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In this paper, a matrix-cube-based estimation of distribution algorithm (MCEDA) is proposed to solve the energy-
efficient distributed assembly permutation flow-shop scheduling problem (EE_DAPFSP) that minimizes both the
maximum completion time (Cpqy) and the total carbon emission (TCE) simultaneously. Firstly, a high-quality and
diverse initial population is constructed via a hybrid initialization method. Secondly, a matrix-cube-based
probabilistic model and its update mechanism are designed to appropriately accumulate the valuable pattern
information from superior solutions. Thirdly, a suitable sampling strategy is developed to sample the probabi-
listic model to generate a new population per generation, so as to guide the search direction toward promising
regions in solution space. Fourthly, a problem-dependent neighborhood search based on critical path is provided
to perform an in-depth local search around the promising regions found by the global search. Fifthly, two types of
speed adjustment strategies based on problem properties are also embedded to further improve the quality of the
obtained solutions. Sixthly, the influence of the parameters is investigated based on the multi-factor analysis of
variance of Design-of-Experiments. Finally, extensive experiments and comprehensive comparisons with several
recent state-of-the-art multi-objective algorithms are carried out based on the well-known benchmark instances,
and the statistical results demonstrate the efficiency and effectiveness of the proposed MCEDA in addressing the
EE_DAPFSP.

1. Introduction great practical and engineering significance.

Among the distributed scheduling problems, the distributed assem-

With growing worldwide concern about the global warming and
climate change, it is imperative that all of the developed and developing
countries around the world should enact laws and take energy-efficient
measures or technologies to relief global environment and energy crisis
(May et al., 2015). Low-carbon or energy-efficient manufacturing is the
key measure and inexorable choice to realize the integration of envi-
ronmental sustainability and economic development. Meanwhile, along
with the deepening of economic globalization, modern production
pattern of many enterprises has a tendency to change from the tradi-
tional centralized manufacturing mode to the trans-regional decentral-
ized manufacturing mode. Under these backgrounds, the research on
energy-efficient and distributed production scheduling problems has
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bly permutation flow-shop scheduling problem (DAPFSP) is widely
encountered in advanced manufacturing systems and modern supply
chains. In fact, many real-life scheduling problems in manufacturing
enterprises can be modeled as the DAPFSP. For example, in some large
Chinese enterprises manufacturing automobile engines (e.g., Wei chai
Power Co., Ltd. and Yu chai Group), all parts of each engine, such as
cylinder block, cylinder head, and crankshaft, are first allocated to
different factories or flow shops for processing, and then these parts are
assembled into the final automobile engine in an assembly shop.
Because the DAPFSP has been proved to be NP-hard with strong sense
(Hatami et al., 2013), the relationship between its inherent geometric
structure and the optimal solution is still an open problem, and there is
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no algorithm that can obtain the optimal solution in polynomial time.
The mathematical programming algorithms need to traverse or partially
traverse the DAPFSP’s solution space, which makes them limited due to
the long running time in solving medium and large-scale problems. To
tackle this issue, the following metaheuristics have been presented in
recent years to obtain satisfactory solutions for the DAPFSP and its
variant under different scales within several seconds or tens of seconds.

As for DAPFSP, a fast variable neighborhood descent (VND) method
(Hatami et al., 2013), an estimation of distribution algorithm-based
memetic algorithm (EDAMA) (Wang & Wang, 2016), an effective
hybrid biogeography-based optimization (HBBO) (Lin & Zhang, 2016), a
backtracking search hyper-heuristic (BS-HH) (Lin et al., 2017), three
improved discrete invasive weed optimization algorithms (DIWOs)
(Sang et al., 2019) and a matrix cube-based estimation of distribution
algorithm (MCEDA) (Zhang et al., 2021) have been proposed. As for the
variant of the DAPFSP, Pan et al. (2019) considered a series of identical
factories in which each factory consists of a flow shop for job processing
and an assembly line for product processing, and then presented three
effective constructive heuristics and an enhance iterated greedy algo-
rithm (IG). However, the above studies of DAPFSP only consider the
efficiency-oriented criteria, and no existing studies involve energy
conservation. Therefore, this paper aims to solve the energy-efficient
DAPFSP (EE_DAPFSP) with the criteria of minimizing the maximum
completion time (Cy,qc) and the total carbon emission (TCE) at the same
time.

The considered EE_DAPFSP is more complex and general than the
DAPFSP, and the latter reduces to the former. This means that the
EE_DAPFSP is also a NP-hard problem in strong sense. Obviously, it is a
challenge to design an effective algorithm to address this problem.
Among the existing metaheuristics, the estimation of distribution algo-
rithm (EDA) is a special one. Unlike the crossover and mutation oper-
ators in most traditional metaheuristics, EDA builds one or more
probabilistic models to learn the valuable information of the structure
patterns of superior solutions, and generates the next offspring popula-
tion by sampling these models. Such a new population generation
mechanism can avoid the destruction of the building blocks (the partial
structure patterns) in superior individuals or solutions to a certain extent
(Larranaga & Lozano, 2001). Due to its good exploration ability,
inherent parallelism and quick convergence, EDA has been applied to
deal with different kinds of scheduling problem, e.g., the permutation
flow-shop scheduling problem (PFSP) (Jarboui et al., 2009), the multi-
objective PFSP (Tiwari et al., 2014), the lot-streaming flow-shop
scheduling problem (Pan & Ruiz, 2012), the flexible job-shop scheduling
problem (Wang et al., 2012), and the DAPFSP (Wang & Wang, 2016;
Zhang et al., 2021).

In the above EDAs, the two-dimensional probability model or matrix
is used to store the information of the blocks and the order of jobs from
each superior solution or individual. Here one block consists of any two
consecutive jobs in a solution. Obviously, the structure of matrix de-
termines that only the matrix elements and the subscripts of these ele-
ments can be used to store information. For the two-dimensional matrix,
each element is used to save the occurrence frequency or probability
that the job C appears immediately after the job R, and its subscript [R,
C] is only enough to save the corresponding block’s pattern. There is no
extra space to record the position of this block. This causes the sampling
procedure may misplace the blocks in new individuals. As a result, the
search direction cannot be reasonably guided, and the actual perfor-
mance of these existing EDAs is limited (refer to Subsection 3.2 for more
details). To overcome this defect, a novel EDA with a matrix-cube-based
or three-dimensional probability model, namely MCEDA, is designed for
the EE_DAPFSP. The test results on the instances with different scales
demonstrate that MCEDA can obtain better solution than state-of-the-art
algorithms under the same running time.

The main features of MCEDA lie in four aspects: the high-quality
initial population generated by a hybrid initialization strategy, the
global search guided by a three-dimensional probabilistic model, the
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Table 1
Difference between this work and the previous literature.
Difference The previous literature This work
Problem The existing formulations of the =~ The sequence model of the
formulation DAPFSP only take account of EE_DAPFSP is established by
traditional efficiency- minimizing both efficiency-
dependent criteria (Hatami dependent and energy-saving
etal., 2013; Lin & Zhang, 2016; criteria. This is the first time
Wang & Wang, 2016; Lin et al.,  that the TCE (i.e., an energy-
2017; Pan et al., 2019; Zhang saving criterion) has been
et al., 2021). treated as a separate criterion
in the DAPFSPs.
Global search The traditional metaheuristics A novel EDA with a matrix-
framework for the DAPFSP only employ cube-based or three-
conventional genetic operators dimensional probability
(i.e., the selection, crossover model is utilized to
and mutation) or common reasonably reserve the
neighborhood operators (i.e., valuable information of
insert, interchange and swap) to  superior individuals and
generate offspring to execute effectively guide the search
exploration (Lin & Zhang, 2016; direction.
Linetal., 2017; Pan et al., 2019;
Sang et al., 2019). Furthermore,
most of existing EDAs for
scheduling problem use the
two-dimensional probability
model to save the information
of superior individuals (Jarboui
et al., 2009; Pan & Ruiz, 2012;
Tiwari et al., 2014; Wang &
Wang, 2016).
Speed Most literatures only consider In addition to designing an
adjustment designing energy- saving speed energy-saving speed
strategy adjustment strategies to reduce adjustment strategy to

energy-saving criteria without
reducing efficiency-dependent
criteria, so as to enhance the
quality of current non-
dominated solutions (Ding

et al., 2016; Chen et al., 2019;
Abedi et al., 2020; Jiang &
Zhang, 2019; Wang & Wang,
2020).

enhance the quality of each
current non-dominated
solution, a reduced-time
speed adjustment strategy is
also designed to generate
possible non-dominated
solutions, so as to further
increase the diversity and
number of non-dominated
solutions.

deep local search driven by a multi-neighborhood search, and the so-
lution quality enhanced via two speed adjustment strategies. In terms of
the initial population, a hybrid initialization strategy combining an
effective constructive heuristic method and a randomization method is
devised to generate high-quality initial population. This strategy can
make the algorithm’s search start from some regions close to the
promising regions. In terms of the global search, a three-dimensional
probabilistic model with an update mechanism is designed to reason-
ably reserve the valuable information of superior individuals, and a
special sampling strategy is devised to guide the search to the promising
regions in solution space. Since the three-dimensional structure is uti-
lized to accurately record the job blocks with their exact positions, the
global search can be effectively guided to the truly promising regions. In
terms of the local search, an efficient neighborhood search adopting four
critical path-based neighborhood structures is developed to execute
deep search from the promising regions obtained by the global search. In
terms of the solution quality, the problem properties are analyzed and
two types of the problem-specific speed adjustment strategies are pro-
posed to further improve the quality of the obtained non-dominated
solutions. The novelties of this paper are summarized in Table 1.

The remainder of this paper is organized as follows. Section 2 de-
scribes and formulates the EE_DAPFSP. Section 3 introduces the pro-
posed MCEDA in detail. Section 4 carries out computational
comparisons and statistical analyses. Finally, some conclusions and
future works are provided in Section 5.
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Table 2
The notations used in the permutation-based model of the EE_DAPFSP.

Indices

i The index for jobs wherei = 1,2,...,n.

j The index for machines wherej =1,2,...,m.

h The index for products where h = 1,2,...,S.

f The index for factories where f =1,2,...,F.

k The index for velocities where k = 1,2, ...,d.

Parameters

n The total number of jobs.

m The total number of machines.

F The total number of factories.

S The total number of products.

d The total number of velocities.

J The set of jobs, i.e., J = {J1,J2,...,Jn}.

M The set of machines, ie., M = {M;, M, ..., M} where |M;|>2.

P The set of products, i.e., P = {P1,P5,...,Ps}.

o The set of operations, i.e., 0 = {0i1,0i2,...,0im}.

\'4 The set of velocities, i.e., V = {v1,V2,...,Va}.

N, The number of jobs belongs to product Py.

Dij The processing time of operation O;; on machine M;.

i The assembling time of product h on machine My.

Variables

ng The total number of jobs assigned to factory f, where ZfF:lnf =n.

[ The total number of jobs of product Py, where 3°5_wy = n.

¥4 The total sequence of jobs, i.e., 7 = 71,72, ..., ).

iy The sub-sequence of jobs in factory f, i.e., #/ = [n{,n:g, “.,n{;].

A The sequence of assembled products.

A The assembly sequence of products, i.e., A = [A1,42,....,4g].

IA’Z The actual processing time of O;; on M; at the speed v, where
ﬁlij = Pij/Vk-

Cij The completion time of O;; on M;.

sp The earliest possible assembly time of product h on the assembly line.

cs The completion time of product h on the assembly line.

Ej The energy consumption per unit time of machine M; running at speed
Vi

SE; The energy consumption per unit time when machine Mj; is in standby
state.

€ The coefficient between energy consumption and carbon emission,
where ¢ = 0.7559.
€ refers to the carbon emission per unit of consumed energy (kilogram
CO;, equivalent/kiloWatthour).

Crnax (7, V) The makespan of a feasible solution (z, V).

TCE(z, V) The total carbon emission of a feasible solution (z, V).

(IL,x) A set of feasible scheduling schemes for the problem considered.

Processing Stage

Job Set
1 I
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2. Problem statement

2.1. Energy-efficient distributed assembly permutation flow-shop
scheduling problem

The EE_DAPFSP can be briefly described as follows. There are S
products which consist of a set of n jobs. Each of the n jobs from the set
J = {J1,J2,...,Jn} is allocated to one of the F factories and is to be pro-
cessed sequentially through m machines M = {M;,M>,...,Mpn}, and then
these n jobs are to be assembled into S products. Each product consists of
a series of specific jobs and each job belongs to one certain product. The
production process mainly consists of two stages, namely the processing
stage and the assembly stage. The processing stage consists of F fac-
tories, and each factory is regarded as a flow shop composed of the same
number of machines, ie., m heterogeneous machines with different
functions. Each machine has d discrete and adjustable processing speeds,
ie., V.= {v1,v2,...,v4}. Each job J; € J has a predetermined processing
time p;; on every machine M; € M, and a series of m operations [O;1, O; 2,
...;Oim] of J; can be completed in any factory, where the actual pro-
cessing time of O;; on M; at speed v, € V is ﬁfj = Dij/Vx- Then, the
corresponding energy consumption is produced whether the machine is
in the processing state or in the standby state. Once all of the jobs of the
specific product have been processed in factories, the assembly process
can be started on the assembly machine. The EE_DAPFSP considered
contains three subproblems, namely, appropriately assign jobs to fac-
tories, suitable select the processing speed of machines, and reasonably
determine the processing order and the assembly order of jobs and
products. The notations description for the EE_DAPFSP are provided in
Table 2, and the illustration of the EE_DAPFSP is shown in Fig. 1.

In addition, all assumptions of FSP also meet herein. (i) No release
time is considered. Each job and machine are available and independent,
and each job can be processed immediately in time; (ii) No machine
breakdown or setup time is considered. Preemption and interruption are
not allowed in the processing; (iii) No transportation time is considered.
Each product can be assembled once its jobs have been processed; (iv)
Each job cannot be changed the factory and all operations of each job
should be processed in the same factory, once the job assignment has
been determined. At any time, each job can only be processed on at most
one machine, and each machine is allowed to process no more than one
job; (v) The processing time is deterministic, and the processing speed of
machines remain unchanged during the processing process. The
EE_DAPFSP aim to determine the allocation of jobs in the factories, the
processing order of jobs on machines and the assembly order of each
product, and the processing speed of all the machines. The production
efficiency criterion needs to minimize the makespan, which is defined as
the completion time of the last product on the assembly machine. The
energy consumption criterion needs to minimize the total carbon

Assembly Stage Product Set
|

Speed-adjustable machine for processing

Fig. 1. Illustration of the EE_DAPFSP.
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Fig. 2. The Gantt chart of a feasible solution of the EE_DAPFSP.

emission throughout the manufacturing period. The goal of the
EE_DAPFSP is to find a group of optimal scheduling schemes with
minimizing of both makespan and total carbon emission. According to
the above description, the permutation-based model of the EE_DAPFSP
can be given as follows.
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Fig. 3. The real-time power consumption curve of the EE_DAPFSP.
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s = %):c,{_m,i: L2, ns; f=1,2,.,F;h=1,2,..,S. (5)
G, =S, +7ri ©)
C, = max\{ C} ,Si\} + pl h=2,3,..5. %)
Cax(m, V) = C}.. ®

Conax
TCE(x,V) = s/ (ZEjkx;k + Zsm;) drk e\ 1,2,...d\} . 9)
0 Jjem ’

jem
(x*,V*) =arg min {Cyu(z,V), TCE(x,V)}. (10)
mellLlVeX

Egs. (8) and (9) are the calculation formulas of the maximum
completion time (Cnqy) and the total carbon emission (TCE) respectively.
The formula of the TCE in Eq. (9) is divided into two parts, the first part
is the total carbon emission when the machines are in processing state,
and the second part is the total carbon emission when the machines are
in standby state. The xj, and y; in Eq. (9) are binary variables, indicating
that if machine M; is running at speed v at the time ¢, then xJFk = 1,and
xj, = 0 otherwise. In addition, if machine }; is in the standby state at
time ¢, theny; = 1, and yJ‘ = 0 otherwise. Eq. (10) is the final goal of
the considered EE_DAPFSP. That is, the criteria are to find each optimal
non-dominated solution (z*, V*) in the scheduling scheme set (IL, X), so
that a suitable balance between the maximum completion time (Cqx)
and the total carbon emission (TCE) is achieved.

For ease of understanding, Fig. 2 illustrates the Gantt chart of a
feasible solution of the EE_DAPFSP with 24 jobs, 5 machines, three
factories and two products. The first product P; contains 13 jobs, (i.e.,
J1J4,J10,J11,J14J18,J22,J24), while the second product P, consists of 11
jobs, (ie., JsJg,Ji2, J13, J19J21, Ja3). The sub-sequences of all the jobs
assigned to the three factories are #; = [3,18,17,16,23,12,9],
7 = [4,11,2,15,20,5,21,6] and 75 = [1,14,22,10,24,19,8,7,13],
respectively. Fig. 3 shows the three curves of the real-time power con-
sumption corresponding to the Gantt chart of the feasible solution pro-
vided in Fig. 2. It can be seen from Fig. 2 that at time 300, M;, M5, and
M, in factory 1 are all in the processing state, while M5 and Ms are in the
standby state. Suppose that M;, My, and M, are running at speeds
Vi1 €V, Vko € V and vg4 € V at this time, and thus the instantaneous
processing power of these three machines are Ejxj, Eoxs and Egg,
respectively. In addition, the power consumption of M3 and Ms in the
standby state are SE; and SEs, and then the overall power consumption
at time 300 in factory 1 can be calculated by summing up the power of
the five machines, (i.e., Eyx1 + Exxa + SEs + Esqs + SEs), as shown
in Fig. 3. From Fig. 3, at time 300, M;, M,, M3 and M5 in factory 2 are in
the processing state and only M, is in the standby state, while M;, My
and Ms in factory 3 are in the processing state and M, and M3 are in the
standby state. Similarly, the real-time power consumption of factory 2
and factory 3 can be calculated at this moment. Therefore, the real-time
power consumption of each factory at different time points can be
calculated respectively. Note that the total energy consumption of Eq.
(9) can be represented as the sum of the area enclosed by the real-time
power curve corresponding to each factory and the time axis, and thus
the total carbon emission (TCE) can be computed via the coefficient ¢
between energy consumption and carbon emission.

Expert Systems With Applications 194 (2022) 116484

It should be noted that compared to the DAPFSP studied by Hatami
et al. (2013), where the objective is to minimize the makespan and the
processing time is regarded as constant, the EE_DAPFSP considered not
only adds a green scheduling objective of minimizing the total carbon
emission, but also sets all of the processing times to be adjustable
(depending on the actual running speed of the machine). Therefore,
motivated by the energy saving consideration, this paper investigated
the modeling and solving of the energy-efficient DAPFSP, which is a
more complex (with more decision variables) multi-objective optimi-
zation problem than the typical DAPFSP. The main difficulty of multi-
objective optimization lies in the large and complex feasible solution
space, that is, the variable processing speed will further enhance the
difficulty of solving the considered problem, and obtaining high-quality
solutions often has a high-level requirement of both the understanding
of the structural features of the problem and the search efficiency of the
algorithm. Moreover, since the EE_DAPFSP is an NP-hard problem, it is
not theoretically guaranteed to find the optimal scheduling scheme in
polynomial time. Therefore, for medium and large-scale instances, the
scheduling goal is to obtain the near-optimal scheduling schemes within
an acceptable time, and the metaheuristics are an effective way to solve
the EE_DAPFSP.

2.2. Multi-objective optimization problem

The multi-objective optimization usually requires a satisfactory
trade-off between two or more conflicting objectives, so that the mul-
tiple objective functions involved are optimized simultaneously. The
EE_DAPFSP involved in this study needs to consider both production
efficiency and energy consumption, and there is an obvious conflict
relationship between these two criteria. The optimal or near-optimal
scheduling schemes for the EE_DAPFSP is a set of feasible solutions,
instead of a single solution. These solution sets must be determined by
the dominance relationship via some specific multi-objective optimiza-
tion techniques. Generally, the MOPs can be described as shown in Eq.

11).

Min F(x) = {fi(x),/2(x), ... u(x)}
st g(%)20;h(x) =0,1=1,2,...,.L;k = 1,2,...,K. an

x:be[SX:"’, i=1,2,..,n.

where x = [x1,X2, ...,x,,]T € Qis a decision vector composed of n decision
variables, and fi(x) is the ith sub-objective function. The mapping
function F(x) contains m sub-objective functions and F(x) : Q—»R™. Q is
the decision space and R™ is the m-dimensional objective space. x’ and
X are the upper bound and lower bound for the ith dimensional vari-
able x;, respectively. Then, some basic concepts commonly used in MOPs
are introduced below (Minella et al., 2008).

e Pareto dominance: For any two solutions x € Q and y € Q, if and
only ifVi € {1,2,....m}, fi(x)<fi(y) and 3’ € {1,2,....m}, f; (x) < f; (v),
then the solution x dominates solution y, denoted as x < y.

e Pareto archive: For any solution x € Q, x is Pareto optimal if and
only if -3y € Q: y <x. The solution set composed of all Pareto
optimal solutions is called Pareto optimal set or Pareto archive,
denoted as Q*.
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e Pareto front: The Pareto optimal front is aggregated by all of the
solutions in Pareto optimal set Q*, that is PF = \{ F(x) =
[fl (x),fz(x), "'7fm(x)]T‘x € Q*}'

e Non-dominated solution: In the feasible solution subset ACQ, for
each solution x € A, if and only if -Jy € A:x <y orx > y.

e Non-dominated set: For a feasible solution set Q"CQ, if there exists
another non-dominated subset Q such that Q SQ”, VaSQ and bSQ",
-3b <a and a # b, then Q' is a non-dominated solution set.

e Non-dominated sorting: It is used to sort all obtained non-
dominated solutions and divide them into different levels accord-
ing to the Pareto dominance relationship (Deb et al., 2002).

e Crowded distance: It is used to measure the degree of dispersion
among the non-dominated solutions on the same level (Ding et al.,
2016; Deb et al., 2002). In general, the larger the crowding distance
of a set of non-dominated solutions is, the better the dispersion of the
non-dominated solution set is. The crowding distance calculation
method is given in Algorithm 1.

In many practical production processes, decision makers usually
choose their preferred scheduling solution from the obtained Pareto
optimal front based on a reasonable trade-off between preferences or
priorities of objectives. Therefore, the aim of MOPs is to obtain a variety
of non-dominated solutions with good proximity and diversity with
respect to the true Pareto optimal front.

Algorithm 1: Crowded distance calculation method

Expert Systems With Applications 194 (2022) 116484

belongs must be taken into account in the processing stage. Thus, the
achievement of objectives and the handling of constraints must not only
take into account the optimal production efficiency, but also meet the
production requirements of low-carbon manufacturing. Conflicting
constraints complicate the feasible solution space of the considered
problem, resulting in a great challenge that the algorithm being more
difficult to obtain a satisfactory solution within an acceptable time.
Therefore, when designing EDA-based algorithms to address the
EE_DAPFSP, it is not only necessary to establish effective probabilistic
models to quickly guide directions to truly promising regions, but also
need to analyze some problem-dependent properties and then utilize
them to narrow the search scope by avoiding invalid searches.

Ding et al. (2016) proposed two assumptions about the relationship
between job processing speed and machine energy consumption based
on the problem properties of the low-carbon PFSP. That is, when job J; is
processed at a higher speed on a machine M;, the processing time of the
job would be shorter and the total energy consumption would be

. . ~kl_ ~k2
increased. In other words, if Yvi1 > Vka (Vi1 ,Vk2 € V), we have p; ; <Dij>

then f)f} “Ejr1 > ﬁf]z -Ejxo. Obviously, there is an inevitable contradiction
relation between the two objectives Cpq and TCE in the EE_DAPFSP,
and there is no optimal scheduling solution can be found in the absolute
sense. For any two feasible scheduling solutions (7, V') and (z”, V"),
when Cpax (7, V)2 Crax (7", V"), TCE(x, V' )>TCE(z", V") and (Cpax(7,
V'), TCE(x ,V')) #(Crmax(a" V"), TCE(z",V")), it can be concluded that the
solution (z”, V") dominates the solution (7', V') (denoted as (z',V') < (",
V")). According to the above assumptions and the definition of multi-

Input: ¢ non-dominated solutions where C=(C’,
1: Sort C in ascending order, i.e., (CZ\),c(?)

max > max >°*°

C2

ax >

SCINT where I =(1(1),1(2),....1(2))"

,CL )7 and E=(TCE',TCE?,...,TCE")".

maxs-**

and the vector I is the index of the ascending order.
Initialization: Cgy; (/(1)) =+ and Cy (1(1)) = +o0.

fori=2tot—1 do

max max

TCE _C,, (1(i)) < |TCE'*D —TCE'"™D|/(max {E} — min {E}) .
Cois (1(1) = Croy _ Ci (1(0)) + TCE _Cyis (1)) .

end for

2
3:

4: Con  Cus(1(D)) < |CHED _ 10D /max {C} —min {C}).
5

6

7

Output: Crowded distance for each feasible solution Cy(i),i=1,2,...,z.

2.3. Problem property analysis

The EE_DAPFSP is a typical complex PFSP with adjustable machine
speed and there is a close coupling relationship between the production
and assembly stages. In EE DAPFSP, the machine speed directly de-
termines the processing operation, and the processing stage affects the
assembly stage, that is, to determine the start time of each product in the
assembly stage, the completion time of all parts to which the product

objective domination, two properties of the EE_DAPFSP can be put
forward as follows.

Property 1. Let us assume that the machine speed is fixed in the processing
stage. That is, the processing speed matrix remains constant. Under this
assumption, for any two feasible scheduling solutions (z', V') and (z", V"), if
Crnax(7, V') > Cnax (", V") and V' = V", then it has (z,V') < (2, V").

Proof: Assume that the two feasible solutions of the EE_DAPFSP are
(7', V') and (#",V"), respectively. According to Eq. (9) in Subsection 2.1,
the total carbon emission of these two solutions (7', V') and (z”, V") can
be represented as TCE(x', V') = e(E(z, V') +SE(x, V') and TCE(z", V")
=¢e(E(x",V") + SE(n",V")), respectively. E(-) and SE(-) indicate the total
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~—— Critical path
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|
250 300 350 400
(a) Identify critical path for a feasible solution.
~—— Critical path
M| Assembly Line _
AT, [6|ATs ATy, » AT .
AT, J Factory2
>
AT, _
AT, 1 Factoryl
il
0 50 100 150 200 250 300 350 400

(b) Calculate time margin between adjacent jobs on the non-critical path.

~¢— Ciritical path : { Time margin

M, AT 6| AT AT, | 4 L ATy, |
”””””” ; Factory2
>
I
.
| Factoryl
|
il
0 50 100 150 200 250 300 350 400

(c¢) Perform speed-down operations and update time margin from back to front.

Time margin
Factory2
Factoryl
0 50 100 150 200 250 300 350 400

(d) Perform speed-down operations on all jobs in non-critical path.

Fig. 4. An illustrative example of the energy-saving speed adjustment strategy for EE_DAPFSP.
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energy consumption of machines in running state and the energy con-
sumption of machines in standby state. Since V' = V”, the two solutions
(z',V')and (2", V") have exactly the same processing processes of jobs in
the processing stage. That is, the processing time and energy con-
sumption of the processing operations are also the same, and obviously
E(z,V') = E(z”,V") holds. In addition, each product 4, (h = 1,...,S) in
the product order A = [11, A2, ..., 4s] corresponding to z in the solution (z,
V) must wait until it’s all parts are completed before starting the product
assembly process.

According to Eq. (5) in Subsection 2.1, denote maxC o m be the start

dey
assembly time of product 4, (i = 1,...,n5, f=1,...,Fand h = 1,...,5),
n = (w1, T2, .., The,) be the job order belonging to product A;. Let

pe. ; and St. respectively represent the total duration of the pro-
Thiy Thid

cessing state and the total duration of the standby state of the job 7y;
(Il =1,..., wp) contained in product 4; in the product order 1 on the
machine M; in factory f, and then the start assembly time of product 14

can be represented as maxC; = max{Ptﬁ + st }. The make-
s i fil Tp,m

/ e i Th1,M
span Cpax (7, V) of the feasible solution (z, V) is determined by the start
assembly time of each product. Let A and A” be the product orders
corresponding to #' and z” in the solutions (7, V') and (#”,V"). Since 7
and 7" in (7, V') and (z”, V") correspond to the same product, and the
job order 7 i in Ay is the same as that in the joborder #", and E(z',V') =
E(z’, V"). 1t is clear that PY, =PY, ,VjeM and Cpeu(r, V) >

Tppd Thid

Crmax(n”, V"). It can be deduced that if 34 € 4, it has S¢, >S&, |

Ty J Tped
Jj € M. Thus, for the standby state, the total energy consumption can be
given as follows:

SE(x V) =>>"8 |, xSE>>">"s s, X SE; = SE(x", V")
fojem T Y Iojem Y
12

Since there is TCE(x, V') = e(E(z,V') + SE(«, V")), TCE(z", V") =

e(E(z", V") + SE(x”, V")) and E(z', V') = E(#”, V") is met, it has TCE(r,
V') > TCE(z", V") and Cpax(n, V') > Crax(#", V"). Thus, we can get (7,
V') < (#”,V"). Property 1 is proved.
Property 2. For any two feasible solutions (z,V') and (z",V"), if they
have the same maximum completion time, then the solution with the slower
processing speed dominates the other solution. That is, if Cmax(n,V') =
Crmax(7", V") when \/iJ-;V{fj “Vi=1,.,mj=1,...m)and V # V’, then it
has (z,V') < (2", V").

Proof: Since V;;>V/; (vi =1,...,n;j =1,...,m), Cnax (7 , V') = Crax (7",
V") and V' # V", it is clear that the production process of the solution
(7, V') is faster than that of the solution (z”,V"). For the job orders 7’ and
7 in any two solutions (7', V') and (7", V"), each product in the product
orders A’ and A" corresponding to the job orders z” and #” must wait for
the completion of all the parts belonging to the product before it can be
assembled. In addition, the job orders Z,and 7", corresponding to the

same product Ay in the job orders #' and 7" are the same. Since Pti ;<
Tnd
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PY, WjeM and Cpox(r, V') = Cmax(r”, V"), then it has S/, >Stf, |

Thd Tpgd Thd
Vj € M. Since V' # V", then 3j € M makes P, < Pt;, 7 that is, it has
Th1d hl
Sl{ ;> St;,, ; Therefore, the total energy consumption in Eq. (12) for
Tpid hil
the standby state is satisfied. According to
TCE(x,V)) = e(E(x, V') +SE(z,V))) and TCE(z",V") = e(E(x",V") +
SE(z”,V")) in Property 1, the total energy consumption in the processing
state satisfies E(z', V') > E(x”, V"), so it has TCE(z', V') > TCE(z", V").
Considering that Cpec(7,V') = Cax(a”,V"), the dominance relationship
(7, V') < (", V") between (z',V') and (”,V") is met. Property 2 is
proved.

According to above properties, a reasonable compromise between
the two objectives of Cyqx and TCE can be achieved, that is, the total
carbon emissions can be reduced by appropriately adjusting the speed of
the machines in each factory, while the maximum completion time re-
mains unchanged.

It should be clear that for all types of flow shop scheduling problems,
the critical path directly determines the maximum completion time of
any feasible solution (Wang & Wang, 2016). In this section, according to
Property 2, we present an energy-saving speed adjustment strategy that
can adjust the processing speed of some jobs on non-critical paths while
keeping the processing speed of jobs on the critical path unchanged. The
proposed energy-saving speed adjustment strategy can ensure that the
maximum completion time of the scheduling solution remains un-
changed, while effectively reducing the total carbon emissions, and
improving the algorithm’s ability to obtain high-quality solutions with
low-energy consumption. The energy-saving speed adjustment strategy
is provided as follows.

Step 1: Identify a critical path of the feasible solution (z, V). The
critical path directly determines the value of the production efficiency
criterion (i.e., the maximum completion time Cpqy). If more than one
critical path exists for the same Cp,o, then one of the critical paths is
randomly selected.

Step 2: Determine whether the job on the non-critical path meets the
speed-down operation conditions: there is a certain amount of time
margin between the completion time of the current job and the start time
of the next job on the machine, and the processing speed of the job is not
in the lowest gear. If the speed-down operation conditions are not met,
then no speed reduction is required, otherwise continue to the next step.

Step 3: Reduce the processing speed of the job by one level. Since all
processing speeds considered are a series of discrete values, the speed-
down operation needs to be performed to ensure that the increment of
the job processing time is within the time margin and does not affect the
critical path identified in Step 1. If the critical path is affected, the speed-
down operation is not performed, otherwise skip to Step 2 and continue
to perform speed reduction on the remaining jobs until all jobs on the
non-critical path have been executed the speed-down operation.

For ease of understanding, Fig. 4 provides a diagram of the energy-
saving speed adjustment strategy for EE DAPFSP when n = 8m =
2,F = 2,8 = 2. Firstly, a critical path for the feasible scheduling solution
is determined, as shown in Fig. 4(a). It can be seen that the critical
factory is Factory 1, and the corresponding critical operations are Os;,
Og1,0s2. Then, the time margins for a series of non-critical operations
032,022,052,051 and O1 2, 062,072,041, 042 in factory 1 and factory
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2 are calculated as shown in Fig. 4(b). Finally, the speed-down opera-
tions are performed and the time margins are updated for the jobs on the
non-critical path from back to front, as illustrated in Fig. 4(c). Fig. 4(d)
gives the Gantt chart corresponding to the obtained solution with low-
energy consumption by using the energy-saving speed adjustment
strategy. Then, the Pareto archive is updated after the speed adjustment.

Algorithm 2: Multi-objective initialization method

Expert Systems With Applications 194 (2022) 116484

updating mechanism and sampling strategy are proposed, respectively.
Then, the critical path based local search and the speed adjustment
strategies are designed. Finally, the overall process of MCEDA is
described and the computational complexity of MCEDA is briefly
analyzed.

3.1. Solution representation and population initialization

The solution representation is of great importance to the meta-

Input: Non-dominated solution set NS .

1:  All products are sorted according to their corresponding assembly time in ascending order,

and the product order is A'=[4/,4;,....4,].

2:  Initialize processing speed matrix V:=V'. Initialize non-dominated solution set NS :=0 .

3: for h=1to S do

4 The jobs of product 4; in product order A" are sorted in ascending order by

the total completion time. Then the job order of product A, after sorting is 7, .

5:  end for

6:  The complete job order 7’ is constructed by combining each sub-sequence 7;, according to

the product order A'=[A],A},..., 4, ].

7:  Evaluate (n',V') and update NS < (a',V').

8  for h=1to S do

9: Select the job order @, of product A; , where @), is the number of jobs in &, . NS, := .

10: for /=1 to w, do

11: Remove the /th job from @, and reinsert it into the @,+1 positions of @, in turn.

12: Evaluate the solution to obtain C,,,, and TCE . The non-dominated solution set obtained
after insertion operation is NS;, and update NS: NS < NS NS;.

13: end for

14:  end for

15:  while [NS>10%x ps do

16: Calculate the crowded distance of solutions in NS according to Algorithm 1.

17: Remove solutions with the smallest crowded distance from NS until the condition is met.

18:  end while
Output: Non-dominated solution set NS .

3. MCEDA for EE_DAPFSP

In this section, a multidimensional distribution estimation algorithm
(MCEDA) is presented to solve the EE_DAPFSP. Firstly, the solution
representation and population initialization are provided. Secondly, the
matrix-cube-based multidimensional probabilistic model and its

heuristics. The PFSP usually uses a coding sequence of jobs 7 = [z(1),
7(2), ..., m(n)] that can directly determine the processing priority of n jobs
to represent a feasible solution of the problem (Ding et al., 2016; Lu
et al., 2017). For the job order x of the EE_DAPFSP, in order to obtain a
feasible scheduling scheme, the factory allocation rule NR; proposed by
Hatami et al. (2013) is employed to decode the job order # and assign
each job to each factory in turn. Once the job order x is determined and
the corresponding processing speeds for all operations are assigned, and
then a feasible solution is obtained. Therefore, the feasible solution
representation of the EE_DAPFSP studied in this paper needs to consider
not only the processing sequence x for jobs but also the processing speed
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Fig. 5. An illustrative example of the accumulation process of job blocks
by MC3><4><4‘

matrix V for machines, so a feasible solution can be denoted as (x, V).
Thus, the production efficiency and the energy consumption criteria are
denoted as Cpax (7, V) and TCE(x, V), respectively.

It needs to be noted that the size of the set IT of feasible coding se-
quences is n!, the size of the set of feasible speed matrices X is d"™, and
the solution spaces of IT and X are independent of each other. Compared
with the solution space size n! of the traditional PFSP, the feasible so-
lution space size of the EE_ DAPFSP is as large as S! x Hi:l |Np|! x d™™.
Obviously, the significant expansion of the feasible search space for the
considered problem requires much more computational efforts to find
the global optimal solutions or at least the near-optimal solutions, and it
is need to develop some high-performing algorithms for solving the
EE_DAPFSP. To be specific, in order to decode a feasible solution and
obtain a scheduling scheme, firstly, each job in the job order = is
sequentially assigned to machines of different factories by means of the
NR2 rule. That is, the completion time of each job in each factory is
determined respectively according to the corresponding processing
speed in V. Secondly, each job is allocated to the factory that can
complete all processing processes of the job at the earliest time, and then
the sub-sequence of jobs [y, 72, ..., #F| in all factories is obtained. Then,
the assembly order of the products is determined according to the pro-
cessing completion time of the corresponding jobs for each product.
Finally, the maximum completion time Cya(, V) and the total carbon
emission TCE(z, V) of the feasible solution («, V) can be calculated ac-
cording to Eq. (8) and Eq. (9) in Section 2.

In order to take into account both the quality and the diversity of the
feasible solutions in the initial population, we employ a hybrid initial-
ization strategy that combines the effective constructive heuristic
method and the randomization method to generate the initial popula-
tion. To be specific, 10% of the feasible solutions in the initial population
are produced by using the multi-objective initialization method given in
Algorithm 2, and the remaining 90% of the other solutions are generated

10
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randomly. For the multi-objective optimization problems, the non-
dominated set NS is usually used to record and reserve all of the ob-
tained non-dominated solutions. The expression NS«NS U NS; in Algo-
rithm 2 represents the set of non-dominated solutions picked from the
union of the two sets NS and NS;. The notation |NS| refers to the number
of elements in the non-dominated set NS. Note that the initialization of
the processing speed matrix V for each non-dominated solution (z, V)
also has a certain impact on the performance of the algorithm. If a higher
initial processing speed is set, it would be more favorable to optimize the
maximum completion time Cpmqy (7, V); while if a lower initial processing
speed is set, it would be more inclined to optimize the total energy
consumption TCE(x, V). Therefore, in order to achieve a reasonable
trade-off between these two criteria, different speed levels should be
adopted to initialize the processing speed matrix V in the initialization
process of the population, and then all non-dominated solutions ob-
tained at different initial processing speeds are merged. Then, the top
10% of high-quality solutions are selected as a part of the initial popu-
lation via Algorithm 1, while the remaining 90% of the solutions in the
initial population are generated by using randomization method.
Meanwhile, to ensure the fairness of the computational comparisons, the
proposed population initialization method is used for both the presented
MCEDA and the compared algorithms in the subsequent experimental
sections.

3.2. Multi-dimensional probabilistic model

Since most of EDAs were proposed based on the two-dimensional
probabilistic models, these two-dimensional probabilistic models
cannot learn the promising patterns adequately. In this subsection, a
multi-dimensional probabilistic model is designed to reasonably learn
and accumulate the structural characteristics and promising patterns of
the superior solutions, i.e., the order relation information of jobs and the
position information of job blocks. which can effectively guide the
search direction toward the potential regions in the solution space.
Then, the framework of the multi-dimensional probabilistic model is
provided by introducing the block structure and the matrix cube, the
updating mechanism and the sampling strategy, respectively.

3.2.1. Block structure and matrix cube

For the feasible scheduling solution (z, V) of the EE_DAPFSP, the job
block is first defined as the two consecutive adjacent jobs in the job order
7. Obviously, # can be composed of all the job blocks that appear at
different positions in the job order. For n different jobs, there is a total of
(n — 1)? job blocks. The same job blocks appearing at different positions
in the job order z of each feasible solution (x,V) are defined as the
similar blocks. For example, for two job orders # = [3,2,1,4] and 7" =
[4,3,2,1], there are a total of four job blocks, i.e., [3,2], [2,1], [1, 4] and [4,
3]. Since the two job blocks [3, 2] and [2, 1] appear both in z' and #”, then
the job blocks [3,2] and [2,1] are similar blocks. In order to investigate
the distribution characteristics of the total job blocks in the high-quality
solutions of the considered problem, in this subsection, a data structure
of three-dimensional matrix cube is designed to reasonably record and
reserve the total order relation information of the jobs and the distri-
bution information of the job blocks. Moreover, the matrix cube can also
appropriately learn and accumulate the valuable structural character-
istics of superior solutions in a statistical way, and then can be used to
construct a more effective probabilistic model. Without loss of gener-
ality, let Pop(G) be the population at Gth generation, where G = 0,1, ...
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,MaxG and ps is the size of Pop(G). Let SPop(G) = {25}, 252 .. 25"

s “sbest
be the promising solutions or the superior subpopulation extracted from
is the kth

[ Gk
ﬂsbestl’ sbest,27 **

Pop(G), where sps is the size of SPop(G). It is clear that z%

sbest

individual in SPop(G), which can be denoted as 5%, =

. sbm o (k=1,.. sps). Let MCE , . denote the matrix cube at Gth
generation, where Mcnxnxn(x,y,z) (x=1,..,n-1;y,2=1,...,n) with
the subscript (x,y,z) represents the element in MCS , . MCSX,,X"

used to record and reserve the information of the job relations and the
distribution of similar blocks of high-quality subpopulation in Gth
generation. MC®

s 1S described as follows.

and = ”sb(’xl v+l

1, y—ﬂ

sbe:t X

0, else

n k=1, 2

1, Gk =
M nn (x,:2)

13)

x=12,..n—1;y,z=1,2,..., , SpS.

sps

=t

= [MCI(I;XWXH (x7 y7 1)7MCH><M><n(x y 2)

MCC,, . (x,y,z =1,2,.,n—Ly,z=12,..,n. (14

1)><n><n

MCanX”(x,y) MCnGxnxn(x1 Y n)]nxn’

x=12,..n—L;y=12,..n (15)

Mc¢

nxnxn

- MCS

nxnxn

MCG()

nxnxn
MCSXan (x) = =
Mcf

nxnxn

(xl 1) - (x,1,n)

MCC (x,n,1) -

nxnxn

MC¢

(x,n) enen (Xs7151)

nxn

(16)

where I Mcsk in Eq. (13) is an indicator function, which is used to

in SPop(G),
| at the

n(xy:2)
record the information of job blocks of the kth solutlon b b st

Gk
b2

that is, the number of occurrences of job blocks [zS Sbestaxt1

sbest X7

_ Gk _ Gk
Yy = Tsbest x> 2=z

shestoct1 ). The element

xth position in the x

MCS,,...(x,y,2) in Eq. (14) is used to accumulate the number of job
blocks, i.e., to count the distribution of job blocks among all individuals
in SPop(G). Eqgs. (15) and (16) give the specific hierarchical structure of

the matrix cube,

sbest (l' e,

where the two-dimensional submatrix MC,‘,;X"X"( ) is

used to store the total frequency information of the job block [z sbm o

sb'est 1] at the xth position of all individuals in the SPop(G). Obviously,
by using the matrix cube MC¢

snxn cOmposed of a series of the position

relation based two-dimensional matrices MCS,,,. ., (1),MC¢_, . (2), ...,
MCS . (n) in Eq. (16), the proposed multi-dimensional probabilistic
model can accurately and effectively learn and preserve all the infor-
mation of both the ordinal relation of jobs and the distribution of job
blocks of high-quality individuals in an intuitive way. Considering five
high- quality individuals with sps =5ie, a4, = [1 2,34, x Shm =[2,3,
1,4], 73 = [3,2,1,4], z} = 1[4,3,2,1] and 75, = [4,3,1, 2], an
illustration of the accumulation process of job blocks from these five
high-quality individuals is given below, as shown in Fig 5. Firstly, for
the first position (x = 1) of all individuals from z’;} , to ;> , the existing
jobblocks [1,2] (ie,y =1,2 =2),[2,3] (le,y =2,2 = 3),[3,2] (e,
y =3,z =2),and [4,3] (i.e.,y =4,z = 3) can be recorded and reserved
by MC§,,. ,(1). Since the job block [4, 3] appears twice while the other
job blocks appear only once, it can be concluded that MCS, ,, ,(1,1,2) =
1,MCS,4,.4(1,2,3) =1, MCS,,,,(1,3,2) =1,and MC§ ,,(1,4,3) = 2.
Secondly, for the second position (x = 2) of all individuals, the existing
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job blocks [2,1] (ie.,y =2,2 =1), [2,3] (le,y =2,z =3),[3,1] (ie,
y =3,z =1),and [3,2] (i.e.,y =3,z = 2) can be recorded and reserved
by MC§ ,.,(2). Meanwhile, we have MC§ ,, ,(2,2,1) =1, MC§, ,,.4(2,2,
3) =1, MCS,,,4(2,3,1) = 2, and MC§,,,,(2,3,2) = 1, respectively.
Finally, for the third position (x = 3) of all individuals, the existing job
blocks [1,2] (i.e.,y =1,2 =2),[1,4](ie,y =1,2 =4),[2,1](ie.,y =2,
z = 1), and [3,4] (ie., y = 3, 2 = 4) can be recorded and reserved by
Mcft;x4><4( ), that is, Mcft;x4><4(37 1,2) =1, MC4G><4X4(37 1,4) = 2
MC§, 4,4(3,2,1) =1, and MC§,,,,(3,3,4) = 1. It should be noted that
since the useful information of the job block in the last position (x = 4)
is already contained in the previous position (x = 3), all elements in
MCfX‘,X 4(4) are set to zero directly.

It can be seen from Fig. 5 that all of the job blocks or similar blocks of
each excellent individual located at different positions can be fully
learned and preserved in MC$ , ,. For the two-dimensional probabi-
listic model based EDA commonly used in the literature (Pan & Ruiz,
2012; Jarboui et al., 2009; Wang & Wang, 2016), the structural infor-
mation of similar blocks [2,3], [4,3], and [1, 4] existed in nsbm to ﬂsbest is
only stored in the same subscript (2, 3), (4, 3), and (1,4) by using the
two-dimensional matrices, which may not be able to accurately distin-
guish the specific location of each job block in the elite solutions and
inevitably lead to confusion about the location of the promising blocks.
As a result, the two-dimensional probabilistic model based EDA is un-
able to effectively determine the proper positions to place these prom-
ising similar blocks when sampling the two-dimensional probabilistic
model to generate new individuals. However, for the designed matrix
cube MC¢_, ., these valuable similar blocks can be respectively record
and retained in different layers of MCS depending on their specific
[1,2,3,4] is

xnxn)> While the

nxnxn

positions. It is clear that the similar block [2,3] in z4., =

recorded in MC§ , ,(2 )(Le the second layer of MC¢

similar block [2,3] in 7>, = [2,3,1,4] is reserved in MCS , ,(1) (ie.,
the first layer of MCS ), respectively. That is, the promising patterns
of all job blocks or similar blocks are properly learned by employing the
proposed matrix cube, which can be used to bulid more effective prob-
abilistic model, while also avoiding the destruction or improper fusion

of promising patterns.

sbest

3.2.2. Updating mechanism

The probabilistic models are crucial to the EDAs, and the effective-
ness and reasonableness of the designed probabilistic model directly
affects the performance of the algorithm (Zhang et al., 2021). Different
from the two-dimensional probabilistic models, in this subsection, a
novel matrix-cube-based multidimensional probabilistic is presented to
learn and accumulate the valuable information of the relation of jobs
and the distribution of similar blocks in high-quality subpopulation. For

descriptive convenience, define PMS_, . as a multidimensional proba-

bilistic model based on MC¢, ., where PMS, . (x,y,2)
(x=1,..,n-1;y,z=1,..,n) is the element of PMY , .. Then, the

formal definition of the probability distribution of the job blocks at the
xth position in the job order x of the selected superior solutions is shown
in Eq. (17).
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Fig. 6. An illustrative example of the update process of the proposed probabilistic model.
[ pMS (x 1) Step 2: When G = 1, calculate the matrix cube MC?_, . according
PMS. (x) = e to Egs. (13-16) and update the probabilistic model PM} , . according to
nxnxn PMG (x n) Eq (19)
_PMX . (x,l,l) PMGX y (x,l,n) Mchnxn(x7)/*,z)/N1[|il(‘( )7 x=1;
- 17) PM,,..(%,y,2) = [PM) 0 (%,y,2) + MCY,,. . (x,9,2)]
, X22;
PMC,.,(x,n 1) o PMO, . (x,n,n) [Npw () + Ny ()]
Vy,z=1,2,...,n. (19)

where the probability value in PMGXM( x)

occurrence of the job blocks [nsbmx ﬂsb est x4 1

indicates the probability of
| at the xth position in the

Sk (ie,y = Tostxr 2 = nGbm ++1)- In order to update the probabilistic
model, let N§.(x) be the total number of job blocks that have appeared
at the xth position in the superior subpopulation SPop(G), i.e., N§.(x) =
> a1 51 MCE (.Y, 2), Ny (x) be the sum of all the probabilities of
different job blocks appearing at the xth position in SPop(G), i.e.,
NGy () = Y0 1> 1 PMS, (X, ¥, 2). The specific update steps of the
proposed probabilistic model PMS_, .
Step 1: When G =
according to Eq. (18).

are as follows.
0, initialize the probabilistic model PM°

nxnxn

0-, X = 1%)’71 = 1725"'7’1

1/n*, x=2,3,...,n—1L;y,z=1,2,..,n as)

PManxn(x7y7Z) = {

12

Step 3: When G > 1, MCS} |
model PMS , . is updated iteratively according to Eq. (20), where r is

the adjustable learning rate.

is calculated and the probabilistic

PMC

nxnxn

(1—r)x PMC!

nxnxn

(6,3,2) Fr X MG, (6,3,2) [N (),
(20)

(x,y,2) =

x=1,2,...n—1;y,z=1,2,...,n.

Step 4: Set G = G + 1. If G < MaxG, then go to Step 3.

Note that all probability values in the in the first layer of PM®

nxnxn
are set to 0 while others are set to 1/n? in Eq. (18), which can learn the
initial structural features of superior sub-population and increase the
guidance toward potential regions at the initial phase. Moreover, the
probabilistic model PMC_, . in step 3 can keep learning the promising
patterns extracted from the superior subpopulation and progressively

accumulate the useful information of similar blocks by using an
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adjustable learning rate to make a trade-off between historical and
current information. At the end of the update process, the normaliza-
tion is necessary for the probabilistic model PM¢

nxnxn*

In order to
illustrate the proposed probabilistic model PM¢

nxnxn
process of PMS_, . is given in Fig. 6, where the learning rate r is set to
0.5.

clearly, the update

3.2.3. Sampling strategy

The probabilistic model is able to implicitly estimate the distribution
characteristics of the superior solutions in the solution space by con-
verting characteristic information into corresponding probability
values. In order to appropriately apply these stored promising patterns
from the high-quality solutions by means of MC¢_, ,, it is necessary to
design an effective sampling strategy for the proposed multi-
dimensional probabilistic model PMC,, . Let 26k = [z5% 75K . 7Gk]
denote the kth individual in Pop(G), and RS, = [R$,(1),R5,(2), ..,
RS,,(n)] denote the temporary row vector. Define SelectJob(z%*,i) (i > 1)
as the job selection function, which is used to determine one candidate
job Jg at the ith position of 7%, Since the probability information that
the job block [z°* z%¥] is selected to locate in the (i —1)th position in
a%* is stored in the PMC , (i
function SelectJob(x%* i) is used to sample only by means of the (i —1)th

—1), where i> 1, the job selection
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regions found by the superior solutions, a specially designed sampling
strategy is used to determine the first job of 7¢*, namely first position
limited sampling strategy (FPLSS), which is described in Algorithm 4. It
is clear that the PMS , (1) holds the total probability information of
various job blocks that appeared in the first position of all the selected
superior solutions in SPop(G) before the Gth generation. In Algorithm 4,
lines 1-4 are used to calculate the cumulative probability of each row

vector in PMC (1), and lines 5-13 are used to generate the first job

7%¥ of 26* by means of the roulette wheel selection, which is helpful in
controlling the search direction reasonably. The procedure of new
population generation is provided in Algorithm 5.

Algorithm 3:SelectJob(PMS

nxnxn

(i — 1),25% )

Input: PMS__(i-1), n%* and i.

nxnxn

1:  Produce a random value p, where p, e [O,ZZ:

PMG, (i —1,725% ,h)) .

2 if p, €| 0,PMY,,(i~1,77f 1)) then

3 Jy 1.

4. else

5 for =1 to n—1 do //Roulette wheel selection.

6 if p, e[zzzlpM,fim (=175 ), 3 PMG, -1, n,?ff,h)) then
7 J, < t+1, break.

8: end if

9: end for

10:  end if

111 for t=i to n—1 do //Avoid repeated selection of jobs.
12: for j=11t n do

13: PM (8, ) =0.

14: end for

15 end for

Output: the candidate job J| .

layer of the probabilistic model PMS , ., and then the procedure of
SelectJob(zC* 1) is described in Algorithm 3. Note that the job selection
function SelectJob(n®*, i) depends on the job ﬂi’i at the (i —1)th position
when selecting the job ﬂ?‘k at the ith position in z¢*. Because the job ﬂOG’k
does not exist, SelectJob(n%* i) cannot be adopted to determine the first

job ﬂf'k of 7%k, In order to guide the search direction toward promising

13

It should be pointed out that line 6 in Algorithm 5 is used to build the

promising job block (i.e., [ﬂi’i ,fc? *

]) at positions i —1 and i by using the
roulette wheel selection rule on the row vector PMS,, (i — 1, 7°%).
Meanwhile, the promising job blocks at different positions can be linked
together via order relation information in lines 2-9 to produce a new
individual, which is a key step of MCEDA’s global exploration. The

larger the probability value corresponding to the job block, the more
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likely it is to be selected during the sampling process. Since the large
values and their subscripts in PMS_, , are determined by the excellent

individuals, new generated individuals can inherit more promising
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In Algorithm 5, the computational complexity in line 4, line 6, and lines
1-11 are O(n?), O(n?) and O(ps x n?), respectively. Thus, the total
complexity of Algorithm 5 is O(ps x n2).

patterns or blocks at suitable positions. Therefore, MCEDA can better

guide the search to promising regions in solution space. In Algorithm 3,

Algorithm 4:FPBSS(PMS , ., (1),7%*)
the computational complexity in lines 2-10 is O(n) and the complexity

in lines 11-15 is O(n?). In Algorithm 4, the computational complexity in

G,
nxnxn(l)’ n k'
1: for y=1to n do

Input: PMS

2
3:  end for
4:  Produce a random value p, where p, € [O,zzzl RS, ( y)) .

5. if p, €| 0,Rf, (1)) then

6: Jy 1.

7:  else

8: for t =1 to n—1 do //Roulette wheel selection.
9 if p, E[Ztyzl RSy (y),ztyf1 REy, (y)) then
10: J, < t+1, break.

11: end if

12: end for

13: endif

14: for t=1to n—1 do //Avoid repeated selection of jobs.
15: for j=1to n do

16: PMrﬁnxn(t:j’Js):O'

17: end for

18: end for

Output: the candidate job J,.

RS, (y) = ZZ:] PME, . (1,v,2). /[Calculate the cumulative probability.

line 2, lines 5-13 and lines 14-18 are O(n?), O(n), and O(n?), respec-
tively. Thus, the complexity of Algorithm 3 and Algorithm 4 are O(n?).

Algorithm 5: New Population Generation

Input: PM¢ &k , Pop(G+1).

nxnxn °

1 for k=1 to ps do

2 for i=1to n do

3 if i=1 then

4 J, < FPBSS(PMS_  (1),n%*). //Algorithm 4

5: else

6: ‘ J, < SelectJob(PMS,_ (i -1),7%* 7). //Algorithm 3
7 end if

8 zok=J, .

9 end for

10: Pop(G +1) < Pop(G +1) a%F, 7% « &

14
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3.3. Critical path-based local search

According to the property analysis of the considered problem in
Subsection 2.3, it can be seen that the landscape of the feasible solution
space of the EE_ DAPFSP is complex and varied, resulting in a large
number of high-quality non-dominated solutions are non-uniformly
scattered in several local regions near the bottom of the feasible solu-
tion space. In order to enhance the depth search capability and achieve a
satisfactory trade-off between exploration and exploitation, it is very
necessary to conduct a deeper exploitation (local search) on the nearest
neighbor regions of these non-dominated solutions found by the explo-
ration (global search) of MCEDA. It is well known that the ability of the
local search largely depends on the development of the neighborhood
structure and the design of the neighborhood order. For the sequence
model of PFSP, there are several commonly used neighborhood search
operations, such as Insert, Swap, Interchange and Inverse. Notice that, for
the DAPFSP, the intra-factory swap or insert operations and the inter-
factory swap or insert operations are commonly used neighborhood
operations (Wang & Wang, 2016; Zhang et al., 2021). Since the
maximum completion time Cpqx (7, V) of each feasible solution (z, V) is
directly determined by the critical path (Wang & Wang, 2016; Zhang

(2 ]15]14]1]7]4]09]

Swap ,,zfc and ,;{r

Je

Io}

fe

'
|5 [12]10]8|3]11[87]13]
I_'—I
Critical job
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etal., 2021), it is possible to shorten the maximum completion time only
by adjusting all jobs on the critical path. In this subsection, four kinds of
the neighborhood structures are designed based on the problem-specific
critical path, and then a variable neighborhood search method based on
these neighborhood structures is performed for the high-quality solu-
tions in the non-dominated set Q obtained in MCEDA's global search. To
be specific, the swap and insert operations within the factory are per-
formed separately for each non-dominated solution, and then the swap
and insert operations between factories are performed separately. It
should be noted that the job on the critical path of the feasible solution
(w, V) is the critical job, the factory where the critical job is located is the
critical factory, denoted as f.. Let ny, be the total number of jobs assigned
to the critical factory f., and n. be the number of critical jobs in the
critical factory. To make it more intuitive, an illustration of critical path-
based neighborhood operations is given in Fig. 7. Moreover, the four
types of critical path-based neighborhood structures are described in
detail as follows.

(1) Intra-factory Swap: Randomly select a critical job (e {1,2,..,
n.}) and exchange the positions of the critical job 7 with each
non-critical job W =n+1 ;-1 ) within the critical factory f..

(2) Intra-factory Insertion: Randomly select a critical job mue {1,2,
..,Nc}) and insert the critical job 7 before or after the position of

flalslal1]7]4]9]

—

flsle s |3 |1]12]13]

(a) Intra-factory swap within the critical factory.

(2 ]15]14]1]7]4]09]

Insert ) after e

Je

[
flsllo]s]3]11le]13]
I—'—I

Critical job

flalsal1]7]4]9]

m—-

flslw] 83 npe]ie]iz]

(b) Intra-factory insertion within the critical factory.

rlalisp#if7]4]9]

Swap zJ- and z ]
s l12]10]8|3]11]6]13]
I—'—I
Critical job

fe

flalsfizl1]7]4]9]

m—)p-

flslaglo]s8 3 |11]6]13]

(c) Inter-factory swap between the critical factory and the other factory.

fl2l1stial1]7]4]9]

Insert 7} after )
|5 l2]10[8[3]11]6[13]
|—'—|
Critical job

fe

Je

2lsagl2)1]7]4]9]

flslw]8]|3]11]e]13]

(d) Inter-factory insertion between the critical factory and the other factory.

Fig. 7. An illustration of the four critical path-based neighborhood structures.
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each non-critical job n{, (v =nc +1,...,nz) in the critical factory
fe, respectively.

(3) Inter-factory Swap: Randomly select a critical job e {1,2,..,
n.}) and a non-critical job n{f ve{l,2 .. nfs}) in F—1 non-
critical factories f;, and exchange the positions of the critical
job ¢ with each non-critical job ﬂ,{s, respectively.

(4) Inter-factory Insertion: Randomly select a critical job e {1,2,
..,Nc}) and a non-critical job ﬂ{f ve{1,2, ...,nfg}) in F —1 non-
critical factories f;, and insert the critical job 7 before or after

the position of each non-critical job ﬂ{f, respectively.
3.4. Speed adjustment strategy

In order to achieve a satisfactory tradeoff between the maximum
completion time Cpq (7, V) and total carbon emission TCE(z, V), the
proposed algorithm not only needs to conduct the critical path based
local search for the corresponding job order z of each non-dominated
solution (7, V) obtained in each generation, but also needs to regulate
the corresponding speed assignment matrix V for each non-dominated
solution (7, V) appropriately. Since the processing speed of each ma-
chine in all factories is adjustable, it is necessary to further perform a
series of speed adjustment strategies for each non-dominated solution
(7, V) obtained from the critical path based local search in Subsection
3.3. According to the problem property analysis in Subsection 2.3, two
types of speed adjustment strategies are given as follows.

(1) The energy-saving speed adjustment strategy. As for the total
carbon emission (TCE) criterion, the processing speed of each job
on the critical path of feasible solution is kept unchanged, and the
processing speed of the other jobs on the non-critical path should
be suitably shortened to avoid excessive energy consumption and
carbon emission as much as possible. This speed adjustment
strategy (see Subsection 3.2) is given in Algorithm 6.

The reduced-time speed adjustment strategy. As for the maximum
completion time (Cpqy) criterion, the processing state of each job
on the non-critical path of each feasible non-dominated solutions
is kept unchanged, and the processing speed of each job on the
critical path can be increased to further reduce the maximum
completion time (Cpq) as much as possible. To be specific, if
there is a slightly larger time margin between the critical opera-
tion O;; and the non-critical operation O;_; ; on any one machine
M;, the processing speed of the critical operation O;;_; can be
increased appropriately, so the corresponding processing time of
0;j-1 would be shortened. Then, all related operations after O;;_;
can be shifted forward, and these operations can be completed as
early as possible, which may directly advance the assembly
completion time of the first product and all other subsequent
products. As introduced in Table 1, this speed adjustment strategy
can generate possible new non-dominated solutions, thereby
enhancing the diversity and number of the obtained non-
dominated solutions.

(2

The procedure of the reduced-time speed adjustment strategy is
shown in Algorithm 7. For example, three operations O3 1,0g1,Og2 on
the critical path in Fig. 4(a) correspond to three critical operations, and
there is a certain time margin between the critical operation Os » and the
non-critical operation Os,. Then, the processing speed of the critical
operation Og; can be increased, so that the processing time of this
critical operation is shortened accordingly. All of operations after the
critical operation Og; can be moved from the backward to the forward
in turn, which may allow the jobs and the product P, to be processed and

16
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assembled as early as possible. In order to ensure that the non-
dominated solutions obtained by the proposed algorithm have good
dispersion and diversity, different speed adjustment strategies are
further carried out to selectively optimize different criteria, i.e., the
makespan and the total carbon emission. For each non-dominated so-
lution (7, V) in Pareto archive Q*, the maximum completion time (Cpax)
and the total carbon emission (TCE) are first normalized separately for
each non-dominated solution, that is, Cpnax(7, V) (Crmax(m,
V) — Cpin)/(Crex — Cpin,), TCE(x, V) = (TCE(x, V) — TCE™")/(TCE™™
—TCE™"), where CT, C™%, TCE™" and TCE™™ respectively represent
the smallest Cy,qx, the largest Cpqy, the smallest TCE and the largest TCE
of all feasible solutions in the obtained non-dominated set. Then, the
computational expression a(z,V) = (TCE(x, V) + €)/(Cnax(7, V) + €) is
defined as the preference level of each feasible solution (z,V), where ¢ =
0.01 and the range of a is (0, + o). Obviously, the larger value of &
implies that the total carbon emission of the feasible solution (7, V) are
higher while the maximum completion time of this solution is smaller, so
it is necessary to focus on reducing the total carbon emission rather than
the maximum completion time. Conversely, the smaller value of a sug-
gests that the total carbon emission of the feasible solution (7, V) is lower
but its maximum completion time is larger, then more attentions should
be paid to optimize the production efficiency criterion. According to the
different values of preference level a for each feasible solution (7,V), two
kinds of speed adjustment strategies are provided as follows.

Step 1: Identify a critical path for each non-dominated solution in
non-dominated solution set Q. If there are multiple critical paths, one
critical path is selected randomly.

Step 2: Perform the presented four types of critical path-based
neighborhood search operations for each non-dominated solution in
turn. If the obtained new solution dominates old solution, the new non-
dominated solution is used to replace the old one and re-determine the
critical path. Then, continue to perform the subsequent neighborhood
search operations. If they are not dominated by either of them, the ob-
tained new solution is added to the non-dominated solution set Q, and
other remaining neighborhood search operations continue to be per-
formed on the current solution.

Step 3: Calculate Cpgy(7, V) and TCE(z, V) for each solution (z, V) in
the non-dominated set €, and then a(r, V)= (TCE(x,V)+¢)/
(Cmax(7, V) + €) is obtained.

Step 4: Sort all non-dominated solutions in ascending value of @, and
divide the non-dominated solution set Q into two parts, namely Q. and
Q,, where |Q| = |Q.| + |Q.|. The obtained non-dominated solutions in
Q. with a small value of a need to be optimized for Cpqy, while the non-
dominated solutions in €, have a large value of a and these solutions
should to be optimized for TCE.

Step 5: Perform the reduced-time speed adjustment strategy for all
non-dominated solutions in Q.. That is, the processing state of all jobs on
the non-critical path is kept unchanged and the processing speed of some
jobs on the critical path is increased, so as to reduce the maximum
completion time (Cyqy) of these non-dominated solutions.

Step 6: Perform the energy-saving speed adjustment strategy for all
non-dominated solutions in Q.. That is, the processing speed of all jobs
on the critical path is kept unchanged and the processing speed of each
job on the non-critical path is adjusted, so as to achieve the lowest
possible total carbon emission (TCE) under the same makespan (Cpqy)
and further improve the quality of each non-dominated solution.

Step 7: Update the Pareto archive Q*. If the number of the non-
dominated solutions in the non-dominated set Q is larger than ps, then
all of the feasible solutions are sorted by means of their crowded dis-
tances according to Algorithm 1, so as to eliminate some solutions with
the smallest crowded distance until the number of feasible solutions in
the non-dominated set (population) reaches ps.
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Algorithm 6: Energy-saving speed adjustment strategy

Input: The processing speed matrix V, and non-dominated set Q.

1 Identify a critical path for each non-dominated solution in non-dominated set Q.

2:  Putall of the critical jobs into a set CJ .

3 for f=11t F do

4: for j=m downto 1 do

5: for i=n, downto 1 do

6 if 7/ € CJ then goto Next Job.

7 if j=m and i=n, then

8 Determine the product P, to which job i belongs.
A

9 Tmargin = SPh _q,j ~Pi /Viaj :

10: else if j =m then

11: Tmargin = Cz'+1,_/ — Pi+l,j /Vi+1,j - (Cz',j —Pi; /Vi,_;) .

12: elseif i=n, then

13: Tmargin = Cz’,_/+1 —Pij+ /Vz',j+1 _(Ci,j —Pi; /Vi,j) .

14: else

15: Tmargin = min{ci,j+l —Pij+ /Vi,j+1aci+1,j —Piy,j /Vi+1,j} _(Ci,j —Pij /Vi,j) .

16: end if

17: v=v, ;.

18: for t =4 downto 1 do

19: if v; ; >v, then

20: if 7,,40in 2 P; ; /v, then

21: V; ; =V, . [/Obtain the minimum allowable speed within T, -

22: end if

23: end if

24: end for

25: if v+v, ; then

26: Ci,j :Ci,j — D /Vi,j _Tmargin .

27: end if

28: Next Job:

29: end for

30: end for

31:  end for

Output: The processing speed matrix V , non-dominated set Q.

17
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Algorithm 7: Reduced-time speed adjustment strategy

Expert Systems With Applications 194 (2022) 116484

Algorithm 6) and the reduced-time speed adjustment strategy (see Al-
gorithm 7), for all of the non-dominated solutions according to different
preference levels. Then, update the Pareto archive Q*.

Step 7: Determine whether the termination condition is satisfied. If

Input: The processing speed matrix V , and non-dominated set Q.

Identify a critical path for each non-dominated solution in non-dominated set Q.
Put all of the critical jobs into a set CJ . Execute operations in critical factory f, as follows.

1
2
3 for j=1 1t m do
4 for i=1 to ny do
5: if 7rlf" ¢ CJ then goto Next Job.
6 if i=1and j=1 then
7
8 elseif ;=1 then
. A5
9: Cj=Cijtpi;-
10: else
. ~5
11: G =max{C_, ;,C 1} +D;;.
12: end if
13: Next Job:
14: end for
15:  end for

sk AS . .
C.; =G, —Dpi,;* P l/Adjust to maximum speed.

Output: The processing speed matrix V , non-dominated set Q.

3.5. The framework of MCEDA

According to the design above, the specific process of the proposed
MCEDA for solving the EE_DAPFSP is as follows.

Step 1: (Initialization) Initialize the population Pop(0) via Algo-
rithm 2, the multi-dimensional probabilistic model PM?_, .
Eq. (18), and key parameters of MCEDA, i.e., ps,p,r.

Step 2: Evaluate each individual in Pop(G) by using Egs. (1-9), and
calculate the matrix cube MCS . according to Egs. (13-14).

Step 3: Determine the Pareto dominance relationship of all in-
dividuals in Pop(G). Calculate the corresponding dominance level and
crowding distance of these individuals via Algorithm 1. The top ps x ¢
excellent individuals are selected to form a high-quality subpopulation
SPop(G) after sorting all individuals in Pop(G). Then, update the Pareto
archive Q*.

Step 4: (Global exploration) Update the multi-dimensional proba-
bilistic model PMY ., by means of the incremental learning mechanism
in Subsection 3.2.2, where the superior subpopulation SPop(G) is
selected in Pop(G).

Step 5: (Global exploration) Sample the multi-dimensional proba-
bilistic model PMY ., to generate new population Pop(G + 1) by using
the specific sampling strategy in Subsection 3.2.3.

Step 6: (Local exploitation) Perform the critical path based local
search in Subsection 3.3 for each non-dominated solution, respectively,
and further execute two types of speed adjustment strategies in Sub-
section 3.4, ie., the energy-saving speed adjustment strategy (see

by using

18

not, then the program goes to Step 2, otherwise terminate the loop and
output the currently obtained Pareto archive Q*.

The flowchart of the proposed MCEDA for the EE DAPFSP is illus-
trated in Fig. 8. According to the above steps, it can be seen that the
MCEDA proposed in Section 3 effectively integrates many advantages of
both the EDA-specific global exploration and the problem-dependent
local exploitation. During each iteration of MCEDA, each new solution
is generated by sampling from the promising regions in the solution
space based on the multi-dimensional probabilistic model, and then the
critical-path based local search with two speed adjustment strategies are
performed for high-quality solutions, respectively. Since the multi-
dimensional probabilistic model is updated based on high-quality sub-
population, the total characteristic distribution information of prom-
ising patterns from superior solutions can be well learned and stored, so
that the sampling process can be concentrated around more potential
regions in the solution space. Because of the performance of the
scheduling schedule is well stressed and balanced by taking into account
the benefit of both global exploration and local exploitation, it can be
expected to achieve better results for solving the EE_DAPFSP.

4. Experimental comparisons and statistical analysis

The following subsections are devoted to evaluate the overall per-
formance of the proposed MCEDA for the considered EE_DAPFSP. First
of all, some information about experiments is provided, which includes
experimental setup and performance metrics. Then, the parameters of
MCEDA are calibrated. Afterwards, the advantages of each improvement
strategy in MCEDA are investigated. Lastly, comprehensive comparisons
are conducted and experimental results are analyzed by comparing
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Start

v

Initialize the population Pop(0) and the multi-dimensional
probabilistic model Pngnxn . Set MCEDA’s key parameters
r, ps and sps (sps=ps %), respectively.

v

G

nxnxn °

Evaluate each individual in Pop(G) , and calculate MC

v

v

Select the top ps X¢ superior solutions in Pop(G) to update

multi-dimensional probabilistic model PM

G

nxnxn*

v

Sample the multi-dimensional probabilistic model PM
generate the next population Pop(G +1) . Then, evaluate all
individuals to update the Pareto archive set Q*

&

nxnxn

(0]

uonero[dx? [eqo[D
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Fig. 8. The flowchart of MCEDA for the EE_DAPFSP.

MCEDA with several state-of-the-art multi-objective algorithms.
4.1. Experimental setup

In order to effectively and reasonably investigate the performance of
MCEDA for addressing the considered EE_DAPFSP, in this section,
extensive experiments and computational comparisons are carried out
for the proposed MCEDA with several high-performing algorithms in the
literature. Since the performance of the algorithm is usually greatly
affected by different problem scales, we employ two well-known
benchmark data sets presented by Hatami et al. (2013) and extend
them by adding speed levels of machines in the processing stage to
obtain two suitable testing sets for the EE_DAPFSP. The first testing set
consists of 900 small-scale instances with 180 groups and each group
contains 5 different instances, wheren = {8,12,16,20,24},m = {2,3,4,
5}, F ={2,3,4},and S = {2,3,4}. The second testing set is composed of
810 large-scale instances with 81 groups and each group includes 10
different instances, where n = {100,200,500}, m = {5,10,20},F = {4,
6,8}, and S = {30,40,50}. So, the total number of testing instances is
1710 and datasets are available at http://soa.iti.es. Since the running
state of each machine in processing stage is variable and adjustable, the
processing speed is selected from a series of discrete values
{1,1.3,1.55,1.75,2.10}, that is, there are total five adjustable speed
levels for each machine. The processing power consumption of machine
M; running at speed vy is Ej = 4 x v,% (kW) while the standby power
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consumption of machine M; is SE; = 1 (kW), and the speed adjustment is
not considered in the assembly stage. In addition, it should be pointed
out that calibrating algorithms by using the same benchmark instances
that will later be adopted for computational comparisons constitute poor
practices, which would result in over-fitting or biased experimental re-
sults (Pan & Ruiz, 2012). Therefore, it is of great importance to defi-
nitely distinguish between the calibrating instances and the final testing
benchmark instances. For this reason, two types of new calibrating set
that contain 180 instances for small-scale problems and 81 instances for
large-scale problems are independently yielded based on the problem
generation method provided by Hatami et al. (2013) for parameter
calibration. To be specific, the small-scale calibrating instances contain
complete combinations of n = {8,12,16,20,24}, m ={2,3,4,5},F ={2,
3,4},and S = {2, 3,4} and the large-scale calibrating instances consist of
n = {100,200,500}, m = {5,10,20}, F = {4,6,8}, and S = {30,40,50}.
The processing times of jobs are randomly sampled from a uniform
distribution in the range [1,99], and the assembly times of each product
Py, are generated according to a uniform distribution in the range [1 x Np,
99 x Npl.

In order to conduct computational comparisons fairly, the same
experimental settings are adopted for all compared algorithms,
including the same CPU Gigahertz frequency, programming language
and termination criteria. All algorithms involved in this study are coded
by Pascal language and compiled on Embarcadero RAD Studio XE8. The
numerical experiments are independently executed on a PC with Inter
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(R) Core(TM) i7-8700 M CPU @ 3.2 GHz processor and 16G of RAM
under Microsoft Windows 7 OS. According to the analysis of the problem
properties in Subsection 2.3, it is difficult to find the Pareto optimal
frontier within a finite period of time since the feasible solution space of
the considered problem is complex and multivariate. The performance
of the proposed MCEDA are measured by comparisons with four related
state-of-the-art multi-objective evolutionary algorithms (MOEAs),
namely, non-dominated sorting genetic algorithm (NSGA-II) (Deb et al.,
2002), modified multi-objective iterated greedy (MMOIG) algorithm
(Ding et al., 2016), knowledge-based cooperative algorithm (KCA)
(Wang & Wang, 2020), and multi-objective whale swarm algorithm
(MOWSA) (Wang et al., 2020). The NSGA-II was first proposed by Deb
et al. (2002). Due to its sample and efficient optimization performance,
NSGA-II has been widely applied in a variety of multi-objective opti-
mization fields, and it is recognized as one of the most effective algo-
rithms for solving various multi-objective shop scheduling problems.
The iterated greedy (IG) was first proposed by Ruiz and Stutzle (2008), it
combined with the high efficiency of constructive heuristics and the
advantages of simulated annealing approach, which is also regarded as a
simple and effective algorithm for tackling different kinds of flow shop
scheduling problems. The MMOIG is an effective extension of the typical
IG algorithm in a multi-objective optimization perspective, where an
extended NEH-Insertion is incorporated in the framework of MMOIG
and several problem-dependent multi-neighborhood local searches are
adopted to achieve satisfactory results in addressing the low-carbon
PFSP (Ding et al., 2016). KCA is a high-performing algorithm recently
proposed for handling the energy-efficient DPFSP. KCA can adopt a se-
ries of searching operators based on problem’s characteristics and ach-
ieve multi-neighborhood cooperative search in the feasible solution
space through control factors. MOWSA is another newly presented
multi-objective algorithm for the energy-efficient DPFSP (Wang et al.,
2020). In the literature, KCA and MOWSA have shown relatively good
performance than other well-known MOEAs in solving the low-carbon
DPFSP.

Taking into account the fairness, all tested algorithms are performed
under the same termination conditions. That is, the maximum elapsed
CPU time of the proposed MCEDA with NSGA-II, MMOIG, KCA and
MOWSA is set to the same time commonly used in the literature, i.e., n x
m X f x 10 milliseconds. In order to ensure the stability and reliability of
the experimental results, computational comparisons are independently
conducted 30 and 10 replications for small-scale instances and large-
scale instances respectively, and all of the numerical results are
collected and statistically averaged to eliminate random errors. It’s
worth noting that, for the largest testing instances of 500 jobs, 20 ma-
chines and 8 factories, the program needs to run about 800 s. Due to the
proposed MCEDA and four compared algorithms are independently
tested in 30 and 10 replications for small-scale and large-scale instances,
a total number of 900 x 5 x 304810 x 5 x 10 = 175500 results for
each performance metric would be yielded. As a result, for this larger
dataset, most factors are statistically significant, which may allow us to
draw strong conclusions.

4.2. Performance metrics

The metrics of MOEAs are significantly different from that of single-
objective algorithms, so it is of great importance to comprehensively
evaluate the convergence and diversity (distribution) of MOEAs (Wang
& Wang, 2020). On the one hand, the high-performing MOEAs need to
find more non-dominated solutions that should approximate to the true
Pareto optimal front as closely as possible within an acceptable time. On
the other hand, the distribution characteristics of the non-dominated
solution sets obtained by MOEAs should be as widely as possible, so as
to facilitate the decision maker to choose some suitable schemes by
preferences. To verify the effectiveness and efficiency of MOEAs, the
non-dominated solution set obtained by all algorithms are measured by
some general metrics as follows.
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(1) Coverage Metric: It can be used to measure the relatively quality
between two Pareto archives obtained by two different algo-
rithms A and B, denoted as C(A,B). C(A, B) gives a mapping from
a pair of algorithms (A,B) into the interval [0, 1], which is rep-
resented as follows.

‘%‘Hb €Bl3acA:a>bora=>b}|

From Eq. (21), the coverage metric reflects the dominance rela-
tionship of feasible solutions from two non-dominated solution sets. If
all solutions obtained by B are dominated by some solutions obtained by
A, then C(A,B) = 1. Conversely, if all solutions obtained by B are not
dominated by any solution obtained by A, then we have C(A,B) = 0.
Since the solutions obtained by A and B do not necessarily dominate
each other, it holds that C(A,B) + C(B,A) # 1.

C(A,B) = @D

(2) Reference Distance (DIg): The reference distance metric DI is used
to measure the distance of the elements in non-dominated solu-
tion set Q with respect to the reference set Q*, where Q* is
composed of high-quality solutions in the Pareto archives yielded
by all algorithms. Due to the NP-hard in strong sense with high
complexity of the EE_DAPFSP, it is usually difficult to obtain the
true Pareto optimal set, so the reference set Q* is composed of the
Pareto archives aggregated jointly by all algorithms. The distance
metric DI can be expressed as follows.

DIx(Q

me{d x,y)lx e Q}. (22)

|Q* YEQ*

where d(x,y) is the Euclidean distance between x € Q and y € Q* in the
normalized objective space (Ishibuchi et al., 2003), which can be
calculated in Eq. (23).

d(x,y) = $i[(f

i=1

(](mm _

(23)

In Eq. (23), f; is the ith objective function, and f™™ and f/"" are the
maximum and minimum values of the objective function f;, respectively.

Obviously, DI(Q) is expected to be as small as possible, indicating that

Q' is closer to reference set Q*, which means the algorithm has better
performance.

(3) Distribution Spacing (DS): The distribution spacing metric DS is
adopted to measure the distribution uniformity of solutions ob-
tained by a specified algorithm. The distribution spacing metric
can be calculated as follows.

2|

1
DS = \|—
Q] =

(24)

> (D - D)*/D.

where D = ELZ;‘Di /|Q|. D; denotes the minimum Euclidean distance
between the ith feasible solution in the solution set Q and the other
feasible solutions in Q. From Eq. (24), it is obvious that the smaller the
value of DS is, the more evenly distributed of the solutions in Q  are.

(4) Non-dominance Ratio (p,): It is used to measure the proportion of
the non-dominated solution set Q obtained by a specific algo-
rithm in the reference set Q*. Obviously, the larger the p,, the
better the performance of the algorithm.

Furthermore, to increase the soundness of our conclusion, two state-
of-the-art quality metrics, i.e., Hypervolume (Zitzler & Thiele, 1999) and
Unary epsilon (Zitzler et al., 2003), are also adopted to evaluate quality
of the found non-dominated solution sets, which are described as



Z.-Q. Zhang et al.

follows:

(5) Hypervolume (Iy): The hypervolume represents the volume of the
hypercube enclosed by all solutions in a given Pareto front PFg
and the reference point 2" = (2], 2}) in the objective space. Each
objective value of each solution x € PF; is normalized into [0, 1]
before calculating the I; value. The normalized value f, (x) for the
ith objective of solution x can be calculated as

fi, (x) _ (f;(x) _fimin)/(fimax _f,'mm)< (25)
where fMn, fmax and f;(x) have the same meanings with Eq.(23). Then,
the hypervolume indicator Iy for the bi-objective problems can be
calculated using Lebesgue measurement in Eq.(26).

|PFg|

In(PFg) = Y (7 = fi(a)) x (fax) = fo (%))

k=1

(26)

The accuracy of calculating I;; depends on the choice of the reference
point, i.e., when evaluating the same Pareto front (non-dominated so-
lution set), selecting different reference points will result in different
results. According to the references (Minella et al., 2008; Ciavotta et al.,
2013), the reference point is usually selected as (1.2,1.2). The hyper-
volume is a Pareto-compliant evaluation metric, which means that if one
Pareto front PF} is better than another Pareto front PFZ, then the
Hypervolume metric of PF}, will be greater than that of PF2. The larger
value of the hypervolume indicator I, the better convergence as well as
a good coverage of the optimal Pareto front.

(6) Unary Epsilon (Ig): It is used to measure the minimum distance
between a given Pareto front PF; and the reference (optimal)
Pareto front PFr. To avoid errors arising from dividing by zero in
the calculation of I, each objective value fi(x) should be
normalized into [1, 2] as follows.

f;', (x> _ (f;(x) 7fimin)/(f[max 7.f;'m[") + 1.

According to Eq.(27), the I! value varies between 1 and 2. If the I
value close to 1 implies that the given Pareto front is close to the
reference Pareto front, whereas the I' value close to 2 means that it is
distant. Then, the bi-objective I! can be calculated as

(27)

Table 3
The levels of parameters.

Parameters Factor level
1 2 3 4 5
ps 10 30 60 90 120
@ 0.1 0.2 0.3 0.4 0.5
r 0.05 0.1 0.2 0.3 0.4
Table 4
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I1(PFg, PFy) = max min max(f, (x) /. ().

YEPFRYEPFG1<i<2

(28)

Since the true Pareto front for each instance is unknown, a union set
constituted by aggregated all non-dominated solutions obtained by all
algorithms, is regarded as the reference (optimal) Pareto front PFy. It is
clear that a smaller I! value means a better approximation to the
reference Pareto front.

Notice that, it is unnecessary to immediately evaluate the Pareto
archives obtained by each algorithm after finishing each iteration. The
Pareto archives yielded by each of the algorithms are measured if and
only if all of the algorithms have been run and all non-dominated so-
lutions have been collected. Then the maximum and minimum values of
each objective function can be determined, so the minimum and
maximum values are fixed, which is fair for the evaluation of each non-
dominated solution.

4.3. Parameter calibration

Since parameter calibration plays an important role in the develop-
ment of high performing metaheuristics, the reasonable values of pa-
rameters have remarkable impact on the effectiveness and efficiency of
the designed algorithms. Meanwhile, it should be point out that the
statistical calibration is only a fine-tuning process and stochastic algo-
rithms are not expected to behave entirely different after calibration. In
this section, the Design-of-Experiments (DOE) methodology (Mont-
gomery, 2008) is employed to analyze the sensitivity of main parameters
and further investigate the effects of each parameter on the performance
of the proposed MCEDA. There are three control parameters in MCEDA,
i.e., the population size (ps), the percentage of superior subpopulation
(¢), and the learning rate (r). A series of potential values (levels) of
parameters (factors) are firstly considered through summarizing previ-
ous relevant literature (Wang & Wang, 2016; Zhang et al., 2021), and
then the suitable scope of each parameter is determined according to
some preliminary experiments. The considered levels for all factors are
listed in Table 3. As seen in Table 3, a total of 5 x 5 x 5 = 125 different
configurations for the proposed MCEDA are yielded. Thus, a full facto-
rial experimental design is considered for all configurations, and some
additional instances generated by ourselves are adopted as the test bed,
which includes 180 basic instances for small-scale problems and 81 basic
instances for large-scale problems. Each configuration is tested on these
261 instances where 10 independent replications are performed under
the same parameter combination for each instance. As a result, there are
a total of 125 x 261 x 10 = 326250 treatments, which implies that a
total of 326250 results (non-dominated sets) would be yielded. The
hypervolume (Ig), unary epsilon (Iél, ), and non-dominance ratio (p,) in-
dicators are regarded as three response values, respectively. The
maximum elapsed CPU time of n x m x f x 10 milliseconds is used as
the termination criterion, so it requires at least 74.375 CPU days to
complete all calibration experiments. Due to multi-cores in our personal

The results of ANOVA over calibrating the parameters of MCEDA for small-scale instances.

Source Hypervolume (I) eUnary Epsilon (I}) Non-dominance ratio (p,)
Sum of Df Mean F-radio p-value  Sum of Df Mean F-radio p-value  Sum of Df Mean F-radio p-value
squares square squares square squares square
ps 0.03916 4 0.00979 1271.58  0.0000 0.11476 4 0.02869 4379.97  0.0000  0.04759 4 0.01190 1180.86  0.0000
) 0.01868 4 0.00467 606.39  0.0000  0.04666 4 0.01166 1780.89  0.0000  0.01199 4 0.00300 297.49  0.0000
r 0.03730 4 0.00933 1211.06  0.0000  0.04469 4 0.01117 1705.77  0.0000  0.00841 4 0.00210 208.75  0.0000
Pt 0.00012 16 0.00001 1.00 0.4683  0.00011 16 0.00001 1.04 0.4310  0.00020 16 0.00001 1.21  0.2847
ps*r 0.00006 16 0.00000 0.48  0.9480  0.00008 16 0.00000 0.73  0.7506  0.00005 16 0.00000 0.32  0.9933
kg 0.00019 16 0.00001 1.52  0.1205  0.00025 16 0.00002 2.41  0.0067  0.00009 16 0.00001 0.57  0.8977
Residual ~ 0.00049 64 0.00001 0.00042 64 0.00001 0.00064 64 0.00001
Total 0.09600 124 0.20696 124 0.06897 124
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Table 5
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The results of ANOVA over calibrating the parameters of MCEDA for large-scale instances.

Source Hypervolume (Iy) Unary Epsilon (I}) Non-dominance ratio (p,)
Sum of Df Mean F-radio p-value  Sum of Df Mean F- p-value  Sum of Df Mean F-radio p-value
squares square squares square radio squares square
ps 0.02195 4 0.00549 1662.67  0.0000  0.00421 0.00105 109.99  0.0000  0.18919 4 0.04730 6306.40  0.0000
) 0.02188 4 0.00547 1657.21  0.0000  0.00760 0.00190 198.56  0.0000  0.04943 4 0.01236 1647.73  0.0000
r 0.02144 4 0.00536 1624.48  0.0000  0.00305 4 0.00076 79.71  0.0000  0.04838 4 0.01209 1612.53  0.0000
ps*g 0.00004 16 0.00000 0.85  0.6279  0.00021 16 0.00001 1.38  0.1812  0.00018 16 0.00001 1.47  0.1408
ps*r 0.00036 16 0.00002 6.76  0.0000  0.00004 16 0.00000 0.28  0.9966  0.00023 16 0.00001 1.93  0.0330
@1 0.00011 16 0.00001 2.06 0.0217  0.00013 16 0.00001 0.86 0.6193  0.00003 16 0.00000 0.27  0.9975
Residual ~ 0.00021 64 0.00000 0.00061 64 0.00001 0.00048 64 0.00001
Total 0.06599 124 0.01587 124 0.28792 124

Note: All F-ratios are based on the residual mean square error. Boldface indicates that is significant at the 0.05 level.

computer, actually almost 2.5 days are adopted to execute the whole
experiment.

All experimental results are analyzed by means of the multi-factor
Analysis of Variance (ANOVA), which has been widely applied as a
powerful parametric statistical technique in many scheduling literatures
(Shao et al., 2018; Sang et al., 2019; Pan et al., 2019). In the ANOVA,
three main hypotheses (i.e., normality, homoscedasticity, and indepen-
dence of residuals), have to be checked and accepted. According to the
residual analysis of the experimental results, all assumptions are easily
satisfied. The ANOVA results of three parameters of MCEDA are reported
in Tables 4 and 5. For the results of ANOVA, the F-ratio is regard as a
clear indicator of significance when p-value is less than the confidence
level. A large F-ratio means that the analyzed factor has a considerable
effect on the response variable. As seen in Tables 4 and 5, all parameters
are statistically significant since their p-values are smaller than the 0.05
confidence level for three performance metrics, i.e., hypervolume, unary
epsilon, and non-dominance ratio. Among these three parameters, the
allowable maximum number of population (ps) achieves the largest F-
ratio, which indicates that ps has the most significant effect on the
performance of the proposed MCEDA for both the small-scale instances
and the large-scale instances.

Fig. 9 provides the main effects plots of all parameters for different
scale testing sets. It is clearly observed from this figure that the choice of
ps = 30 yields the best performance while ps = 120 obtains the worst
results. To be specific, a small population is favorable to perform more
iterations and it is beneficial to achieve a deeper exploitation (local
search) in the feasible solution space. However, if the population size is
too small, then the size of the superior subpopulation may be affected,
resulting the failure of the multi-dimensional probabilistic model to fully
learn the excellent structural characteristics of the superior solutions.
The results of the proposed MCEDA degrades with the increasing of the
population size, and it can be observed from Fig. 9 that the performance
has a considerable change, especially from ps =30 to ps = 120.
Although a larger population is helpful to prompt the diversity of the
obtained non-dominated solutions, it also consumes much more
computational cost and reduces the convergence speed, and thereby
reduce the searching efficiency. In fact, if we adopt the large population,
it may affect the algorithm’s ability to perform more iterations, espe-
cially for addressing the large instances. Thus, the population size ps
should be set as a relatively small value, i.e., ps = 30. The second largest
F-ratio value corresponds to the percentage of superior subpopulation ¢.
It can be observed in Fig. 9 that the value ¢ = 0.2 yields the best results,
while ¢ = 0.5 results the worst performance. Moreover, a small-scale
superior subpopulation is more conducive to accurately learn the in-
formation of both structural features and promising patterns from high-

quality solutions, so the probabilistic model can be updated effectively.

From Tables 4-5, we can see that the factor r is the last significant
parameter. The learning rate can control the balance of information
fusion between the matrix cube and the multi-dimensional probabilistic
model. To be specific, the larger r tends to learn more valuable infor-
mation from the selected superior solutions in each generation, while
the smaller r reinforces the accumulated information of superior solu-
tions during the overall iterative process. Thus, r should be determined
by considering the trade-off between the current knowledge and his-
torical experience, and a suitable learning rate helps the algorithm to
avoid premature convergence or slow convergence as much as possible
(Wang & Wang, 2016). Fig. 9 reveals that the algorithm has good per-
formance when r is equal to 0.2, which verifies the conclusion above.
According to the parametric experiment results and analysis above, for
two different scale testing sets, the best configuration of parameters for
MCEDA is suggested as: ps = 30, ¢ = 0.2, = 0.2.

In order to ensure the fairness of the computational comparisons, this
section further performs some additional parameter calibrations for
NSGA-II, MMOIG, KCA and MOWSA by using the same multi-factor
ANOVA technique. For all of the five compared algorithms, it should
be noted that the population size ps is a common parameter which is
selected as ps = 30 to make a fair comparison. In addition, to ensure the
diversity of the initial population, five different discrete speed values of
1,1.3,1.55,1.75, and 2.10 are adopted to yield the initial speed matrix,
respectively. In NSGA-II, crossover probability (p.) and mutation prob-
ability (pm) are two crucial parameters, which are set as p. = 0.8 and
Pm = 0.1. In MMOIG, the number of destructed jobs (d) and mutation
probability (p) in the destruction phase are two key parameters, which
are set as d = 3 and p = 0.4 following the original literature. The best
parameter combination of KCA is set as: the depth of local intensification
LS = 100, and the proportion of EENEHFF2-based initialization PE =
60. The crossover probability (¢) and mutation probability (8) in
MOWSA are set as: @ = 0.9 and # = 0.2. Notice that, it is meaningless to
determine all parameters by means of the main effects plot, if some
significant interactions are existed between factors. Due to the space of
the paper, 2-level interaction plots of pair factors (i.e., ps*¢p, ps*r and
¢@*r) on three performance metrics are provided only for the large-scale
instances. It is clear in Fig. 10 that the significance of these 2-level in-
teractions is relatively weak and these results are in accordance with the
conclusions above. Meanwhile, it can be observed from Tables 4-5 that
the F-ratio of each parameter is larger than that of their interactions,
which further reveals the proposed MCEDA obtains the best perfor-
mance when ps = 30,9 =0.2,7r =0.2.
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Main Effects Plot for Hypervolume
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Main Effects Plot for Unary Epsilon
Data Means

Mean

1.21

10 30 60 9 120 0.1 02 0.3 04 0.5 0.050.10 0.20 0.30 0.40

(c) The level trend for small-scale instances.

1.285

1.280

1.275

Mean

1.270

1.265

1.260

10

30

60 90

120 0.1 0.2 0.3 0.4 0.5 0.05 0.10 0.20 0.30 0.40

(d) The level trend for large-scale instances.

Main Effects Plot for Non-dominance Ratio
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Fig. 9. Main effects plots of parameters for hypervolume, unary epsilon, and non-dominance ratio.
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Fig. 10. Interaction plots for ps*¢, ps*r and ¢*r for large-scale instances.

4.4. Effectiveness of probabilistic models

In MCEDA, the matrix-cube-based multi-dimensional probabilistic
model is used to learn and estimate the characteristic distribution of
promising pattern from some selected superior solutions, so as to guide
the searching directions toward potential regions. Since various high-
performing EDAs usually employ one or more two-dimensional proba-
bilistic models to guide the global search direction (Jarboui et al., 2009;
Pan & Ruiz, 2012; Tiwari et al., 2014; Wang & Wang, 2016), it is of
necessity to make a fair investigation on the performance of EDA’s
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global exploration. In this subsection, the global search framework of
the proposed MCEDA (denoted as MCEDA;;) is compared with three
effective two-dimensional model-based EDAs, i.e., an effective EDA
designed by Wang and Wang (2016) (denoted as EEDA), a state-of-the-
art EDA presented by Jarboui et al. (2009) (denoted as JEDA;), and a
modified PEDA developed by Pan and Ruiz (2012) (denoted as PEDA;).
Notice that the corresponding local search parts are removed from each
of these three types of EDAs and only the global search is retained.
Moreover, the parameters of three compared algorithms are set the same
as in the original literature. The comparison of MCEDA; against



Expert Systems With Applications 194 (2022) 116484

Z.-Q. Zhang et al.

£0'1 882°1 95€°C ¥SL'0 S€0°0 98T'T 0ST'T 956'C ¥20°0 8€T°0 8yT'T ¥90'T LST'S 6£0°0 SLE0 1211 92T'1 869'C w10 LET'0 a8eroAy
280°1 8TT'1 85S°C 9/5'0 190°0 £2C'1 YOT'T 78T’ 2210 T€E°0 S0E'T 856°0 99b°¢ TL00 940 [32N v8T'T TLTE 1€2°0 1610 VT
850°1 €82°1 T £89°0 ¥50°0 S6T'T 9TT'T bST'E YIT'0 S/T°0 LLTT 286°0 yiee v50°0 YEP'0 YerT 1121 v16'C TLT0 YL1°0 0T
9g0°1 S62°1 yseT S50 2€0°0 L8T'T €ST'T z16T 290°0 e vST'T LOT'T z€TE 1+0°0 z8€°0 SIT'T STT T 9597 10 ZET0 91
£20'1 11e'l 1422 980 ¥10°0 SLT'T LT'T €84 ¥50°0 Y61°0 L1T1 STT'T £56°C S20°0 v1€°0 SIT'T et a4 ¥60°0 SIT°0 zt
vI0°1 sTe'T ySIT £06°0 2100 PST'T S6T'T 159°T £20°0 SPT°0 8811 9pT'T 128°C 2100 14270 SOT'T €921 9g€T §90°0 €L0°0 8
i Hp sa d ¥a il Hy sa ‘d q i Hy sa d ¥aq i Hp sa d Liel
T AIOIN Sy AIOIN Y AIDIN UYQEDIN u
‘VAADIN JO SjueLIBA [[e JO S)[NSal [edN1s1IelS
L31qeL
£L0°1 £08°1 ¥seT 681°0 2910 Y611 88T'T 1€6°C ¥81°0 L¥E0 we't ¥90'T SIT'S 2800 SSH0 90T'T 1421 €49 8520 652°0 a8eroay
860°T SLT'1 vesT SLY'0 Y61°0 €T 1 SPT'T viTe 7810 o 91E'T 8560 exs £80°0 €450 I€T'T veT T S90°€ 2LT0 LIE0 ve
£80°1 €82°1 8SY°T 1SS0 10 §ST'T 2911 zere ¥ST'0 18€°0 ¥8T'T 286°0 79T'e 290°0 v15°0 SIT'T 29T'1 788C YHT0 £82°0 0z
8L0°1 962°1 T€8°T 2P0 TST'0 YoT'T €811 ¥S8'C 1€2°0 STE0 £VTT L0T'T ¥81'e 880°0 124°0 80T'T 9/T'1 £19C z82°0 1€2°0 91
¥90°1 yee't $92°T Yoo vET'0 [Tan: TITT 14L7T 2610 €420 T6T'T STrT 1€6°C 960°0 TSE0 960°T €8T'1 1 ad €92°0 Y120 4
LE0'T 8se'1 181°C TS0 191°0 €ET'T 9eT'T 7€9T £9T°0 2TE0 89T'T 9T'T 758 280°0 £TH'0 780'T TIeT £LET $2T°0 T5T°0 8
i Hy sa ‘d ¥q i H sa d q i Hp sa ‘d ¥1aq i H sa d ¥q
TYQEOIN Tyaad Tyaar Thyaad u

'sd1nRW ddueuLIojrad Ay 10j TyaHad pue Hyadar “Myvadad “MVadDIA JO SINSaI [edNISnelS

9 91qeL

25



Z.-Q. Zhang et al.

Expert Systems With Applications 194 (2022) 116484

0.5 T 1.0 3.5 T
T [ IMCEDA, [ IMCEDA, T [ IMCEDA,
[ IMCEDA,, [ IMCEDA,, [ IMCEDA,,
04F [IMCEDA; [{ 0.8 |-|[C_JMCEDA; R T [IMCEDA,;
[ IMCEDA [ IMCEDA [ IMCEDA
3.0
0.3 T 0.6 1 1
02 ¢ 04| 1
25+
0.1 0.2 1 L
0.0 0.0 g : 2.0

(@) DIR

®) p,

(c) DS

Fig. 11. The box plots of MCEDA,;, MCEDA,», MCEDA, 3, and MCEDA.

EEDA;;;, JEDA,;s and PEDA, is executed on small-scale instances by
using the same elapse CPU time as a termination criterion. All algo-
rithms independently perform 30 times for each instance, and the
average DIy, p,, DS, Iy, I obtained are used as the measure metrics.

The statistical results grouped by the number of jobs are reported in
Table 6, where each cell is averaged across 180 small-scale instances and
30 replicates per instance (5400 values in total). The best value of each
group is highlighted with boldface in Table 6. It is clear from Table 6
that the the average DI, p,, and DS values obtained by MCEDA;; are
obviously better than those obtained by PEDA;;5, JEDA;;s and EEDA s for
all instances. As seen in Table 6, the MCEDA;; significantly outperforms
other three probabilistic model based algorithms on the overwhelming
major of instances in terms of both Iy and Ig indicators, which indicates
the obtained approximated Pareto set is closer to the referenced Pareto
front and better quality. The main reason is that the three-dimensional
probabilistic model in MCEDA,;;; can save the valuable information of
each superior individual in a more accurate and reasonable way.
Nevertheless, the two-dimensional probabilistic models in the compared
algorithms cannot save the position of each similar block and just simply
record all of the same similar blocks in one place of the two-dimensional
matrix. As a result, the similar blocks cannot be placed in the right po-
sitions when generating new individual, which leads a relatively poor
search ability of these compared algorithms.

4.5. Effectiveness of improvement strategies

As stated in Section 3, the proposed MCEDA has three main
improvement strategies: (1) the population initialization method in
subection 3.1; (2) the critical path based local search in Subsection 3.3;
(3) the speed adjustment strategy in Subsection 3.4. To investigate the
effectiveness and efficiency of these improvement strategies, some var-
iants of MCEDA are implemented in this subsection. To be specific, for
the population initialization method, a variant of MCEDA (denoted as
MCEDA,,) is developed. MCEDA,; does not adpot the presented popu-
lation initialization method, and it removes the heuristic method in
Algorithm 1 and only use the random initialization to produce the initial
population. For the critical path based local search, another variant of
MCEDA named MCEDA,; is developed. MCEDA,, does not apply the the
critical path based local search, and it is otherwise the same as MCEDA.
For the speed adjustment strategy, we implement a variant of MCEDA
without the speed adjustment strategy (denoted as MCEDA,3) which is
used to confirm the presented speed adjustment strategy whether pro-
motes the quality of the non-dominated solutions obtained in the local
search. It should be clarified that each variant only modifies a single
component of the proposed MCEDA, and the performance of MCEDA,
MCEDA,;, MCEDA,5, and MCEDA,3 is compared based on small-scale
testing set in the identical elapse CPU time as a termination criterion.
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The same parameter settings are used for MCEDA and its three variants,
and all algorithms are independently performed for 30 times on each
instance, and the average DIlg, p,, and DS obtained are used as the
measure metrics. All of the test instances are grouped according to the
number of jobs, and the statistical results for MCEDA and its variants are
reported in Table 7, in which each value is averaged across 180 test
instances and 30 replicates per instance (5400 values). The best value of
each group is highlighted with boldface in Table 7.

According to Table 7, it can be seen that the MCEDA significantly
outperforms the other three variants on the overwhelming major of five
different types of job sizes in terms of three metrics, DI, p,, and DS,
especially significantly better in the p, metric, which indicates that all
improvement strategies can effectively improve the quality of solutions.
As can be observed from Table 7, MCEDA is better than MCEDA,, in all
instance groups, which demonstrates that the effectiveness of the critical
path based local search. In fact, since the critical path of the considered
problem directly determines the maximum completion time, it is
necessary to allocate the limited computing resource of local exploita-
tion along the critical path direction to adjust the critical jobs instead of
non-critical ones. The critical path-based neighborhood search effec-
tively enhances the local intensification ability of the algorithm, and
exhaustively exploit the potential area around promising solutions,
making them as close to the optimal Pareto front as possible. As revealed
in Table 7, the results of MCEDA outperform MCEDA, 3, which indicates
the effectiveness of the speed adjustment strategy for the considered
problem. The presented two types of speed adjustment strategies not
only can control the production process according to different situations,
but also can complement each other with regard to the two criteria to
jointly improve the quality of the obtained non-dominated solutions. In
addition, the energy-saving speed adjustment strategy can enable the
algorithm to obtain more high-quality non-dominated solutions with
low energy consumption during each iteration. As regards MCEDA,, its
performance is inferior to MCEDA, which suggests that the adopted
heuristic method make the initial candidate solutions converge toward a
possible promising region during the early stage. Meanwhile, a random
initialization is added to ensure the wide distribution of the initial so-
lutions in the solution space. Thus, we can obtain initial solutions with
higher quality and better diversity. In Table 7, we can also see that the
results of MCEDA,, and MCEDA, 3 are inferior to MCEDA at all test in-
stances, which implies that better performance can be reached by
combining the critical path based local search and the speed adjustment
strategy.

Moreover, the statistical results on DS metrics show the dispersion of
the non-dominated solutions obtained by MCEDA is better. To analyze
the results from a statistical perspective, Fig. 11 shows the box plots of
MCEDA and its variants corresponding to the three performance metrics.
As seen in these figures, MCEDA is significantly better than other vari-
ants on all test instances, which indicates the proposed MCEDA has the
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Table 8
Statistical results on C metric of MCEDA with NSGA-II, MMOIG, KCA and MOWSA for small-scale instances.
Fxn C(MCEDA, NSGA- C(NSGA-II, C(MCEDA, C(MMOIG, C(MCEDA, C(KCA, C(MCEDA, C(MOWSA,
) MCEDA) MMOIG) MCEDA) KCA) MCEDA) MOWSA) MCEDA)
2x8 0.99 0.00 0.98 0.01 0.95 0.02 0.91 0.06
2x12 0.97 0.00 0.97 0.01 0.93 0.04 0.87 0.08
2x16 0.96 0.01 0.94 0.02 0.88 0.05 0.83 0.07
2x20 0.94 0.01 0.92 0.03 0.84 0.08 0.81 0.11
2x24 0.92 0.01 0.87 0.06 0.86 0.10 0.82 0.13
3x8 0.96 0.00 0.96 0.01 0.95 0.04 0.91 0.07
3x12 0.95 0.02 0.93 0.03 0.91 0.07 0.85 0.09
3x16 0.93 0.01 0.91 0.05 0.87 0.09 0.84 0.14
3x20 0.91 0.01 0.88 0.04 0.85 0.11 0.82 0.13
3x24 0.90 0.03 0.85 0.06 0.82 0.13 0.78 0.15
4x8 0.95 0.00 0.94 0.00 0.91 0.04 0.89 0.07
4x12 0.93 0.01 0.91 0.02 0.88 0.07 0.84 0.09
4x16 0.91 0.00 0.87 0.04 0.83 0.11 0.81 0.14
4 %20 0.86 0.02 0.83 0.05 0.79 0.12 0.74 0.15
4 x 24 0.87 0.03 0.84 0.07 0.81 0.15 0.77 0.18
Average 0.93 0.01 0.91 0.03 0.87 0.08 0.83 0.11

best search capability and further confirms the conclusion drawn above.
Therefore, according to the above results and analysis, it can be
concluded that these improvement strategies have great promotion on
improving the performance of MCEDA.

4.6. Comparisons of MCEDA and existing algorithms

To further validate the effectiveness of the proposed algorithm,
MCEDA is compared with four state-of-the-art multi-objective algo-
rithms, i.e., NSGA-II, MMOIG, KCA, and MOWSA. Then, the relative
quality of the non-dominated sets yielded by each algorithm is measured
and evaluated on the C metric, respectively. To the best of our knowl-
edge, no algorithms are recently presented in the literature to tackle the
considered EE_DAPFSP. Since these high-performing compared algo-
rithms are not directly designed for the EE_DAPFSP, we reimplement
these four algorithms and adjust their objective evaluation functions in
the original literature to make them be able to solve this problem. Notice
that all of these algorithms are adapted to the sequence-based model, so
they can be easily extended and participated in comparisons. All algo-
rithms are performed on the same experiment environment which has
same CPU power available. Each algorithm independently runs 30 and 5
replicates on two benchmark sets of different problem sizes. The Pareto
reference set of each instance is jointly composed of all non-dominated
sets obtained by all algorithms. The computational results are grouped
according to different numbers of factories and jobs, denoted by F x n,
where 60 instances per average for each group of the small-scale
benchmark set and 90 instances per average for each group of the
large-scale benchmark set.

The statistical results of the coverage metric of the proposed MCEDA
with NSGA-II, MMOIG, KCA and MOWSA on two benchmark sets of
different sizes are reported in Tables 8 to 9, respectively. As seen from

Tables 8-9, MCEDA yields good results that are, on average, almost
better than that obtained by its counterparts for all testing instances. For
the 900 small-scale instances, it is clear that almost 87% and 83% of the
feasible solutions in the non-dominated set obtained by KCA and
MOWSA are dominated by some of the feasible solutions in the non-
dominated set obtained by MCEDA in the average sense. In other
words, only an average of 8% and 11% of solutions obtained by MCEDA
are dominated by some feasible solutions yielded by KCA and MOWSA,
respectively. In addition, for these non-dominated sets obtained by other
two types of classical multi-objective algorithms, ie., NSGA-II and
MMOIG, almost average of 93% and 91% of feasible solutions are
dominated by some solutions in the non-dominated set produced
through MCEDA, which indicates that MCEDA has good performance in
solving the small-scale instances of the EE_DAPFSP. Similarly, it can be
clearly seen from Table 9 that, for the 810 large-scale instances, the
performance of MCEDA is overwhelming on the coverage metric C. That
is, the average 94%, 90%, 79%, and 74% of the non-dominated solutions
obtained by four counterparts, i.e., NSGA-II, MMOIG, KCA and MOWSA,
are dominated by some of solutions in non-dominated set obtained by
MCEDA, while only 1%~9% of the solutions in the non-dominated set of
MCEDA are dominated by some solutions obtained by NSGA-II, MMOIG,
KCA and MOWSA in an average sense, which further demonstrates that
the proposed MCEDA can also be addressing the large-scale instances of
the EE_DAPFSP. Furthemore, it is noted that the recently proposed KCA
and MOWSA are also two relatively excellent multi-objective algorithms
compared with NSGA-II and MMOIG. According to above analysis, we
can conclude that the proposed MCEDA is significantly better than four
high-performing multi-objective algorithms, i.e., NSGA-II, MMOIG, KCA
and MOWSA, in terms of the quality of the obtained non-dominated
solutions, which verifies the effectiveness of MCEDA for solving the
EE_DAPFSP.

Table 9

Statistical results on C metric of MCEDA with NSGA-II, MMOIG, KCA and MOWSA for large-scale instances.
Fxn C(MCEDA, NSGA-  C(NSGA-II, C(MCEDA, C(MMOIG,

1) MCEDA) MMOIG) MCEDA)

4 %100 0.97 0.00 0.93 0.01
4 x 200 0.94 0.00 0.89 0.00
4 x 500 0.93 0.00 0.87 0.01
6 x 100 0.98 0.01 0.94 0.02
6 x 200 0.95 0.00 0.91 0.01
6x500  0.92 0.00 0.85 0.03
8 x 100 0.94 0.00 0.94 0.00
8 x 200 0.92 0.01 0.90 0.02
8x500  0.93 0.00 0.83 0.01
Average  0.94 0.00 0.90 0.01

C(MCEDA, C(KCA, C(MCEDA, C(MOWSA,
KCA) MCEDA) MOWSA) MCEDA)
0.86 0.03 0.81 0.06
0.83 0.02 0.77 0.05
0.78 0.04 0.73 0.07
0.87 0.06 0.82 0.09
0.81 0.05 0.79 0.08
0.74 0.07 0.65 0.14
0.81 0.02 0.78 0.06
0.76 0.02 0.72 0.11
0.69 0.05 0.63 0.13
0.79 0.04 0.74 0.09
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Table 12

Statistical results for all compared algorithms for the large-scale instances grouped by F, S, and n.

MCEDA

MOWSA

KCA

MMOIG

NSGA-II

I

Iy

DS

DI

L

Iy

DS

DI

L

Iy

DS

DI

I

Iy

DS

Iy L Dlx

DS

DI

0.045 0.622 2.283 1.324 1.035

1.096
1.054
1.076
1.093
1.102
1.152
1.126
1.163
1.095
1.106

1.196
1.185
1.171
1.157
1.164
1.187
1.175
1.162
1.193
1.177

0.058 0.148 3.121

1.113
1.087
1.105
1.143
1.167
1.221
1.186
1.224
1.187
1.159

0.069 0.106 3.134 1.184
0.112 0.095 3.350
0.103 0.076 3.126

1.146
1.112
1.123
1.188
1.223
1.279
1.221
1.267
1.323
1.209

1.167
1.151
1.132
1.117
1.125
1.136
1.128
1.122
1.163
1.138

2.279

1.179 0.088 0.051
1.141

1.143
1.135
1.097
1.083
1.112
1.153
1.121

4 0.105 0.073 2.951
0.141

6
8

0.062 0.665 3.064 1.285 1.032

0.083 0.129 3.337
0.096 0.112 3.104

1.178
1.155
1.137
1.141
1.164
1.155

0.132 0.049 3.241

0.062 3.388

0.074 0.704 2.972 1.274 1.044

0.056 0.649 3.078
0.066 0.595 2.745

0.074 0.611

3.074

1.157 0.115 0.061

0.123 0.047 3.129

0.121

1.253 1.073
1.263 1.084

0.077 0.136 2.845

0.076 0.171

0.093 0.107 2.855
0.095 0.113 2.833

1.225 0.108 0.073 2.761
1.252 0.116 0.089 2.545
1.312 0.104 0.083 2.953

1.293 0.131

0.034 2.931

30
40
50

2.973

2.681

0.129 0.031

2,933 1.277 1.092

0.088 0.178 3.135

0.099 0.089 3.141

0.117 0.038 3.123

1.262 1.083
1.258 1.108

0.082 0.117 2.983 0.048 0.698 2.886

0.118 0.102 2.996

2.871

0.061

100 0.147 0.023 2.937

0.056 0.662 3.029

0.085 0.128 3.337
0.105 0.157 3.545
0.083 0.142 3.153

0.096 0.116 3.346 1.148
0.129 0.127 3.551
0.102 0.103 3.148

1.328 0.108 0.043 3.078
1.355 0.142 0.064 3.223
1.249 0.116 0.064 2.892

200 0.124 0.052 3.117 0.105
500 0.153 0.044 3.295 0.938

0.083 0.609 3.218 1.294 1.041

1.186
1.161

0.063 0.646 2.912 1.277 1.066

0.988

0.129 0.045 3.061

Average
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To ensure adequate comparisons, the statistical results for MCEDA,
NSGA-II, MMOIG, KCA and MOWSA on measure metrics DIg, p,, DS, Iy,
and I! for small-scale and large-scale instances are given in Tables 10
and 11, respectively. Moreover, the statistical results of MCEDA with
NSGA-II, MMOIG, KCA and MOWSA under different problem charac-
teristic groups F, S, and n are reported in Table 12. The best value of each
metric for each group in these tables is shown with boldface. As can be
seen from Tables 10 to 12 that the proposed MCEDA is better than its
counterparts on all performance indicators. For the small-scale in-
stances, the results of MCEDA on the reference distance metric (DIg) are
zero or close to zero for almost all testing instances and their have a
significant advantage both in hypervolume (Iy) and unary epsilon (I1)
indicators, which indicates that the Pareto front consisting of the
promising non-dominated set obtained by MCEDA is very close to the
true Pareto front. For the large-scale test instances, the values of MCEDA
on DIy and I! are also significantly smaller than that of other counter-
parts, which implies these algorithms have few contributions to the
reference Pareto fronts and our proposed MCEDA is very preferred for
solving the considered problem. Furthermore, it is clear in Table 12 that
average values of the non-dominance ratio (p,) obtained by MCEDA for
addressing different size instances is 0.646, which is much better than
those of NSGA-II (0.045), MMOIG (0.064), KCA (0.103), and MOWSA
(0.142). Additionally, it can be seen from these tables that the non-
dominance ratio (p,) is clearer than hypervolume (Iy) and unary
epsilon (I1), and the proposed MCEDA performs very stable on different
scale instances, which indicates that MCEDA has good robustness and
stability. As seen from all comparisons on the distribution spacing metric
DS in Tables 10 to 12, compared with NSGA-II, MMOIG, KCA and
MOWSA, the DS values obtained by MCEDA for solving both the small-
scale instances and large-scale instances are smaller than four compared
algorithms, which means the dispersion of non-dominated solutions in
Pareto archive obtained by MCEDA is better. Thus, the proposed MCEDA
can obtain more different high-quality feasible scheduling solutions,
which can provide decision makers to choose the appropriate scheduling
schemes according to practical preferences.

To further check whether the observed differences in Tables 10-12
are indeed statistically meaningful, the statistical multifactor analysis of
variance (ANOVA) experiments with a confidence level of 95% are also
carried out to analyze these numerical results. The main effect of each
factor is investigated where the type of algorithm is considered as a
factor and two measure metrics DI and p, are employed as the response
variables, respectively. The ANOVA is a powerful parametric statistical
technique which is widely used to detect statistical significance (Pan &
Ruiz, 2012). Notice that the three main hypotheses (ie., normality,
homogeneity of variance and independence of residuals) are also
checked in all computational comparisons. The checked results indicate
that no significant deviations are found in the fulfillment of these hy-
potheses. Moreover, the p-value is an important indicator to determine
whether there is a significant difference among all factors. If p-value is
smaller than 0.05, the difference between algorithms is significant. It is
remarkable that the overlapping intervals indicate that there is insig-
nificant difference between their mean performance. The means plots
and 95% Tukey HSD confidence intervals for interactions between the
type of algorithms and the number of factories for NSGA-II, MMOIG,
KCA, MOWSA and MCEDA under four metrics DIg, p,, Iy and Ig are
depicted in Fig. 12, respectively. It clearly reveals from Fig. 12 that
MCEDA is significantly superior to other four algorithms in solving
different groups of instances in terms of DI, p,, Iy and I* respectively.
Additionally, three competitive algorithms, ie., MMOIG, KCA and
MOWSA, outperform the traditional NSGA-II, while no statistical sig-
nificance can be detected among the MMOIG, KCA and MOWSA.
Therefore, it can be safely concluded that the proposed MCEDA is an
effective and efficient algorithm for the EE_DAPFSP.

For the purpose of visualizing the performance of all compared al-
gorithms, Fig. 13 illustrates the Pareto front distribution graphs of all
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Fig. 12. The means plots and 95% Tukey HSD confidence intervals for the interaction between the type of algorithm and the number of factories for NSGA-II,

MMOIG, KCA, MOWSA and MCEDA.

non-dominated sets obtained by NSGA-II, MMOIG, KCA, MOWSA and
MCEDA for solving the nine typical instances with respect to different
sizes (i.e., small, medium and large scale), respectively. It can be clearly
seen from Fig. 13 that the non-dominated solutions obtained by MCEDA
almost dominate the other solutions yielded by its counterparts
regardless of both the small-scale instances and the large-scale instances,
which indicates that the superiority of the proposed MCEDA is obvious.
The main reason is that MCEDA has a powerful search engine to drive
both global exploration and local exploitation. Furthermore, the distri-
bution of the union Pareto fronts found by MCEDA is more decentralized
and diversified, and the quality of the non-dominated solutions yielded
by MCEDA is relatively high, which can provide a variety of satisfactory
scheduling schemes for decision makers and can achieve a reasonable
compromise between the maximum completion time and total energy
consumption. In conclusion, the MCEDA proposed in this paper can
effectively and efficiently solve the energy-efficient DAPFSP.
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5. Conclusions

Energy saving has become a hot issue of global concern. Energy-
efficient production scheduling problem is one of the most funda-
mental and difficult scheduling problems encountered in many kinds of
real-life manufacturing industries. This paper considered the energy-
efficient distributed assembly permutation flow-shop scheduling prob-
lem (EE_DAPFSP), whose objectives are to minimize the maximum
completion time and the total carbon emission at the same time. To deal
with this strongly NP-hard problem, a novel matrix-cube-based distri-
bution estimation algorithm (MCEDA) was proposed. Based on the
characteristics of the EE_DAPFSP, the hybrid initialization strategy, the
more guided global search, the deep local search, and the speed
adjustment strategies were designed, respectively. The effectiveness of
these strategies was analyzed. Extensive computational experiments
reveal that our MCEDA statically outperforms several state-of-the-art
algorithms. To the best of our knowledge, this is the first report to
propose an EDA-based algorithm for the energy-saving production
scheduling problem.
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Fig. 13. The Pareto front distribution of non-dominated solutions obtained by NSGA-II, MMOIG, KCA, MOWSA and MCEDA.

There are mainly two important directions for future research. First,
we would like to develop several knowledge-based stargates to further
enhance the guidance ability of MCEDA’s global search. Second, it
would be meaningful to extend the proposed MCEDA to the dynamical
DAPFSP as well as the distributed production and transportation inte-
grated scheduling problems.

CRediT authorship contribution statement

Zi-Qi Zhang: Investigation, Methodology, Software, Writing — orig-
inal draft. Rong Hu: Methodology, Funding acquisition, Supervision,
Writing — review & editing. Bin Qian: Methodology, Funding acquisi-
tion, Investigation, Writing — review & editing. Huai-Ping Jin: . Ling
Wang: Supervision, Project administration. Jian-Bo Yang: Supervision.

Declaration of Competing Interest
The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influence
the work reported in this paper.

31

Acknowledgements

This research is partially supported by the National Natural Science
Foundation of China (62173169, 61963022, 61873328), , and the Basic
Research Key Project of Yunnan Province (202101AS070097).

References

Abedi, M., Chiong, R., Noman, N., & Zhang, R. (2020). A multi-population, multi-
objective memetic algorithm for energy-efficient job-shop scheduling with
deteriorating machines. Expert Systems with Applications, 157, 113348.

Chen, J. F., Wang, L., & Peng, Z. P. (2019). A collaborative optimization algorithm for
energy-efficient multi-objective distributed no-idle flow-shop scheduling. Swarm and
Evolutionary Computation, 50, 100557.

Ciavotta, M., Minella, G., & Ruiz, R. (2013). Multi-objective sequence dependent setup
times permutation flowshop: A new algorithm and a comprehensive study. European
Journal of Operational Research, 227, 301-313.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6,
182-197.

Ding, J. Y., Song, S. J., & Wu, C. (2016). Carbon-efficient scheduling of flow shops by
multi-objective optimization. European Journal of Operational Research, 248,
758-771.

Hatami, S., Ruiz, R., & Andres-Romano, C. (2013). The Distributed Assembly
Permutation Flowshop Scheduling Problem. International Journal of Production
Research, 51, 5292-5308.


http://refhub.elsevier.com/S0957-4174(21)01763-2/h0005
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0005
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0005
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0010
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0010
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0010
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0015
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0015
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0015
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0020
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0020
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0020
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0025
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0025
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0025
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0030
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0030
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0030

Z.-Q. Zhang et al.

Ishibuchi, H., Yoshida, T., & Murata, T. (2003). Balance between genetic search and local
search in memetic algorithms for multiobjective permutation flowshop scheduling.
IEEE Transactions on Evolutionary Computation, 7, 204-223.

Jarboui, B., Eddaly, M., & Siarry, P. (2009). An estimation of distribution algorithm for
minimizing the total flowtime in permutation flowshop scheduling problems.
Computers & Operations Research, 36, 2638-2646.

Jiang, S. L., & Zhang, L. (2019). Energy-oriented Scheduling for Hybrid Flow Shop With
Limited Buffers Through Efficient Multi-Objective Optimization. IEEE Access, 7,
34477-34487.

Larranaga, P., & Lozano, J. A. (2001). Estimation of distribution algorithms: A new tool for
evolutionary computation. Springer Science & Business Media.

Lin, J., Wang, Z. J., & Li, X. D. (2017). A backtracking search hyper-heuristic for the
distributed assembly flow-shop scheduling problem. Swarm and Evolutionary
Computation, 36, 124-135.

Lin, J., & Zhang, S. (2016). An effective hybrid biogeography-based optimization
algorithm for the distributed assembly permutation flow-shop scheduling problem.
Computers & Industrial Engineering, 97, 128-136.

Ly, C., Gao, L., Li, X. Y., Pan, Q. K., & Wang, Q. (2017). Energy-efficient permutation flow
shop scheduling problem using a hybrid multi-objective backtracking search
algorithm. Journal of Cleaner Production, 144, 228-238.

May, G., Stahl, B., Taisch, M., & Prabhu, V. (2015). Multi-objective genetic algorithm for
energy-efficient job shop scheduling. International Journal of Production Research, 53,
7071-7089.

Minella, G., Ruiz, R., & Ciavotta, M. (2008). A Review and Evaluation of Multiobjective
Algorithms for the Flowshop Scheduling Problem. Informs Journal on Computing, 20,
451-471.

Montgomery, D. C. (2008). Design and Analysis of Experiments (Second ed.). United States:
John Wiley & Sons, United States.

Pan, Q. K., Gao, L., Li, X. Y., & Jose, F. M. (2019). Effective constructive heuristics and
meta-heuristics for the distributed assembly permutation flowshop scheduling
problem. Applied Soft Computing, 81, 105492.

Pan, Q. K., & Ruiz, R. (2012). An estimation of distribution algorithm for lot-streaming
flow shop problems with setup times. Omega-International Journal of Management
Science, 40, 166-180.

32

Expert Systems With Applications 194 (2022) 116484

Ruiz, R., & Stutzle, T. (2008). An Iterated Greedy heuristic for the sequence dependent
setup times flowshop problem with makespan and weighted tardiness objectives.
European Journal of Operational Research, 187, 1143-1159.

Sang, H. Y., Pan, Q. K,, Li, J. Q., Wang, P., Han, Y. Y., Gao, K. Z., & Duan, P. (2019).
Effective invasive weed optimization algorithms for distributed assembly
permutation flowshop problem with total flowtime criterion. Swarm and Evolutionary
Computation, 44, 64-73.

Shao, Z., Pi, D., & Shao, W. (2018). A multi-objective discrete invasive weed optimization
for multi-objective blocking flow-shop scheduling problem. Expert Systems with
Applications, 113, 77-99.

Tiwari, A., Chang, P.-C., Tiwari, M. K., & Kollanoor, N. J. (2014). A Pareto block-based
estimation and distribution algorithm for multi-objective permutation flow shop
scheduling problem. International Journal of Production Research, 53, 793-834.

Wang, G., Gao, L., Li, X., Li, P., & Tasgetiren, M. F. (2020). Energy-efficient distributed
permutation flow shop scheduling problem using a multi-objective whale swarm
algorithm. Swarm and Evolutionary Computation, 57, 100716.

Wang, J. J., & Wang, L. (2020). A Knowledge-Based Cooperative Algorithm for Energy-
Efficient Scheduling of Distributed Flow-Shop. IEEE Transactions on Systems, Man,
Cybernetics: Systems, 50, 1805-1819.

Wang, L., Wang, S. Y., Xu, Y., Zhou, G., & Liu, M. (2012). A bi-population based
estimation of distribution algorithm for the flexible job-shop scheduling problem.
Computers & Industrial Engineering, 62, 917-926.

Wang, S. Y., & Wang, L. (2016). An Estimation of Distribution Algorithm-Based Memetic
Algorithm for the Distributed Assembly Permutation Flow-Shop Scheduling
Problem. IEEE Transactions on Systems, Man, Cybernetics: Systems, 46, 139-149.

Zhang, Z. Q., Qian, B., Hu, R., Jin, H. P., & Wang, L. (2021). A matrix-cube-based
estimation of distribution algorithm for the distributed assembly permutation flow-
shop scheduling problem. Swarm and Evolutionary Computation, 60, 100785.

Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative
case study and the strength Pareto approach. IEEE Transactions on Evolutionary
Computation, 3, 257-271.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & Fonseca, V. G.d. (2003).
Performance assessment of multiobjective optimizers: An analysis and review. IEEE
Transactions on Evolutionary Computation, 7, 117-132.


http://refhub.elsevier.com/S0957-4174(21)01763-2/h0035
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0035
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0035
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0040
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0040
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0040
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0045
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0045
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0045
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0050
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0050
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0055
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0055
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0055
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0060
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0060
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0060
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0065
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0065
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0065
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0070
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0070
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0070
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0075
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0075
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0075
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0080
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0080
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0085
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0085
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0085
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0090
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0090
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0090
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0095
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0095
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0095
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0100
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0100
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0100
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0100
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0105
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0105
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0105
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0110
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0110
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0110
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0115
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0115
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0115
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0120
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0120
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0120
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0125
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0125
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0125
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0130
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0130
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0130
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0135
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0135
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0135
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0140
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0140
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0140
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0145
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0145
http://refhub.elsevier.com/S0957-4174(21)01763-2/h0145

	A matrix cube-based estimation of distribution algorithm for the energy-efficient distributed assembly permutation flow-sho ...
	1 Introduction
	2 Problem statement
	2.1 Energy-efficient distributed assembly permutation flow-shop scheduling problem
	2.2 Multi-objective optimization problem
	2.3 Problem property analysis

	3 MCEDA for EE_DAPFSP
	3.1 Solution representation and population initialization
	3.2 Multi-dimensional probabilistic model
	3.2.1 Block structure and matrix cube
	3.2.2 Updating mechanism
	3.2.3 Sampling strategy

	3.3 Critical path-based local search
	3.4 Speed adjustment strategy
	3.5 The framework of MCEDA

	4 Experimental comparisons and statistical analysis
	4.1 Experimental setup
	4.2 Performance metrics
	4.3 Parameter calibration
	4.4 Effectiveness of probabilistic models
	4.5 Effectiveness of improvement strategies
	4.6 Comparisons of MCEDA and existing algorithms

	5 Conclusions
	CRediT authorship contribution statement

	Declaration of Competing Interest
	Acknowledgements
	References


