ − p̃k,í ,j́ +L × (1 − Yi,j,í ,j́ ),∀f , k, i, í , j, j́ (10) 

C̃f ,k,i,j ≤ C̃f ,k,i,j+1 − p̃k,i,j+1 +L × (1 − Yí ,j́ ,i,j+1),∀f , k, i, í , j ∕= ni, j́ (11) 

∑l

f=1

∑m

k=1

Xf ,k,i,j = 1, ∀i, j (12) 

̃PECf ,k =
∑n

i=1

∑ni

j=1
(Xf ,k,i,j × p̃k,i,j ×

∑s

v=1
Zk,v,i,j × emv) × PP (13) 

̃SECf ,k =

(

Cf −
∑n

i=1

∑ni

j=1
p̃k,i,j ×

∑n

i=1

∑ni

j=1
Xf ,k,i,j

)

× SP (14) 

T̃EC =
∑l

f=1

∑m

k=1
( ̃PECf ,k + ̃SECf ,k) (15) 

where Eq. (1) aims to minimize both C̃max and T̃EC. Eq. (2) provides the 
formula for calculating ̃Cmax. Eq. (3) and Eq. (4) restrict all operations for 
the same job must be processed in the same factory, and processing 
speed levels cannot be changed once selected. Eq. (5) ensures opera
tional feasibility by requiring each operation to have at least one eligible 
machine in its assigned factory Ff . Eq. (6) computes actual processing 
time based on standard processing time and machine speed levels. Eq. 
(7) enforces the precedence relationship among operations of the same 
job. Eq.(8) indicates that machine availability at time zero for all op
erations in factory Ff . Eq. (9) suggests that the completion time of each 
operation cannot be earlier than its start time. Eqs. (10)–(12) demon
strate the same machine in a factory Ff can process only one operation at 
any time. Eqs. (13)–(15) define the calculation formulas for P̃ECf ,k, 
S̃ECf ,k, and T̃EC, respectively.

Fig. 2. Fuzzy Gantt charts and processing speed.
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3.2. Fuzzy arithmetic principles

Due to the numerous uncertainties frequently found in DFM, the 
processing time for each job can only be determined within approximate 
ranges. The TFN is typically used to represent this processing time TFN 
= (g1, g2, g3).

The TFN membership function is shown in Fig. 3. g1 represents the 
ideal processing time, g2 is the most probable processing time with a 
membership degree of 1, and g3 is the most conservative processing 
time. The membership function expression for TFN is as follows [60]: 

μTFN(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ≤ g1,

x − g1

g2 − g1
, g1 < x ≤ g2,

g3 − x
g3 − g2

, g2 < x ≤ g3,

0, x ≥ g3.

(16) 

The following special cases exist:When g1 = g2, μTFN(x) can be 
formulated as: 

μTFN(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, x < g1 = g2,

g3 − x
g3 − g2

, g1 = g2 ≤ x < g3,

0, x ≥ g3.

(17) 

When g2 = g3, μTFN(x) can be formulated as: 

μTFN(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, x ≤ g1,

x − g1

g2 − g1
, g1 < x ≤ g2 = g3,

0, x > g2.

(18) 

When g1 = g2 = g3, μTFN(x) can be formulated as: 

μTFN(x) =
{

1, x = g1 = g2 = g3,

0, otherwise. (19) 

To ensure the effective optimization of C̃max and T̃EC while main
taining scheduling feasibility, the addition, max, and ranking methods 
for TFN are explicitly defined. These methods are crucial for addressing 
the inherent uncertainties in DFFJSP [61]. 

1) Additional method. Let the fuzzy start time and fuzzy processing time 
of operation Oi,j on machine Mf

k be ̃tS
k,i,j = (g1, g2, g3) and ̃tk,i,j = (ǵ 1,

ǵ 2, ǵ 3), respectively. The end time ̃tE
k,i,j of operation Oi,j on machine 

Mf
k can be calculated by: 

t̃E
k,i,j = t̃S

k,i,j + t̃k,i,j = (g1 + ǵ 1, g2 + ǵ 2, g3 + ǵ 3). (20) 

2) Max method. Let ̃t = (g1, g2, g3) denote the fuzzy completion time of 
preceding operation Oi,j− 1, and t̃́ = (ǵ 1, ǵ 2, ǵ 3) represent the fuzzy 
completion time of the prior operation on the same machine. The 

maximum fuzzy time of ̃t and ̃t́  can be derived from fuzzy arithmetic 
principles [62]: 

t̃ ∨ t̃́ =

{
t̃, if̃t ≥ t̃́ ,

t̃́ , otherwise. (21) 

where the membership function μt̃∨t̃́ (z) of ̃t ∨ t̃́  is defined as: 

μt̃∨t̃́ (z) = sup
z=x∨y

min(μt̃(x), μt̃́ (y)) (22) 

3) Ranking method. To evaluate fuzzy completion times, the ranking 
criterion for comparing TFNs proposed by Sakawa and Kubota [63] is 
employed as follows:

Z1(g) =
g1 + 2g2 + g3

4
. (23) 

In Eq. (23), Z1 serves as the primary ranking criterion. When Z1 

values are equal, the secondary ranking criterion Z2(g) = g2 is utilized. If 
both Z1 and Z2 are equal, the tertiary ranking criterion Z3(g) = g3 − g1 

resolves ties.

3.3. Problem property analysis

The EE-DFFJSP aims to simultaneously optimize the maximum fuzzy 
completion time (C̃max) and reduce total fuzzy EC (T̃EC) to meet low- 
carbon manufacturing requirements. The interdependence of objec
tives and coupling of subproblems with uncertainty handling signifi
cantly expand the solution space, causing challenges in efficiently 
exploring search scopes to identify superior solutions within limited 
computational time. To address this, specific characteristics and prop
erties of the EE-DFFJSP are analyzed in Section 3.3 to provide founda
tional insights for developing problem-specific EESs. 

Property 1. For any feasible solution π, the critical factory is identified 
through decoding, where the critical path directly determines C̃max(π). 
Reducing the speed level Vv ∈ V for operations on non-critical paths will 
lengthen their actual fuzzy processing time p̃k,i,j. However, if the 
extended ̃pk,i,j does not change the critical factory, critical path, or fuzzy 

completion time C̃f ,k,i,j on the critical path, C̃max(π) remains unchanged, 
while T̃EC(π) is reduced.

Proof. The critical path is defined as a series of operations without idle 
time that determines the maximum fuzzy completion time C̃max(π). Any 
increase in processing time on critical paths directly results in an in
crease in C̃max(π). However, adjusting processing speeds for operation 
Oi,j on non-critical paths does not affect C̃max(π) provided idle time in
tervals exist. Within these intervals, delays merely reduce speed levels 
Vv, thereby decreasing T̃EC(π). The immediate precedence operations or 
machine-precedence operations of the critical operations on the critical 
path are defined as related operations, with adjustable fuzzy time 
margin ATi,j, while all other operations are categorized as unrelated 
operations, with adjustable fuzzy time margin defined as UATi,j, which 
can be calculated by Eq. (24) and Eq. (25), respectively. Hence, when 
reducing the speed level Vv of non-critical path operations, as long as the 
adjusted processing time does not exceed the allowable time margins, 
the critical path and C̃max(π) remain unaffected, and T̃EC(π) is reduced.

ATi,j = min(MSi,j, JSi,j) − C̃i,j (24) 

UATi,j = C̃max − C̃i,j (25) 

Here, MSi,j represents the fuzzy start time of the operation immedi
ately following operation Oi,j on the machine Mf

k, where machine Mf
k is 

the processing machine for operation Oi,j, JSi,j denotes the fuzzy start 

Fig. 3. Membership function of the triangular fuzzy number.
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time of the operation immediately following operation Oi,j in the oper
ation sequence ψJ, and C̃i,j represents the fuzzy completion time of the 
operation Oi,j. Fig. 4 illustrates the adjustable time margins for all non- 
critical paths in the fuzzy Gantt chart. In this case, (O1,1,O1,2,O2,2,O2,3,

O3,3) are operations on the critical path, with related operations being 
O3,1, O3,2 and O2,1, and the unrelated operations being O1,3.

4. MACMNG for EE-DFFJSP

In this section, MACMNG is introduced to address the challenges 
associated with the EE-DFFJSP, as depicted in Fig. 5. Based on the 
decomposition of subproblems, the EE-DFFJSP can be modeled as a 
triple-MDP to reflect the complex and coupled decision dynamics. Spe
cifically, MACMNG comprises three distinct agents: a job agent AgentJ, a 
machine agent AgentM, and a factory agent AgentF. Both AgentJ and 
AgentM are equipped with network groups. AgentJ is embedded with the 
network group NetJ = (SubNetJ

1,…,SubNetJ
h,…,SubNetJ

e), and AgentM is 
embedded with NetM = (SubNetM

1 ,…,SubNetM
h ,…,SubNetM

e ). The AgentJ 

is designed to handle operation sequences for jobs, while AgentM is 
responsible for machine assignment and speed selection. The AgentF 
serves to allocate jobs to a suitable factory for processing.

4.1. Subproblem decomposition method

The EE-DFFJSP as a complex MOP contains two conflicting objec
tives: C̃max and T̃EC. To cooperatively optimize both objectives, we 
employ an effective decomposition method that has been widely applied 
for decomposing MOPs across various domains [64,65]. By decompos
ing the EE-DFFJSP into a set of weighted objective subproblems PB =

(SubPB1,…, SubPBh,…, SubPBe) and explicitly partitioning them based 
on predefined weightings, each subproblem can be independently 
resolved within the specific subspace. Each subproblem’s feasible solu
tion typically corresponds to one solution in Pareto solution set. Once all 

Fig. 4. Adjustable time margins for all the non-critical operations.

Fig. 5. The framework of MACMNG.

Fig. 6. Subproblem decomposition method.
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subproblems are addressed, a set of Pareto solutions can be obtained, 
thereby revealing the balance and inherent conflicts between the opti
mization objectives C̃max and T̃EC.

These subproblems PB = (SubPB1,…, SubPBh,…, SubPBe) are parti
tioned through the weighted sum method [66], as shown in Fig. 6. This 
method produces a set of uniformly distributed objective weight vectors 

λ = (λ1,…, λh,…, λe) to decompose MOPs, where λh = (λφ1
h ,λφ2

h ,…,λ
φNobj
h ). 

Here, NO represents the number of objectives, and e denotes the number 
of decomposed subproblems. For the EE-DFFJSP, the optimization ob
jectives are C̃max and T̃EC (Nobj = 2). Specifically, superscript φ1 in
dicates that the symbol is associated with the objective C̃max, while 
superscript φ2 denotes relevance to the objective T̃EC. The objective 
function fʹ for the h − th subproblem SubPBh is as Eq. (26). 

fʹ=
∑Nobj

i=1
λφi

h fi = λφ1
h f1 + λφ2

h f2,∀h. (26) 

4.2. Domain parameter transfer strategy

In EE-DFFJSP, each subproblem SubPBh is modeled as a corre
sponding subnet SubNeth. These subnets constitute an integrated 
network group Net = (SubNet1, …, SubNeth, …, SubNete). With an 
increasing number of subproblems, the corresponding number of sub
nets also expands. In addition, training each subnet as an independent 
network makes the training of the network group Net difficult to com
plete within a feasible timeframe. Without sharing learned experience 
and knowledge among subnets, the network group Net training becomes 
significantly inefficient. To address this issue, the domain parameter 
transfer strategy (DPTS) is implemented to significantly reduce the 
training time for each neighboring subnet. The adjacent subproblems 
have similar weight configurations, which implies a structural similarity 
between subproblems SubPBh and SubPBh− 1. By transferring the network 
parameters of subnet SubNeth− 1 to its neighboring subnet SubNeth for 
initialization, the time cost of retraining subnet SubNeth is avoided. The 
DPTS not only shortens training time but also significantly improves the 
overall efficiency of the MACMNG in tackling the EE-DFFJSP.

The network parameters for the subnet SubNeth are denoted as 
SubNeth = [θφ1

h , θ́ φ1
h ; θφ2

h , θ́ φ2
h ], where θφ1

h and θ́ φ1
h correspond to the on

line-Q network parameters and target-Q network parameters optimized 
for C̃max, while θφ2

h and θ́ φ2
h are for T̃EC, respectively. Assuming subnet 

SubNeth− 1 has been fully trained and is near optimal, the subnet 
SubNeth can share the parameters of SubNeth− 1 as its initial training 
parameters. The subnet parameters SubNeth− 1 = [θφ1

h− 1, θ́ φ1
h− 1; θ

φ2
h− 1, θ́ φ2

h− 1]

are then sequentially passed to the subsequent subnet SubNeth for 
further training, as depicted in Fig. 7 and detailed in Algorithm 1. By 
solving each subproblem in Fig. 6 (which corresponds to each subnet in 
Fig. 7) to obtain the target solution, all feasible solutions in specific 
reference directions form the Pareto solution set. By systematically 
solving all subproblems, the MACMNG framework can ultimately 
construct an approximate Pareto front, thereby providing an efficient 
learning-driven and multi-agent collaborative promising paradigm for 
solving complex MOPs. 

Algorithm1. : Initialization network parameters for SubNeth 

4.3. Triple Markov decision process formulation

According to the work of Song et al. (2023), addressing the FJSP can 
be formulated as the MDP, denoted as M (S,A ,T ,R, γ), where S repre
sents the set of states, A denotes a set of actions, T is the state transition 
function, R refers to the reward function, and γ is the discount factor. 
However, the traditional single MDP is inadequate for modeling the 
complex characteristics of the EE-DFFJSP. To address this limitation, the 
triple-MDP formulation is introduced, denote as (M J, M F, M M). Each 
MDP is defined as,M F = (SF ,A F ,T ,RF, γ), and M M = (Sφ1

M ,Sφ2
M ,A M,T ,

Rφ1
JM,R

φ2
JM,γ). Unlike traditional MDPs, consisting of only one set of states 

and one reward function, the triple-MDP incorporates five sets of states 
(Sφ1

J ,Sφ2
J ,SF,Sφ1

M , Sφ2
M ) and three distinct reward functions (Rφ1

JM,R
φ2
JM,RF). 

Despite this, the triple-MDP share a common state transition function 
(T ). The state transition in triple-MDP is contingent upon the receipt of 
the joint action A = (aJ

t ∈ A J,aF
t ∈ A F ,aM

t ∈ A M), which emerges from 
the cooperative decision-making of three agents (AgentJ, AgentF, and 
AgentM). Fig. 8 provides an illustrative example of the state transition 
within the triple-MDP. At the decision time step t = 3, the agents 
collectively determine a joint action A, upon which the environment 

Fig. 7. Domain parameters transfer strategy.

Fig. 8. Illustration of the state transition for triple-MDP.
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transitions to the next decision time step t = 4. This transition process is 
the foundation for the subsequent description of the triple-MDP. The 
detailed formulation of the triple-MDP is presented as follows:

4.3.1. Action sets
The action sets in MARL are crucial as they delineate the scope of 

decisions agents can execute, directly impacting their ability to explore 
environments, learn knowledge, and optimize policies in complex en
vironments. These agents AgentJ, AgentM and AgentF have independent 
action set at decision time step t: A J(t), A M(t), and A F(t), respectively. 
At the initial decision time step t = 0, the first operation of each job is 
ready for processing. The action set A J(t) involved the dispatching of n 
jobs, and as the decision-making progresses, the operations of the jobs 
are gradually scheduled, leading to a reduction of the action set A J(t). 
When the action set A J(t) is empty, it indicates that all jobs have been 
fully processed and signifies the end of scheduling. The action set A F(t)
involved allocating of available factories, allowing each job to be 
assigned to the most suitable factory for processing, and the action set 
A M(t) determines the set of eligible machines for the execution of the 
operation Oi,j́  of the job Ii determined by the decision action aJ

t ∈ A J(t)
of AgentJ. Here, Oi,j́  refers to the operation of job Ii that is available for 
processing at the decision time step t. Meanwhile, the action set A M(t) is 
further expanded by incorporating the relevant actions for selecting 
each speed level Vv ∈ V of machines and adapting the relevant features 
to the speed level Vv. For the states at the decision time step t = 3 in 
Fig. 8, the action sets A J(3), A F(3), and A M(3) with their corresponding 
feature mappings are listed in Tables 5–7, where details of the action set 
A M(3) with speed level V3 are given in Table 7.

4.3.2. State representation
The state representation is crucial in MARL, and capturing critical 

characteristics and dynamics from the triple-MDP allows agents to learn 
policies efficiently and suitably coordinate their behaviors, thus deter
mining how agents interpret and respond to the potential actions with 
others. At decision time step t, the state st can be represented as st =

(sJ φ1
t , sJ φ1

t , sM φ1
t , sM φ1

t , sF
t ). s

J φ1
t = [CPφ1

1 (t), TPTφ1
1 (t),OCTφ1

1 (t), PDφ1
1 (t)

,…,CPφ1
n (t),TPTφ1

n (t),OCTφ1
n (t),PDφ1

n (t)] ∈ Sφ1
J and sJ φ2

t = [CPφ2
1 (t),

TPTφ2
1 (t), OCTφ2

1 (t),PDφ2
1 (t),…,CPφ2

n (t),TPTφ2
n (t),OCTφ2

n (t),PDφ2
n (t)] ∈ Sφ2

J 
represent the feature mappings of each action aJ

t in the action set A J(t), 
which consist of the following features:

(1) CPφ1
i (t) denotes the completion states of all operations of job Ii at 

the decision time step t. 

CPφ2
i (t) = CPφ1

i (t) =
{

1, ifjobIiisdone,
0, otherwise. (27) 

(2) TPTφ1
i (t) represents the average fuzzy processing time of opera

tion Oi,j́  for all available machines, where operation Oi,j́  is processable 
operation for job Ii at the decision time step t. TPTφ2

i indicates the 
average fuzzy EC for processing operation Oi,j́  on available machines, 
calculated as: 

TPTφ1
i (t) =

1
|UMi,j́ |

∑

k∈UMi,j́

p̃k,i,j́ , (28) 

TPTφ2
i (t) = TPTϕ1

i (t) × PP. (29) 

(3) OCTφ1
i (t) denotes the fuzzy completion time of the predecessor 

operation Oi,j́ − 1 for operation Oi,j́  at the decision time step t. If Oi,j́  has no 
predecessor, then OCTφ1

i (t) = 0. Similarly, OCTφ2
i (t) = OCTφ1

i (t).
(4) PDφ1

i (t) denotes the fuzzy processed time of job Ii at the decision 
time step t and PDφ2

i (t) is calculated by PDφ2
i (t) = PDφ1

i (t)× PP.
The sM φ1

t = [URφ1
1 (t),MCTφ1

1 (t),MPLφ1
1 (t), PTφ1

1 (t),…,URφ1
s×m(t),

MCTφ1
s×m(t), MPLφ1

s×m(t), PTφ1
s×m(t)]∈ Sφ1

M and sM φ2
t = [URφ2

1 (t),MCTφ2
1 (t),

MPLφ2
1 (t),PTφ2

1 (t),…,URφ2
s×m(t),MCTφ2

s×m(t),MPLφ2
s×m(t), PTφ2

s×m(t)]∈ Sφ2
M 

represent the feature mappings of each action aM
t in the action set A M(t), 

which contain the following features: 

(1) URφ1
k (t) indicates the utilization rate of machine Mfʹ

k with speed 
level Vv at the decision time step t, where the factory Ffʹ is the 
factory to which job Ii belongs. The job Ii is selected by AgentJ via 
the decision action aJ

t ∈ A J(t), and URφ2
k (t) = URφ1

k (t).
(2) MCTφ1

k (t) represents the fuzzy ready time of machine Mfʹ
k with 

speed level Vv at the decision time step t, and MCTφ2
k (t) =

MCTφ1
k (t).

(3) MPLφ1
k (t) denotes the fuzzy load time of machine Mfʹ

k with speed 
level Vv at the decision time step t, and MPLφ2

k (t) = MPLφ1
k (t)×

PP.
(4) PTφ1

k (t) refers to the fuzzy processing time of operation Oi,j́  of job 
Ii selected by the decision action aJ

t ∈ A J(t) of AgentJ on the 
machine Mfʹ

k with speed level Vv at the decision time step t, and 
MPLφ2

k (t) = MPLφ1
k (t)× emv × PP.

The sF
t = [FPL1(t), SPD1(t),…, FPLl(t), SPDl(t)] ∈ SF represents the 

feature mappings of each action aF
t in the action set A F(t), which consists 

of two types of features: 

(1) FPLf (t) denotes the fuzzy processing load of factory Ff at the 
decision time step t. 

FPLf (t) =
∑m

k=1
MPLk(t). (30) 

Table 5 
Details of A J(3) with feature mappings.

Features A J(3)

Action 1# Action 2# Action 3#

CPφ1
i (3) 0 0 0

TPTφ1
i (3) (3,6,9) (3,4,7) (1,3,5)

OCTφ1
i (3) (5,9,12) (0,0,0) (3,5,6)

PDφ1
i (3) (5,9,12) (0,0,0) (3,5,6)

CPφ2
i (3) 0 0 0

TPTφ2
i (3) (9,18,27) (9,12,21) (3,9,15)

OCTφ2
i (3) (5,9,12) (0,0,0) (3,5,6)

PDφ2
i (3) (15,27,36) (0,0,0) (9,15,18)

Table 6 
Details of A F(3) with feature mappings.

Features A F(3)

Action 1# Action 2#

FPLf (3) (5,9,12) (3,5,6)
SPDf (3) (4.2,10.6,15.2) (4,6,19)

Table 7 
Details of A M(3) with feature mappings at speed level V3.

Features A M(3)

Action 1# Action 2# Action 3#

URφ1
k (3) 100 − 1 72

MCTφ1
k (3) (1,2,3) − 1 (4.2,7.6,10.2)

MPLφ1
k (3) (1,2,3) − 1 (3.2,5.6,7.2)

PTφ1
k (3) (4,5,6) − 1 (2,3,8)

URφ2
k (3) 100 − 1 72

MCTφ2
k (3) (1,2,3) − 1 (4.2,7.6,10.2)

MPLφ2
k (3) (3,6,9) − 1 (9.6,16.8,21.6)

PTφ2
k (3) (36,45,54) − 1 (18,27,24)
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(2) SPDf (t) represents the predicted C̃max obtained by performing a 
complete pre-scheduling in factory Ff for job Ii selected by the 
AgentJ via the decision action aJ

t ∈ A J(t). The job Ii is pre- 
scheduled in factory Ff by selecting the machine with the short
est fuzzy processing time for each operation.

4.3.3. Reward function
The design of MARL’s rewards involves considering agents’ in

teractions and making trade-offs between objectives to ensure that local 
behavior is consistent with the global goal. The two agents AgentJ and 
AgentM share the same global goal of minimizing C̃max and T̃EC. The 
operations to be processed are virtually scheduled, using the average 
value of available fuzzy processing times as placeholders until all op
erations are pre-scheduled, thus yielding the predicted solution π at 
decision time step t. The reward rJM

t comprises two parts rJM φ1
t and 

rJM φ2
t , rJM φ1

t = C̃max(π) − C̃max(π́ ) and rJM φ2
t = T̃EC(π) − T̃EC(π́ ), 

where π́  is the expected solution at the decision time step t + 1. Since 
AgentJ handles the appropriate allocation of jobs to the factories, the 
reward rF

t must keep a balance between the factory’s processing capacity 
and efficiency. After AgentF assigning the job Ii selected by AgentJ via 
aJ

t ∈ A J(t) to factory Ff via aF
t ∈ A F(t), all unprocessed operations are 

scheduled using the designed PDR, i.e., the earliest available operation 
with the lowest load machine (EAO-LLM). The reward rF

t can be calcu
lated as rF

t = −
∑

1≤f≤fʹ≤l

⃒
⃒C̃f (π) − C̃fʹ(π)

⃒
⃒.

State s3 = (sJ φ1
3 , sJ φ2

3 , sM φ1
3 , sM φ2

3 , sF
3) illustrated in Fig. 8 as an 

example. The unprocessed operations O1,3, O1,4, O2,1, O2,2, O2,3, O3,2, 
O3,3 and O3,4 are pre-scheduled at the decision time step t = 3, resulting 
in a feasible solution π with C̃max(π) = (15.2,27.6,48.2). The triple-MDP 
transition from state s3 to state s4 based on the joint action A = (aJ

3 = 2,
aF

3 = 1, aM
3 = 13), where the current processable operation O2,1 of the 

job I2 (job index i is i = aJ
3 = 2) is processed on the machine M1

3 (ma
chine index k is k = (aM

3 |s) + 1 = (13|5) + 1 = 3, and factory index f is f 
= aF

3 = 1) with the speed level V3 (speed level index v is v = aM
3 mod s =

13 mod 5 = 3), resulting in the next state s4. At the decision time step t 
= 4, the unprocessed operations are O1,3, O1,4, O2,2, O2,3, O3,2, O3,3 and 
O3,4. Through virtual scheduling, a feasible solution π́  is yielded, 
resulting in C̃max(π́ ) = (14.2, 26.6, 47.2). The reward rJM φ1

3 

= C̃max(π́ ) − C̃max(π) = (1, 1, 1) and the computation of reward rJM φ2
3 

follows a similar method to that of reward rJM φ1
3 . In the process of 

calculating reward rF
3, based on joint action A = (aJ

3 = 2,aF
3 = 1,aM

3 =

13), job I2 is assigned to factory F2. Then, the EAO-LLM is used to all 
unprocessed operations, resulting in a feasible solution π́ .́ The reward rF

3 

is calculated as rF
3 = − |C̃2(πʹ́) − C̃1(π́ )́| = − |(6, 9, 11) − (7.2, 14.6,

23.2)| = − (1.2,5.6,12.2).

4.4. Critical-path-based energy-efficient strategy

After decomposing the EE-FFJSP into a set of weighted objective 
subproblems using the subproblem decomposition method, the sub
problem SubPBh can independently generate a solution, denoted as so
lution πh. Collectively, the solutions obtained from all subproblems can 
constitute the Pareto solution set. Although an appropriate balance 
already exists between C̃max(πh) and T̃EC(πh), it is necessary to adjust the 
speed levels of operations on non-critical paths for machines Mf

k to 
further reduce T̃EC(πh) (see Section 3.3). This section proposes an 
effective critical-path-based-EES (CPEES), building upon Property 1 in 
Section 3.3. The following outlines the detailed steps:

Step 1: Critical factories are identified, followed by the determina
tion of critical paths within critical factories. In cases where multiple 
critical paths exist, one path is randomly selected as the critical path.

Step 2: Determine the conditions for speed reduction by traversing 
each operation Oi,j on non-critical paths to verify whether the speed- 
down criteria are satisfied: (1) The fuzzy completion time of operation 
Oi,j not exceeds the fuzzy start time of operation Oi,j+1. (2) The fuzzy 
completion time of operation Oi,j not exceeds the fuzzy start time of the 
next operation on the same machine. (3) The processing machine Mf

k for 
operation Oi,j operates at a speed level Vv ∈ V that is higher than Vs.

Step 3: Calculate adjustable fuzzy time margins ATi,j and UATi,j by 
Eq. (24) and Eq. (25), respectively.

Step 4: Gradually reduce the processing speed level Vv ∈ V of 
operation Oi,j on machine Mf

k to a level Vv́ ∈ V, and continue the speed 
level reduction until ̃tk,i,j × smv́ − t̃k,i,j × smv > ATi,j(orUATi,j) is satisfied. 
After executing speed level adjustment, determine whether the critical 
path has changed; If a change is detected, revert the speed level back to 
Vv and return to Step 2. Repeat this process until all operations on the 
non-critical paths have been thoroughly checked.

As depicted in Fig. 9, this schematic illustrates the proposed CPEES, 
based on the example in Fig. 2. Fig. 9(b) shows the Gantt chart after 
CPEES implementation, while Fig. 9(c) displays the processing speed 
level settings of each machine for every operation after executing 
CPEES. In Fig. 9(a), factory F1 is designated as the critical factory, with 

Fig. 9. An example of the implementation of CPEES.
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the critical path being (O1,1,O1,2,O2,1,O2,2,O1,4). The related operation is 
O1,3 and the unrelated operations are O2,3, O3,1, O3,2, O3,3, and O3,4. 
However, only operations O3,2 and O3,3 meet the conditions in Step 2 for 
speed adjustment. Following the implementation of CPEES, the speed 
level vector ψV = [3,2, 3,1, 1,3, 4,5, 3,2, 5] in π = (ψF,ψJ,ψM,ψV) is 
transformed into ψ V́ = [3, 2,3, 1,1, 3,4, 5,4, 3,5] through the speed 
level reduction of O3,2 and O3,3. T̃EC(π́ ) was reduced from T̃EC(π) =

(320.6,571.0,883.6) to (302.6, 540, 845.6). The pseudocode for the 
CPEES is given in Algorithm 2. 

Algorithm 2. Critical-path-based energy-efficient strategy.  

4.5. Multi-objective DQN algorithm

For EE-DFFJSP, two conflicting objectives T̃EC and C̃max need to be 
optimized cooperatively. Traditional DQN-based method select optimal 
actions by estimating Q-values [67]. However, the single Q-value update 
mechanism is inadequate for balancing two objectives, which makes 
traditional DQN-based method difficult to find suitable solutions. This 
limitation reduces the diversity of obtainable Pareto solutions and hin
ders adaptability to dynamic changes in optimization objectives during 
subproblem solving. To address this limitation, MACMNG employs an 
MO-DQN algorithm during the training phase. In MO-DQN, the Q-values 
for optimization objectives are aggregated using uniformly objective 
weight vectors λ (as detailed in Section 4.1), enabling the cooperative 

optimization of multiple conflicting objectives and adapting to dynamic 
objective weight changes. The MO-DQN algorithm effectively resolves 
conflicts between competing objectives while yielding a diverse set of 
Pareto solutions, thereby addressing the limitation of traditional 
DQN-based method. The implementation of MO-DQN is elaborated on in 
two key aspects: decision-making for actions and updating parameters 
for networks.

According to subproblem decomposition method (see Section 4.1), 
the EE-DFFJSP is decomposed into multiple subproblems (SubPB1, …,

SubPBh, …, SubPBe). Each subproblem is aimed at optimizing two ob
jectives of ̃Cmax and T̃EC. Fig. 10 provides an illustrative depiction for the 

decision-making of MO-DQN. The agent AgentJ and AgentM each contain 
a corresponding network group, namely NetJ and NetM, respectively. 
Each network group consists of multiple subnets, referred to as 
(SubNetJ

1,…, SubNetJ
h,…,SubNetJ

e) and (SubNetM
1 , …, SubNetM

h , …,

SubNetM
e ), with the number of subnets corresponding to the total 

number of subproblems. Each subnet SubNeth is responsible for 
handling a specific subproblem SubPBh. While all subnets share the same 
structural design, they have independent network parameters, enabling 
the learning of distinct policies corresponding to their respective sub
problems. At decision time step t, the scheduling environment first ex
tracts the states sJ φ1

t and sJ φ2
t . These state features are input into the 

subnet SubNetJ
h corresponding to the current subproblem SubPBh within 

the job agent’s network group NetJ. After calculating the Q-values QJ φ1
t 

and QJ φ2
t for the two optimization objectives ̃Cmax and T̃EC, the action aJ

t 
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of the job agent AgentJ is determined according to the action selecting 
function defined in Eq. (31). Subsequently, it is determined whether the 
selected job has already been assigned to a factory. If it has, the factory 
agent AgentF directly outputs its action aF

t , pointing to the assigned 
factory. If not, the factory state features sF

t are extracted, and the factory 
agent AgentF computes the Q-values Qt through its network to determine 
action aF

t using Eq. (32). Based on actions aJ
t and aF

t , the machine states 
sM φ1

t and sM φ2
t at the decision time step t are then extracted. These state 

features are processed through the relevant subnet SubNetM
h in the 

machine agent’s network group NetM to obtain Q-values QM φ1
t and 

QM φ2
t , and the machine agent’s action aM

t is selected according to Eq. 
(33). These three actions collectively form the joint action A = (aJ

t , aF
t ,

aM
t ), thereby completing the cooperative decision-making process. 

aJ
t = argmaxa∈A J(t)

(
λφ1

h ⋅softmax
(

QJ φ1
t

(
sJ φ1
t , a; θJ φ1

h

))

+ λφ2
h ⋅softmax

(
QJ φ2

t

(
sJ φ2
t , a; θJ φ2

h

))) (31) 

aF
t = argmaxa∈A F(t)Qt

(
sF
t , a; θ

)
(32) 

aM
t = argmaxa∈A M(t)

(
λφ1

h ⋅softmax
(

QM φ1
t

(
sM φ1
t , a; θM φ1

h

))

+ λφ2
h ⋅softmax

(
QM φ2

t

(
sM φ2
t , a; θM φ2

h

))) (33) 

Here, λφ1
h and λφ2

h represent the objective weights for C̃max and T̃EC of 
SubPBh, respectively. The SoftMax function is used to the Q-values of 
each action, ensuring that the selection probability of actions is biased 
towards those with higher expected utility.

Since subnet SubNetJ
h and subnet SubNetM

h share the same structural 
design and parameters update mechanism, they are collectively referred 
to as subnet SubNeth in the following discussion. Accordingly, their 
corresponding states, actions, and rewards are represented using unified 
notation; for instance, symbol sφ1

t is used to denote both sJ φ1
t and sM φ1

t . 

As illustrated in Fig. 11, ensure that SubNeth can optimize according to 
λh, the update of network parameters [θφ1

h , θ́ φ1
h ; θφ2

h , θ́ φ2
h ] must take into 

account the comprehensive influence of C̃max and T̃EC. Building upon 
the DQN-based method network update mechanism, a weighting 
mechanism is introduced to better balance the two objectives C̃max and 
T̃EC. Upon completion of the decision-making processes by AgentJ or 
AgentM, an experience tuple (sφ1

t , sφ2
t , at , rφ1

t , rφ2
t , sφ1

t+1, s
φ2
t+1) is generated by 

the scheduling environment and used to replace a corresponding sample 
in the replay buffer. Subsequently, a batch of experiences is sampled to 
compute the losses (Lφ1 and Lφ2 ) associated with the two optimization 
objectives C̃max and T̃EC, respectively, according to Eqs. (34)–(37). The 
total weighted loss Ltotal is then calculated by Eq. (38) and employed to 
update the online Q-network parameters θφ1

h and θφ2
h . Every u update 

iterations, the values of θφ1
h and θφ2

h are copied to θ́ φ1
h and θ́ φ2

h , respec
tively, for updating the target Q-network parameters. The corresponding 
pseudocode is detailed in Algorithm 3. 

yφ1
t = rφ1

t + γQφ1
t

(
sφ1
t+1, argmaxa∈A (t+1)Q

φ1
t+1
(
sφ1
t+1, a; θφ1

h

)
; θʹφ1

h

)
, (34) 

Lφ1 = E
[(

yφ1
t − Qφ1

t
(
sφ1
t , at ; θ

φ1
h

) )2
]

(35) 

yφ2
t = rφ2

t + γQφ2
t

(
sφ2
t+1, argmaxa∈A (t+1)Q

φ2
t+1
(
sφ2
t+1, a; θφ2

h

)
; θʹφ2

h

)
(36) 

Lφ2 = E
[(

yφ2
t − Qφ2

t
(
sφ2

t , at ; θφ2
h

))2] (37) 

Ltotal = λφ1
h ⋅Lφ1 + λφ2

h ⋅Lφ2 (38) 

While performing network parameters [θ, θ́ ] updates, the AgentF, 
similar to its decision-making process, does not consider the influence of 
weight vectors λh. Fig. 12 illustrates the update process of network pa
rameters for AgentF. After the decision-making process of AgentF is 
completed, the scheduling environment generates an experience tuple 
(sF

t , aF
t , rF

t , sF
t+1), which is used to replace a corresponding sample in the 

Fig. 10. Schematic diagram for the decision-making of MO-DQN.
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replay buffer. A batch of experiences is then sampled from the replay 
buffer to compute the loss LF according to Eq. (39) and Eq. (40), which is 
subsequently used to update the online Q-network parameters θ. After 
every ú  update iterations, the values of the online Q-network parameters 
θ are used to update the target Q-network parameters θ́ . The corre
sponding pseudocode is provided in Algorithm 4. The overall training 
process of the MACMNG is provided in Algorithm 5. 

yt = rF
t + γQt

(
sF

t+1, argmaxa∈A F(t+1)Qt+1
(
sF

t+1, a; θ
)
; θ́
)

(39) 

LF = E
[(

yt − Qt
(
sF

t , a
F
t ; θ
))2
]

(40) 

The flowchart of the EE-DFFJSP using the proposed MACMNG is 
illustrated in Fig. 13. First, the original EE-DFFJSP is decomposed into e 

subproblems based on a subproblem decomposition method (see Section 
4.1). Then, according to Algorithm 5, a set of randomly generated in
stances is used to train the network parameters of AgentJ, AgentM, and 
AgentF. After the training phase is completed, the trained agents are 
utilized to solve the e subproblems of the original EE-DFFJSP, resulting 
in the final solution set denoted as Π. The CPEES is performed for each 
feasible solution in Π via Algorithm 2, and the Pareto solution set is 
updated. 

Algorithm 3. Updating network param eters of subnet SubNeth 

Algorithm 4. Updating network param eters of AgentF 

Algorithm 5. Training the MACMNG via MO-DQN algorithm  

5. Experimental comparisons and results analysis

This section provides a comprehensive analysis of the performance of 
the MACMNG for solving EE-DFFJSP. Section 5.1 introduces in detail the 
benchmark datasets, the experimental setup, and the hyperparameter 
settings in MACMNG. Section 5.2 describes the performance evaluation 
metrics for multi-objective algorithms. Section 5.3 presents a compar
ative analysis of MACMNG and composite PDRs across all benchmark 
instances. Section 5.4 provides an in-depth and detailed experimental 
analysis that compares MACMNG with state-of-the-art multi-objective 
algorithms and verifies the effectiveness and efficiency of MACMNG.

5.1. Experimental details

To evaluate the performance of MACMNG in solving the EE-DFFJSP, 
three benchmark datasets from existing literature were selected for 
validation: 
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● The first dataset, derived from Lei et al. [62,68], comprises five in
stances (Lei01~Lei05) with the number of jobs n ∈ {10, 10, 10, 10,
15}, the number of operations {40,40,50,50,80}, and the number of 
machines m = 10.

● The second dataset, proposed by Gao et al. [69], includes eight in
stances (Reman01~Reman08) with the number of jobs n ∈ {5,8,10,
10,15,15,20,20}, the number of operations {23,64,81,100,171,185,
308,355}, and the number of machines m ∈ {4,8,6,10,8,10,10,15}.

● The third dataset, introduced by Li et al. [70], contains ten instances 
(FMK01~FMK10) with the number of jobs n ∈ {10,10,15,15,15,10,
20, 20, 20, 20}, the number of operations {55, 58, 150, 90, 106, 150,
100,225,240,240}, and the number of machines. m ∈ {6,6,8,8,4,15,
5,10,10,15}.

These three types of instances are designed for fuzzy FJSP (FFJSP), 
were extended to adapt to the DFFJSP by incorporating the number of 
factories l ∈ {2, 3, 4}. These extended instances were renamed with 
appended factory identifiers (e.g., FMK01–2 denotes the two-factory 
extension of FMK01). The machine speed configuration included five 
discrete levels V = {1,2,3,4,5}, with corresponding speed coefficients 
SM = {0.6,0.8,1, 1.2,1.4} and energy consumption (EC) coefficients SE 
= {8,5,3,2,1}. The fuzzy processing times for all jobs were derived from 
the original benchmark instances, while actual fuzzy processing times 
were determined by selected speed levels. The standard processing unit 
EC is set at PP = 3 and the standby unit EC is set at SP = 1. For instances 
Lei01 to Lei05 [62,68], all machines are regarded as available candidate 
machines for processing, which implies a fully flexible production 
environment. In contrast, for instances Reman01 to Reman08 [69] and 
instances FMK01 to FMK10 [70], each operation is assigned at least one 
candidate machine for processing, ensuring partial flexibility in pro
duction environment. All algorithms, including MACMNG, are imple
mented in Python and executed on the workstation equipped with a 12th 
Gen Intel® Core™ i5-12400F CPU and an NVIDIA GeForce RTX 4060 
GPU. All algorithms are independently executed across 10 runs for each 
instance, with each run having the same maximum elapsed CPU time of 
l × m × n × 0.1 seconds. To validate the convergence and diversity of 
Pareto solutions yielded by MACMNG, average results across 10 runs are 
collected for comparative analysis using three performance metrics (see 
Section 5.2). These benchmark datasets and MACMNG’s 

implementation details are publicly accessible at https://github.com/L- 
xw/MACMNG. For MARL-based methods, the selection of hyper
parameters not only affects the convergence speed of algorithms but also 
directly impacts the quality of solutions. To ensure that MACMNG 
achieves the best performance in addressing EE-DFFJSP, Table 8 pro
vides a detailed explanation of the settings of each hyperparameter.

5.2. Performance metrics

To comprehensively evaluate the performance of MACMNG and 
comparative algorithms, three widely adopted performance metrics are 
employed to assess the quality and diversity of the obtained Pareto so
lutions: 

(1) Hypervolume (HV) [71]: This metric measures the volume of the 
objective space spanned by the Pareto front (PF) relative to a 
predefined reference point. A larger HV value indicates that the 
solution set is closer to the ideal Pareto front (PF∗) and exhibits 
superior distribution uniformity. Here, PF is a set of the Pareto 
solutions obtained by an algorithm, and PF∗ is the reference set of 
the Pareto solutions, which is formed by combining all sets of 
Pareto solutions from all algorithms. The HV is calculated as: 

HV(PF,Pref ) = ∪
i∈PF

v(i,Pref ), (41) 

where Pref = (1, 1) is defined as the reference point and v(i,Pref )

represents the hypervolume enclosed between the reference point 
Pref and the i − th solution in the Pareto front PF.

(2) Generational distance (GD): This metric quantifies the average 
minimum Euclidean distance from the obtained PF to PF∗. A 
smaller GD value implies that the solution set is closer to the ideal 
Pareto front PF∗. The GD is formulated as: 

GD(PF, PF∗) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
|PF|

∑|PF|

i=1
dist(i,PF∗)

2

√
√
√
√ (42) 

where dist(i,PF∗) represents the Euclidean distance between the 
i − th solution in PF and its nearest neighbor solution in PF∗.

Fig. 11. Schematic diagram for updating network parameters of subnet SubNeth.
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Fig. 12. Schematic diagram for updating network parameters of AgentF .
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(3) Inverted generational distance (IGD): The IGD evaluates the 
average minimum distance from PF∗ to PF, serving as a dual 
measure to GD. A smaller IGD value implies that PF is not only 

closer to PF∗ but also has comprehensive coverage. The IGD is 
defined as:

IGD(PF,PF∗) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
|PF∗|

∑|PF∗|

i=1
dist(i,PF)2

√
√
√
√ , (43) 

where dist(i,PF) is the Euclidean distance between the i − th solution in 
ideal Pareto front PF∗ and its closest counterpart in PF.

5.3. Comparison of MACMNG with effective PDRs

To evaluate the effectiveness of MACMNG, a comparative analysis 
was conducted against three state-of-the-art composite priority dis
patching rules (PDRs) [50]: FIFO+EET, MWKR+EET, and 
MOPNR+EET. Given that these composite PDRs are designed to opti
mize the makespan objective (C̃max), these comparisons focused on 
contrasting the Pareto solutions yielded by MACMNG (with minimal 
C̃max) against those produced by PDRs that achieve the minimization of 
C̃max. It is noted that the total energy consumption (T̃EC) for all solutions 

Fig. 13. The flowchart of MACMNG for EE-DFFJSP.

Table 8 
Hyperparameters details.

Hyperparameter Symbol (value)

Number of subproblems e = 101
Uniformly objective weight vectors λ = ([1,0],…, [0,1])
Number of hidden layers 2
Number of neurons in the hidden layer 512
Learning rate r = 0.00001
Discount factor γ = 0.9
Exploration rate ε = 0.1
Target network update frequency u = 10, ú = 10
Experience replays buffer size 200
Minimum sample size 50
Batch size 32
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produced by MACMNG and PDRs can be calculated by Eqs. (13)–(15)
and optimized via the energy-efficient strategy (EES) detailed in Section 
4.4. To ensure fairness, all speed levels were fixed uniformly across all 
composite PDRs due to their inability to adapt to variable speeds. The 
performance of MACMNG and PDRs was evaluated at five different 
speed levels (V1 to V5), with comparisons centered on their best 
achievable C̃max and T̃EC.

As summarized in Tables 9–11, a comparative analysis on the 
effectiveness of MACMNG against the three PDRs at different speed 
levels is provided, with the best results achieved on each instance 
highlighted in bold. When speed levels are set to V1, composite PDRs 
can achieve comparable C̃max optimization to MACMNG but demon
strate significantly inferior for optimizing T̃EC. For example, in instance 
FMK02–2, FIFO+EET yields T̃EC value of (3507.0, 5918.0, 8189.4), 
which are greatly higher than MACMNG’s results (1319.6, 2247.8, 
3217.8). When speed levels are decreased (e.g., to V5), these three 
composite PDRs achieve marginal improvements in T̃EC for specific 
instances, but at the expense of drastically increased C̃max. Upon 
reducing speed level to V5, FIFO+EET reduces T̃EC in FMK01–2 but 
results in a marked increase for C̃max, which is considerably higher than 
C̃max of MACMNG by a significant margin. In contrast, MACMNG 
maintains a balanced performance of both objectives across different 
speed levels, effectively coordinating C̃max and T̃EC to deliver stable and 
robust performance in tackling EE-DFFJSP. The experimental findings 
show a critical limitation of composite PDRs: their tendency to prioritize 
one objective while neglecting the other objective when adjusting speed 
levels, resulting in significant deterioration of neglected objectives for 
practical multi-objective scheduling scenarios. MACMNG achieves 
cooperative optimization in solving EE-DFFJSP. The MACMNG strikes a 
better balance between C̃max and T̃EC, making it more suitable for 
complex scenarios, where dynamic speed adaptation and multi- 
objective trade-offs are essential.

5.4. Comparison of MACMNG with existing algorithms

To further validate the efficacy of MACMNG, this section conducts a 
comprehensive comparative study against seven state-of-the-art multi- 
objective optimization algorithms: MOEA/D [72], NSGA-II [73], 
NSGA-III [65], KCA [74], MMMA [42], KBEA [45], and TSKEA [47]. 
These algorithms, selected for their specific strengths in solving MOPs, 
serve as baselines for evaluating MACMNG’s performance. As a 
well-known solver for MOPs, MOEA/D has been recognized for its robust 
search capabilities, driven by a decomposition-based method and a 
neighborhood-based optimization strategy. NSGA-II achieves excellent 
search behavior through an efficient nondominated sorting method and 
an elite selection strategy, while NSGA-III further improves the handling 
of MOPs via a reference point-based mechanism to preserve population 
diversity. KCA is developed to tackle the energy-efficient DPFSP, which 
incorporates problem-specific knowledge extraction, multi-operator 
cooperative exploration, and knowledge-based local intensification to 
balance both two objectives Cmax and TEC. MMMA is devised for the 
energy-efficient DFFSP with variable machine speeds. MMMA employs a 
weighted NEH-based initialization inspired by MOEA/D and genetic 
global search operators to minimize both total weighted tardiness and 
TEC. KBEA is designed to solve the energy-efficient DFJSP with the 
objectives of minimizing Cmax and TEC, which utilizes 
knowledge-guided local search and energy-efficient strategies (EES) to 
strengthen exploitation capability. TSKEA is devised for DGT2FJSP and 
adopts a two-stage framework combining problem-specific heuristics for 
population initialization, a Pareto-based evolution method, and 
multi-neighborhood search to balance convergence and diversity.

To fairly evaluate algorithms’ efficacy, the Wilcoxon Signed-Rank 
Test is used to perform pairwise comparisons across all instances. The 
statistical results of MACMNG versus the seven baselines multi-objective Ta
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algorithms on HV, GD, and IGD metrics are summarized in Tables 12–20, 
grouped by the number of factories. The symbols ‘ + ’, ‘≈’, and ‘ − ’ 
indicate whether the baseline algorithms (i.e., MOEA/D, NSGA-II, 
NSGA-III, KCA, MMMA, TSKEA, and KBEA) are inferior to, similar to, 
or superior to the MACMNG, respectively. Furthermore, the Friedman 
Test is utilized to provide an overall performance ranking of MACMNG 
against other algorithms across all instances to determine the statistical 
significance of MACMNG’s superiority.

As illustrated in Tables 12–20 and Fig. 14, MACMNG has demon
strated statistically significant superiority over state-of-the-art multi- 
objective optimization algorithms across various datasets and scenarios 
with different numbers of factories, consistently delivering superior re
sults even in medium- and large-scale cases. In terms of HV and IGD 
metrics, MACMNG achieves the best values in all instances, indicating 
superior solution quality, diversity, and coverage of the Pareto front. 

Although MACMNG is slightly less competitive in a few cases in terms of 
GD metrics, its overall performance is still deemed to be the best among 
all metrics. Specifically, MACMNG yields the highest HV values, indi
cating superior convergence and diversity, simultaneously achieving the 
lowest GD and IGD values, reflecting the fact that the solutions found by 
MACMNG are closer to the true Pareto front (PF∗). Furthermore, 
MACMNG also exhibits remarkable stability, which is a highly desirable 
property for its practical multi-objective scheduling applications. As 
shown in Table 21 the Wilcoxon Signed-Rank Test results further vali
date MACMNG’s superiority over its baseline counterparts, with p −

values < 0.05 indicating statistically significant differences. Here, the 
notation R+ denotes the sum of positive ranks, which corresponds to 
instances that MACMNG outperforms its competitors; while R− repre
sents the sum of negative ranks, reflecting instances that all baseline 
algorithms outperform MACMNG. The consistently higher R+ and lower 

Table 12 
Statistical results of MACMNG versus other comparison algorithms on HV metric for two-factory instances.

Instances MOEA/D NSGA-II NSGA-III KCA MMMA KBEA TSKEA MACMNG

Lei01 − 2 0.087531(+) 0.494092(+) 0.227097(+) 0.032214(+) 0.074568(+) 0.385463(+) 0.173635(+) 0.690154
Lei02 − 2 0.324517(+) 0.741414(+) 0.521762(+) 0.308014(+) 0.220847(+) 0.669506(+) 0.318517(+) 0.793409
Lei03 − 2 0.320653(+) 0.576085(+) 0.502819(+) 0.133029(+) 0.206711(+) 0.565053(+) 0.300827(+) 0.824267
Lei04 − 2 0.281270(+) 0.513076(+) 0.371261(+) 0.300834(+) 0.328726(+) 0.339419(+) 0.116377(+) 0.758543
Lei05 − 2 0.030242(+) 0.279992(+) 0.052692(+) 0.005497(+) 0.000000(+) 0.372213(+) 0.091587(+) 0.554593
FMK01 − 2 0.156262(+) 0.402439(+) 0.186110(+) 0.149997(+) 0.155291(+) 0.424252(+) 0.388192(+) 0.726711
FMK02 − 2 0.536725(+) 0.461744(+) 0.355097(+) 0.461101(+) 0.401693(+) 0.463217(+) 0.367246(+) 0.842717
FMK03 − 2 0.141642(+) 0.145938(+) 0.100767(+) 0.283566(+) 0.187103(+) 0.229547(+) 0.018089(+) 0.645952
FMK04 − 2 0.000000(+) 0.258894(+) 0.012447(+) 0.012157(+) 0.000000(+) 0.047685(+) 0.012664(+) 0.638268
FMK05 − 2 0.000000(+) 0.281305(+) 0.176642(+) 0.040635(+) 0.000000(+) 0.408618(+) 0.203358(+) 0.662474
FMK06 − 2 0.000000(+) 0.149626(+) 0.000000(+) 0.000000(+) 0.000000(+) 0.393899(+) 0.259619(+) 0.609442
FMK07 − 2 0.022587(+) 0.288010(+) 0.186896(+) 0.049545(+) 0.005688(+) 0.308130(+) 0.199766(+) 0.661085
FMK08 − 2 0.347167(+) 0.481231(+) 0.408340(+) 0.248606(+) 0.145555(+) 0.527104(+) 0.519127(+) 0.812578
FMK09 − 2 0.051364(+) 0.127373(+) 0.000000(+) 0.000000(+) 0.000000(+) 0.296051(+) 0.096846 (+) 0.525400
FMK10 − 2 0.198360(+) 0.363466(+) 0.228333(+) 0.189935(+) 0.228818(+) 0.504746(+) 0.215453(+) 0.757637
Reman01 − 2 0.000000(+) 0.342234(+) 0.214625(+) 0.019404(+) 0.000000(+) 0.349722(+) 0.168641(+) 0.534985
Reman02 − 2 0.111784(+) 0.397879(+) 0.167797(+) 0.004857(+) 0.002053(+) 0.491083(+) 0.152674(+) 0.569030
Reman03 − 2 0.043863(+) 0.287209(+) 0.095877(+) 0.004460(+) 0.013796(+) 0.292175(+) 0.289605(+) 0.670915
Reman04 − 2 0.398594(+) 0.591861(+) 0.443119(+) 0.252853(+) 0.302045(+) 0.666416(+) 0.548974(+) 0.861894
Reman05 − 2 0.269665(+) 0.347437(+) 0.266390(+) 0.033443(+) 0.000000(+) 0.597041(+) 0.399246(+) 0.718405
Reman06 − 2 0.333678(+) 0.560409(+) 0.444461(+) 0.219856(+) 0.290382(+) 0.693921(+) 0.452916(+) 0.758776
Reman07 − 2 0.367455(+) 0.512598(+) 0.366114(+) 0.041216(+) 0.266424(+) 0.702518(+) 0.412017(+) 0.735358
Reman08 − 2 0.297619(+) 0.549923(+) 0.430505(+) 0.000000(+) 0.000000(+) 0.748972(-) 0.197493(+) 0.641472
+ / ≈ / − 23/0/0 23/0/0 23/0/0 23/0/0 23/0/0 22/0/1 23/0/0

Table 13 
Statistical results of MACMNG versus other comparison algorithms on HV metric for three-factory instances.

Instances MOEA/D NSGA-II NSGA-III KCA MMMA KBEA TSKEA MACMNG

Lei01 − 3 0.140213(+) 0.445011(+) 0.214870(+) 0.208752(+) 0.155451(+) 0.342550(+) 0.147323(+) 0.703619
Lei02 − 3 0.128179(+) 0.390151(+) 0.208021(+) 0.310107(+) 0.159999(+) 0.482138(+) 0.225019(+) 0.724377
Lei03 − 3 0.019124(+) 0.417853(+) 0.298453(+) 0.064168(+) 0.133425(+) 0.368243(+) 0.396846(+) 0.627037
Lei04 − 3 0.203271(+) 0.395737(+) 0.338524(+) 0.047453(+) 0.128111(+) 0.285065(+) 0.379935(+) 0.611446
Lei05 − 3 0.056826(+) 0.323051(+) 0.087202(+) 0.072144(+) 0.000000(+) 0.291098(+) 0.123226(+) 0.694067
FMK01 − 3 0.066447(+) 0.324986(+) 0.320336(+) 0.200127(+) 0.284140(+) 0.385879(+) 0.309410(+) 0.656338
FMK02 − 3 0.038507(+) 0.452840(+) 0.137527(+) 0.152822(+) 0.009851(+) 0.371761(+) 0.257815(+) 0.695251
FMK03 − 3 0.000000(+) 0.219129(+) 0.040590(+) 0.000000(+) 0.000000(+) 0.317194(+) 0.002611(+) 0.729323
FMK04 − 3 0.000000(+) 0.235967(+) 0.000000(+) 0.000000(+) 0.000000(+) 0.128668(+) 0.159073(+) 0.668069
FMK05 − 3 0.000000(+) 0.263831(+) 0.086369(+) 0.073722(+) 0.000000(+) 0.311943(+) 0.049430(+) 0.523183
FMK06 − 3 0.322734(+) 0.420386(+) 0.344467(+) 0.000000(+) 0.046956(+) 0.320985(+) 0.410652(+) 0.703107
FMK07 − 3 0.000000(+) 0.271115(+) 0.353950(+) 0.033173(+) 0.000000(+) 0.374574(+) 0.037556(+) 0.712502
FMK08 − 3 0.034436(+) 0.193935(+) 0.000000(+) 0.000000(+) 0.000000(+) 0.401938(+) 0.210793(+) 0.703601
FMK09 − 3 0.151457(+) 0.511366(+) 0.385489(+) 0.164802(+) 0.152155(+) 0.555250(+) 0.434625(+) 0.700726
FMK10 − 3 0.204032(+) 0.317740(+) 0.258919(+) 0.112299(+) 0.061974(+) 0.531354(+) 0.383294(+) 0.765737
Reman01 − 3 0.044415(+) 0.375968(+) 0.272282(+) 0.007610(+) 0.000000(+) 0.166244(+) 0.233415(+) 0.544736
Reman02 − 3 0.182185(+) 0.526979(+) 0.336493(+) 0.066417(+) 0.050750(+) 0.488679(+) 0.142682(+) 0.750562
Reman03 − 3 0.173956(+) 0.379461(+) 0.179022(+) 0.003990(+) 0.056357(+) 0.293678(+) 0.195842(+) 0.672932
Reman04 − 3 0.071811(+) 0.372966(+) 0.163252(+) 0.000098(+) 0.011457(+) 0.212705(+) 0.094239(+) 0.729142
Reman05 − 3 0.271574(+) 0.477071(+) 0.390259(+) 0.049277(+) 0.035320(+) 0.665350(+) 0.276801(+) 0.871616
Reman06 − 3 0.132063(+) 0.389655(+) 0.256215(+) 0.000000(+) 0.000000(+) 0.513640(+) 0.118687(+) 0.852399
Reman07 − 3 0.248437(+) 0.433718(+) 0.308485(+) 0.000000(+) 0.000000(+) 0.639640(+) 0.219063(+) 0.731447
Reman08 − 3 0.474395(+) 0.530443(+) 0.426874(+) 0.046042(+) 0.117430(+) 0.474957(+) 0.643091(+) 0.647709
+ / ≈ / − 23/0/0 23/0/0 23/0/0 23/0/0 23/0/0 23/0/0 23/0/0
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Table 14 
Statistical results of MACMNG versus other comparison algorithms on HV metric for four-factory instances.

Instances MOEA/D NSGA-II NSGA-III KCA MMMA KBEA TSKEA MACMNG

Lei01 − 4 0.024379(+) 0.494640(+) 0.241569(+) 0.111834(+) 0.024881(+) 0.416402(+) 0.453951(+) 0.684065
Lei02 − 4 0.113313(+) 0.611337(-) 0.212003(+) 0.061314(+) 0.000000(+) 0.464292(+) 0.144726(+) 0.476064
Lei03 − 4 0.227950(+) 0.578064(-) 0.431874(+) 0.000000(+) 0.090249(+) 0.209650(+) 0.273726(+) 0.453617
Lei04 − 4 0.276406(+) 0.669603(-) 0.470494(+) 0.000000(+) 0.000000(+) 0.500128(-) 0.313963(+) 0.482131
Lei05 − 4 0.000000(+) 0.302039(+) 0.233041(+) 0.000000(+) 0.000000(+) 0.211939(+) 0.142523(+) 0.484159
FMK01 − 4 0.000000(+) 0.343751(+) 0.000000(+) 0.000000(+) 0.000000(+) 0.370402(+) 0.297324(+) 0.765854
FMK02 − 4 0.190992(+) 0.463874(+) 0.451150(+) 0.192845(+) 0.318614(+) 0.305756(+) 0.481784(+) 0.683297
FMK03 − 4 0.000000(+) 0.199589(+) 0.000000(+) 0.000000(+) 0.000000(+) 0.377679(+) 0.212088(+) 0.705123
FMK04 − 4 0.000000(+) 0.330738(+) 0.135648(+) 0.000000(+) 0.000000(+) 0.414983(+) 0.203957(+) 0.725346
FMK05 − 4 0.000000(+) 0.190716(+) 0.048415(+) 0.047531(+) 0.000000(+) 0.331191(+) 0.263917(+) 0.601520
FMK06 − 4 0.021675(+) 0.215988(+) 0.066125(+) 0.000000(+) 0.000000(+) 0.363338(+) 0.031554(+) 0.600555
FMK07 − 4 0.037610(+) 0.261092(+) 0.035879(+) 0.000000(+) 0.000000(+) 0.296379(+) 0.168628(+) 0.658522
FMK08 − 4 0.000000(+) 0.064155(+) 0.000000(+) 0.000000(+) 0.000000(+) 0.142196(+) 0.302545(+) 0.684858
FMK09 − 4 0.000000 (+) 0.267329(+) 0.000000(+) 0.000000(+) 0.000000(+) 0.346433(+) 0.091289(+) 0.575558
FMK10 − 4 0.000000(+) 0.000000(+) 0.000000(+) 0.000000(+) 0.000000(+) 0.245899(+) 0.136216(+) 0.508342
Reman01 − 4 0.041059(+) 0.482212(+) 0.336083(+) 0.087747(+) 0.144142(+) 0.464270(+) 0.250964(+) 0.663708
Reman02 − 4 0.000000(+) 0.448362(+) 0.179424(+) 0.021424(+) 0.000000(+) 0.436868(+) 0.287350(+) 0.634532
Reman03 − 4 0.000000(+) 0.238522(+) 0.040507(+) 0.000000(+) 0.000000(+) 0.328602(+) 0.293428(+) 0.692838
Reman04 − 4 0.131898(+) 0.449824(+) 0.151383(+) 0.000000(+) 0.000000(+) 0.160359(+) 0.203153(+) 0.638720
Reman05 − 4 0.249610(+) 0.397067(+) 0.238978(+) 0.185413(+) 0.232936(+) 0.463852(+) 0.435041(+) 0.811389
Reman06 − 4 0.074977(+) 0.402865(+) 0.229811(+) 0.000000(+) 0.114053(+) 0.448748(+) 0.344117(+) 0.724775
Reman07 − 4 0.000000(+) 0.101888(+) 0.000000(+) 0.000000(+) 0.002480(+) 0.240265(+) 0.157030(+) 0.449302
Reman08 − 4 0.193243(+) 0.301290(+) 0.218624(+) 0.011574(+) 0.000000(+) 0.392357(+) 0.291082(+) 0.449102
+ / ≈ / − 23/0/0 20/0/3 23/0/0 23/0/0 23/0/0 22/0/1 23/0/0

Table 15 
Statistical results of MACMNG versus other comparison algorithms on GD metric for two-factory instances.

Instances MOEA/D NSGA-II NSGA-III KCA MMMA KBEA TSKEA MACMNG

Lei01 − 2 0.613850(+) 0.332633(+) 0.363106(+) 0.337757(+) 0.402369(+) 0.463351(+) 0.202689(+) 0.000000
Lei02 − 2 0.450926(+) 0.150930(+) 0.244405(+) 0.150265(+) 0.333575(+) 0.262744(+) 0.146900(+) 0.000000
Lei03 − 2 0.381711(+) 0.109262(+) 0.269688(+) 0.235516(+) 0.387688(+) 0.226392(+) 0.137948(+) 0.000000
Lei04 − 2 0.393444(+) 0.072885(+) 0.104940(+) 0.160861(+) 0.173878(+) 0.274827(+) 0.185897(+) 0.006771
Lei05 − 2 0.382673(+) 0.133679(+) 0.293938(+) 0.616022(+) 0.521176(+) 0.125044(+) 0.272483(+) 0.000000
FMK01 − 2 0.355438(+) 0.227441(+) 0.304265(+) 0.385562(+) 0.435524(+) 0.177410(+) 0.174347(+) 0.000000
FMK02 − 2 0.157583(+) 0.120509(+) 0.161600(+) 0.181520(+) 0.247094(+) 0.425619(+) 0.092873(+) 0.000000
FMK03 − 2 0.324209(+) 0.193448(+) 0.196468(+) 0.349734(+) 0.298153(+) 0.709920(+) 0.425078(+) 0.000000
FMK04 − 2 0.928590(+) 0.266978(+) 0.505554(+) 0.524774(+) 0.840276(+) 0.887235(+) 0.335724(+) 0.000000
FMK05 − 2 0.575921(+) 0.152370(+) 0.169961(+) 0.386193(+) 0.501280(+) 0.300983(+) 0.164486(+) 0.000000
FMK06 − 2 0.431380(+) 0.115795(+) 0.243604(+) 0.810566(+) 0.661986(+) 0.436197(+) 0.046406(+) 0.023633
FMK07 − 2 0.490244(+) 0.102246(+) 0.161341(+) 0.530518(+) 0.474064(+) 0.502575(+) 0.165729(+) 0.000000
FMK08 − 2 0.273012(+) 0.121073(+) 0.208557(+) 0.431033(+) 0.359156(+) 0.148996(+) 0.133382(+) 0.000000
FMK09 − 2 0.569490(+) 0.204889(+) 0.346404(+) 0.527295(+) 0.748245(+) 0.378660(+) 0.197409(+) 0.000000
FMK10 − 2 0.183060(+) 0.041106(+) 0.051792(+) 0.363090(+) 0.267812(+) 0.133114(+) 0.057005(+) 0.000000
Reman01 − 2 0.499696(+) 0.290682(+) 0.394322(+) 0.541965(+) 0.757197(+) 0.154751(+) 0.235884(+) 0.000000
Reman02 − 2 0.344084(+) 0.120488(-) 0.170174(-) 0.595985(+) 0.739059(+) 0.017760(-) 0.193262(-) 0.275595
Reman03 − 2 0.440491(+) 0.181211(+) 0.290267(+) 0.722202(+) 0.719972(+) 0.225720(+) 0.136614(+) 0.000000
Reman04 − 2 0.158831(+) 0.070026(+) 0.101051(+) 0.436251(+) 0.371501(+) 0.076036(+) 0.051864(+) 0.000000
Reman05 − 2 0.160100(+) 0.030277(+) 0.035960(+) 0.660341(+) 0.379874(+) 0.071948(+) 0.075945(+) 0.009202
Reman06 − 2 0.222162(+) 0.004103(-) 0.081290(+) 0.471133(+) 0.261364(+) 0.019109(+) 0.046403(+) 0.017816
Reman07 − 2 0.091777(+) 0.000000(-) 0.058831(+) 0.652870(+) 0.236733(+) 0.069938(+) 0.078799(+) 0.017525
Reman08 − 2 0.207935(+) 0.014514(-) 0.086049(-) 0.901182(+) 0.503897(+) 0.000000(-) 0.197606(+) 0.107712
+ / ≈ / − 23/0/0 19/0/4 21/0/2 23/0/0 23/0/0 21/0/2 22/0/1
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Table 16 
Statistical results of MACMNG versus other comparison algorithms on GD metric for three-factory instances.

Instances MOEA/D NSGA-II NSGA-III KCA MMMA KBEA TSKEA MACMNG

Lei01 − 3 0.505169(+) 0.204777(+) 0.446991(+) 0.157390(+) 0.268286(+) 0.431469(+) 0.168857(+) 0.000000
Lei02 − 3 0.516363(+) 0.268382(+) 0.434028(+) 0.206147(+) 0.331547(+) 0.341359(+) 0.136541(+) 0.000000
Lei03 − 3 0.549768(+) 0.157783(+) 0.171643(+) 0.509101(+) 0.293602(+) 0.239180(+) 0.116873(+) 0.000000
Lei04 − 3 0.551210(+) 0.169588(+) 0.319355(+) 0.420931(+) 0.278568(+) 0.411597(+) 0.139270(+) 0.000000
Lei05 − 3 0.567777(+) 0.170537(+) 0.462369(+) 0.554236(+) 0.581392(+) 0.329988(+) 0.228981(+) 0.000000
FMK01 − 3 0.416677(+) 0.250175(+) 0.213964(+) 0.374016(+) 0.303217(+) 0.206339(+) 0.278865(+) 0.000000
FMK02 − 3 0.390581(+) 0.114849(+) 0.252612(+) 0.488652(+) 0.507989(+) 0.294353(+) 0.036592(+) 0.000000
FMK03 − 3 0.527116(+) 0.233080(+) 0.282011(+) 0.854081(+) 0.595528(+) 0.356481(+) 0.285226(+) 0.000000
FMK04 − 3 0.899630(+) 0.320477(+) 0.475870(+) 0.751464(+) 0.872460(+) 0.704126(+) 0.353527(+) 0.000000
FMK05 − 3 0.738602(+) 0.237908(+) 0.363560(+) 0.552408(+) 0.707072(+) 0.167607(+) 0.302768(+) 0.000000
FMK06 − 3 0.241076(+) 0.195767(+) 0.232399(+) 0.944696(+) 0.660048(+) 0.234782(+) 0.094025(+) 0.000000
FMK07 − 3 0.503021(+) 0.108410(+) 0.106970(+) 0.577444(+) 0.431849(+) 0.125554(+) 0.120828(+) 0.000000
FMK08 − 3 0.463937(+) 0.197165(+) 0.146304(+) 0.194471(+) 0.454154(+) 0.110734(+) 0.158405(+) 0.000000
FMK09 − 3 0.475040(+) 0.097347(+) 0.098737(+) 0.408176(+) 0.376741(+) 0.156626(+) 0.078818(+) 0.000000
FMK10 − 3 0.295119(+) 0.134224(+) 0.137228(+) 0.560613(+) 0.284774(+) 0.080787(+) 0.064418(+) 0.001614
Reman01 − 3 0.516788(+) 0.300650(+) 0.359669(+) 0.613982(+) 0.784746(+) 0.345143(+) 0.251699(+) 0.000000
Reman02 − 3 0.333290(+) 0.125892(+) 0.210016(+) 0.567703(+) 0.640726(+) 0.159280(+) 0.235646(+) 0.000000
Reman03 − 3 0.291913(+) 0.131665(+) 0.224284(+) 0.838287(+) 0.449486(+) 0.290936(+) 0.149891(+) 0.000000
Reman04 − 3 0.349751(+) 0.081840(+) 0.148989(+) 0.758472(+) 0.425286(+) 0.129105(+) 0.176173(+) 0.000000
Reman05 − 3 0.171383(+) 0.078694(+) 0.057648(+) 0.649102(+) 0.411243(+) 0.080300(+) 0.059355(+) 0.000000
Reman06 − 3 0.210470(+) 0.131200(+) 0.106830(+) 0.648348(+) 0.347407(+) 0.185126(+) 0.129478(+) 0.000000
Reman07 − 3 0.205761(+) 0.000000(-) 0.085846(-) 0.888761(+) 0.503802(+) 0.034924(-) 0.141483(+) 0.111704
Reman08 − 3 0.140445(+) 0.065598(-) 0.010440(-) 0.610210(+) 0.448566(+) 0.128733(+) 0.000000(-) 0.123417
+ / ≈ / − 23/0/0 21/0/2 21/0/2 23/0/0 23/0/0 22/0/1 22/0/1

Table 17 
Statistical results of MACMNG versus other comparison algorithms on GD metric for four-factory instances.

Instances MOEA/D NSGA-II NSGA-III KCA MMMA KBEA TSKEA MACMNG

Lei01 − 4 0.655075(+) 0.184101(+) 0.373730(+) 0.509195(+) 0.550586(+) 0.083900(+) 0.088716(+) 0.006289
Lei02 − 4 0.598395(+) 0.221528(+) 0.458295(+) 0.371279(+) 0.619276(+) 0.404383(+) 0.113365(+) 0.000000
Lei03 − 4 0.404850(+) 0.032891(-) 0.070758(-) 0.793242(+) 0.562286(+) 0.221367(+) 0.128718(+) 0.077529
Lei04 − 4 0.394553(+) 0.099426(-) 0.213767(+) 0.634859(+) 0.777317(+) 0.212361(+) 0.129090(-) 0.162822
Lei05 − 4 0.848949(+) 0.301769(+) 0.271241(+) 0.945336(+) 0.756343(+) 0.287206(+) 0.293823(+) 0.000000
FMK01 − 4 0.790487(+) 0.385491(+) 0.912348(+) 0.997257(+) 0.986987(+) 0.266235(+) 0.281375(+) 0.000000
FMK02 − 4 0.313196(+) 0.153092(+) 0.132222(+) 0.393257(+) 0.258585(+) 0.256775(+) 0.141908(+) 0.030968
FMK03 − 4 0.528948(+) 0.257443(+) 0.374395(+) 0.836415(+) 0.564624(+) 0.239727(+) 0.122896(+) 0.000000
FMK04 − 4 0.809777(+) 0.233657(+) 0.398984(+) 0.790873(+) 0.768587(+) 0.154994(+) 0.152733(+) 0.000000
FMK05 − 4 0.803499(+) 0.292247(+) 0.446961(+) 0.568710(+) 0.738957(+) 0.145882(+) 0.130679(+) 0.000000
FMK06 − 4 0.294315(+) 0.132022(+) 0.267815(+) 0.782237(+) 0.423058(+) 0.119127(+) 0.148809(+) 0.000000
FMK07 − 4 0.508197(+) 0.200048(+) 0.282623(+) 0.744133(+) 0.597229(+) 0.225657(+) 0.315864(+) 0.000000
FMK08 − 4 0.729496(+) 0.307651(+) 0.510976(+) 0.775487(+) 0.797300(+) 0.409290(+) 0.168907(+) 0.000000
FMK09 − 4 0.559376(+) 0.106750(+) 0.301557(+) 0.543694(+) 0.747309(+) 0.141415(+) 0.233883(+) 0.000000
FMK10 − 4 0.626772(+) 0.420758(+) 0.731689(+) 0.722771(+) 0.666480(+) 0.363364(+) 0.150566(+) 0.000000
Reman01 − 4 0.439263(+) 0.295247(+) 0.345779(+) 0.471939(+) 0.421137(+) 0.153569(+) 0.330256(+) 0.000000
Reman02 − 4 0.724874(+) 0.261485(+) 0.410612(+) 0.738434(+) 0.857047(+) 0.538682(+) 0.155753(+) 0.048854
Reman03 − 4 0.570860(+) 0.307647(+) 0.350396(+) 0.954803(+) 0.848105(+) 0.562666(+) 0.253797(+) 0.000000
Reman04 − 4 0.216101(+) 0.096768(+) 0.310036(+) 0.833621(+) 0.733811(+) 0.645044(+) 0.103983(+) 0.000000
Reman05 − 4 0.367231(+) 0.206421(+) 0.124809(+) 0.505543(+) 0.430234(+) 0.243322(+) 0.162043(+) 0.000000
Reman06 − 4 0.484433(+) 0.188109(+) 0.217116(+) 0.800385(+) 0.833843(+) 0.152051(+) 0.211874(+) 0.000000
Reman07 − 4 0.159755(+) 0.019877(+) 0.129293(+) 0.754758(+) 0.624850(+) 0.186807(+) 0.176804(+) 0.000000
Reman08 − 4 0.165927(-) 0.010756(-) 0.071263(-) 0.774911(+) 0.691413(+) 0.309836(+) 0.024669(-) 0.227839
+ / ≈ / − 22/0/1 20/0/3 21/0/2 23/0/0 23/0/0 23/0/0 21/0/2
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Table 18 
Statistical results of MACMNG versus other comparison algorithms on IGD metric for two-factory instances.

Instances MOEA/D NSGA-II NSGA-III KCA MMMA KBEA TSKEA MACMNG

Lei01 − 2 0.533975(+) 0.179299(+) 0.364857(+) 0.540691(+) 0.531414(+) 0.289412(+) 0.402491(+) 0.000000
Lei02 − 2 0.435304(+) 0.141379(+) 0.294426(+) 0.424837(+) 0.496850(+) 0.215639(+) 0.404909(+) 0.000000
Lei03 − 2 0.379515(+) 0.244705(+) 0.236562(+) 0.626168(+) 0.508976(+) 0.249146(+) 0.474622(+) 0.000000
Lei04 − 2 0.363158(+) 0.128124(+) 0.240189(+) 0.291322(+) 0.275058(+) 0.273129(+) 0.478203(+) 0.015208
Lei05 − 2 0.576870(+) 0.302654(+) 0.561725(+) 0.680226(+) 0.725859(+) 0.151705(+) 0.504644(+) 0.032531
FMK01 − 2 0.510982(+) 0.261604(+) 0.473117(+) 0.496995(+) 0.501304(+) 0.260573(+) 0.292865(+) 0.000000
FMK02 − 2 0.206758(+) 0.239164(+) 0.321351(+) 0.265965(+) 0.312058(+) 0.272139(+) 0.307776(+) 0.000000
FMK03 − 2 0.491246(+) 0.445961(+) 0.520989(+) 0.379888(+) 0.422150(+) 0.410566(+) 0.577888(+) 0.000000
FMK04 − 2 0.901040(+) 0.396381(+) 0.639999(+) 0.652604(+) 0.928317(+) 0.560189(+) 0.571426(+) 0.000000
FMK05 − 2 0.751025(+) 0.337995(+) 0.428852(+) 0.592429(+) 0.724326(+) 0.254604(+) 0.388409(+) 0.000000
FMK06 − 2 0.706791(+) 0.430822(+) 0.604228(+) 0.920384(+) 0.785911(+) 0.193906(+) 0.310183(+) 0.011999
FMK07 − 2 0.562905(+) 0.319739(+) 0.389645(+) 0.606350(+) 0.633040(+) 0.324557(+) 0.355930(+) 0.000000
FMK08 − 2 0.390942(+) 0.327663(+) 0.359849(+) 0.470653(+) 0.574407(+) 0.197354(+) 0.295900(+) 0.065686
FMK09 − 2 0.591202(+) 0.433755(+) 0.712877(+) 0.705885(+) 0.824455(+) 0.201127(+) 0.465398(+) 0.020297
FMK10 − 2 0.426853(+) 0.346155(+) 0.429571(+) 0.455395(+) 0.414321(+) 0.213012(+) 0.440766(+) 0.025849
Reman01 − 2 0.652764(+) 0.217887(+) 0.359705(+) 0.646939(+) 0.840811(+) 0.163922(+) 0.396124(+) 0.000000
Reman02 − 2 0.470588(+) 0.243703(+) 0.398024(+) 0.670402(+) 0.762384(+) 0.077830(+) 0.432907(+) 0.043810
Reman03 − 2 0.592085(+) 0.369341(+) 0.540669(+) 0.741295(+) 0.742740(+) 0.296338(+) 0.381216(+) 0.000000
Reman04 − 2 0.369969(+) 0.259520(+) 0.377223(+) 0.486267(+) 0.432348(+) 0.159514(+) 0.300826(+) 0.020644
Reman05 − 2 0.284434(+) 0.206400(+) 0.267774(+) 0.695450(+) 0.674944(+) 0.150227(+) 0.196465(+) 0.089671
Reman06 − 2 0.304915(+) 0.192011(+) 0.253776(+) 0.441545(+) 0.376855(+) 0.106216(+) 0.251220(+) 0.100102
Reman07 − 2 0.346893(+) 0.280390(+) 0.398229(+) 0.727886(+) 0.416112(+) 0.159376(+) 0.321221(+) 0.062476
Reman08 − 2 0.334845(+) 0.224975(-) 0.257152(+) 0.984664(+) 0.763491(+) 0.231018(-) 0.373285(+) 0.233621
+ / ≈ / − 23/0/0 22/0/1 23/0/0 23/0/0 23/0/0 22/0/1 23/0/0

Table 19 
Statistical results of MACMNG versus other comparison algorithms on IGD metric for three-factory instances.

Instances MOEA/D NSGA-II NSGA-III KCA MMMA KBEA TSKEA MACMNG

Lei01 − 3 0.482582(+) 0.206979(+) 0.406968(+) 0.447616(+) 0.473414(+) 0.274107(+) 0.492600(+) 0.000000
Lei02 − 3 0.513029(+) 0.229169(+) 0.385133(+) 0.321642(+) 0.431864(+) 0.202736(+) 0.393755(+) 0.004366
Lei03 − 3 0.688933(+) 0.195187(+) 0.339990(+) 0.599691(+) 0.516419(+) 0.209304(+) 0.276232(+) 0.005004
Lei04 − 3 0.411945(+) 0.195822(+) 0.216808(+) 0.549981(+) 0.471892(+) 0.228350(+) 0.502402(+) 0.004546
Lei05 − 3 0.622780(+) 0.344129(+) 0.549828(+) 0.621766(+) 0.844234(+) 0.350917(+) 0.520628(+) 0.000000
FMK01 − 3 0.554497(+) 0.310048(+) 0.312898(+) 0.479266(+) 0.335116(+) 0.188264(+) 0.311101(+) 0.000000
FMK02 − 3 0.586804(+) 0.265422(+) 0.503230(+) 0.469877(+) 0.632000(+) 0.310081(+) 0.442554(+) 0.000000
FMK03 − 3 0.682478(+) 0.403153(+) 0.572144(+) 0.967067(+) 0.811696(+) 0.322390(+) 0.614746(+) 0.000000
FMK04 − 3 1.022100(+) 0.336460(+) 0.627698(+) 0.863471(+) 0.980529(+) 0.442009(+) 0.388660(+) 0.000000
FMK05 − 3 0.847375(+) 0.365872(+) 0.508530(+) 0.587490(+) 0.862707(+) 0.270073(+) 0.522142(+) 0.000000
FMK06 − 3 0.336887(+) 0.238446(+) 0.294906(+) 0.992782(+) 0.682136(+) 0.260606(+) 0.303688(+) 0.033250
FMK07 − 3 0.800904(+) 0.400154(+) 0.365899(+) 0.697767(+) 0.802345(+) 0.303405(+) 0.644463(+) 0.000000
FMK08 − 3 0.647138(+) 0.498342(+) 0.752006(+) 0.926422(+) 0.872731(+) 0.247709(+) 0.489978(+) 0.000000
FMK09 − 3 0.514976(+) 0.261172(+) 0.396632(+) 0.517613(+) 0.525074(+) 0.102532(-) 0.343795(+) 0.104668
FMK10 − 3 0.460221(+) 0.391727(+) 0.448761(+) 0.579372(+) 0.625954(+) 0.233146(+) 0.409007(+) 0.028480
Reman01 − 3 0.530204(+) 0.176082(+) 0.266694(+) 0.666391(+) 0.870955(+) 0.324303(+) 0.301980(+) 0.041957
Reman02 − 3 0.473143(+) 0.197221(+) 0.318311(+) 0.660072(+) 0.630151(+) 0.178017(+) 0.533006(+) 0.000000
Reman03 − 3 0.411963(+) 0.251766(+) 0.411299(+) 0.810197(+) 0.577929(+) 0.284152(+) 0.412575(+) 0.000000
Reman04 − 3 0.568339(+) 0.346179(+) 0.518119(+) 0.783977(+) 0.695640(+) 0.451845(+) 0.583473(+) 0.000000
Reman05 − 3 0.500650(+) 0.400052(+) 0.453205(+) 0.774981(+) 0.715117(+) 0.203727(+) 0.528717(+) 0.087621
Reman06 − 3 0.572555(+) 0.362888(+) 0.475255(+) 0.901472(+) 0.923616(+) 0.216313(+) 0.591049(+) 0.049651
Reman07 − 3 0.390590(+) 0.290268(+) 0.385484(+) 0.945961(+) 0.705238(+) 0.133432(+) 0.439272(+) 0.106718
Reman08 − 3 0.212311(+) 0.212790(+) 0.308662(+) 0.691101(+) 0.531461(+) 0.204417(+) 0.242330(+) 0.194168
+ / ≈ / − 23/0/0 23/0/0 23/0/0 23/0/0 23/0/0 22/0/1 23/0/0
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Table 20 
Statistical results of MACMNG versus other comparison algorithms on IGD metric for four-factory instances.

Instances MOEA/D NSGA-II NSGA-III KCA MMMA KBEA TSKEA MACMNG

Lei01 − 4 0.693209(+) 0.111830(+) 0.361179(+) 0.548396(+) 0.677917(+) 0.219424(+) 0.194846(+) 0.030937
Lei02 − 4 0.530888(+) 0.048324(-) 0.386745(+) 0.562156(+) 0.779715(+) 0.189772(+) 0.470465(+) 0.176534
Lei03 − 4 0.340010(+) 0.036469(-) 0.201283(+) 0.878328(+) 0.518021(+) 0.286533(+) 0.335934(+) 0.158675
Lei04 − 4 0.412838(+) 0.049650(-) 0.249827(-) 0.924517(+) 0.929971(+) 0.158633(-) 0.449324(+) 0.276423
Lei05 − 4 0.926234(+) 0.201426(+) 0.271103(+) 0.960208(+) 0.848535(+) 0.288106(+) 0.358962(+) 0.000000
FMK01 − 4 0.955864(+) 0.324135(+) 0.781751(+) 0.959721(+) 0.987733(+) 0.241574(+) 0.378007(+) 0.000000
FMK02 − 4 0.397661(+) 0.170081(+) 0.177066(+) 0.546515(+) 0.322165(+) 0.221117(+) 0.216176(+) 0.012619
FMK03 − 4 0.869015(+) 0.439206(+) 0.733141(+) 0.822819(+) 0.834450(+) 0.336659(+) 0.478480(+) 0.000000
FMK04 − 4 0.814340(+) 0.299367(+) 0.478360(+) 0.689612(+) 0.933998(+) 0.184791(+) 0.406110(+) 0.000000
FMK05 − 4 0.845196(+) 0.375121(+) 0.532446(+) 0.637898(+) 0.784390(+) 0.267007(+) 0.381562(+) 0.000000
FMK06 − 4 0.606287(+) 0.414539(+) 0.602154(+) 0.793028(+) 0.798470(+) 0.190303(+) 0.683878(+) 0.000000
FMK07 − 4 0.666763(+) 0.423304(+) 0.695297(+) 0.744536(+) 0.901574(+) 0.360597(+) 0.518743(+) 0.000000
FMK08 − 4 0.715294(+) 0.508414(+) 0.728405(+) 0.790510(+) 0.766208(+) 0.458133(+) 0.315634(+) 0.000000
FMK09 − 4 0.697904(+) 0.267392(+) 0.649259(+) 0.685933(+) 0.911289(+) 0.210140(+) 0.424645(+) 0.000000
FMK10 − 4 0.823280(+) 0.479976(+) 0.756676(+) 0.781348(+) 0.687927(+) 0.197433(+) 0.361833(+) 0.000000
Reman01 − 4 0.618731(+) 0.199573(+) 0.295730(+) 0.563550(+) 0.504519(+) 0.240536(+) 0.370486(+) 0.007495
Reman02 − 4 0.896668(+) 0.164437(+) 0.450131(+) 0.734762(+) 0.884498(+) 0.236255(+) 0.394529(+) 0.048041
Reman03 − 4 0.702020(+) 0.387431(+) 0.560119(+) 0.927009(+) 0.860319(+) 0.315389(+) 0.327372(+) 0.000000
Reman04 − 4 0.355610(+) 0.166989(+) 0.360778(+) 0.833003(+) 0.764824(+) 0.447268(+) 0.352894(+) 0.020542
Reman05 − 4 0.444605(+) 0.330360(+) 0.486198(+) 0.523713(+) 0.468015(+) 0.258598(+) 0.311834(+) 0.022168
Reman06 − 4 0.582006(+) 0.280475(+) 0.405102(+) 0.907548(+) 0.561877(+) 0.270488(+) 0.328099(+) 0.125730
Reman07 − 4 0.390426(+) 0.233903(+) 0.354941(+) 0.793420(+) 0.630871(+) 0.187328(+) 0.437334(+) 0.125094
Reman08 − 4 0.256097(+) 0.140602(-) 0.190276(-) 0.751622(+) 0.730771(+) 0.229663(-) 0.174053(-) 0.232759
+ / ≈ / − 23/0/0 19/0/4 21/0/2 23/0/0 23/0/0 21/0/2 22/0/1

Fig. 14. Performance comparison of MACMNG with seven algorithms on metrics HV, GD, and IGD.
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R− values across all metrics (HV, GD, IGD) indicate that MACMNG’s 
pervasive dominance. It is observed that the standardized test statistic Z 
further corroborates these findings, with higher positive Z values 
attesting to MACMNG’s superior performance. Table 22 summarizes the 
Friedman Test rankings of all algorithms, where MACMNG ranks in the 
top-performing position across all metrics. The Friedman test also shows 
p − values < 0.05, providing further validation of the superiority of 
MACMNG, delivering both stability and scalability.

As depicted in Fig. 15, the Pareto front distributions of MACMNG and 
comparative algorithms are visualized across 12 benchmark instances, 
demonstrating MACMNG’s consistent dominance in solution quality and 
diversity. It is observed that MACMNG always achieves superior Pareto 
fronts across all test cases, outperforming baseline algorithms in both 
convergence and coverage. Notably, MACMNG’s dynamic adaptation to 
bi-objective optimization (C̃max and T̃EC) during the iterative training 
process is illustrated in Fig. 16, which shows how MACMNG adapts to 
varying weights to solve subproblems effectively. To illustrate the de
tails, here we take the training curve of the FMK01–2 case as an example. 
The initial objective weight vector λ1 = (λφ1

1 , λφ2
1 ) = (1, 0) is iteratively 

adjusted over 400 training epochs, with training of each subnet Subneth 
undergoing 20-epoch cycles. The dashed section in the figure marks the 
completion of the initial training phase for subnets Subnet1 = (SubnetJ

1,

SubnetM
1 ). As the weight vector λφ1

h gradually decreases, its corre
sponding increases, while a higher weight vector λφ2

h results in a lower 
T̃EC.

The Fig. 17 presents a visual representation of the fuzzy Gantt charts 
for instance FMK03 − 2. Fig. 17(a) and (b) display the fuzzy Gantt charts 
with the best C̃max for each factory, yielding C̃max values of 
(62.6,96.4,126) and T̃EC values of (7782.6,11705.0,15187.0), respec
tively. Fig. 17(c) and (d) illustrate the fuzzy Gantt charts fine-tuned for 
T̃EC, resulting in the C̃max values of (147.0,209.0,264.8) and T̃EC values 
of(4777.8,7070.0,9196.6). Furthermore, Fig. 18 provides an illustration 
of the fuzzy Gantt charts for the instance Reman05 − 2, corresponding to 
the best values for C̃max = (47.6,78.8,111.4) and T̃EC = (2547.2,
4227.4,5796.6).

6. Conclusions, limitations, and future research directions

The MACMNG framework introduced in this study has significant 
advantages against traditional advanced approaches, demonstrating 
robust adaptability and optimization potential for coping with complex 
constraints and coupled correlations. The MACMNG is capable of 
decomposing complex challenges into correlated subproblems and 
creating subnetworks for cooperative parallel processing. Experimental 
findings and statistical insights demonstrate that MACMNG outperforms 
state-of-the-art multi-objective algorithms in terms of both economic 
and energy efficiency criteria. However, as the number of subproblems 
increases, the model’s internal subnets expand accordingly, resulting in 
a sharp increase in storage requirements, which poses critical challenges 
in resource-limited scenarios.

Future research directions should focus on several key aspects to 
enhance MACMNG’s efficiency and applicability. First, incorporating 
GCNs and multi-scale attention mechanisms (MSAMs) into the sched
uling environment can enhance MACMNG’s capacity to capture com
plex interdependencies among critical features, thereby enriching multi- 
state feature representation and multi-modal feature extraction. 
Furthermore, investigating structural optimization of the DNNs and 
lightweight surrogate models, particularly focusing on the design of 
compact network group architectures, contributes to controlling the 
complexity of the models, facilitates cooperative optimization across 
network groups, significantly improving the effectiveness and compu
tational efficiency of MACMNG.

In conclusion, cooperative optimization of multi-network groups for 
distributed energy-efficient scheduling through the CTDE-based MARL 
framework represents an emerging research direction, with current 
research reports remaining nascent. Focusing on EE-DFFJSP within IIoT- 
enabled smart manufacturing systems, this study provides a solid 
foundation and fresh perspective to promote future research and the 
development of energy-efficient scheduling research in DFM 
environments.
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Table 21 
Results of Wilcoxon Test for MACMNG with all compared algorithms on HV, GD, and IGD metrics at α = 0.05.

Algorithms HV GD IGD

R+ R− Z p − value R+ R− Z p − value R+ R− Z p − value

MOEA/D 2415 0 7.219578 5.214926e− 13 2413 2 7.207620 5.693823e− 13 2415 0 7.219578 5.214926e− 13
NSGA-II 2394 21 7.094020 1.302714e− 12 2276 139 6.388504 1.675162e− 10 2357 58 6.872799 6.295432e− 12
NSGA-III 2415 0 7.219578 5.214926e− 13 2355 60 6.860841 6.845636e− 12 2410 5 7.189683 6.494193e− 13
KCA 2415 0 7.219578 5.214926e− 13 2415 0 7.219578 5.214926e− 13 2415 0 7.219578 5.214926e− 13
MMMA 2415 0 7.219578 5.214926e− 13 2415 0 7.219578 5.214926e− 13 2415 0 7.219578 5.214926e− 13
KBEA 2405 10 7.159788 8.080178e− 13 2355 60 6.860841 6.845636e− 12 2396 19 7.105978 1.194736e− 12
TSKEA 2415 0 7.219578 5.214926e− 13 2319 96 6.645599 3.019867e− 11 2413 2 7.207620 5.693833e− 13

Table 22 
Average Friedman rankings of all algorithms.

Algorithm HV − Ranking GD − Ranking IGD − Ranking

MACMNG 1.072464 1.333333 1.173913
MOEA/D 6.333333 6.376812 6.144928
NSGA-II 2.927536 2.840580 2.724638
NSGA-III 4.963768 4.159420 4.666667
KCA 6.739130 7.028986 6.942029
MMMA 6.934783 6.826087 7.057971
KBEA 2.710145 4.275362 2.637681
TSKEA 4.318841 3.159420 4.637681
p-value 1.172184e− 76 9.526443e− 71 5.490583e− 78
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Fig. 15. Pareto fronts obtained by MACMNG and seven algorithms across 12 instances.
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Fig. 16. Training curve for MACMNG.

Fig. 17. Fuzzy Gantt charts for the instance FMK03 − 2.
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