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A B S T R A C T   

In this paper, a matrix-cube-based estimation of distribution algorithm (MCEDA) is proposed to solve the energy- 
efficient distributed assembly permutation flow-shop scheduling problem (EE_DAPFSP) that minimizes both the 
maximum completion time (Cmax) and the total carbon emission (TCE) simultaneously. Firstly, a high-quality and 
diverse initial population is constructed via a hybrid initialization method. Secondly, a matrix-cube-based 
probabilistic model and its update mechanism are designed to appropriately accumulate the valuable pattern 
information from superior solutions. Thirdly, a suitable sampling strategy is developed to sample the probabi-
listic model to generate a new population per generation, so as to guide the search direction toward promising 
regions in solution space. Fourthly, a problem-dependent neighborhood search based on critical path is provided 
to perform an in-depth local search around the promising regions found by the global search. Fifthly, two types of 
speed adjustment strategies based on problem properties are also embedded to further improve the quality of the 
obtained solutions. Sixthly, the influence of the parameters is investigated based on the multi-factor analysis of 
variance of Design-of-Experiments. Finally, extensive experiments and comprehensive comparisons with several 
recent state-of-the-art multi-objective algorithms are carried out based on the well-known benchmark instances, 
and the statistical results demonstrate the efficiency and effectiveness of the proposed MCEDA in addressing the 
EE_DAPFSP.   

1. Introduction 

With growing worldwide concern about the global warming and 
climate change, it is imperative that all of the developed and developing 
countries around the world should enact laws and take energy-efficient 
measures or technologies to relief global environment and energy crisis 
(May et al., 2015). Low-carbon or energy-efficient manufacturing is the 
key measure and inexorable choice to realize the integration of envi-
ronmental sustainability and economic development. Meanwhile, along 
with the deepening of economic globalization, modern production 
pattern of many enterprises has a tendency to change from the tradi-
tional centralized manufacturing mode to the trans-regional decentral-
ized manufacturing mode. Under these backgrounds, the research on 
energy-efficient and distributed production scheduling problems has 

great practical and engineering significance. 
Among the distributed scheduling problems, the distributed assem-

bly permutation flow-shop scheduling problem (DAPFSP) is widely 
encountered in advanced manufacturing systems and modern supply 
chains. In fact, many real-life scheduling problems in manufacturing 
enterprises can be modeled as the DAPFSP. For example, in some large 
Chinese enterprises manufacturing automobile engines (e.g., Wei chai 
Power Co., Ltd. and Yu chai Group), all parts of each engine, such as 
cylinder block, cylinder head, and crankshaft, are first allocated to 
different factories or flow shops for processing, and then these parts are 
assembled into the final automobile engine in an assembly shop. 
Because the DAPFSP has been proved to be NP-hard with strong sense 
(Hatami et al., 2013), the relationship between its inherent geometric 
structure and the optimal solution is still an open problem, and there is 
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no algorithm that can obtain the optimal solution in polynomial time. 
The mathematical programming algorithms need to traverse or partially 
traverse the DAPFSP’s solution space, which makes them limited due to 
the long running time in solving medium and large-scale problems. To 
tackle this issue, the following metaheuristics have been presented in 
recent years to obtain satisfactory solutions for the DAPFSP and its 
variant under different scales within several seconds or tens of seconds. 

As for DAPFSP, a fast variable neighborhood descent (VND) method 
(Hatami et al., 2013), an estimation of distribution algorithm-based 
memetic algorithm (EDAMA) (Wang & Wang, 2016), an effective 
hybrid biogeography-based optimization (HBBO) (Lin & Zhang, 2016), a 
backtracking search hyper-heuristic (BS-HH) (Lin et al., 2017), three 
improved discrete invasive weed optimization algorithms (DIWOs) 
(Sang et al., 2019) and a matrix cube-based estimation of distribution 
algorithm (MCEDA) (Zhang et al., 2021) have been proposed. As for the 
variant of the DAPFSP, Pan et al. (2019) considered a series of identical 
factories in which each factory consists of a flow shop for job processing 
and an assembly line for product processing, and then presented three 
effective constructive heuristics and an enhance iterated greedy algo-
rithm (IG). However, the above studies of DAPFSP only consider the 
efficiency-oriented criteria, and no existing studies involve energy 
conservation. Therefore, this paper aims to solve the energy-efficient 
DAPFSP (EE_DAPFSP) with the criteria of minimizing the maximum 
completion time (Cmax) and the total carbon emission (TCE) at the same 
time. 

The considered EE_DAPFSP is more complex and general than the 
DAPFSP, and the latter reduces to the former. This means that the 
EE_DAPFSP is also a NP-hard problem in strong sense. Obviously, it is a 
challenge to design an effective algorithm to address this problem. 
Among the existing metaheuristics, the estimation of distribution algo-
rithm (EDA) is a special one. Unlike the crossover and mutation oper-
ators in most traditional metaheuristics, EDA builds one or more 
probabilistic models to learn the valuable information of the structure 
patterns of superior solutions, and generates the next offspring popula-
tion by sampling these models. Such a new population generation 
mechanism can avoid the destruction of the building blocks (the partial 
structure patterns) in superior individuals or solutions to a certain extent 
(Larrañaga & Lozano, 2001). Due to its good exploration ability, 
inherent parallelism and quick convergence, EDA has been applied to 
deal with different kinds of scheduling problem, e.g., the permutation 
flow-shop scheduling problem (PFSP) (Jarboui et al., 2009), the multi- 
objective PFSP (Tiwari et al., 2014), the lot-streaming flow-shop 
scheduling problem (Pan & Ruiz, 2012), the flexible job-shop scheduling 
problem (Wang et al., 2012), and the DAPFSP (Wang & Wang, 2016; 
Zhang et al., 2021). 

In the above EDAs, the two-dimensional probability model or matrix 
is used to store the information of the blocks and the order of jobs from 
each superior solution or individual. Here one block consists of any two 
consecutive jobs in a solution. Obviously, the structure of matrix de-
termines that only the matrix elements and the subscripts of these ele-
ments can be used to store information. For the two-dimensional matrix, 
each element is used to save the occurrence frequency or probability 
that the job C appears immediately after the job R, and its subscript [R, 
C] is only enough to save the corresponding block’s pattern. There is no 
extra space to record the position of this block. This causes the sampling 
procedure may misplace the blocks in new individuals. As a result, the 
search direction cannot be reasonably guided, and the actual perfor-
mance of these existing EDAs is limited (refer to Subsection 3.2 for more 
details). To overcome this defect, a novel EDA with a matrix-cube-based 
or three-dimensional probability model, namely MCEDA, is designed for 
the EE_DAPFSP. The test results on the instances with different scales 
demonstrate that MCEDA can obtain better solution than state-of-the-art 
algorithms under the same running time. 

The main features of MCEDA lie in four aspects: the high-quality 
initial population generated by a hybrid initialization strategy, the 
global search guided by a three-dimensional probabilistic model, the 

deep local search driven by a multi-neighborhood search, and the so-
lution quality enhanced via two speed adjustment strategies. In terms of 
the initial population, a hybrid initialization strategy combining an 
effective constructive heuristic method and a randomization method is 
devised to generate high-quality initial population. This strategy can 
make the algorithm’s search start from some regions close to the 
promising regions. In terms of the global search, a three-dimensional 
probabilistic model with an update mechanism is designed to reason-
ably reserve the valuable information of superior individuals, and a 
special sampling strategy is devised to guide the search to the promising 
regions in solution space. Since the three-dimensional structure is uti-
lized to accurately record the job blocks with their exact positions, the 
global search can be effectively guided to the truly promising regions. In 
terms of the local search, an efficient neighborhood search adopting four 
critical path-based neighborhood structures is developed to execute 
deep search from the promising regions obtained by the global search. In 
terms of the solution quality, the problem properties are analyzed and 
two types of the problem-specific speed adjustment strategies are pro-
posed to further improve the quality of the obtained non-dominated 
solutions. The novelties of this paper are summarized in Table 1. 

The remainder of this paper is organized as follows. Section 2 de-
scribes and formulates the EE_DAPFSP. Section 3 introduces the pro-
posed MCEDA in detail. Section 4 carries out computational 
comparisons and statistical analyses. Finally, some conclusions and 
future works are provided in Section 5. 

Table 1 
Difference between this work and the previous literature.  

Difference The previous literature This work 

Problem 
formulation 

The existing formulations of the 
DAPFSP only take account of 
traditional efficiency- 
dependent criteria (Hatami 
et al., 2013; Lin & Zhang, 2016; 
Wang & Wang, 2016; Lin et al., 
2017; Pan et al., 2019; Zhang 
et al., 2021). 

The sequence model of the 
EE_DAPFSP is established by 
minimizing both efficiency- 
dependent and energy-saving 
criteria. This is the first time 
that the TCE (i.e., an energy- 
saving criterion) has been 
treated as a separate criterion 
in the DAPFSPs. 

Global search 
framework 

The traditional metaheuristics 
for the DAPFSP only employ 
conventional genetic operators 
(i.e., the selection, crossover 
and mutation) or common 
neighborhood operators (i.e., 
insert, interchange and swap) to 
generate offspring to execute 
exploration (Lin & Zhang, 2016; 
Lin et al., 2017; Pan et al., 2019; 
Sang et al., 2019). Furthermore, 
most of existing EDAs for 
scheduling problem use the 
two-dimensional probability 
model to save the information 
of superior individuals (Jarboui 
et al., 2009; Pan & Ruiz, 2012; 
Tiwari et al., 2014; Wang & 
Wang, 2016). 

A novel EDA with a matrix- 
cube-based or three- 
dimensional probability 
model is utilized to 
reasonably reserve the 
valuable information of 
superior individuals and 
effectively guide the search 
direction. 

Speed 
adjustment 
strategy 

Most literatures only consider 
designing energy- saving speed 
adjustment strategies to reduce 
energy-saving criteria without 
reducing efficiency-dependent 
criteria, so as to enhance the 
quality of current non- 
dominated solutions (Ding 
et al., 2016; Chen et al., 2019; 
Abedi et al., 2020; Jiang & 
Zhang, 2019; Wang & Wang, 
2020). 

In addition to designing an 
energy-saving speed 
adjustment strategy to 
enhance the quality of each 
current non-dominated 
solution, a reduced-time 
speed adjustment strategy is 
also designed to generate 
possible non-dominated 
solutions, so as to further 
increase the diversity and 
number of non-dominated 
solutions.  
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2. Problem statement 

2.1. Energy-efficient distributed assembly permutation flow-shop 
scheduling problem 

The EE_DAPFSP can be briefly described as follows. There are S 
products which consist of a set of n jobs. Each of the n jobs from the set 
J = {J1, J2, ..., Jn} is allocated to one of the F factories and is to be pro-
cessed sequentially through m machines M = {M1,M2, ...,Mm}, and then 
these n jobs are to be assembled into S products. Each product consists of 
a series of specific jobs and each job belongs to one certain product. The 
production process mainly consists of two stages, namely the processing 
stage and the assembly stage. The processing stage consists of F fac-
tories, and each factory is regarded as a flow shop composed of the same 
number of machines, i.e., m heterogeneous machines with different 
functions. Each machine has d discrete and adjustable processing speeds, 
i.e., V = {v1, v2, ..., vd}. Each job Ji ∈ J has a predetermined processing 
time pi,j on every machine Mj ∈ M, and a series of m operations [Oi,1,Oi,2,

...,Oi,m] of Ji can be completed in any factory, where the actual pro-
cessing time of Oi,j on Mj at speed vk ∈ V is p̂k

i,j = pi,j/vk. Then, the 
corresponding energy consumption is produced whether the machine is 
in the processing state or in the standby state. Once all of the jobs of the 
specific product have been processed in factories, the assembly process 
can be started on the assembly machine. The EE_DAPFSP considered 
contains three subproblems, namely, appropriately assign jobs to fac-
tories, suitable select the processing speed of machines, and reasonably 
determine the processing order and the assembly order of jobs and 
products. The notations description for the EE_DAPFSP are provided in 
Table 2, and the illustration of the EE_DAPFSP is shown in Fig. 1. 

In addition, all assumptions of FSP also meet herein. (i) No release 
time is considered. Each job and machine are available and independent, 
and each job can be processed immediately in time; (ii) No machine 
breakdown or setup time is considered. Preemption and interruption are 
not allowed in the processing; (iii) No transportation time is considered. 
Each product can be assembled once its jobs have been processed; (iv) 
Each job cannot be changed the factory and all operations of each job 
should be processed in the same factory, once the job assignment has 
been determined. At any time, each job can only be processed on at most 
one machine, and each machine is allowed to process no more than one 
job; (v) The processing time is deterministic, and the processing speed of 
machines remain unchanged during the processing process. The 
EE_DAPFSP aim to determine the allocation of jobs in the factories, the 
processing order of jobs on machines and the assembly order of each 
product, and the processing speed of all the machines. The production 
efficiency criterion needs to minimize the makespan, which is defined as 
the completion time of the last product on the assembly machine. The 
energy consumption criterion needs to minimize the total carbon 

Table 2 
The notations used in the permutation-based model of the EE_DAPFSP.  

Indices  

i  The index for jobs where i = 1,2,…,n.  
j  The index for machines where j = 1,2,…,m.  
h  The index for products where h = 1,2,…,S.  
f  The index for factories where f = 1,2,…,F.  
k  The index for velocities where k = 1,2,…,d.  
Parameters  
n  The total number of jobs. 
m  The total number of machines. 
F  The total number of factories. 
S  The total number of products. 
d  The total number of velocities. 
J  The set of jobs, i.e., J = {J1,J2, ...,Jn}.  
M  The set of machines, i.e., M = {M1,M2, ...,Mm} where |Mj|⩾2.  
P  The set of products, i.e., P = {P1,P2, ...,PS}.  
O  The set of operations, i.e., O = {Oi,1,Oi,2 , ...,Oi,m}.  
V  The set of velocities, i.e., V = {v1,v2, ...,vd}.  
Nh  The number of jobs belongs to product Ph.  
pi,j  The processing time of operation Oi,j on machine Mj.  

pA
h  The assembling time of product h on machine MA.  

Variables  
nf  The total number of jobs assigned to factory f , where 

∑F
f=1nf = n.  

ωh  The total number of jobs of product Ph , where 
∑S

h=1ωh = n.  
π  The total sequence of jobs, i.e., π = [π1,π2, ...,πn].  
πf  The sub-sequence of jobs in factory f , i.e., πf = [πf

1,π
f
2, ...,π

f
nf ].  

πp  The sequence of assembled products. 
λ  The assembly sequence of products, i.e., λ = [λ1, λ2, ..., λS].  

p̂k
i,j  

The actual processing time of Oi,j on Mj at the speed vk where 

p̂k
i,j = pi,j/vk.  

Ci,j  The completion time of Oi,j on Mj.  

SA
h  The earliest possible assembly time of product h on the assembly line.  

CA
h  The completion time of product h on the assembly line.  

Ejk  The energy consumption per unit time of machine Mj running at speed 
vk.  

SEj  The energy consumption per unit time when machine Mj is in standby 
state.  

ε  The coefficient between energy consumption and carbon emission, 
where ε = 0.7559. 
ε refers to the carbon emission per unit of consumed energy (kilogram 
CO2 equivalent/kiloWatthour).  

Cmax(π,V) The makespan of a feasible solution (π,V).  
TCE(π,V) The total carbon emission of a feasible solution (π,V).  
(Π,Σ) A set of feasible scheduling schemes for the problem considered.  

Fig. 1. Illustration of the EE_DAPFSP.  

Z.-Q. Zhang et al.                                                                                                                                                                                                                               



Expert Systems With Applications 194 (2022) 116484

4

emission throughout the manufacturing period. The goal of the 
EE_DAPFSP is to find a group of optimal scheduling schemes with 
minimizing of both makespan and total carbon emission. According to 
the above description, the permutation-based model of the EE_DAPFSP 
can be given as follows. 

Cπf
1 ,1

= p̂k
πf

1 ,1
, f = 1, 2, ...,F; k = 1, 2, ..., d. (1)  

Cπf
i ,1

= Cπf
i− 1 ,1

+ p̂k
πf

i ,1
, i = 2, 3, ..., nf ; f = 1, 2, ...,F; k = 1, 2, ..., d. (2)  

Cπf
1 ,j

= Cπf
1 ,j− 1 + p̂k

πf
1 ,j
, j = 2, 3, ...,m; f = 1, 2, ...,F; k = 1, 2, ..., d. (3)  

Cπf
i ,j
= max\{ Cπf

i− 1 ,j
,Cπf

i ,j− 1\} + p̂k
πf

i ,j
,

i = 2, 3, ..., nf ; j = 2, 3, ...,m; f = 1, 2, ...,F; k = 1, 2, ..., d.
(4) 

Fig. 2. The Gantt chart of a feasible solution of the EE_DAPFSP.  

Fig. 3. The real-time power consumption curve of the EE_DAPFSP.  
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SA
λh

= max
πf

i ∈λh

Cπf
i ,m
, i = 1, 2, ..., nf ; f = 1, 2, ...,F; h = 1, 2, ..., S. (5)  

CA
λ1

= SA
λ1

+ pA
λ1
. (6)  

CA
λh

= max\{ CA
λh− 1

, SA
λh

\} + pA
λh
, h = 2, 3, ..., S. (7)  

Cmax(π,V) = CA
λS
. (8)  

TCE(π,V) = ε
∫ Cmax

0

(
∑

j∈M
Ejkxt

jk +
∑

j∈M
SEjyt

j

)

dt, k ∈ \{ 1, 2, ..., d\} . (9)  

(π*,V*) = arg min
π∈Π,V∈Σ

{Cmax(π,V),TCE(π,V)}. (10) 

Eqs. (8) and (9) are the calculation formulas of the maximum 
completion time (Cmax) and the total carbon emission (TCE) respectively. 
The formula of the TCE in Eq. (9) is divided into two parts, the first part 
is the total carbon emission when the machines are in processing state, 
and the second part is the total carbon emission when the machines are 
in standby state. The xt

jk and yt
j in Eq. (9) are binary variables, indicating 

that if machine Mj is running at speed vk at the time t, then xt
jk = 1, and 

xt
jk = 0 otherwise. In addition, if machine Mj is in the standby state at 

time t, then yt
j = 1, and yt

j = 0 otherwise. Eq. (10) is the final goal of 
the considered EE_DAPFSP. That is, the criteria are to find each optimal 
non-dominated solution (π*,V*) in the scheduling scheme set (Π,Σ), so 
that a suitable balance between the maximum completion time (Cmax) 
and the total carbon emission (TCE) is achieved. 

For ease of understanding, Fig. 2 illustrates the Gantt chart of a 
feasible solution of the EE_DAPFSP with 24 jobs, 5 machines, three 
factories and two products. The first product P1 contains 13 jobs, (i.e., 
J1J4̃,J10,J11,J14J1̃8,J22,J24), while the second product P2 consists of 11 
jobs, (i.e., J5J9̃, J12, J13, J19J2̃1, J23). The sub-sequences of all the jobs 
assigned to the three factories are π1 = [3, 18, 17,16,23, 12,9], 
π2 = [4, 11,2, 15,20,5, 21,6] and π3 = [1, 14, 22, 10, 24, 19, 8, 7, 13], 
respectively. Fig. 3 shows the three curves of the real-time power con-
sumption corresponding to the Gantt chart of the feasible solution pro-
vided in Fig. 2. It can be seen from Fig. 2 that at time 300, M1, M2, and 
M4 in factory 1 are all in the processing state, while M3 and M5 are in the 
standby state. Suppose that M1, M2, and M4 are running at speeds 
vk1 ∈ V, vk2 ∈ V and vk4 ∈ V at this time, and thus the instantaneous 
processing power of these three machines are E1k1, E2k2 and E4k4, 
respectively. In addition, the power consumption of M3 and M5 in the 
standby state are SE3 and SE5, and then the overall power consumption 
at time 300 in factory 1 can be calculated by summing up the power of 
the five machines, (i.e., E1k1 + E2k2 + SE3 + E4k4 + SE5), as shown 
in Fig. 3. From Fig. 3, at time 300, M1, M2, M3 and M5 in factory 2 are in 
the processing state and only M4 is in the standby state, while M1, M4 
and M5 in factory 3 are in the processing state and M2 and M3 are in the 
standby state. Similarly, the real-time power consumption of factory 2 
and factory 3 can be calculated at this moment. Therefore, the real-time 
power consumption of each factory at different time points can be 
calculated respectively. Note that the total energy consumption of Eq. 
(9) can be represented as the sum of the area enclosed by the real-time 
power curve corresponding to each factory and the time axis, and thus 
the total carbon emission (TCE) can be computed via the coefficient ε 
between energy consumption and carbon emission. 

It should be noted that compared to the DAPFSP studied by Hatami 
et al. (2013), where the objective is to minimize the makespan and the 
processing time is regarded as constant, the EE_DAPFSP considered not 
only adds a green scheduling objective of minimizing the total carbon 
emission, but also sets all of the processing times to be adjustable 
(depending on the actual running speed of the machine). Therefore, 
motivated by the energy saving consideration, this paper investigated 
the modeling and solving of the energy-efficient DAPFSP, which is a 
more complex (with more decision variables) multi-objective optimi-
zation problem than the typical DAPFSP. The main difficulty of multi- 
objective optimization lies in the large and complex feasible solution 
space, that is, the variable processing speed will further enhance the 
difficulty of solving the considered problem, and obtaining high-quality 
solutions often has a high-level requirement of both the understanding 
of the structural features of the problem and the search efficiency of the 
algorithm. Moreover, since the EE_DAPFSP is an NP-hard problem, it is 
not theoretically guaranteed to find the optimal scheduling scheme in 
polynomial time. Therefore, for medium and large-scale instances, the 
scheduling goal is to obtain the near-optimal scheduling schemes within 
an acceptable time, and the metaheuristics are an effective way to solve 
the EE_DAPFSP. 

2.2. Multi-objective optimization problem 

The multi-objective optimization usually requires a satisfactory 
trade-off between two or more conflicting objectives, so that the mul-
tiple objective functions involved are optimized simultaneously. The 
EE_DAPFSP involved in this study needs to consider both production 
efficiency and energy consumption, and there is an obvious conflict 
relationship between these two criteria. The optimal or near-optimal 
scheduling schemes for the EE_DAPFSP is a set of feasible solutions, 
instead of a single solution. These solution sets must be determined by 
the dominance relationship via some specific multi-objective optimiza-
tion techniques. Generally, the MOPs can be described as shown in Eq. 
(11). 

Min F(x) = {f1(x), f2(x), ..., fm(x)}
s.t. gl(x)⩾0; hk(x) = 0, l = 1, 2, ..., L; k = 1, 2, ...,K.

xlb
i ⩽xi⩽xub

i , i = 1, 2, ..., n.
(11)  

where x = [x1, x2, ..., xn]
T
∈ Ω is a decision vector composed of n decision 

variables, and fi(x) is the ith sub-objective function. The mapping 
function F(x) contains m sub-objective functions and F(x) : Ω→Rm. Ω is 
the decision space and Rm is the m-dimensional objective space. xlb

i and 
xub

i are the upper bound and lower bound for the ith dimensional vari-
able xi, respectively. Then, some basic concepts commonly used in MOPs 
are introduced below (Minella et al., 2008).  

• Pareto dominance: For any two solutions x ∈ Ω and y ∈ Ω, if and 
only if ∀i ∈ {1,2,...,m}, fi(x)⩽fi(y) and ∃i′ ∈ {1,2,...,m}, fi′ (x) < fi′ (y), 
then the solution x dominates solution y, denoted as x ≺ y.  

• Pareto archive: For any solution x ∈ Ω, x is Pareto optimal if and 
only if ¬∃y ∈ Ω: y ≺ x. The solution set composed of all Pareto 
optimal solutions is called Pareto optimal set or Pareto archive, 
denoted as Ω*. 
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• Pareto front: The Pareto optimal front is aggregated by all of the 
solutions in Pareto optimal set Ω*, that is PF = \{ F(x) =

[f1(x), f2(x), ..., fm(x)]T|x ∈ Ω*}.  
• Non-dominated solution: In the feasible solution subset A⫅Ω, for 

each solution x ∈ A, if and only if ¬∃y ∈ A: x ≺ y or x ≻ y.  
• Non-dominated set: For a feasible solution set Ω′′⫅Ω, if there exists 

another non-dominated subset Ω′ such that Ω′⫅Ω′′, ∀a⫅Ω′ and b⫅Ω′′, 
¬∃b ≺ a and a ∕= b, then Ω′ is a non-dominated solution set.  

• Non-dominated sorting: It is used to sort all obtained non- 
dominated solutions and divide them into different levels accord-
ing to the Pareto dominance relationship (Deb et al., 2002).  

• Crowded distance: It is used to measure the degree of dispersion 
among the non-dominated solutions on the same level (Ding et al., 
2016; Deb et al., 2002). In general, the larger the crowding distance 
of a set of non-dominated solutions is, the better the dispersion of the 
non-dominated solution set is. The crowding distance calculation 
method is given in Algorithm 1. 

In many practical production processes, decision makers usually 
choose their preferred scheduling solution from the obtained Pareto 
optimal front based on a reasonable trade-off between preferences or 
priorities of objectives. Therefore, the aim of MOPs is to obtain a variety 
of non-dominated solutions with good proximity and diversity with 
respect to the true Pareto optimal front.  

Algorithm 1: Crowded distance calculation method      

2.3. Problem property analysis 

The EE_DAPFSP is a typical complex PFSP with adjustable machine 
speed and there is a close coupling relationship between the production 
and assembly stages. In EE_DAPFSP, the machine speed directly de-
termines the processing operation, and the processing stage affects the 
assembly stage, that is, to determine the start time of each product in the 
assembly stage, the completion time of all parts to which the product 

belongs must be taken into account in the processing stage. Thus, the 
achievement of objectives and the handling of constraints must not only 
take into account the optimal production efficiency, but also meet the 
production requirements of low-carbon manufacturing. Conflicting 
constraints complicate the feasible solution space of the considered 
problem, resulting in a great challenge that the algorithm being more 
difficult to obtain a satisfactory solution within an acceptable time. 
Therefore, when designing EDA-based algorithms to address the 
EE_DAPFSP, it is not only necessary to establish effective probabilistic 
models to quickly guide directions to truly promising regions, but also 
need to analyze some problem-dependent properties and then utilize 
them to narrow the search scope by avoiding invalid searches. 

Ding et al. (2016) proposed two assumptions about the relationship 
between job processing speed and machine energy consumption based 
on the problem properties of the low-carbon PFSP. That is, when job Ji is 
processed at a higher speed on a machine Mj, the processing time of the 
job would be shorter and the total energy consumption would be 
increased. In other words, if ∀vk1 > vk2 (vk1,vk2 ∈ V), we have p̂k1

i,j < p̂k2
i,j , 

then p̂k1
i,j ⋅Ejk1 > p̂k2

i,j ⋅Ejk2. Obviously, there is an inevitable contradiction 
relation between the two objectives Cmax and TCE in the EE_DAPFSP, 
and there is no optimal scheduling solution can be found in the absolute 
sense. For any two feasible scheduling solutions (π′

,V ′

) and (π′′, V′′), 
when Cmax(π

′

, V ′

)⩾Cmax(π′′, V′′), TCE(π′

,V ′

)⩾TCE(π′′,V′′) and (Cmax(π
′

,

V ′

),TCE(π′

,V ′

)) ∕=(Cmax(π′′,V′′),TCE(π′′,V′′)), it can be concluded that the 
solution (π′′,V′′) dominates the solution (π′

,V ′

) (denoted as (π′

,V ′

) ≺ (π′′,

V′′)). According to the above assumptions and the definition of multi- 

objective domination, two properties of the EE_DAPFSP can be put 
forward as follows. 

Property 1. Let us assume that the machine speed is fixed in the processing 
stage. That is, the processing speed matrix remains constant. Under this 
assumption, for any two feasible scheduling solutions (π′

,V ′

) and (π′′,V′′), if 
Cmax(π

′

,V ′

) > Cmax(π′′,V′′) and V ′

= V′′, then it has (π′

,V ′

) ≺ (π′′,V′′). 

Proof: Assume that the two feasible solutions of the EE_DAPFSP are 
(π′

,V ′

) and (π′′,V′′), respectively. According to Eq. (9) in Subsection 2.1, 
the total carbon emission of these two solutions (π′

,V ′

) and (π′′,V′′) can 
be represented as TCE(π′

,V ′

) = ε(E(π′

,V ′

) +SE(π′

,V ′

)) and TCE(π′′,V′′)

= ε(E(π′′,V′′) + SE(π′′,V′′)), respectively. E(⋅) and SE(⋅) indicate the total 
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Fig. 4. An illustrative example of the energy-saving speed adjustment strategy for EE_DAPFSP.  

Z.-Q. Zhang et al.                                                                                                                                                                                                                               



Expert Systems With Applications 194 (2022) 116484

8

energy consumption of machines in running state and the energy con-
sumption of machines in standby state. Since V ′

= V′′, the two solutions 
(π′

,V ′

) and (π′′,V′′) have exactly the same processing processes of jobs in 
the processing stage. That is, the processing time and energy con-
sumption of the processing operations are also the same, and obviously 
E(π′

,V ′

) = E(π′′,V′′) holds. In addition, each product λh (h = 1, ...,S) in 
the product order λ = [λ1, λ2, ..., λS] corresponding to π in the solution (π,
V) must wait until it’s all parts are completed before starting the product 
assembly process. 

According to Eq. (5) in Subsection 2.1, denote max
πf

i ∈λh

Cπf
i ,m be the start 

assembly time of product λh (i = 1, ..., nf , f = 1, ..., F and h = 1, ..., S), 
π̂h = [π̂h,1, π̂h,2, ..., π̂h,ωh ] be the job order belonging to product λh. Let 
Ptf

π̂h,l ,j 
and Stf

π̂h,l ,j 
respectively represent the total duration of the pro-

cessing state and the total duration of the standby state of the job π̂h,l 

(l = 1, ..., ωh) contained in product λh in the product order λ on the 
machine Mj in factory f , and then the start assembly time of product λh 

can be represented as max
πf

i ∈λh

Cπf
i ,m

= max
f ,l

{Ptf
π̂h,l ,m

+ Stf
π̂h,l ,m

}. The make-

span Cmax(π,V) of the feasible solution (π,V) is determined by the start 
assembly time of each product. Let λ

′

and λ′′ be the product orders 
corresponding to π′ and π′′ in the solutions (π′

,V ′

) and (π′′,V′′). Since π′

and π′′ in (π′

,V ′

) and (π′′,V′′) correspond to the same product, and the 
job order π̂

′

h in λh is the same as that in the job order π̂ ′′
h and E(π′

,V ′

) =

E(π′′, V′′). It is clear that Ptf

π̂
′

h,l ,j
= Ptf

π̂
′′

h,l ,j
,∀j ∈ M and Cmax(π

′

, V ′

) >

Cmax(π′′, V′′). It can be deduced that if ∃λh* ∈ λ, it has Stf
π̂
′

h*,i′ ,j
> Stf

π̂
′′

h*,i′ ,j
,

∃j ∈ M. Thus, for the standby state, the total energy consumption can be 
given as follows: 

SE(π′

,V
′

) =
∑

f

∑

j∈M
Stf

π
′ f

nf ,j
× SEj >

∑

f

∑

j∈M
Stf

π ′′f
nf

,j
× SEj = SE(π′′,V ′′)

(12) 

Since there is TCE(π′

, V ′

) = ε(E(π′

, V ′

) + SE(π′

, V ′

)), TCE(π′′,V′′) =

ε(E(π′′,V′′) + SE(π′′,V′′)) and E(π′

,V ′

) = E(π′′,V′′) is met, it has TCE(π′

,

V ′

) > TCE(π′′,V′′) and Cmax(π
′

, V ′

) > Cmax(π′′, V′′). Thus, we can get (π′

,

V ′

) ≺ (π′′,V′′). Property 1 is proved. 

Property 2. For any two feasible solutions (π′

,V ′

) and (π′′,V′′), if they 
have the same maximum completion time, then the solution with the slower 
processing speed dominates the other solution. That is, if Cmax(π

′

,V ′

) =

Cmax(π′′,V′′) when V′

i,j⩾V′′
i,j (∀i = 1, ...,n; j = 1, ...,m) and V ′

∕= V′′, then it 

has (π′

,V ′

) ≺ (π′′,V′′). 

Proof: Since V′

i,j⩾V′′
i,j (∀i = 1,...,n; j = 1,...,m), Cmax(π

′

,V ′

) = Cmax(π′′,

V′′) and V ′

∕= V′′, it is clear that the production process of the solution 
(π′

,V ′

) is faster than that of the solution (π′′,V′′). For the job orders π′ and 
π′′ in any two solutions (π′

,V ′

) and (π′′,V′′), each product in the product 
orders λ

′

and λ′′ corresponding to the job orders π′ and π′′ must wait for 
the completion of all the parts belonging to the product before it can be 
assembled. In addition, the job orders π̂

′

h and π̂ ′′
h corresponding to the 

same product λh in the job orders π′ and π′′ are the same. Since Ptf

π̂
′

h,l ,j
⩽ 

Ptf
π̂
′′

h,l ,j
,∀j ∈ M and Cmax(π

′

, V ′

) = Cmax(π′′, V′′), then it has Stf
π̂
′

h,l ,j
⩾Stf

π̂
′′

h,l ,j
,

∀j ∈ M. Since V ′

∕= V′′, then ∃j′ ∈ M makes Ptf

π̂
′

h,l ,j
′
< Ptf

π̂
′′

h,l ,j
′
, that is, it has 

Stf

π̂
′

h,l ,j
′
> Stf

π̂
′′

h,l ,j
′
. Therefore, the total energy consumption in Eq. (12) for 

the standby state is satisfied. According to 
TCE(π′

,V ′

) = ε(E(π′

,V ′

) +SE(π′

,V ′

)) and TCE(π′′,V′′) = ε(E(π′′,V′′) +

SE(π′′,V′′)) in Property 1, the total energy consumption in the processing 
state satisfies E(π′

, V ′

) > E(π′′, V′′), so it has TCE(π′

, V ′

) > TCE(π′′, V′′). 
Considering that Cmax(π

′

,V ′

) = Cmax(π′′,V′′), the dominance relationship 
(π′

,V ′

) ≺ (π′′,V′′) between (π′

,V ′

) and (π′′,V′′) is met. Property 2 is 
proved. 

According to above properties, a reasonable compromise between 
the two objectives of Cmax and TCE can be achieved, that is, the total 
carbon emissions can be reduced by appropriately adjusting the speed of 
the machines in each factory, while the maximum completion time re-
mains unchanged. 

It should be clear that for all types of flow shop scheduling problems, 
the critical path directly determines the maximum completion time of 
any feasible solution (Wang & Wang, 2016). In this section, according to 
Property 2, we present an energy-saving speed adjustment strategy that 
can adjust the processing speed of some jobs on non-critical paths while 
keeping the processing speed of jobs on the critical path unchanged. The 
proposed energy-saving speed adjustment strategy can ensure that the 
maximum completion time of the scheduling solution remains un-
changed, while effectively reducing the total carbon emissions, and 
improving the algorithm’s ability to obtain high-quality solutions with 
low-energy consumption. The energy-saving speed adjustment strategy 
is provided as follows. 

Step 1: Identify a critical path of the feasible solution (π, V). The 
critical path directly determines the value of the production efficiency 
criterion (i.e., the maximum completion time Cmax). If more than one 
critical path exists for the same Cmax, then one of the critical paths is 
randomly selected. 

Step 2: Determine whether the job on the non-critical path meets the 
speed-down operation conditions: there is a certain amount of time 
margin between the completion time of the current job and the start time 
of the next job on the machine, and the processing speed of the job is not 
in the lowest gear. If the speed-down operation conditions are not met, 
then no speed reduction is required, otherwise continue to the next step. 

Step 3: Reduce the processing speed of the job by one level. Since all 
processing speeds considered are a series of discrete values, the speed- 
down operation needs to be performed to ensure that the increment of 
the job processing time is within the time margin and does not affect the 
critical path identified in Step 1. If the critical path is affected, the speed- 
down operation is not performed, otherwise skip to Step 2 and continue 
to perform speed reduction on the remaining jobs until all jobs on the 
non-critical path have been executed the speed-down operation. 

For ease of understanding, Fig. 4 provides a diagram of the energy- 
saving speed adjustment strategy for EE_DAPFSP when n = 8,m =

2,F = 2,S = 2. Firstly, a critical path for the feasible scheduling solution 
is determined, as shown in Fig. 4(a). It can be seen that the critical 
factory is Factory 1, and the corresponding critical operations are O3,1,

O8,1,O8,2. Then, the time margins for a series of non-critical operations 
O3,2,O2,2,O5,2,O5,1 and O1,2,O6,2,O7,2,O4,1,O4,2 in factory 1 and factory 
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2 are calculated as shown in Fig. 4(b). Finally, the speed-down opera-
tions are performed and the time margins are updated for the jobs on the 
non-critical path from back to front, as illustrated in Fig. 4(c). Fig. 4(d) 
gives the Gantt chart corresponding to the obtained solution with low- 
energy consumption by using the energy-saving speed adjustment 
strategy. Then, the Pareto archive is updated after the speed adjustment.  

Algorithm 2: Multi-objective initialization method      

3. MCEDA for EE_DAPFSP 

In this section, a multidimensional distribution estimation algorithm 
(MCEDA) is presented to solve the EE_DAPFSP. Firstly, the solution 
representation and population initialization are provided. Secondly, the 
matrix-cube-based multidimensional probabilistic model and its 

updating mechanism and sampling strategy are proposed, respectively. 
Then, the critical path based local search and the speed adjustment 
strategies are designed. Finally, the overall process of MCEDA is 
described and the computational complexity of MCEDA is briefly 
analyzed. 

3.1. Solution representation and population initialization 

The solution representation is of great importance to the meta-

heuristics. The PFSP usually uses a coding sequence of jobs π = [π(1),
π(2), ..., π(n)] that can directly determine the processing priority of n jobs 
to represent a feasible solution of the problem (Ding et al., 2016; Lu 
et al., 2017). For the job order π of the EE_DAPFSP, in order to obtain a 
feasible scheduling scheme, the factory allocation rule NR2 proposed by 
Hatami et al. (2013) is employed to decode the job order π and assign 
each job to each factory in turn. Once the job order π is determined and 
the corresponding processing speeds for all operations are assigned, and 
then a feasible solution is obtained. Therefore, the feasible solution 
representation of the EE_DAPFSP studied in this paper needs to consider 
not only the processing sequence π for jobs but also the processing speed 

Z.-Q. Zhang et al.                                                                                                                                                                                                                               



Expert Systems With Applications 194 (2022) 116484

10

matrix V for machines, so a feasible solution can be denoted as (π,V). 
Thus, the production efficiency and the energy consumption criteria are 
denoted as Cmax(π,V) and TCE(π,V), respectively. 

It needs to be noted that the size of the set Π of feasible coding se-
quences is n!, the size of the set of feasible speed matrices Σ is dnm, and 
the solution spaces of Π and Σ are independent of each other. Compared 
with the solution space size n! of the traditional PFSP, the feasible so-
lution space size of the EE_DAPFSP is as large as S!×

∏S
h=1|Nh|!× dnm. 

Obviously, the significant expansion of the feasible search space for the 
considered problem requires much more computational efforts to find 
the global optimal solutions or at least the near-optimal solutions, and it 
is need to develop some high-performing algorithms for solving the 
EE_DAPFSP. To be specific, in order to decode a feasible solution and 
obtain a scheduling scheme, firstly, each job in the job order π is 
sequentially assigned to machines of different factories by means of the 
NR2 rule. That is, the completion time of each job in each factory is 
determined respectively according to the corresponding processing 
speed in V. Secondly, each job is allocated to the factory that can 
complete all processing processes of the job at the earliest time, and then 
the sub-sequence of jobs [π1, π2, ...,πF] in all factories is obtained. Then, 
the assembly order of the products is determined according to the pro-
cessing completion time of the corresponding jobs for each product. 
Finally, the maximum completion time Cmax(π,V) and the total carbon 
emission TCE(π,V) of the feasible solution (π,V) can be calculated ac-
cording to Eq. (8) and Eq. (9) in Section 2. 

In order to take into account both the quality and the diversity of the 
feasible solutions in the initial population, we employ a hybrid initial-
ization strategy that combines the effective constructive heuristic 
method and the randomization method to generate the initial popula-
tion. To be specific, 10% of the feasible solutions in the initial population 
are produced by using the multi-objective initialization method given in 
Algorithm 2, and the remaining 90% of the other solutions are generated 

randomly. For the multi-objective optimization problems, the non- 
dominated set NS is usually used to record and reserve all of the ob-
tained non-dominated solutions. The expression NS←NS ∪ NSl in Algo-
rithm 2 represents the set of non-dominated solutions picked from the 
union of the two sets NS and NSl. The notation |NS| refers to the number 
of elements in the non-dominated set NS. Note that the initialization of 
the processing speed matrix V for each non-dominated solution (π,V)

also has a certain impact on the performance of the algorithm. If a higher 
initial processing speed is set, it would be more favorable to optimize the 
maximum completion time Cmax(π,V); while if a lower initial processing 
speed is set, it would be more inclined to optimize the total energy 
consumption TCE(π, V). Therefore, in order to achieve a reasonable 
trade-off between these two criteria, different speed levels should be 
adopted to initialize the processing speed matrix V in the initialization 
process of the population, and then all non-dominated solutions ob-
tained at different initial processing speeds are merged. Then, the top 
10% of high-quality solutions are selected as a part of the initial popu-
lation via Algorithm 1, while the remaining 90% of the solutions in the 
initial population are generated by using randomization method. 
Meanwhile, to ensure the fairness of the computational comparisons, the 
proposed population initialization method is used for both the presented 
MCEDA and the compared algorithms in the subsequent experimental 
sections. 

3.2. Multi-dimensional probabilistic model 

Since most of EDAs were proposed based on the two-dimensional 
probabilistic models, these two-dimensional probabilistic models 
cannot learn the promising patterns adequately. In this subsection, a 
multi-dimensional probabilistic model is designed to reasonably learn 
and accumulate the structural characteristics and promising patterns of 
the superior solutions, i.e., the order relation information of jobs and the 
position information of job blocks. which can effectively guide the 
search direction toward the potential regions in the solution space. 
Then, the framework of the multi-dimensional probabilistic model is 
provided by introducing the block structure and the matrix cube, the 
updating mechanism and the sampling strategy, respectively. 

3.2.1. Block structure and matrix cube 
For the feasible scheduling solution (π,V) of the EE_DAPFSP, the job 

block is first defined as the two consecutive adjacent jobs in the job order 
π. Obviously, π can be composed of all the job blocks that appear at 
different positions in the job order. For n different jobs, there is a total of 
(n − 1)2 job blocks. The same job blocks appearing at different positions 
in the job order π of each feasible solution (π,V) are defined as the 
similar blocks. For example, for two job orders π′

= [3,2, 1,4] and π′′ =

[4,3,2,1], there are a total of four job blocks, i.e., [3,2], [2,1], [1,4] and [4,
3]. Since the two job blocks [3,2] and [2, 1] appear both in π′ and π′′, then 
the job blocks [3, 2] and [2,1] are similar blocks. In order to investigate 
the distribution characteristics of the total job blocks in the high-quality 
solutions of the considered problem, in this subsection, a data structure 
of three-dimensional matrix cube is designed to reasonably record and 
reserve the total order relation information of the jobs and the distri-
bution information of the job blocks. Moreover, the matrix cube can also 
appropriately learn and accumulate the valuable structural character-
istics of superior solutions in a statistical way, and then can be used to 
construct a more effective probabilistic model. Without loss of gener-
ality, let Pop(G) be the population at Gth generation, where G = 0,1, ...

Fig. 5. An illustrative example of the accumulation process of job blocks 
by MC0

4×4×4. 
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,MaxG and ps is the size of Pop(G). Let SPop(G) = {πG,1
sbest,π

G,2
sbest, ..., πG,sps

sbest }

be the promising solutions or the superior subpopulation extracted from 
Pop(G), where sps is the size of SPop(G). It is clear that πG,k

sbest is the kth 
individual in SPop(G), which can be denoted as πG,k

sbest = [πG,k
sbest,1, π

G,k
sbest,2, ..

., πG,k
sbest,n] (k = 1, ..., sps). Let MCG

n×n×n denote the matrix cube at Gth 
generation, where MCG

n×n×n(x, y, z) (x = 1, ..., n − 1; y, z = 1, ..., n) with 
the subscript (x, y, z) represents the element in MCG

n×n×n. MCG
n×n×n is 

used to record and reserve the information of the job relations and the 
distribution of similar blocks of high-quality subpopulation in Gth 
generation. MCG

n×n×n is described as follows. 

IMCG,k
n×n×n(x,y,z)

=

⎧
⎨

⎩

1, y = πG,k
sbest,x and z = πG,k

sbest,x+1

0, else
,

x = 1, 2, ..., n − 1; y, z = 1, 2, ..., n; k = 1, 2, ... , sps.

(13)  

MCG
n×n×n(x, y, z) =

∑sps

k=1
IMCG,k

n×n×n(x,y,z)
, x = 1, 2, ..., n − 1; y, z = 1, 2, ..., n. (14)  

MCG
n×n×n(x, y) = [MCG

n×n×n(x, y, 1),MCG
n×n×n(x, y, 2), ...,MCG

n×n×n(x, y, n)]n×n,

x = 1, 2, ..., n − 1; y = 1, 2, ..., n. (15)  

MCG
n×n×n(x)=

⎡

⎢
⎢
⎣

MCG
n×n×n(x,1)

⋮
MCG

n×n×n(x,n)

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

MCG
n×n×n(x,1,1) ⋯ MCG

n×n×n(x,1,n)
⋮ ⋱ ⋮

MCG
n×n×n(x,n,1) ⋯ MCG

n×n×n(x,n,n)

⎤

⎥
⎥
⎦

n×n

.

(16)  

where IMCG,k
n×n×n(x,y,z)

in Eq. (13) is an indicator function, which is used to 

record the information of job blocks of the kth solution πG,k
sbest in SPop(G), 

that is, the number of occurrences of job blocks [πG,k
sbest,x, πG,k

sbest,x+1] at the 

xth position in the πG,k
sbest (i.e., y = πG,k

sbest,x, z = πG,k
sbest,x+1). The element 

MCG
n×n×n(x, y, z) in Eq. (14) is used to accumulate the number of job 

blocks, i.e., to count the distribution of job blocks among all individuals 
in SPop(G). Eqs. (15) and (16) give the specific hierarchical structure of 
the matrix cube, where the two-dimensional submatrix MCG

n×n×n(x) is 
used to store the total frequency information of the job block [πG,k

sbest,x,

πG,k
sbest,x+1] at the xth position of all individuals in the SPop(G). Obviously, 

by using the matrix cube MCG
n×n×n composed of a series of the position 

relation based two-dimensional matrices MCG
n×n×n(1),MCG

n×n×n(2), ...,
MCG

n×n×n(n) in Eq. (16), the proposed multi-dimensional probabilistic 
model can accurately and effectively learn and preserve all the infor-
mation of both the ordinal relation of jobs and the distribution of job 
blocks of high-quality individuals in an intuitive way. Considering five 
high-quality individuals with sps = 5, i.e., π1,1

sbest = [1,2,3,4], π1,2
sbest = [2,3,

1, 4], π1,3
sbest = [3, 2, 1, 4], π1,4

sbest = [4, 3, 2,1] and π1,5
sbest = [4, 3, 1, 2], an 

illustration of the accumulation process of job blocks from these five 
high-quality individuals is given below, as shown in Fig. 5. Firstly, for 
the first position (x = 1) of all individuals from π1,1

sbest to π1,5
sbest, the existing 

job blocks [1, 2] (i.e., y = 1, z = 2), [2, 3] (i.e., y = 2, z = 3), [3, 2] (i.e., 
y = 3, z = 2), and [4, 3] (i.e., y = 4, z = 3) can be recorded and reserved 
by MCG

4×4×4(1). Since the job block [4, 3] appears twice while the other 
job blocks appear only once, it can be concluded that MCG

4×4×4(1,1,2) =

1, MCG
4×4×4(1,2,3) = 1, MCG

4×4×4(1,3,2) = 1, and MCG
4×4×4(1,4,3) = 2. 

Secondly, for the second position (x = 2) of all individuals, the existing 

job blocks [2, 1] (i.e., y = 2, z = 1), [2,3] (i.e., y = 2, z = 3), [3, 1] (i.e., 
y = 3, z = 1), and [3,2] (i.e., y = 3, z = 2) can be recorded and reserved 
by MCG

4×4×4(2). Meanwhile, we have MCG
4×4×4(2,2,1) = 1, MCG

4×4×4(2,2,
3) = 1, MCG

4×4×4(2, 3, 1) = 2, and MCG
4×4×4(2, 3, 2) = 1, respectively. 

Finally, for the third position (x = 3) of all individuals, the existing job 
blocks [1, 2] (i.e., y = 1, z = 2), [1, 4] (i.e., y = 1, z = 4), [2, 1] (i.e., y = 2, 
z = 1), and [3, 4] (i.e., y = 3, z = 4) can be recorded and reserved by 
MCG

4×4×4(3), that is, MCG
4×4×4(3, 1, 2) = 1, MCG

4×4×4(3, 1, 4) = 2, 
MCG

4×4×4(3,2,1) = 1, and MCG
4×4×4(3,3,4) = 1. It should be noted that 

since the useful information of the job block in the last position (x = 4) 
is already contained in the previous position (x = 3), all elements in 
MCG

4×4×4(4) are set to zero directly. 
It can be seen from Fig. 5 that all of the job blocks or similar blocks of 

each excellent individual located at different positions can be fully 
learned and preserved in MC0

4×4×4. For the two-dimensional probabi-
listic model based EDA commonly used in the literature (Pan & Ruiz, 
2012; Jarboui et al., 2009; Wang & Wang, 2016), the structural infor-
mation of similar blocks [2,3], [4,3], and [1, 4] existed in π1,1

sbest to π1,5
sbest is 

only stored in the same subscript (2, 3), (4, 3), and (1, 4) by using the 
two-dimensional matrices, which may not be able to accurately distin-
guish the specific location of each job block in the elite solutions and 
inevitably lead to confusion about the location of the promising blocks. 
As a result, the two-dimensional probabilistic model based EDA is un-
able to effectively determine the proper positions to place these prom-
ising similar blocks when sampling the two-dimensional probabilistic 
model to generate new individuals. However, for the designed matrix 
cube MCG

n×n×n, these valuable similar blocks can be respectively record 
and retained in different layers of MCG

n×n×n depending on their specific 
positions. It is clear that the similar block [2, 3] in π1,1

sbest = [1, 2,3, 4] is 
recorded in MCG

4×4×4(2)(i.e., the second layer of MCG
n×n×n), while the 

similar block [2, 3] in π1,2
sbest = [2, 3,1, 4] is reserved in MCG

4×4×4(1) (i.e., 
the first layer of MCG

n×n×n), respectively. That is, the promising patterns 
of all job blocks or similar blocks are properly learned by employing the 
proposed matrix cube, which can be used to bulid more effective prob-
abilistic model, while also avoiding the destruction or improper fusion 
of promising patterns. 

3.2.2. Updating mechanism 
The probabilistic models are crucial to the EDAs, and the effective-

ness and reasonableness of the designed probabilistic model directly 
affects the performance of the algorithm (Zhang et al., 2021). Different 
from the two-dimensional probabilistic models, in this subsection, a 
novel matrix-cube-based multidimensional probabilistic is presented to 
learn and accumulate the valuable information of the relation of jobs 
and the distribution of similar blocks in high-quality subpopulation. For 
descriptive convenience, define PMG

n×n×n as a multidimensional proba-
bilistic model based on MCG

n×n×n, where PMG
n×n×n(x, y, z)

(x = 1, ..., n − 1; y, z = 1, ..., n) is the element of PMG
n×n×n. Then, the 

formal definition of the probability distribution of the job blocks at the 
xth position in the job order π of the selected superior solutions is shown 
in Eq. (17). 
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PMG
n×n×n(x) =

⎡

⎢
⎢
⎣

PMG
n×n×n(x, 1)

⋮
PMG

n×n×n(x, n)

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

PMG
n×n×n(x, 1, 1) ⋯ PMG

n×n×n(x, 1, n)
⋮ ⋱ ⋮

PMG
n×n×n(x, n, 1) ⋯ PMG

n×n×n(x, n, n)

⎤

⎥
⎥
⎦

n×n

. (17)  

where the probability value in PMG
n×n×n(x) indicates the probability of 

occurrence of the job blocks [πG,k
sbest,x, π

G,k
sbest,x+1] at the xth position in the 

πG,k
sbest (i.e., y = πG,k

sbest,x,z = πG,k
sbest,x+1). In order to update the probabilistic 

model, let NG
MC(x) be the total number of job blocks that have appeared 

at the xth position in the superior subpopulation SPop(G), i.e., NG
MC(x) =

∑n
y=1
∑n

z=1MCG
n×n×n(x,y,z), NG

PM(x) be the sum of all the probabilities of 
different job blocks appearing at the xth position in SPop(G), i.e., 
NG

PM(x) =
∑n

y=1
∑n

z=1PMG
n×n×n(x, y, z). The specific update steps of the 

proposed probabilistic model PMG
n×n×n are as follows. 

Step 1: When G = 0, initialize the probabilistic model PM0
n×n×n 

according to Eq. (18). 

PM0
n×n×n(x, y, z) =

{
0, x = 1; y, z = 1, 2, ..., n
1/n2, x = 2, 3, ..., n − 1; y, z = 1, 2, ..., n . (18) 

Step 2: When G = 1, calculate the matrix cube MC0
n×n×n according 

to Eqs. (13–16) and update the probabilistic model PM1
n×n×n according to 

Eq. (19). 

PM1
n×n×n(x, y, z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

MC0
n×n×n(x, y, z)/N0

MC(x), x = 1;
[
PM0

n×n×n(x, y, z) + MC0
n×n×n(x, y, z)

]

[
N0

PM(x) + N0
MC(x)

] , x⩾2;

∀y, z = 1, 2, ..., n. (19) 

Step 3: When G > 1, MCG− 1
n×n×n is calculated and the probabilistic 

model PMG
n×n×n is updated iteratively according to Eq. (20), where r is 

the adjustable learning rate. 

PMG
n×n×n(x,y,z)= (1 − r)×PMG− 1

n×n×n(x,y,z)+ r×MCG− 1
n×n×xn(x,y,z)/NG− 1

MC (x),
x= 1,2, ...,n − 1;y,z= 1,2, ...,n. (20) 

Step 4: Set G = G + 1. If G<MaxG, then go to Step 3. 
Note that all probability values in the in the first layer of PM0

n×n×n 
are set to 0 while others are set to 1/n2 in Eq. (18), which can learn the 
initial structural features of superior sub-population and increase the 
guidance toward potential regions at the initial phase. Moreover, the 
probabilistic model PMG

n×n×n in step 3 can keep learning the promising 
patterns extracted from the superior subpopulation and progressively 
accumulate the useful information of similar blocks by using an 

Fig. 6. An illustrative example of the update process of the proposed probabilistic model.  
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adjustable learning rate to make a trade-off between historical and 
current information. At the end of the update process, the normaliza-
tion is necessary for the probabilistic model PMG

n×n×n. In order to 
illustrate the proposed probabilistic model PMG

n×n×n clearly, the update 
process of PMG

n×n×n is given in Fig. 6, where the learning rate r is set to 
0.5. 

3.2.3. Sampling strategy 
The probabilistic model is able to implicitly estimate the distribution 

characteristics of the superior solutions in the solution space by con-
verting characteristic information into corresponding probability 
values. In order to appropriately apply these stored promising patterns 
from the high-quality solutions by means of MCG

n×n×n, it is necessary to 
design an effective sampling strategy for the proposed multi- 
dimensional probabilistic model PMG

n×n×n. Let πG,k = [πG,k
1 , πG,k

2 , ..., πG,k
n ]

denote the kth individual in Pop(G), and RG
PM = [RG

PM(1),RG
PM(2), ...,

RG
PM(n)] denote the temporary row vector. Define SelectJob(πG,k, i) (i > 1) 

as the job selection function, which is used to determine one candidate 
job Js at the ith position of πG,k. Since the probability information that 
the job block [πG,k

i− 1, π
G,k
i ] is selected to locate in the (i − 1)th position in 

πG,k is stored in the PMG
n×n×n(i − 1), where i > 1, the job selection 

function SelectJob(πG,k, i) is used to sample only by means of the (i − 1)th 

layer of the probabilistic model PMG
n×n×n, and then the procedure of 

SelectJob(πG,k, i) is described in Algorithm 3. Note that the job selection 
function SelectJob(πG,k, i) depends on the job πG,k

i− 1 at the (i − 1)th position 
when selecting the job πG,k

i at the ith position in πG,k. Because the job πG,k
0 

does not exist, SelectJob(πG,k, i) cannot be adopted to determine the first 
job πG,k

1 of πG,k. In order to guide the search direction toward promising 

regions found by the superior solutions, a specially designed sampling 
strategy is used to determine the first job of πG,k, namely first position 
limited sampling strategy (FPLSS), which is described in Algorithm 4. It 
is clear that the PMG

n×n×n(1) holds the total probability information of 
various job blocks that appeared in the first position of all the selected 
superior solutions in SPop(G) before the Gth generation. In Algorithm 4, 
lines 1–4 are used to calculate the cumulative probability of each row 
vector in PMG

n×n×n(1), and lines 5–13 are used to generate the first job 
πG,k

1 of πG,k by means of the roulette wheel selection, which is helpful in 
controlling the search direction reasonably. The procedure of new 
population generation is provided in Algorithm 5.      

Algorithm 3:SelectJob(PMG
n×n×n(i − 1),πG,k, i)

It should be pointed out that line 6 in Algorithm 5 is used to build the 
promising job block (i.e., [πG,k

i− 1,π
G,k
i ]) at positions i − 1 and i by using the 

roulette wheel selection rule on the row vector PMG
n×n×n(i − 1, πG,k

i− 1). 
Meanwhile, the promising job blocks at different positions can be linked 
together via order relation information in lines 2–9 to produce a new 
individual, which is a key step of MCEDA’s global exploration. The 
larger the probability value corresponding to the job block, the more 
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likely it is to be selected during the sampling process. Since the large 
values and their subscripts in PMG

n×n×n are determined by the excellent 
individuals, new generated individuals can inherit more promising 
patterns or blocks at suitable positions. Therefore, MCEDA can better 
guide the search to promising regions in solution space. In Algorithm 3, 
the computational complexity in lines 2–10 is O(n) and the complexity 
in lines 11–15 is O(n2). In Algorithm 4, the computational complexity in 

line 2, lines 5–13 and lines 14–18 are O(n2), O(n), and O(n2), respec-
tively. Thus, the complexity of Algorithm 3 and Algorithm 4 are O(n2). 

In Algorithm 5, the computational complexity in line 4, line 6, and lines 
1–11 are O(n2), O(n2) and O(ps× n2), respectively. Thus, the total 
complexity of Algorithm 5 is O(ps× n2).   

Algorithm 4:FPBSS(PMG
n×n×n(1),πG,k)

Algorithm 5: New Population Generation 
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3.3. Critical path-based local search 

According to the property analysis of the considered problem in 
Subsection 2.3, it can be seen that the landscape of the feasible solution 
space of the EE_DAPFSP is complex and varied, resulting in a large 
number of high-quality non-dominated solutions are non-uniformly 
scattered in several local regions near the bottom of the feasible solu-
tion space. In order to enhance the depth search capability and achieve a 
satisfactory trade-off between exploration and exploitation, it is very 
necessary to conduct a deeper exploitation (local search) on the nearest 
neighbor regions of these non-dominated solutions found by the explo-
ration (global search) of MCEDA. It is well known that the ability of the 
local search largely depends on the development of the neighborhood 
structure and the design of the neighborhood order. For the sequence 
model of PFSP, there are several commonly used neighborhood search 
operations, such as Insert, Swap, Interchange and Inverse. Notice that, for 
the DAPFSP, the intra-factory swap or insert operations and the inter- 
factory swap or insert operations are commonly used neighborhood 
operations (Wang & Wang, 2016; Zhang et al., 2021). Since the 
maximum completion time Cmax(π,V) of each feasible solution (π,V) is 
directly determined by the critical path (Wang & Wang, 2016; Zhang 

et al., 2021), it is possible to shorten the maximum completion time only 
by adjusting all jobs on the critical path. In this subsection, four kinds of 
the neighborhood structures are designed based on the problem-specific 
critical path, and then a variable neighborhood search method based on 
these neighborhood structures is performed for the high-quality solu-
tions in the non-dominated set Ω obtained in MCEDA’s global search. To 
be specific, the swap and insert operations within the factory are per-
formed separately for each non-dominated solution, and then the swap 
and insert operations between factories are performed separately. It 
should be noted that the job on the critical path of the feasible solution 
(π,V) is the critical job, the factory where the critical job is located is the 
critical factory, denoted as fc. Let nfc be the total number of jobs assigned 
to the critical factory fc, and nc be the number of critical jobs in the 
critical factory. To make it more intuitive, an illustration of critical path- 
based neighborhood operations is given in Fig. 7. Moreover, the four 
types of critical path-based neighborhood structures are described in 
detail as follows.  

(1) Intra-factory Swap: Randomly select a critical job πfc
u (u ∈ {1,2, ...,

nc}) and exchange the positions of the critical job πfc
u with each 

non-critical job πfc
v (v = nc + 1,...,nfc ) within the critical factory fc.  

(2) Intra-factory Insertion: Randomly select a critical job πfc
u (u ∈ {1,2,

...,nc}) and insert the critical job πfc
u before or after the position of 

Fig. 7. An illustration of the four critical path-based neighborhood structures.  
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each non-critical job πfc
v (v = nc + 1, ...,nfc ) in the critical factory 

fc, respectively.  
(3) Inter-factory Swap: Randomly select a critical job πfc

u (u ∈ {1,2, ...,

nc}) and a non-critical job πfc
v (v ∈ {1, 2, ..., nfc}) in F − 1 non- 

critical factories fc, and exchange the positions of the critical 

job πfc
u with each non-critical job πfc

v , respectively.  
(4) Inter-factory Insertion: Randomly select a critical job πfc

u (u ∈ {1,2,

..., nc}) and a non-critical job πfc
v (v ∈ {1, 2, ..., nfc}) in F − 1 non- 

critical factories fc, and insert the critical job πfc
u before or after 

the position of each non-critical job πfc
v , respectively. 

3.4. Speed adjustment strategy 

In order to achieve a satisfactory tradeoff between the maximum 
completion time Cmax(π,V) and total carbon emission TCE(π, V), the 
proposed algorithm not only needs to conduct the critical path based 
local search for the corresponding job order π of each non-dominated 
solution (π,V) obtained in each generation, but also needs to regulate 
the corresponding speed assignment matrix V for each non-dominated 
solution (π,V) appropriately. Since the processing speed of each ma-
chine in all factories is adjustable, it is necessary to further perform a 
series of speed adjustment strategies for each non-dominated solution 
(π,V) obtained from the critical path based local search in Subsection 
3.3. According to the problem property analysis in Subsection 2.3, two 
types of speed adjustment strategies are given as follows.  

(1) The energy-saving speed adjustment strategy. As for the total 
carbon emission (TCE) criterion, the processing speed of each job 
on the critical path of feasible solution is kept unchanged, and the 
processing speed of the other jobs on the non-critical path should 
be suitably shortened to avoid excessive energy consumption and 
carbon emission as much as possible. This speed adjustment 
strategy (see Subsection 3.2) is given in Algorithm 6.  

(2) The reduced-time speed adjustment strategy. As for the maximum 
completion time (Cmax) criterion, the processing state of each job 
on the non-critical path of each feasible non-dominated solutions 
is kept unchanged, and the processing speed of each job on the 
critical path can be increased to further reduce the maximum 
completion time (Cmax) as much as possible. To be specific, if 
there is a slightly larger time margin between the critical opera-
tion Oi,j and the non-critical operation Oi− 1,j on any one machine 
Mj, the processing speed of the critical operation Oi,j− 1 can be 
increased appropriately, so the corresponding processing time of 
Oi,j− 1 would be shortened. Then, all related operations after Oi,j− 1 

can be shifted forward, and these operations can be completed as 
early as possible, which may directly advance the assembly 
completion time of the first product and all other subsequent 
products. As introduced in Table 1, this speed adjustment strategy 
can generate possible new non-dominated solutions, thereby 
enhancing the diversity and number of the obtained non- 
dominated solutions. 

The procedure of the reduced-time speed adjustment strategy is 
shown in Algorithm 7. For example, three operations O3,1,O8,1,O8,2 on 
the critical path in Fig. 4(a) correspond to three critical operations, and 
there is a certain time margin between the critical operation O8,2 and the 
non-critical operation O3,2. Then, the processing speed of the critical 
operation O8,1 can be increased, so that the processing time of this 
critical operation is shortened accordingly. All of operations after the 
critical operation O8,1 can be moved from the backward to the forward 
in turn, which may allow the jobs and the product P2 to be processed and 

assembled as early as possible. In order to ensure that the non- 
dominated solutions obtained by the proposed algorithm have good 
dispersion and diversity, different speed adjustment strategies are 
further carried out to selectively optimize different criteria, i.e., the 
makespan and the total carbon emission. For each non-dominated so-
lution (π,V) in Pareto archive Ω*, the maximum completion time (Cmax) 
and the total carbon emission (TCE) are first normalized separately for 
each non-dominated solution, that is, Cmax(π, V) = (Cmax(π,
V) − Cmin

max)/(Cmax
max − Cmin

max), TCE(π, V) = (TCE(π, V) − TCEmin)/(TCEmax 

− TCEmin), where Cmin
max, Cmax

max, TCEmin and TCEmax respectively represent 
the smallest Cmax, the largest Cmax, the smallest TCE and the largest TCE 
of all feasible solutions in the obtained non-dominated set. Then, the 
computational expression α(π,V) = (TCE(π,V) + ε)/(Cmax(π,V) + ε) is 
defined as the preference level of each feasible solution (π,V), where ε =

0.01 and the range of α is (0, + ∞). Obviously, the larger value of α 
implies that the total carbon emission of the feasible solution (π,V) are 
higher while the maximum completion time of this solution is smaller, so 
it is necessary to focus on reducing the total carbon emission rather than 
the maximum completion time. Conversely, the smaller value of α sug-
gests that the total carbon emission of the feasible solution (π,V) is lower 
but its maximum completion time is larger, then more attentions should 
be paid to optimize the production efficiency criterion. According to the 
different values of preference level α for each feasible solution (π,V), two 
kinds of speed adjustment strategies are provided as follows. 

Step 1: Identify a critical path for each non-dominated solution in 
non-dominated solution set Ω. If there are multiple critical paths, one 
critical path is selected randomly. 

Step 2: Perform the presented four types of critical path-based 
neighborhood search operations for each non-dominated solution in 
turn. If the obtained new solution dominates old solution, the new non- 
dominated solution is used to replace the old one and re-determine the 
critical path. Then, continue to perform the subsequent neighborhood 
search operations. If they are not dominated by either of them, the ob-
tained new solution is added to the non-dominated solution set Ω, and 
other remaining neighborhood search operations continue to be per-
formed on the current solution. 

Step 3: Calculate Cmax(π,V) and TCE(π,V) for each solution (π,V) in 
the non-dominated set Ω, and then α(π,V) = (TCE(π,V) + ε)/
(Cmax(π,V) + ε) is obtained. 

Step 4: Sort all non-dominated solutions in ascending value of α, and 
divide the non-dominated solution set Ω into two parts, namely Ωc and 
Ωe, where |Ω| = |Ωc| + |Ωe|. The obtained non-dominated solutions in 
Ωc with a small value of α need to be optimized for Cmax, while the non- 
dominated solutions in Ωe have a large value of α and these solutions 
should to be optimized for TCE. 

Step 5: Perform the reduced-time speed adjustment strategy for all 
non-dominated solutions in Ωc. That is, the processing state of all jobs on 
the non-critical path is kept unchanged and the processing speed of some 
jobs on the critical path is increased, so as to reduce the maximum 
completion time (Cmax) of these non-dominated solutions. 

Step 6: Perform the energy-saving speed adjustment strategy for all 
non-dominated solutions in Ωe. That is, the processing speed of all jobs 
on the critical path is kept unchanged and the processing speed of each 
job on the non-critical path is adjusted, so as to achieve the lowest 
possible total carbon emission (TCE) under the same makespan (Cmax) 
and further improve the quality of each non-dominated solution. 

Step 7: Update the Pareto archive Ω*. If the number of the non- 
dominated solutions in the non-dominated set Ω is larger than ps, then 
all of the feasible solutions are sorted by means of their crowded dis-
tances according to Algorithm 1, so as to eliminate some solutions with 
the smallest crowded distance until the number of feasible solutions in 
the non-dominated set (population) reaches ps. 
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Algorithm 6: Energy-saving speed adjustment strategy  
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Algorithm 7: Reduced-time speed adjustment strategy      

3.5. The framework of MCEDA 

According to the design above, the specific process of the proposed 
MCEDA for solving the EE_DAPFSP is as follows. 

Step 1: (Initialization) Initialize the population Pop(0) via Algo-
rithm 2, the multi-dimensional probabilistic model PM0

n×n×n by using 
Eq. (18), and key parameters of MCEDA, i.e., ps,φ,r. 

Step 2: Evaluate each individual in Pop(G) by using Eqs. (1–9), and 
calculate the matrix cube MCG

n×n×n according to Eqs. (13–14). 
Step 3: Determine the Pareto dominance relationship of all in-

dividuals in Pop(G). Calculate the corresponding dominance level and 
crowding distance of these individuals via Algorithm 1. The top ps × φ 
excellent individuals are selected to form a high-quality subpopulation 
SPop(G) after sorting all individuals in Pop(G). Then, update the Pareto 
archive Ω*. 

Step 4: (Global exploration) Update the multi-dimensional proba-
bilistic model PMG

n×n×n by means of the incremental learning mechanism 
in Subsection 3.2.2, where the superior subpopulation SPop(G) is 
selected in Pop(G). 

Step 5: (Global exploration) Sample the multi-dimensional proba-
bilistic model PMG

n×n×n to generate new population Pop(G + 1) by using 
the specific sampling strategy in Subsection 3.2.3. 

Step 6: (Local exploitation) Perform the critical path based local 
search in Subsection 3.3 for each non-dominated solution, respectively, 
and further execute two types of speed adjustment strategies in Sub-
section 3.4, i.e., the energy-saving speed adjustment strategy (see 

Algorithm 6) and the reduced-time speed adjustment strategy (see Al-
gorithm 7), for all of the non-dominated solutions according to different 
preference levels. Then, update the Pareto archive Ω*. 

Step 7: Determine whether the termination condition is satisfied. If 

not, then the program goes to Step 2, otherwise terminate the loop and 
output the currently obtained Pareto archive Ω*. 

The flowchart of the proposed MCEDA for the EE_DAPFSP is illus-
trated in Fig. 8. According to the above steps, it can be seen that the 
MCEDA proposed in Section 3 effectively integrates many advantages of 
both the EDA-specific global exploration and the problem-dependent 
local exploitation. During each iteration of MCEDA, each new solution 
is generated by sampling from the promising regions in the solution 
space based on the multi-dimensional probabilistic model, and then the 
critical-path based local search with two speed adjustment strategies are 
performed for high-quality solutions, respectively. Since the multi- 
dimensional probabilistic model is updated based on high-quality sub-
population, the total characteristic distribution information of prom-
ising patterns from superior solutions can be well learned and stored, so 
that the sampling process can be concentrated around more potential 
regions in the solution space. Because of the performance of the 
scheduling schedule is well stressed and balanced by taking into account 
the benefit of both global exploration and local exploitation, it can be 
expected to achieve better results for solving the EE_DAPFSP. 

4. Experimental comparisons and statistical analysis 

The following subsections are devoted to evaluate the overall per-
formance of the proposed MCEDA for the considered EE_DAPFSP. First 
of all, some information about experiments is provided, which includes 
experimental setup and performance metrics. Then, the parameters of 
MCEDA are calibrated. Afterwards, the advantages of each improvement 
strategy in MCEDA are investigated. Lastly, comprehensive comparisons 
are conducted and experimental results are analyzed by comparing 
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MCEDA with several state-of-the-art multi-objective algorithms. 

4.1. Experimental setup 

In order to effectively and reasonably investigate the performance of 
MCEDA for addressing the considered EE_DAPFSP, in this section, 
extensive experiments and computational comparisons are carried out 
for the proposed MCEDA with several high-performing algorithms in the 
literature. Since the performance of the algorithm is usually greatly 
affected by different problem scales, we employ two well-known 
benchmark data sets presented by Hatami et al. (2013) and extend 
them by adding speed levels of machines in the processing stage to 
obtain two suitable testing sets for the EE_DAPFSP. The first testing set 
consists of 900 small-scale instances with 180 groups and each group 
contains 5 different instances, where n = {8,12,16,20,24}, m = {2,3,4,
5}, F = {2,3,4}, and S = {2,3,4}. The second testing set is composed of 
810 large-scale instances with 81 groups and each group includes 10 
different instances, where n = {100,200,500}, m = {5,10,20}, F = {4,
6,8}, and S = {30,40,50}. So, the total number of testing instances is 
1710 and datasets are available at http://soa.iti.es. Since the running 
state of each machine in processing stage is variable and adjustable, the 
processing speed is selected from a series of discrete values 
{1,1.3, 1.55,1.75,2.10}, that is, there are total five adjustable speed 
levels for each machine. The processing power consumption of machine 
Mj running at speed vk is Ejk = 4 × v2

k (kW) while the standby power 

consumption of machine Mj is SEj = 1 (kW), and the speed adjustment is 
not considered in the assembly stage. In addition, it should be pointed 
out that calibrating algorithms by using the same benchmark instances 
that will later be adopted for computational comparisons constitute poor 
practices, which would result in over-fitting or biased experimental re-
sults (Pan & Ruiz, 2012). Therefore, it is of great importance to defi-
nitely distinguish between the calibrating instances and the final testing 
benchmark instances. For this reason, two types of new calibrating set 
that contain 180 instances for small-scale problems and 81 instances for 
large-scale problems are independently yielded based on the problem 
generation method provided by Hatami et al. (2013) for parameter 
calibration. To be specific, the small-scale calibrating instances contain 
complete combinations of n = {8,12,16,20,24}, m = {2,3,4,5}, F = {2,
3,4}, and S = {2,3, 4} and the large-scale calibrating instances consist of 
n = {100,200,500}, m = {5,10,20}, F = {4,6,8}, and S = {30,40,50}. 
The processing times of jobs are randomly sampled from a uniform 
distribution in the range [1,99], and the assembly times of each product 
Ph are generated according to a uniform distribution in the range [1× Nh,

99× Nh]. 
In order to conduct computational comparisons fairly, the same 

experimental settings are adopted for all compared algorithms, 
including the same CPU Gigahertz frequency, programming language 
and termination criteria. All algorithms involved in this study are coded 
by Pascal language and compiled on Embarcadero RAD Studio XE8. The 
numerical experiments are independently executed on a PC with Inter 

Fig. 8. The flowchart of MCEDA for the EE_DAPFSP.  
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(R) Core(TM) i7-8700 M CPU @ 3.2 GHz processor and 16G of RAM 
under Microsoft Windows 7 OS. According to the analysis of the problem 
properties in Subsection 2.3, it is difficult to find the Pareto optimal 
frontier within a finite period of time since the feasible solution space of 
the considered problem is complex and multivariate. The performance 
of the proposed MCEDA are measured by comparisons with four related 
state-of-the-art multi-objective evolutionary algorithms (MOEAs), 
namely, non-dominated sorting genetic algorithm (NSGA-II) (Deb et al., 
2002), modified multi-objective iterated greedy (MMOIG) algorithm 
(Ding et al., 2016), knowledge-based cooperative algorithm (KCA) 
(Wang & Wang, 2020), and multi-objective whale swarm algorithm 
(MOWSA) (Wang et al., 2020). The NSGA-II was first proposed by Deb 
et al. (2002). Due to its sample and efficient optimization performance, 
NSGA-II has been widely applied in a variety of multi-objective opti-
mization fields, and it is recognized as one of the most effective algo-
rithms for solving various multi-objective shop scheduling problems. 
The iterated greedy (IG) was first proposed by Ruiz and Stutzle (2008), it 
combined with the high efficiency of constructive heuristics and the 
advantages of simulated annealing approach, which is also regarded as a 
simple and effective algorithm for tackling different kinds of flow shop 
scheduling problems. The MMOIG is an effective extension of the typical 
IG algorithm in a multi-objective optimization perspective, where an 
extended NEH-Insertion is incorporated in the framework of MMOIG 
and several problem-dependent multi-neighborhood local searches are 
adopted to achieve satisfactory results in addressing the low-carbon 
PFSP (Ding et al., 2016). KCA is a high-performing algorithm recently 
proposed for handling the energy-efficient DPFSP. KCA can adopt a se-
ries of searching operators based on problem’s characteristics and ach-
ieve multi-neighborhood cooperative search in the feasible solution 
space through control factors. MOWSA is another newly presented 
multi-objective algorithm for the energy-efficient DPFSP (Wang et al., 
2020). In the literature, KCA and MOWSA have shown relatively good 
performance than other well-known MOEAs in solving the low-carbon 
DPFSP. 

Taking into account the fairness, all tested algorithms are performed 
under the same termination conditions. That is, the maximum elapsed 
CPU time of the proposed MCEDA with NSGA-II, MMOIG, KCA and 
MOWSA is set to the same time commonly used in the literature, i.e., n ×

m × f × 10 milliseconds. In order to ensure the stability and reliability of 
the experimental results, computational comparisons are independently 
conducted 30 and 10 replications for small-scale instances and large- 
scale instances respectively, and all of the numerical results are 
collected and statistically averaged to eliminate random errors. It’s 
worth noting that, for the largest testing instances of 500 jobs, 20 ma-
chines and 8 factories, the program needs to run about 800 s. Due to the 
proposed MCEDA and four compared algorithms are independently 
tested in 30 and 10 replications for small-scale and large-scale instances, 
a total number of 900 × 5 × 30+810 × 5 × 10 = 175500 results for 
each performance metric would be yielded. As a result, for this larger 
dataset, most factors are statistically significant, which may allow us to 
draw strong conclusions. 

4.2. Performance metrics 

The metrics of MOEAs are significantly different from that of single- 
objective algorithms, so it is of great importance to comprehensively 
evaluate the convergence and diversity (distribution) of MOEAs (Wang 
& Wang, 2020). On the one hand, the high-performing MOEAs need to 
find more non-dominated solutions that should approximate to the true 
Pareto optimal front as closely as possible within an acceptable time. On 
the other hand, the distribution characteristics of the non-dominated 
solution sets obtained by MOEAs should be as widely as possible, so as 
to facilitate the decision maker to choose some suitable schemes by 
preferences. To verify the effectiveness and efficiency of MOEAs, the 
non-dominated solution set obtained by all algorithms are measured by 
some general metrics as follows.  

(1) Coverage Metric: It can be used to measure the relatively quality 
between two Pareto archives obtained by two different algo-
rithms A and B, denoted as C(A,B). C(A,B) gives a mapping from 
a pair of algorithms (A,B) into the interval [0, 1], which is rep-
resented as follows. 

C(A,B) =
1
|B|

|{b ∈ B|∃a ∈ A : a ≻ b or a = b}|. (21) 

From Eq. (21), the coverage metric reflects the dominance rela-
tionship of feasible solutions from two non-dominated solution sets. If 
all solutions obtained by B are dominated by some solutions obtained by 
A, then C(A,B) = 1. Conversely, if all solutions obtained by B are not 
dominated by any solution obtained by A, then we have C(A, B) = 0. 
Since the solutions obtained by A and B do not necessarily dominate 
each other, it holds that C(A,B) + C(B,A) ∕= 1.  

(2) Reference Distance (DIR): The reference distance metric DIR is used 
to measure the distance of the elements in non-dominated solu-
tion set Ω′ with respect to the reference set Ω*, where Ω* is 
composed of high-quality solutions in the Pareto archives yielded 
by all algorithms. Due to the NP-hard in strong sense with high 
complexity of the EE_DAPFSP, it is usually difficult to obtain the 
true Pareto optimal set, so the reference set Ω* is composed of the 
Pareto archives aggregated jointly by all algorithms. The distance 
metric DIR can be expressed as follows. 

DIR(Ω
′

) =
1

|Ω*|
∑

y∈Ω*
min{d(x, y)|x ∈ Ω′

}. (22)  

where d(x, y) is the Euclidean distance between x ∈ Ω′ and y ∈ Ω* in the 
normalized objective space (Ishibuchi et al., 2003), which can be 
calculated in Eq. (23). 

d(x, y) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑G

i=1

[
(fi(x) − fi(y))/

(
f max

i − f min
i

) ]2

√
√
√
√ . (23) 

In Eq. (23), fi is the ith objective function, and fmax
i and fmin

i are the 
maximum and minimum values of the objective function fi, respectively. 
Obviously, DIR(Ω

′

) is expected to be as small as possible, indicating that 
Ω′ is closer to reference set Ω*, which means the algorithm has better 
performance.  

(3) Distribution Spacing (DS): The distribution spacing metric DS is 
adopted to measure the distribution uniformity of solutions ob-
tained by a specified algorithm. The distribution spacing metric 
can be calculated as follows. 

DS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
|Ω′

|

∑|Ω
′
|

i=1
(Di − D)

2
/D

√
√
√
√

. (24)  

where D =
∑|Ω′

|

i=1Di/|Ω
′

|. Di denotes the minimum Euclidean distance 
between the ith feasible solution in the solution set Ω′ and the other 
feasible solutions in Ω′ . From Eq. (24), it is obvious that the smaller the 
value of DS is, the more evenly distributed of the solutions in Ω′ are.  

(4) Non-dominance Ratio (ρr): It is used to measure the proportion of 
the non-dominated solution set Ω′ obtained by a specific algo-
rithm in the reference set Ω*. Obviously, the larger the ρr, the 
better the performance of the algorithm. 

Furthermore, to increase the soundness of our conclusion, two state- 
of-the-art quality metrics, i.e., Hypervolume (Zitzler & Thiele, 1999) and 
Unary epsilon (Zitzler et al., 2003), are also adopted to evaluate quality 
of the found non-dominated solution sets, which are described as 
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follows:  

(5) Hypervolume (IH): The hypervolume represents the volume of the 
hypercube enclosed by all solutions in a given Pareto front PFG 
and the reference point zr = (zr

1, zr
2) in the objective space. Each 

objective value of each solution x ∈ PFG is normalized into [0, 1]
before calculating the IH value. The normalized value f ′

i (x) for the 
ith objective of solution x can be calculated as 

f ′

i (x) =
(
fi(x) − f min

i

)/(
f max
i − f min

i

)
. (25)  

where fmin
i , fmax

i and fi(x) have the same meanings with Eq.(23). Then, 
the hypervolume indicator IH for the bi-objective problems can be 
calculated using Lebesgue measurement in Eq.(26). 

IH(PFG) =
∑|PFG |

k=1

(
zr

1 − f ′

1(xk)
)
×
(
f ′

2(xk) − f ′

2(xk− 1)
)
. (26) 

The accuracy of calculating IH depends on the choice of the reference 
point, i.e., when evaluating the same Pareto front (non-dominated so-
lution set), selecting different reference points will result in different 
results. According to the references (Minella et al., 2008; Ciavotta et al., 
2013), the reference point is usually selected as (1.2, 1.2). The hyper-
volume is a Pareto-compliant evaluation metric, which means that if one 
Pareto front PF1

G is better than another Pareto front PF2
G, then the 

Hypervolume metric of PF1
G will be greater than that of PF2

G. The larger 
value of the hypervolume indicator IH, the better convergence as well as 
a good coverage of the optimal Pareto front.  

(6) Unary Epsilon (I1
ε ): It is used to measure the minimum distance 

between a given Pareto front PFG and the reference (optimal) 
Pareto front PFR. To avoid errors arising from dividing by zero in 
the calculation of I1

ε , each objective value fi(x) should be 
normalized into [1,2] as follows. 

f
′

i (x) =
(
fi(x) − f min

i

)/(
f max
i − f min

i

)
+ 1. (27) 

According to Eq.(27), the I1
ε value varies between 1 and 2. If the I1

ε 
value close to 1 implies that the given Pareto front is close to the 
reference Pareto front, whereas the I1

ε value close to 2 means that it is 
distant. Then, the bi-objective I1

ε can be calculated as 

I1
ε (PFG,PFR) = max

y∈PFR
min

x∈PFG
max
1⩽i⩽2

(
f ′

i (x)/f ′

i (y)
)
. (28) 

Since the true Pareto front for each instance is unknown, a union set 
constituted by aggregated all non-dominated solutions obtained by all 
algorithms, is regarded as the reference (optimal) Pareto front PFR. It is 
clear that a smaller I1

ε value means a better approximation to the 
reference Pareto front. 

Notice that, it is unnecessary to immediately evaluate the Pareto 
archives obtained by each algorithm after finishing each iteration. The 
Pareto archives yielded by each of the algorithms are measured if and 
only if all of the algorithms have been run and all non-dominated so-
lutions have been collected. Then the maximum and minimum values of 
each objective function can be determined, so the minimum and 
maximum values are fixed, which is fair for the evaluation of each non- 
dominated solution. 

4.3. Parameter calibration 

Since parameter calibration plays an important role in the develop-
ment of high performing metaheuristics, the reasonable values of pa-
rameters have remarkable impact on the effectiveness and efficiency of 
the designed algorithms. Meanwhile, it should be point out that the 
statistical calibration is only a fine-tuning process and stochastic algo-
rithms are not expected to behave entirely different after calibration. In 
this section, the Design-of-Experiments (DOE) methodology (Mont-
gomery, 2008) is employed to analyze the sensitivity of main parameters 
and further investigate the effects of each parameter on the performance 
of the proposed MCEDA. There are three control parameters in MCEDA, 
i.e., the population size (ps), the percentage of superior subpopulation 
(φ), and the learning rate (r). A series of potential values (levels) of 
parameters (factors) are firstly considered through summarizing previ-
ous relevant literature (Wang & Wang, 2016; Zhang et al., 2021), and 
then the suitable scope of each parameter is determined according to 
some preliminary experiments. The considered levels for all factors are 
listed in Table 3. As seen in Table 3, a total of 5 × 5 × 5 = 125 different 
configurations for the proposed MCEDA are yielded. Thus, a full facto-
rial experimental design is considered for all configurations, and some 
additional instances generated by ourselves are adopted as the test bed, 
which includes 180 basic instances for small-scale problems and 81 basic 
instances for large-scale problems. Each configuration is tested on these 
261 instances where 10 independent replications are performed under 
the same parameter combination for each instance. As a result, there are 
a total of 125 × 261 × 10 = 326250 treatments, which implies that a 
total of 326250 results (non-dominated sets) would be yielded. The 
hypervolume (IH), unary epsilon (I1

ε ), and non-dominance ratio (ρr) in-
dicators are regarded as three response values, respectively. The 
maximum elapsed CPU time of n × m × f × 10 milliseconds is used as 
the termination criterion, so it requires at least 74.375 CPU days to 
complete all calibration experiments. Due to multi-cores in our personal 

Table 3 
The levels of parameters.  

Parameters Factor level 

1 2 3 4 5 

ps  10 30 60 90 120 
φ  0.1 0.2 0.3 0.4 0.5 
r  0.05 0.1 0.2 0.3 0.4  

Table 4 
The results of ANOVA over calibrating the parameters of MCEDA for small-scale instances.  

Source Hypervolume (IH)  eUnary Epsilon (I1ε )  Non-dominance ratio (ρr)   

Sum of 
squares 

Df Mean 
square 

F-radio p-value Sum of 
squares 

Df Mean 
square 

F-radio p-value Sum of 
squares 

Df Mean 
square 

F-radio p-value 

ps   0.03916 4  0.00979  1271.58  0.0000  0.11476 4  0.02869  4379.97  0.0000  0.04759 4  0.01190  1180.86  0.0000 
φ   0.01868 4  0.00467  606.39  0.0000  0.04666 4  0.01166  1780.89  0.0000  0.01199 4  0.00300  297.49  0.0000 
r   0.03730 4  0.00933  1211.06  0.0000  0.04469 4  0.01117  1705.77  0.0000  0.00841 4  0.00210  208.75  0.0000 
ps*φ   0.00012 16  0.00001  1.00  0.4683  0.00011 16  0.00001  1.04  0.4310  0.00020 16  0.00001  1.21  0.2847 
ps*r   0.00006 16  0.00000  0.48  0.9480  0.00008 16  0.00000  0.73  0.7506  0.00005 16  0.00000  0.32  0.9933 
φ*r   0.00019 16  0.00001  1.52  0.1205  0.00025 16  0.00002  2.41  0.0067  0.00009 16  0.00001  0.57  0.8977 
Residual  0.00049 64  0.00001    0.00042 64  0.00001    0.00064 64  0.00001   
Total  0.09600 124     0.20696 124     0.06897 124     
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computer, actually almost 2.5 days are adopted to execute the whole 
experiment. 

All experimental results are analyzed by means of the multi-factor 
Analysis of Variance (ANOVA), which has been widely applied as a 
powerful parametric statistical technique in many scheduling literatures 
(Shao et al., 2018; Sang et al., 2019; Pan et al., 2019). In the ANOVA, 
three main hypotheses (i.e., normality, homoscedasticity, and indepen-
dence of residuals), have to be checked and accepted. According to the 
residual analysis of the experimental results, all assumptions are easily 
satisfied. The ANOVA results of three parameters of MCEDA are reported 
in Tables 4 and 5. For the results of ANOVA, the F-ratio is regard as a 
clear indicator of significance when p-value is less than the confidence 
level. A large F-ratio means that the analyzed factor has a considerable 
effect on the response variable. As seen in Tables 4 and 5, all parameters 
are statistically significant since their p-values are smaller than the 0.05 
confidence level for three performance metrics, i.e., hypervolume, unary 
epsilon, and non-dominance ratio. Among these three parameters, the 
allowable maximum number of population (ps) achieves the largest F- 
ratio, which indicates that ps has the most significant effect on the 
performance of the proposed MCEDA for both the small-scale instances 
and the large-scale instances. 

Fig. 9 provides the main effects plots of all parameters for different 
scale testing sets. It is clearly observed from this figure that the choice of 
ps = 30 yields the best performance while ps = 120 obtains the worst 
results. To be specific, a small population is favorable to perform more 
iterations and it is beneficial to achieve a deeper exploitation (local 
search) in the feasible solution space. However, if the population size is 
too small, then the size of the superior subpopulation may be affected, 
resulting the failure of the multi-dimensional probabilistic model to fully 
learn the excellent structural characteristics of the superior solutions. 
The results of the proposed MCEDA degrades with the increasing of the 
population size, and it can be observed from Fig. 9 that the performance 
has a considerable change, especially from ps = 30 to ps = 120. 
Although a larger population is helpful to prompt the diversity of the 
obtained non-dominated solutions, it also consumes much more 
computational cost and reduces the convergence speed, and thereby 
reduce the searching efficiency. In fact, if we adopt the large population, 
it may affect the algorithm’s ability to perform more iterations, espe-
cially for addressing the large instances. Thus, the population size ps 
should be set as a relatively small value, i.e., ps = 30. The second largest 
F-ratio value corresponds to the percentage of superior subpopulation φ. 
It can be observed in Fig. 9 that the value φ = 0.2 yields the best results, 
while φ = 0.5 results the worst performance. Moreover, a small-scale 
superior subpopulation is more conducive to accurately learn the in-
formation of both structural features and promising patterns from high- 

quality solutions, so the probabilistic model can be updated effectively. 
From Tables 4-5, we can see that the factor r is the last significant 

parameter. The learning rate can control the balance of information 
fusion between the matrix cube and the multi-dimensional probabilistic 
model. To be specific, the larger r tends to learn more valuable infor-
mation from the selected superior solutions in each generation, while 
the smaller r reinforces the accumulated information of superior solu-
tions during the overall iterative process. Thus, r should be determined 
by considering the trade-off between the current knowledge and his-
torical experience, and a suitable learning rate helps the algorithm to 
avoid premature convergence or slow convergence as much as possible 
(Wang & Wang, 2016). Fig. 9 reveals that the algorithm has good per-
formance when r is equal to 0.2, which verifies the conclusion above. 
According to the parametric experiment results and analysis above, for 
two different scale testing sets, the best configuration of parameters for 
MCEDA is suggested as: ps = 30, φ = 0.2, r = 0.2. 

In order to ensure the fairness of the computational comparisons, this 
section further performs some additional parameter calibrations for 
NSGA-II, MMOIG, KCA and MOWSA by using the same multi-factor 
ANOVA technique. For all of the five compared algorithms, it should 
be noted that the population size ps is a common parameter which is 
selected as ps = 30 to make a fair comparison. In addition, to ensure the 
diversity of the initial population, five different discrete speed values of 
1, 1.3, 1.55, 1.75, and 2.10 are adopted to yield the initial speed matrix, 
respectively. In NSGA-II, crossover probability (pc) and mutation prob-
ability (pm) are two crucial parameters, which are set as pc = 0.8 and 
pm = 0.1. In MMOIG, the number of destructed jobs (d) and mutation 
probability (ρ) in the destruction phase are two key parameters, which 
are set as d = 3 and ρ = 0.4 following the original literature. The best 
parameter combination of KCA is set as: the depth of local intensification 
LS = 100, and the proportion of EENEHFF2-based initialization PE =

60. The crossover probability (α) and mutation probability (β) in 
MOWSA are set as: α = 0.9 and β = 0.2. Notice that, it is meaningless to 
determine all parameters by means of the main effects plot, if some 
significant interactions are existed between factors. Due to the space of 
the paper, 2-level interaction plots of pair factors (i.e., ps*φ, ps*r and 
φ*r) on three performance metrics are provided only for the large-scale 
instances. It is clear in Fig. 10 that the significance of these 2-level in-
teractions is relatively weak and these results are in accordance with the 
conclusions above. Meanwhile, it can be observed from Tables 4-5 that 
the F-ratio of each parameter is larger than that of their interactions, 
which further reveals the proposed MCEDA obtains the best perfor-
mance when ps = 30, φ = 0.2, r = 0.2. 

Table 5 
The results of ANOVA over calibrating the parameters of MCEDA for large-scale instances.  

Source Hypervolume (IH)  Unary Epsilon (I1ε )  Non-dominance ratio (ρr)   

Sum of 
squares 

Df Mean 
square 

F-radio p-value Sum of 
squares 

Df Mean 
square 

F- 
radio 

p-value Sum of 
squares 

Df Mean 
square 

F-radio p-value 

ps   0.02195 4  0.00549  1662.67  0.0000  0.00421 4  0.00105  109.99  0.0000  0.18919 4  0.04730  6306.40  0.0000 
φ   0.02188 4  0.00547  1657.21  0.0000  0.00760 4  0.00190  198.56  0.0000  0.04943 4  0.01236  1647.73  0.0000 
r   0.02144 4  0.00536  1624.48  0.0000  0.00305 4  0.00076  79.71  0.0000  0.04838 4  0.01209  1612.53  0.0000 
ps*φ   0.00004 16  0.00000  0.85  0.6279  0.00021 16  0.00001  1.38  0.1812  0.00018 16  0.00001  1.47  0.1408 
ps*r   0.00036 16  0.00002  6.76  0.0000  0.00004 16  0.00000  0.28  0.9966  0.00023 16  0.00001  1.93  0.0330 
φ*r   0.00011 16  0.00001  2.06  0.0217  0.00013 16  0.00001  0.86  0.6193  0.00003 16  0.00000  0.27  0.9975 
Residual  0.00021 64  0.00000    0.00061 64  0.00001    0.00048 64  0.00001   
Total  0.06599 124     0.01587 124     0.28792 124    

Note: All F-ratios are based on the residual mean square error. Boldface indicates that is significant at the 0.05 level. 
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Fig. 9. Main effects plots of parameters for hypervolume, unary epsilon, and non-dominance ratio.  
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4.4. Effectiveness of probabilistic models 

In MCEDA, the matrix-cube-based multi-dimensional probabilistic 
model is used to learn and estimate the characteristic distribution of 
promising pattern from some selected superior solutions, so as to guide 
the searching directions toward potential regions. Since various high- 
performing EDAs usually employ one or more two-dimensional proba-
bilistic models to guide the global search direction (Jarboui et al., 2009; 
Pan & Ruiz, 2012; Tiwari et al., 2014; Wang & Wang, 2016), it is of 
necessity to make a fair investigation on the performance of EDA’s 

global exploration. In this subsection, the global search framework of 
the proposed MCEDA (denoted as MCEDAnls) is compared with three 
effective two-dimensional model-based EDAs, i.e., an effective EDA 
designed by Wang and Wang (2016) (denoted as EEDAnls), a state-of-the- 
art EDA presented by Jarboui et al. (2009) (denoted as JEDAnls), and a 
modified PEDA developed by Pan and Ruiz (2012) (denoted as PEDAnls). 
Notice that the corresponding local search parts are removed from each 
of these three types of EDAs and only the global search is retained. 
Moreover, the parameters of three compared algorithms are set the same 
as in the original literature. The comparison of MCEDAnls against 

Fig. 10. Interaction plots for ps*φ, ps*r and φ*r for large-scale instances.  
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EEDAnls, JEDAnls and PEDAnls is executed on small-scale instances by 
using the same elapse CPU time as a termination criterion. All algo-
rithms independently perform 30 times for each instance, and the 
average DIR, ρr, DS, IH, I1

ε obtained are used as the measure metrics. 
The statistical results grouped by the number of jobs are reported in 

Table 6, where each cell is averaged across 180 small-scale instances and 
30 replicates per instance (5400 values in total). The best value of each 
group is highlighted with boldface in Table 6. It is clear from Table 6 
that the the average DIR, ρr, and DS values obtained by MCEDAnls are 
obviously better than those obtained by PEDAnls, JEDAnls and EEDAnls for 
all instances. As seen in Table 6, the MCEDAnls significantly outperforms 
other three probabilistic model based algorithms on the overwhelming 
major of instances in terms of both IH and I1

ε indicators, which indicates 
the obtained approximated Pareto set is closer to the referenced Pareto 
front and better quality. The main reason is that the three-dimensional 
probabilistic model in MCEDAnls can save the valuable information of 
each superior individual in a more accurate and reasonable way. 
Nevertheless, the two-dimensional probabilistic models in the compared 
algorithms cannot save the position of each similar block and just simply 
record all of the same similar blocks in one place of the two-dimensional 
matrix. As a result, the similar blocks cannot be placed in the right po-
sitions when generating new individual, which leads a relatively poor 
search ability of these compared algorithms. 

4.5. Effectiveness of improvement strategies 

As stated in Section 3, the proposed MCEDA has three main 
improvement strategies: (1) the population initialization method in 
subection 3.1; (2) the critical path based local search in Subsection 3.3; 
(3) the speed adjustment strategy in Subsection 3.4. To investigate the 
effectiveness and efficiency of these improvement strategies, some var-
iants of MCEDA are implemented in this subsection. To be specific, for 
the population initialization method, a variant of MCEDA (denoted as 
MCEDAv1) is developed. MCEDAv1 does not adpot the presented popu-
lation initialization method, and it removes the heuristic method in 
Algorithm 1 and only use the random initialization to produce the initial 
population. For the critical path based local search, another variant of 
MCEDA named MCEDAv2 is developed. MCEDAv2 does not apply the the 
critical path based local search, and it is otherwise the same as MCEDA. 
For the speed adjustment strategy, we implement a variant of MCEDA 
without the speed adjustment strategy (denoted as MCEDAv3) which is 
used to confirm the presented speed adjustment strategy whether pro-
motes the quality of the non-dominated solutions obtained in the local 
search. It should be clarified that each variant only modifies a single 
component of the proposed MCEDA, and the performance of MCEDA, 
MCEDAv1, MCEDAv2, and MCEDAv3 is compared based on small-scale 
testing set in the identical elapse CPU time as a termination criterion. 

The same parameter settings are used for MCEDA and its three variants, 
and all algorithms are independently performed for 30 times on each 
instance, and the average DIR, ρr, and DS obtained are used as the 
measure metrics. All of the test instances are grouped according to the 
number of jobs, and the statistical results for MCEDA and its variants are 
reported in Table 7, in which each value is averaged across 180 test 
instances and 30 replicates per instance (5400 values). The best value of 
each group is highlighted with boldface in Table 7. 

According to Table 7, it can be seen that the MCEDA significantly 
outperforms the other three variants on the overwhelming major of five 
different types of job sizes in terms of three metrics, DIR, ρr, and DS, 
especially significantly better in the ρr metric, which indicates that all 
improvement strategies can effectively improve the quality of solutions. 
As can be observed from Table 7, MCEDA is better than MCEDAv2 in all 
instance groups, which demonstrates that the effectiveness of the critical 
path based local search. In fact, since the critical path of the considered 
problem directly determines the maximum completion time, it is 
necessary to allocate the limited computing resource of local exploita-
tion along the critical path direction to adjust the critical jobs instead of 
non-critical ones. The critical path-based neighborhood search effec-
tively enhances the local intensification ability of the algorithm, and 
exhaustively exploit the potential area around promising solutions, 
making them as close to the optimal Pareto front as possible. As revealed 
in Table 7, the results of MCEDA outperform MCEDAv3, which indicates 
the effectiveness of the speed adjustment strategy for the considered 
problem. The presented two types of speed adjustment strategies not 
only can control the production process according to different situations, 
but also can complement each other with regard to the two criteria to 
jointly improve the quality of the obtained non-dominated solutions. In 
addition, the energy-saving speed adjustment strategy can enable the 
algorithm to obtain more high-quality non-dominated solutions with 
low energy consumption during each iteration. As regards MCEDAv1, its 
performance is inferior to MCEDA, which suggests that the adopted 
heuristic method make the initial candidate solutions converge toward a 
possible promising region during the early stage. Meanwhile, a random 
initialization is added to ensure the wide distribution of the initial so-
lutions in the solution space. Thus, we can obtain initial solutions with 
higher quality and better diversity. In Table 7, we can also see that the 
results of MCEDAv2 and MCEDAv3 are inferior to MCEDA at all test in-
stances, which implies that better performance can be reached by 
combining the critical path based local search and the speed adjustment 
strategy. 

Moreover, the statistical results on DS metrics show the dispersion of 
the non-dominated solutions obtained by MCEDA is better. To analyze 
the results from a statistical perspective, Fig. 11 shows the box plots of 
MCEDA and its variants corresponding to the three performance metrics. 
As seen in these figures, MCEDA is significantly better than other vari-
ants on all test instances, which indicates the proposed MCEDA has the 

Fig. 11. The box plots of MCEDAv1, MCEDAv2, MCEDAv3, and MCEDA.  
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best search capability and further confirms the conclusion drawn above. 
Therefore, according to the above results and analysis, it can be 
concluded that these improvement strategies have great promotion on 
improving the performance of MCEDA. 

4.6. Comparisons of MCEDA and existing algorithms 

To further validate the effectiveness of the proposed algorithm, 
MCEDA is compared with four state-of-the-art multi-objective algo-
rithms, i.e., NSGA-II, MMOIG, KCA, and MOWSA. Then, the relative 
quality of the non-dominated sets yielded by each algorithm is measured 
and evaluated on the C metric, respectively. To the best of our knowl-
edge, no algorithms are recently presented in the literature to tackle the 
considered EE_DAPFSP. Since these high-performing compared algo-
rithms are not directly designed for the EE_DAPFSP, we reimplement 
these four algorithms and adjust their objective evaluation functions in 
the original literature to make them be able to solve this problem. Notice 
that all of these algorithms are adapted to the sequence-based model, so 
they can be easily extended and participated in comparisons. All algo-
rithms are performed on the same experiment environment which has 
same CPU power available. Each algorithm independently runs 30 and 5 
replicates on two benchmark sets of different problem sizes. The Pareto 
reference set of each instance is jointly composed of all non-dominated 
sets obtained by all algorithms. The computational results are grouped 
according to different numbers of factories and jobs, denoted by F× n, 
where 60 instances per average for each group of the small-scale 
benchmark set and 90 instances per average for each group of the 
large-scale benchmark set. 

The statistical results of the coverage metric of the proposed MCEDA 
with NSGA-II, MMOIG, KCA and MOWSA on two benchmark sets of 
different sizes are reported in Tables 8 to 9, respectively. As seen from 

Tables 8-9, MCEDA yields good results that are, on average, almost 
better than that obtained by its counterparts for all testing instances. For 
the 900 small-scale instances, it is clear that almost 87% and 83% of the 
feasible solutions in the non-dominated set obtained by KCA and 
MOWSA are dominated by some of the feasible solutions in the non- 
dominated set obtained by MCEDA in the average sense. In other 
words, only an average of 8% and 11% of solutions obtained by MCEDA 
are dominated by some feasible solutions yielded by KCA and MOWSA, 
respectively. In addition, for these non-dominated sets obtained by other 
two types of classical multi-objective algorithms, i.e., NSGA-II and 
MMOIG, almost average of 93% and 91% of feasible solutions are 
dominated by some solutions in the non-dominated set produced 
through MCEDA, which indicates that MCEDA has good performance in 
solving the small-scale instances of the EE_DAPFSP. Similarly, it can be 
clearly seen from Table 9 that, for the 810 large-scale instances, the 
performance of MCEDA is overwhelming on the coverage metric C. That 
is, the average 94%, 90%, 79%, and 74% of the non-dominated solutions 
obtained by four counterparts, i.e., NSGA-II, MMOIG, KCA and MOWSA, 
are dominated by some of solutions in non-dominated set obtained by 
MCEDA, while only 1%~9% of the solutions in the non-dominated set of 
MCEDA are dominated by some solutions obtained by NSGA-II, MMOIG, 
KCA and MOWSA in an average sense, which further demonstrates that 
the proposed MCEDA can also be addressing the large-scale instances of 
the EE_DAPFSP. Furthemore, it is noted that the recently proposed KCA 
and MOWSA are also two relatively excellent multi-objective algorithms 
compared with NSGA-II and MMOIG. According to above analysis, we 
can conclude that the proposed MCEDA is significantly better than four 
high-performing multi-objective algorithms, i.e., NSGA-II, MMOIG, KCA 
and MOWSA, in terms of the quality of the obtained non-dominated 
solutions, which verifies the effectiveness of MCEDA for solving the 
EE_DAPFSP. 

Table 8 
Statistical results on C metric of MCEDA with NSGA-II, MMOIG, KCA and MOWSA for small-scale instances.  

F × n C(MCEDA, NSGA- 
II) 

C(NSGA-II, 
MCEDA) 

C(MCEDA, 
MMOIG) 

C(MMOIG, 
MCEDA) 

C(MCEDA, 
KCA) 

C(KCA, 
MCEDA) 

C(MCEDA, 
MOWSA) 

C(MOWSA, 
MCEDA) 

2 × 8  0.99  0.00  0.98  0.01  0.95  0.02  0.91  0.06 
2 × 12  0.97  0.00  0.97  0.01  0.93  0.04  0.87  0.08 
2 × 16  0.96  0.01  0.94  0.02  0.88  0.05  0.83  0.07 
2 × 20  0.94  0.01  0.92  0.03  0.84  0.08  0.81  0.11 
2 × 24  0.92  0.01  0.87  0.06  0.86  0.10  0.82  0.13 
3 × 8  0.96  0.00  0.96  0.01  0.95  0.04  0.91  0.07 
3 × 12  0.95  0.02  0.93  0.03  0.91  0.07  0.85  0.09 
3 × 16  0.93  0.01  0.91  0.05  0.87  0.09  0.84  0.14 
3 × 20  0.91  0.01  0.88  0.04  0.85  0.11  0.82  0.13 
3 × 24  0.90  0.03  0.85  0.06  0.82  0.13  0.78  0.15 
4 × 8  0.95  0.00  0.94  0.00  0.91  0.04  0.89  0.07 
4 × 12  0.93  0.01  0.91  0.02  0.88  0.07  0.84  0.09 
4 × 16  0.91  0.00  0.87  0.04  0.83  0.11  0.81  0.14 
4 × 20  0.86  0.02  0.83  0.05  0.79  0.12  0.74  0.15 
4 × 24  0.87  0.03  0.84  0.07  0.81  0.15  0.77  0.18 
Average  0.93  0.01  0.91  0.03  0.87  0.08  0.83  0.11  

Table 9 
Statistical results on C metric of MCEDA with NSGA-II, MMOIG, KCA and MOWSA for large-scale instances.  

F × n C(MCEDA, NSGA- 
II) 

C(NSGA-II, 
MCEDA) 

C(MCEDA, 
MMOIG) 

C(MMOIG, 
MCEDA) 

C(MCEDA, 
KCA) 

C(KCA, 
MCEDA) 

C(MCEDA, 
MOWSA) 

C(MOWSA, 
MCEDA) 

4 × 100  0.97  0.00  0.93  0.01  0.86  0.03  0.81  0.06 
4 × 200  0.94  0.00  0.89  0.00  0.83  0.02  0.77  0.05 
4 × 500  0.93  0.00  0.87  0.01  0.78  0.04  0.73  0.07 
6 × 100  0.98  0.01  0.94  0.02  0.87  0.06  0.82  0.09 
6 × 200  0.95  0.00  0.91  0.01  0.81  0.05  0.79  0.08 
6 × 500  0.92  0.00  0.85  0.03  0.74  0.07  0.65  0.14 
8 × 100  0.94  0.00  0.94  0.00  0.81  0.02  0.78  0.06 
8 × 200  0.92  0.01  0.90  0.02  0.76  0.02  0.72  0.11 
8 × 500  0.93  0.00  0.83  0.01  0.69  0.05  0.63  0.13 
Average  0.94  0.00  0.90  0.01  0.79  0.04  0.74  0.09  
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To ensure adequate comparisons, the statistical results for MCEDA, 
NSGA-II, MMOIG, KCA and MOWSA on measure metrics DIR, ρr, DS, IH, 
and I1

ε for small-scale and large-scale instances are given in Tables 10 
and 11, respectively. Moreover, the statistical results of MCEDA with 
NSGA-II, MMOIG, KCA and MOWSA under different problem charac-
teristic groups F, S, and n are reported in Table 12. The best value of each 
metric for each group in these tables is shown with boldface. As can be 
seen from Tables 10 to 12 that the proposed MCEDA is better than its 
counterparts on all performance indicators. For the small-scale in-
stances, the results of MCEDA on the reference distance metric (DIR) are 
zero or close to zero for almost all testing instances and their have a 
significant advantage both in hypervolume (IH) and unary epsilon (I1

ε ) 
indicators, which indicates that the Pareto front consisting of the 
promising non-dominated set obtained by MCEDA is very close to the 
true Pareto front. For the large-scale test instances, the values of MCEDA 
on DIR and I1

ε are also significantly smaller than that of other counter-
parts, which implies these algorithms have few contributions to the 
reference Pareto fronts and our proposed MCEDA is very preferred for 
solving the considered problem. Furthermore, it is clear in Table 12 that 
average values of the non-dominance ratio (ρr) obtained by MCEDA for 
addressing different size instances is 0.646, which is much better than 
those of NSGA-II (0.045), MMOIG (0.064), KCA (0.103), and MOWSA 
(0.142). Additionally, it can be seen from these tables that the non- 
dominance ratio (ρr) is clearer than hypervolume (IH) and unary 
epsilon (I1

ε ), and the proposed MCEDA performs very stable on different 
scale instances, which indicates that MCEDA has good robustness and 
stability. As seen from all comparisons on the distribution spacing metric 
DS in Tables 10 to 12, compared with NSGA-II, MMOIG, KCA and 
MOWSA, the DS values obtained by MCEDA for solving both the small- 
scale instances and large-scale instances are smaller than four compared 
algorithms, which means the dispersion of non-dominated solutions in 
Pareto archive obtained by MCEDA is better. Thus, the proposed MCEDA 
can obtain more different high-quality feasible scheduling solutions, 
which can provide decision makers to choose the appropriate scheduling 
schemes according to practical preferences. 

To further check whether the observed differences in Tables 10-12 
are indeed statistically meaningful, the statistical multifactor analysis of 
variance (ANOVA) experiments with a confidence level of 95% are also 
carried out to analyze these numerical results. The main effect of each 
factor is investigated where the type of algorithm is considered as a 
factor and two measure metrics DIR and ρr are employed as the response 
variables, respectively. The ANOVA is a powerful parametric statistical 
technique which is widely used to detect statistical significance (Pan & 
Ruiz, 2012). Notice that the three main hypotheses (i.e., normality, 
homogeneity of variance and independence of residuals) are also 
checked in all computational comparisons. The checked results indicate 
that no significant deviations are found in the fulfillment of these hy-
potheses. Moreover, the p-value is an important indicator to determine 
whether there is a significant difference among all factors. If p-value is 
smaller than 0.05, the difference between algorithms is significant. It is 
remarkable that the overlapping intervals indicate that there is insig-
nificant difference between their mean performance. The means plots 
and 95% Tukey HSD confidence intervals for interactions between the 
type of algorithms and the number of factories for NSGA-II, MMOIG, 
KCA, MOWSA and MCEDA under four metrics DIR, ρr, IH and I1

ε are 
depicted in Fig. 12, respectively. It clearly reveals from Fig. 12 that 
MCEDA is significantly superior to other four algorithms in solving 
different groups of instances in terms of DIR, ρr, IH and I1

ε respectively. 
Additionally, three competitive algorithms, i.e., MMOIG, KCA and 
MOWSA, outperform the traditional NSGA-II, while no statistical sig-
nificance can be detected among the MMOIG, KCA and MOWSA. 
Therefore, it can be safely concluded that the proposed MCEDA is an 
effective and efficient algorithm for the EE_DAPFSP. 

For the purpose of visualizing the performance of all compared al-
gorithms, Fig. 13 illustrates the Pareto front distribution graphs of all Ta
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non-dominated sets obtained by NSGA-II, MMOIG, KCA, MOWSA and 
MCEDA for solving the nine typical instances with respect to different 
sizes (i.e., small, medium and large scale), respectively. It can be clearly 
seen from Fig. 13 that the non-dominated solutions obtained by MCEDA 
almost dominate the other solutions yielded by its counterparts 
regardless of both the small-scale instances and the large-scale instances, 
which indicates that the superiority of the proposed MCEDA is obvious. 
The main reason is that MCEDA has a powerful search engine to drive 
both global exploration and local exploitation. Furthermore, the distri-
bution of the union Pareto fronts found by MCEDA is more decentralized 
and diversified, and the quality of the non-dominated solutions yielded 
by MCEDA is relatively high, which can provide a variety of satisfactory 
scheduling schemes for decision makers and can achieve a reasonable 
compromise between the maximum completion time and total energy 
consumption. In conclusion, the MCEDA proposed in this paper can 
effectively and efficiently solve the energy-efficient DAPFSP. 

5. Conclusions 

Energy saving has become a hot issue of global concern. Energy- 
efficient production scheduling problem is one of the most funda-
mental and difficult scheduling problems encountered in many kinds of 
real-life manufacturing industries. This paper considered the energy- 
efficient distributed assembly permutation flow-shop scheduling prob-
lem (EE_DAPFSP), whose objectives are to minimize the maximum 
completion time and the total carbon emission at the same time. To deal 
with this strongly NP-hard problem, a novel matrix-cube-based distri-
bution estimation algorithm (MCEDA) was proposed. Based on the 
characteristics of the EE_DAPFSP, the hybrid initialization strategy, the 
more guided global search, the deep local search, and the speed 
adjustment strategies were designed, respectively. The effectiveness of 
these strategies was analyzed. Extensive computational experiments 
reveal that our MCEDA statically outperforms several state-of-the-art 
algorithms. To the best of our knowledge, this is the first report to 
propose an EDA-based algorithm for the energy-saving production 
scheduling problem. 

Fig. 12. The means plots and 95% Tukey HSD confidence intervals for the interaction between the type of algorithm and the number of factories for NSGA-II, 
MMOIG, KCA, MOWSA and MCEDA. 
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There are mainly two important directions for future research. First, 
we would like to develop several knowledge-based stargates to further 
enhance the guidance ability of MCEDA’s global search. Second, it 
would be meaningful to extend the proposed MCEDA to the dynamical 
DAPFSP as well as the distributed production and transportation inte-
grated scheduling problems. 
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Larrañaga, P., & Lozano, J. A. (2001). Estimation of distribution algorithms: A new tool for 
evolutionary computation. Springer Science & Business Media.  

Lin, J., Wang, Z. J., & Li, X. D. (2017). A backtracking search hyper-heuristic for the 
distributed assembly flow-shop scheduling problem. Swarm and Evolutionary 
Computation, 36, 124–135. 

Lin, J., & Zhang, S. (2016). An effective hybrid biogeography-based optimization 
algorithm for the distributed assembly permutation flow-shop scheduling problem. 
Computers & Industrial Engineering, 97, 128–136. 

Lu, C., Gao, L., Li, X. Y., Pan, Q. K., & Wang, Q. (2017). Energy-efficient permutation flow 
shop scheduling problem using a hybrid multi-objective backtracking search 
algorithm. Journal of Cleaner Production, 144, 228–238. 

May, G., Stahl, B., Taisch, M., & Prabhu, V. (2015). Multi-objective genetic algorithm for 
energy-efficient job shop scheduling. International Journal of Production Research, 53, 
7071–7089. 

Minella, G., Ruiz, R., & Ciavotta, M. (2008). A Review and Evaluation of Multiobjective 
Algorithms for the Flowshop Scheduling Problem. Informs Journal on Computing, 20, 
451–471. 

Montgomery, D. C. (2008). Design and Analysis of Experiments (Second ed.). United States: 
John Wiley & Sons, United States.  

Pan, Q. K., Gao, L., Li, X. Y., & Jose, F. M. (2019). Effective constructive heuristics and 
meta-heuristics for the distributed assembly permutation flowshop scheduling 
problem. Applied Soft Computing, 81, 105492. 

Pan, Q. K., & Ruiz, R. (2012). An estimation of distribution algorithm for lot-streaming 
flow shop problems with setup times. Omega-International Journal of Management 
Science, 40, 166–180. 

Ruiz, R., & Stutzle, T. (2008). An Iterated Greedy heuristic for the sequence dependent 
setup times flowshop problem with makespan and weighted tardiness objectives. 
European Journal of Operational Research, 187, 1143–1159. 

Sang, H. Y., Pan, Q. K., Li, J. Q., Wang, P., Han, Y. Y., Gao, K. Z., & Duan, P. (2019). 
Effective invasive weed optimization algorithms for distributed assembly 
permutation flowshop problem with total flowtime criterion. Swarm and Evolutionary 
Computation, 44, 64–73. 

Shao, Z., Pi, D., & Shao, W. (2018). A multi-objective discrete invasive weed optimization 
for multi-objective blocking flow-shop scheduling problem. Expert Systems with 
Applications, 113, 77–99. 

Tiwari, A., Chang, P.-C., Tiwari, M. K., & Kollanoor, N. J. (2014). A Pareto block-based 
estimation and distribution algorithm for multi-objective permutation flow shop 
scheduling problem. International Journal of Production Research, 53, 793–834. 

Wang, G., Gao, L., Li, X., Li, P., & Tasgetiren, M. F. (2020). Energy-efficient distributed 
permutation flow shop scheduling problem using a multi-objective whale swarm 
algorithm. Swarm and Evolutionary Computation, 57, 100716. 

Wang, J. J., & Wang, L. (2020). A Knowledge-Based Cooperative Algorithm for Energy- 
Efficient Scheduling of Distributed Flow-Shop. IEEE Transactions on Systems, Man, 
Cybernetics: Systems, 50, 1805–1819. 

Wang, L., Wang, S. Y., Xu, Y., Zhou, G., & Liu, M. (2012). A bi-population based 
estimation of distribution algorithm for the flexible job-shop scheduling problem. 
Computers & Industrial Engineering, 62, 917–926. 

Wang, S. Y., & Wang, L. (2016). An Estimation of Distribution Algorithm-Based Memetic 
Algorithm for the Distributed Assembly Permutation Flow-Shop Scheduling 
Problem. IEEE Transactions on Systems, Man, Cybernetics: Systems, 46, 139–149. 

Zhang, Z. Q., Qian, B., Hu, R., Jin, H. P., & Wang, L. (2021). A matrix-cube-based 
estimation of distribution algorithm for the distributed assembly permutation flow- 
shop scheduling problem. Swarm and Evolutionary Computation, 60, 100785. 

Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative 
case study and the strength Pareto approach. IEEE Transactions on Evolutionary 
Computation, 3, 257–271. 

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & Fonseca, V. G.d. (2003). 
Performance assessment of multiobjective optimizers: An analysis and review. IEEE 
Transactions on Evolutionary Computation, 7, 117–132. 

Z.-Q. Zhang et al.                                                                                                                                                                                                                               

http://refhub.elsevier.com/S0957-4174(21)01763-2/h0035
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0035
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0035
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0040
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0040
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0040
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0045
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0045
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0045
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0050
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0050
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0055
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0055
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0055
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0060
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0060
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0060
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0065
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0065
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0065
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0070
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0070
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0070
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0075
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0075
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0075
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0080
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0080
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0085
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0085
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0085
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0090
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0090
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0090
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0095
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0095
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0095
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0100
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0100
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0100
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0100
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0105
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0105
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0105
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0110
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0110
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0110
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0115
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0115
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0115
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0120
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0120
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0120
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0125
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0125
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0125
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0130
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0130
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0130
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0135
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0135
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0135
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0140
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0140
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0140
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0145
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0145
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0145

	A matrix cube-based estimation of distribution algorithm for the energy-efficient distributed assembly permutation flow-sho ...
	1 Introduction
	2 Problem statement
	2.1 Energy-efficient distributed assembly permutation flow-shop scheduling problem
	2.2 Multi-objective optimization problem
	2.3 Problem property analysis

	3 MCEDA for EE_DAPFSP
	3.1 Solution representation and population initialization
	3.2 Multi-dimensional probabilistic model
	3.2.1 Block structure and matrix cube
	3.2.2 Updating mechanism
	3.2.3 Sampling strategy

	3.3 Critical path-based local search
	3.4 Speed adjustment strategy
	3.5 The framework of MCEDA

	4 Experimental comparisons and statistical analysis
	4.1 Experimental setup
	4.2 Performance metrics
	4.3 Parameter calibration
	4.4 Effectiveness of probabilistic models
	4.5 Effectiveness of improvement strategies
	4.6 Comparisons of MCEDA and existing algorithms

	5 Conclusions
	CRediT authorship contribution statement

	Declaration of Competing Interest
	Acknowledgements
	References


