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Likelihood Analysis of Imperfect Data
Jian-Bo Yang , Dong-Ling Xu , Xiaobin Xu , and Chao Fu

Abstract—This article investigates how to make use of imper-
fect data gathered from different sources for inference and
decision making. Based on Bayesian inference and the princi-
ple of likelihood, a likelihood analysis method is proposed for
acquisition of evidence from imperfect data to enable likelihood
inference within the framework of the evidential reasoning (ER).
The nature of this inference process is underpinned by the new
necessary and sufficient conditions that when a piece of evidence
is acquired from a data source it should be represented as a nor-
malized likelihood distribution to capture the essential evidential
meanings of data. While the explanation of sufficiency of the con-
ditions is straightforward based on the principle of likelihood,
their necessity needs to be established by following the princi-
ple of Bayesian inference. It is also revealed that the inference
process enabled by the ER rule under the new conditions con-
stitutes a likelihood inference process, which becomes equivalent
to Bayesian inference when there is no ambiguity in data and a
prior distribution can be obtained as a piece of independent evi-
dence. Two examples in decision analysis under uncertainty and
a case study about fault diagnosis for railway track maintenance
management are examined to demonstrate the steps of imple-
mentation and potential applications of the likelihood inference
process.

Index Terms—Bayesian inference, decision making under
uncertainty, evidential reasoning (ER), likelihood analysis of data,
likelihood principle.

I. INTRODUCTION

DATA and judgements play an essential role in infer-
ence, modeling, and decision making, for example,

in evidence-based multiple attribute decision analysis under
uncertainty [22], [37], [40], [41], [42], [43] and probabilistic
rule-based system modeling and learning [4], [23], [28], [38],
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[39], [44], [45]. Data analysis through probabilistic inference
is extensively investigated [3], [18]. There is also significant
research in using ambiguous judgements for decision making
under uncertainty [1], [42], [43]. However, it remains as a chal-
lenge to make use of imperfect data for probabilistic inference
and evidence-based decision making [46], [47]. This is because
imperfect data is often generated from routine processes, such
as collecting operational data and recording daily activities,
and therefore can be highly imbalanced and associated with
various types of uncertainty, such as randomness and ambi-
guity. Data imperfection can include not only the imbalance
and ambiguity but also other features, such as incompleteness
and inaccuracy [46]. This article will focus only on address-
ing how to analyze random data that is also imbalanced and
ambiguous. Table I describes the variables that will be used to
establish a likelihood method to analyze such imperfect data.
Note that these variables are denoted in consistence with the
notations used in our previous research, such as [46] which is
in turn based on Dempster’s original work [10], [11] and his
system view [13] on probabilistic inference with randomness
and ambiguity.

Imbalanced data means that there is a disproportionate ratio
of observations in some system states or classes. It is one
of the potential problems in data mining, inference, machine
learning (ML), and decision making. Data level solutions for
handling imbalanced data include different forms of resam-
pling, in particular undersampling and oversampling [25].
For instance, random undersampling is a nonheuristic method
that aims to balance class distribution through random elim-
ination of majority class examples; however, it can discard
potentially useful data which could be important for infer-
ence and decision making [24]. Random oversampling is
another nonheuristic method for balancing class distribution
through random replication of minority class examples, but can
increase the chance of causing overfitting [7]. In probabilistic
inference and evidence-based decision making, the probability
distribution of target population is estimated from sample dis-
tribution. If sample distribution is drawn randomly, it can be
used to estimate population distribution. The problem that is
common to resampling methods is that once resampling is per-
formed, the sample can no longer be regarded as random [25]
and it is thus not appropriate to use the sample to estimate pop-
ulation distribution. Since the purpose of data analysis in this
article is to estimate population distribution for probabilistic
inference and decision making, nonresampling methods will
be investigated.

Among different types of uncertainty, randomness is used to
signify well-defined statistical properties, and ambiguity can
be used to represent properties incurred due to missing data.
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TABLE I
DESCRIPTION OF VARIABLES

Missing data is defined as the data value that is not stored
for a variable in observation of interest, and can be classi-
fied into three types [21]: 1) missing completely at random
(MCAR); 2) missing at random (MAR); and 3) missing not at
random. A number of methods for handling missing data have
been developed. The most common approach for dealing with
missing data is to simply delete those cases with missing data
and analyze the remaining data, known as complete case anal-
ysis or listwise deletion. However, when data do not meet the
assumption of MCAR, listwise deletion may cause bias in the
estimates of parameters [14]. Opposite to data deletion is to
impute missing data, including single imputation and multiple
imputation. The former includes a number of approaches, such
as the mean substitution approach to replace missing data by

TABLE I
(Continued.) DESCRIPTION OF VARIABLES

the mean value of a variable [27], the last observation approach
to replace missing data by the last observed value before the
missing value [17], and maximum likelihood approaches, e.g.,
expectation–maximization to create a new data set, in which
all missing values are imputed with values estimated by max-
imum likelihood methods [12]. The latter is a strategy for
handling missing data by replacing missing values with a set
of plausible values which contain the natural variability and
uncertainty of the true values [33]. Multiple imputation is
shown to produce valid statistical inference that reflects uncer-
tainty associated with the estimation of missing data, although
the statistical principles of multiple imputation may be diffi-
cult to understand [33]. However, deleting missing data or
imputing missing data can change the features of data, caus-
ing concerns on interpretability and trustworthiness when data
is used for probabilistic inference and evidence-based decision
making.

From the above discussions, two questions emerge that need
to be addressed. First, data collected from different sources
can be imbalanced, leading to difficulty in using the data for
probabilistic inference and evidence-based decision making.
The first question is therefore how to analyze imbalanced data
without resampling or changing its random nature. Second,
data generated from routine activities can be both imbalanced
and ambiguous, e.g., incurred due to missing data. The second
question is how to deal with both imbalance and ambiguity
common to imperfect data in the processes of analyzing data
in a principled manner. This article aims to investigate these
questions.

In an imbalanced dataset, there is a disproportionate ratio
of observations in some states. In other words, the prior prob-
abilities of states acquired from the imbalanced dataset are not
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equal. Using prior probabilities and new observations, repre-
sented as likelihoods, to generate posterior probabilities con-
stitutes the fundamental principle of Bayesian inference [18],
[19]. Extensive research on Bayesian inference has been con-
ducted, such as the estimation of prior probability [16], [20],
prior-free statistical inference [10], [11], [15], [31], [32], and
inference with default priors [16]. The investigation of the first
question will be based on exploiting the strengths of Bayesian
inference, and a likelihood method will be explored to analyze
imbalanced data.

To address the second question, randomness and ambiguity
in data will be investigated on the basis of Dempster’s original
work on probabilistic inference with imperfect data [10], [11],
summarized as Dempster’s rule [29], and his original thinking
on system view [13], where both types of uncertainty can be
represented by allowing the assignment of basic probabilities
to not only singular system states but also their subsets as a
whole. Considerable research has been conducted on the basis
of Dempster’s original work. For example, Shafer [29], [30]
and Smets [35] constructed belief functions to show that the
application of Dempster’s rule to their belief functions can
approximate Bayesian inference in general when sample size
is very large but only lead to the same result as that of Bayes’
rule for a rather special case with a single frequency distribu-
tion [30]. Aickin [2] proposed to construct credibility functions
and modify Dempster’s rule for likelihood inference, which
leads to the computations that are quite different from those
of Smets. In Aickin’s approach, a credibility function is gen-
erated by dividing all likelihoods by the maximum likelihood,
which satisfies the principle of likelihood [5].

Under Dempster’s system view for probabilistic inference,
the authors proposed to acquire evidence as likelihood distri-
bution generated from sample data [46], [47]. This concept has
been successfully applied to several areas, such as probabilis-
tic rule-based data classification [38], fault diagnosis of marine
systems [39], an evidential reasoning (ER)-based prediction of
ICU admission and in-hospital death of trauma patients [23],
and financial services [28]. However, it remains as an open
question whether it is necessary to acquire evidence as normal-
ized likelihood from imperfect data or this is just an alternative
approach suggested as a rule of thumb.

One of the main purposes of addressing the above two ques-
tions is to facilitate probabilistic inference and evidence-based
decision making in the framework of the ER rule [46], which
is established to enhance and augment Dempster’s rule. The
ER rule requires that evidence be acquired as basic proba-
bility distribution, so that inference driven by the ER-rule is
deemed to be probabilistic. However, what principles should
be followed to acquire evidence from imperfect data remains
open for investigation. This article will first investigate how to
acquire evidence on the common scale of relative frequency
from unambiguous data by following the two principles: 1) the
principle of likelihood [5] and 2) the principle of Bayesian
inference [19], referred to as Bayesian principle in the rest of
this article. It will then explore how to acquire evidence from
ambiguous data by following the same principles.

In the above context, this article will focus on establishing
new necessary and sufficient conditions required as the basis

for constructing a likelihood inference process. Conceptually,
the conditions require that evidence can be acquired from sam-
ple data as normalized likelihood distribution, independent of
the prior distribution of the sample data, referred to as sam-
ple prior. Such evidence is referred to as prior-independent
evidence in this article. We will show that the combination
of multiple pieces of prior-independent evidence using the ER
rule forms a symmetrical likelihood inference process, lead-
ing to the posterior probability that treats prior distribution as
total ignorance or unknown by default. If a prior distribution
becomes known, it will be taken into account as a piece of
independent evidence and combined with other evidence in
the ER process, which ought to result in the same posterior
probability as Bayesian posterior when there is no ambiguity
in data.

The focus of Section II will be on the establishment of the
new necessary and sufficient condition to acquire evidence
from imbalanced data without ambiguity for conventional
probabilistic inference, where evidence is profiled as classical
probability distribution with probability assignable to singu-
lar states only. In Section III, the condition will be extended
to acquire evidence from imbalanced and ambiguous data
to support augmented probabilistic inference and evidence-
based decision making, where evidence can be profiled as
basic probability distribution with probability assignable to any
singular states or any subset of singular states. These con-
ditions are intended to provide a theoretical foundation and
a principled and practical method to acquire evidence from
imperfect data for likelihood inference, probabilistic modeling,
and evidence-based decision making, such as multiple crite-
ria decision analysis under uncertainty [22], [43] and belief
rule-based modeling and learning [1], [4], [39].

II. LIKELIHOOD ANALYSIS OF IMBALANCED DATA

The following example is used to explain what issues are
to be addressed in this article and what challenges there
exist in addressing these issues, in particular how to acquire
evidence from imperfect data for likelihood inference and
evidence-based decision making.

Example 1: A manufacturer claims that its test method,
named as Method I, is highly effective for detecting steroid
use. An experiment is conducted to investigate this claim, in
which the method is used to test 2220 individuals, as shown
in Table II. Most of the tests lead to either positive (t1) or
negative (t2) results, and the majority of the individuals are
classified as either steroid user (h1) or steroid free (h2); how-
ever, there are 220 ambiguous cases in which a test result is
inconclusive or it is unknown whether an individual is a steroid
user or steroid free, or both. If the method is used to test an
athlete and the test result is positive, what is the probability
that the athlete is a steroid user, so that appropriate actions
can be taken with confidence to deter steroid abuse?

The data presented in Table II is imperfect in the sense that
there are 220 ambiguous cases and the data is imbalanced as
there are far more steroid free individuals than steroid users
in this sample. In general, the imperfection of data may also
include incompleteness and inaccuracy [46], although these
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TABLE II
SAMPLE DATA GENERATED BY USING METHOD I (I0)

features are not the focus of investigation in this article. While
the likelihood analysis method proposed in this article does not
require undersampling or oversampling to generate balanced
data for inference and decision making, it is important to note
that sampling is a technique widely used in ML, such as k-fold
cross validation. If the likelihood analysis method is applied in
such circumstances, the resampling of data into k folds needs
to follow the rule that the likelihood function of the split data
in each fold is as consistent as possible with that of the original
data for every state.

The decision outcome of the above example has consider-
able impact on the sport life of the athlete personally and also
wider implication in deterrence of steroid abuse. As such, it
is necessary to use a principled approach to analyze the data
for robust inference and decision making. Bayesian inference
is regarded as a principled approach for statistical data analy-
sis and probabilistic inference [18]. In this section, Bayes’ rule
will be first introduced in Section II-A as the core of Bayesian
inference and illustrated using the above example. The ER rule
will then be introduced in Section II-B to analyze ambiguity
in data. To establish the ER rule as a principled approach
for analysis of ambiguous data and probabilistic inference,
Section II-C will focus on identifying a new sufficient and
necessary condition to ensure that the ER rule generates the
same posterior probability as Bayes’ rule does when prior
probability becomes known and there is no ambiguity in data.

A. Bayes’ Rule for Inference With Unambiguous Data

Bayesian view of probability as degree of belief is based
on the algebra of probable inference [8], [9], [36], the
Kolmogorov axioms of probability, the Jeffreys’s theory of
probability [6], [20], among others. Under this view, probabil-
ity can be constructed from partial information and updated
when new information becomes available. In this article,
Bayes’ rule is presented for combining prior probability with
new information to generate posterior probability.

Let e0 stand for sample prior distribution, acquired from
sample data I0 as follows:

e0 =
{(

hi, pi,0
)
, i = 1, . . . , N,

N∑
i=1

pi,0 = 1

}
(1)

where hi is the ith system state, pi,0 is the prior probabil-
ity of hi calculated from sample data I0, or pi,0 = p(hi|I0),

TABLE III
CLEANED DATA (I0)

TABLE IV
BAYESIAN DATA ANALYSIS

and N is the number of states that are mutually exclusive and
collectively exhaustive.

Let ci,j stand for the likelihood associated with sample data
I0, to which test result tj is observed given that state hi is
true, that is ci,j = p(tj|hi, I0). If test result tj is observed as
new information, Bayes’ rule can be described as follows, to
generate the posterior probability that state hi is true given
both I0 and the observation of tj

p
(
hi|tj, I0

) = p
(
tj|hi, I0

)
p(hi|I0)∑N

n=1 p
(
tj|hn, I0

)
p(hn|I0)

= ci,jpi,0∑N
n=1 cn,jpn,0

. (2)

Bayesian inference based on the above Bayes’ rule asserts
that the combination of prior probability with new information
ought to result in posterior probability. This assertion should
be followed for probabilistic inference with data. In this article,
this assertion is referred to as Bayesian principle and will be
used as a condition for establishing a new evidence acquisition
method from sample data.

A question is whether the above Bayesian inference can be
directly applied to analyzing Example 1 to find the required
probability. The short answer is no as Bayesian analysis does
not directly handle ambiguous cases. To conduct Bayesian data
analysis and inference, the ambiguous cases of the sample
data need to be processed or “cleaned.” The most common
approach is perhaps to delete the ambiguous cases. If all of
the 220 ambiguous cases are removed by deleting the last
row and the last column of Table II, we will have a set of
“cleaned” data of 2000 individuals, with 200 steroid users and
1800 individuals being steroid free, as shown in columns 2 and
3 of Table III.

Based on the data of Table III, Bayesian data analysis is
conducted to find the prior probabilities that an individual
implied by the sample data is a steroid user or steroid free,
denoted by p1,0 = p(h1|I0) and p2,0 = p(h2|I0), respectively.
The likelihoods that an individual has a positive test result
given that this person is a steroid user or steroid free, denoted
by c1,1 = p(t1|h1, I0) and c2,1 = p(t1|h2, I0), respectively, can
be calculated as follows:

p1,0 = p(h1|I0 ) = 200

200 + 1800
= 0.1

p2,0 = p(h2|I0 ) = 1800

200 + 1800
= 0.9 (3)
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c1,1 = p(t1|h1, I0 ) = 190

200
= 0.95

c2,1 = p(t1|h2, I0 ) = 270

1800
= 0.15 (4)

as summarized in the second and last columns of Table IV.
The sample prior probability distribution generated from (3) is
represented by e0 = {(h1, 0.1), (h2, 0.9)}.

Bayesian inference can be conducted to generate posterior
probability as follows:

p(h1|t1, I0) = p(t1|h1, I0)p(h1|I0)

p(t1|h1, I0)p(h1|I0) + p(t1|h2, I0)p(h2|I0)

= 0.95 × 0.1

0.95 × 0.1 + 0.15 × 0.9
= 0.413. (5)

The above result suggests that there is a probability of 0.413
that the athlete is a steroid user.

The above-generated posterior probability is dependent on
the sample prior, which may or may not express one’s prior
belief that the athlete is a steroid user or steroid free before any
evidence is acquired. If there is no prior knowledge about the
athlete’s state of steroid use, one may assume that the prior is
uniformly distributed, or it is equally likely that the athlete is
steroid user or steroid free. Under this assumption of uniform
prior, Bayesian inference leads to the following result:

p(h1|t1, I0) = 0.95 × 0.5

0.95 × 0.5 + 0.15 × 0.5
= 0.8636. (6)

B. Basic Probability Distribution and the ER Rule

Dempster’s rule and system view [10], [11], [13] provides
a unified framework to model and infer with both randomness
and ambiguity. In the framework, probability distribution is
extended to basic probability distribution to model evidence,
in which ambiguity is explicitly measured.

Suppose hi is the ith system state and � = {h1, . . . , hN} is
the whole set of mutually exclusive and collectively exhaustive
system states, referred to as system space. The power set of
� consisting of a total number of 2N subsets of �, denoted
by 2�, is given as follows:

2� = {∅, {h1}, . . . , {hN}, {h1, h2}, . . . , {h1, hN},
. . . , {h1, . . . , hN−1},�}. (7)

The jth piece of evidence ej is modeled as a basic probability
distribution (BPD) as follows:

ej =
⎧⎨
⎩(

θ, pθ,j
) ∀θ ⊆ �,

∑
θ⊆�

pθ,j = 1

⎫⎬
⎭ (8)

where (θ, pθ,j) is a basic element of evidence ej, and pθ,j is the
probability that evidence ej points precisely to a set of states
θ as a whole. pθ,j cannot be further assigned to any subset of
θ and is referred to as basic probability for θ . Basic element
(θ, pθ,j) is called a focal element of ej if basic probability
pθ,j > 0. In the rest of this article, hi is reserved to mean
the ith singular state or state i, whilst θ is an element of the
power set, which can mean either a singular state or a set
of states in general and is simply called state θ for short.
In (8), ambiguity is explicitly measured by basic probabilities

assigned to subsets of states other than singular states. For
instance, basic probability assigned to the system space �

measures the degree of unknown or global ignorance.
The ER rule [46] is established on the basis of the frame-

work of (7) and (8), and is briefly introduced in this section
in the context of probabilistic inference. The establishment of
the ER rule originates from the observation that evidence gen-
erated from sample data is in general not fully reliable due to
data quality and is always associated with a degree of relia-
bility. The weight of evidence ej, denoted by wj, is defined
as the conditional probability that a system state is true given
that evidence ej points to the state. In applications, such as
information fusion, wj can be regarded as a measure for the
ability of information source, from which ej is acquired, to
provide correct identification of system states [34].

In the above context, parameter mθ,j = wjpθ,j is defined
as the joint probability that evidence ej points to state θ , and
state θ is true. In other words, mθ,j is referred to as the basic
probability mass that evidence ej supports state θ . In this con-
text of evidence supporting states, ej can be represented as the
following basic probability mass distribution by mj

mj = {(
θ, mθ,j

) ∀θ ⊆ �; (
2�, m2�,j

)}
(9)

where (θ, mθ,j) is the basic element of evidence ej supporting
state θ , and (2�, m2�,j) is the residual support of evidence
ej incurred due to its reliability, with m2�,j = 1 − wj. The
residual support needs to be earmarked to power set 2�, rather
than assigned to any singular state or any subset of states
by evidence ej alone. This is because it is not reliable to do
so without taking into account other evidence conjunctively,
while the conjunction of the power set with any state is the
same as the latter, so that the residual support can be assigned
to the focal elements of the other evidence conjunctively. Note
that

∑
θ⊆� mθ,j + m2�,j = wj

∑
θ⊆� pθ,j + (1 − wj) = 1

always holds since there is
∑

θ⊆� pθ,j = 1 in (8), so (9) is a
probability distribution augmented from (8).

Suppose two pieces of evidence e0 and e1 with weights w0
and w1 are independent of each other in the sense that the
information carried by e1 does not depend on whether e0 is
known or not, and vice versa. They are profiled by m0 and m1
as in (9), with j = 0 and j = 1, respectively, where mθ,0 =
w0pθ,0 and mθ,1 = w1pθ,1 are the basic probability masses that
evidence e0, and evidence e1 support state θ , respectively, for
any θ ⊆ �. The combined probability that state θ is true given
that e0 and e1 are observed, denoted by pθ,e0∧e1 , is generated
from m0 and m1 as follows [46]:

pθ,e0∧e1 =
{

0, θ = ∅

m̃θ,e0∧e1∑
D⊆� m̃D,e0∧e1

, θ �= ∅

m̃θ,e0
∧

e1 =
⎡
⎣(1 − w1)mθ,0 + (1 − w0)mθ,1

+
∑

B
⋂

C=θ

mB,0mC,1

⎤
⎦. (10)

The recursive formula of the ER rule to combine multiple
pieces of evidence in any order is also given [46], where it is
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shown that Dempster’s rule is a special case of the above ER
rule when each piece of evidence ej is assumed to be fully
reliable, or wj = 1 for any j.

C. Likelihood Method for Analyzing Data to Acquire
Evidence

The main purpose of introducing the ER rule is to handle
imbalanced and ambiguous data shown in Table II. Before the
issue of ambiguity is addressed, it is necessary to investigate
if the ER rule can be applied to inference with unambigu-
ous data as shown in Table III in the same principled way as
Bayesian inference. In this context, it is fundamental to inves-
tigate how evidence should be acquired from sample data in a
principled manner so that it can be used to enable the ER rule
for probabilistic inference. This is the focus of this article.

This section will be focused on how to acquire evidence
from unambiguous data shown in Table III. If basic proba-
bilities are assigned to singular states only, a BPD defined
in (8) reduces to an ordinary probability distribution, as shown
by (1). Such evidence is referred to as probabilistic evidence
in this article. In this section, we establish a new necessary
and sufficient condition for evidence acquisition, which ought
to be followed so that the ER rule given in (10) can generate
the same results as Bayes’ rule does when used to combine
two pieces of fully reliable probabilistic evidence.

Since prior probability distribution e0 given by (1) is already
a BPD, it can be directly used in the ER rule as the first piece
of evidence, and what needs to be investigated is how to turn
an observation into a new piece of evidence and represent it
as a BPD as well, so that the combination of the new evidence
with e0 using the ER rule leads to posterior probability.

Let pi,j stand for the basic probability to which test result
tj points to state hi, with 0 ≤ pi,j ≤ 1 and

∑N
n=1 pn,j = 1 for

any i = 1, . . . , N and j = 1, . . . , L, so that basic probability
is assigned to singular states only. Here, N and L are the total
number of states in the system space and the total number of
test results, respectively. If evidence ej is acquired from test
result tj, it can be profiled as a BPD over the set of singular
states as follows:

ej =
{(

hi, pi,j
)
, i = 1, . . . , N,

N∑
i=1

pi,j = 1

}
j = 1, . . . , L. (11)

It is straightforward to deduce that when applied to combine
two pieces of independent probabilistic evidence e0 and ej, the
ER rule given by (10) reduces to

phi,e0∧ej =
[(

1 − wj
)
mi,0 + (1 − w0)mi,j

] + mi,0mi,j∑N
n=1

([(
1 − wj

)
mn,0 + (1 − w0)mn,j

] + mn,0mn,j
) .

(12)

If it is further assumed that e0 and ej each have the highest
weight in that w0 = wj = 1, the ER rule will reduce to the
following format:

phi,e0∧ej = pi,0pi,j∑N
n=1

(
pn,0pn,j

) . (13)

By comparison of (13) with (2), one can observe that mak-
ing basic probability pi,j proportional to likelihood ci,j leads

to phi,e0∧ej being equivalent to p(hi|tj, I0). This observation
does not occur accidentally but follows the principle of like-
lihood [5], which states that two likelihood functions are
regarded as the same if they are proportional to each other.

The principle of likelihood forms one of the two condi-
tions for establishing the following method for acquiring pi,j

from data. As mentioned before, Bayesian principle forms the
other condition to construct the method. The satisfaction of
these two principles leads to the following likelihood anal-
ysis method for acquisition of probabilistic evidence from
imbalanced data without ambiguity.

Theorem 1: Suppose prior evidence e0 is profiled as a BPD
defined by (1), and new evidence ej is acquired from the
observed test result tj and profiled by (8), with both e0 and ej

having the highest weight, or w0 = wj = 1. The combination
of e0 and ej by applying the ER rule leads to the same poste-
rior probability as that generated by applying Bayes’ rule, or
phi,e0∧ej = p(hi|tj, I0), if and only if basic probability pi,j for
evidence ej is given as normalized likelihood as follows:

pi,j = ci,j/

N∑
n=1

cn,j ∀i = 1, . . . , N and j = 1, . . . , L. (14)

Proof: See Section S1.1 proof of Theorem 1 of the
Supplementary Material part for this article.

Equation (14) asserts that the basic probability pi,j that
test result tj points to state hi should be proportional to the
likelihood ci,j that test result tj is observed given state hi.
More precisely, pi,j should be the normalized ci,j, obtained
by dividing ci,j for any i = 1, . . . , N with the same constant∑N

n=1 cn,j. That is, basic probability vector [p1,j, . . . , pN,j]T

should be proportional to likelihood vector [c1,j, . . . , cN,j]T .
According to the principle of likelihood [5], the evidential
meaning contained in [p1,j, . . . , pN,j]T is the same as that in
[c1,j, . . . , cN,j]T . By substituting (14) to (13), it is straight-
forward to see that phi,e0∧ej equals p(hi|tj, I0). It is therefore
straightforward to assert that (14) is sufficient to ensure that
the ER rule generates the same result as Bayes’ rule yet in
a symmetrical manner in the sense that both e0 and ej are
probability distributions over system states.

To show that (14) is also a necessary condition, Bayesian
principle ought to be followed. That is, pi,j must be given
by (14) as normalized likelihood in order to make phi,e0∧ej

equal to the posterior probability that state hj is true given
prior evidence e0 and the observation of test result tj. To put it
simply, if pi,j is not proportional to ci,j, the combined results
of e0 and ej will not be equal to the posterior probability
generated by Bayes’ rule, or phi,e0∧ej generated by (13) will
not be a principled or meaningful result.

Theorem 1 in essence establishes a mapping from sample
data to evidence by identifying the likelihood of observing a
test result given a system state. That is, the observation of
a test result is transformed into a piece of evidence profiled
as a BPD about which states the test result points to and to
what extent. As explained later, this mapping is independent
of the prior distribution of the sample data, or irrespective of
whether the sample data is balanced or imbalanced. Theorem 1
is essential to ensure that the ER rule produces equivalent
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outcomes to those of Bayesian inference when all pieces of
evidence are probabilistic and prior distribution is also known.
It also shows that the ER process constitutes a symmetrical
likelihood inference process as it allows multiple pieces of
independent evidence to be represented in the same format of
BPD and combined in any order without having to rely on a
known prior distribution, which is formally stated as follows.

Corollary 1: Suppose evidence ej is acquired by assigning
its basic probability pθ,j = pi,j using (14) for any θ = hi ∈ �

and pθ,j = 0 for any other θ ⊆ �, and ej is fully reliable. If ej

is combined with a completely unknown prior (or e0), or total
ignorance, which has the basic probability of one assigned
to system space �, and zero to all other system states, the
resultant posterior probabilities will be the same as the basic
probabilities of ej.

Proof: See Section S1.2 proof of Corollary 1 of the
Supplementary Material part for this article.

From Theorem 1 and Corollary 1, three assertions can be
made. The first one is that the ER rule constitutes a like-
lihood inference process in the sense of combing multiple
pieces of probabilistic evidence acquired as likelihood distri-
butions. This is because each piece of probabilistic evidence is
so acquired that its basic probabilities are assigned as normal-
ized likelihood or given by (14). The second assertion is that
such a likelihood inference process does not depend on prior
distribution, or whether data is balanced or imbalanced. The
third assertion is that the ER process is a symmetrical prob-
abilistic inference process and generates the same posterior
probability as Bayesian inference does given the same prior
probability distribution. Putting the three assertions together,
it can be concluded that if probabilistic evidence is acquired
as a normalized likelihood distribution and satisfy the assump-
tions in Corollary 1, the ER process constitutes a likelihood
inference process and becomes equivalent to Bayesian infer-
ence when prior probability distribution is given and taken into
account as independent evidence.

D. Illustration of ER for Symmetrical Bayesian Inference

Theorem 1 enables us to use the data of Table III as an
example to illustrate how an ER can be performed for equiva-
lent Bayesian inference in a symmetrical manner. We will also
show why evidence acquired using Theorem 1 is independent
of prior distribution.

By applying the ER rule, posterior probability ph1,e0∧e1

can be calculated by combining the evidence of a positive
test result e1 and the sample prior e0, where e0 and e1
are represented by e0 = {(h1, p1,0), (h2, p2,0)} and e1 =
{(h1, p1,1), (h2, p2,1)}. From the data of Table III, we have
e0 = {(h1, 0.1), (h2, 0.9)} calculated by (3). From (14) and (4),
the basic probabilities p1,1 and p2,1 for a positive test result
are given as the following normalized likelihoods:

p1,1 = c1,1

c1,1 + c2,1
= 0.95

0.95 + 0.15
= 0.95

1.1
= 0.8636

p2,1 = c2,1

c1,1 + c2,1
= 0.15

1.1
= 0.1364. (15)

Note from (6) that the above basic probabilities are the same
as the posterior probabilities generated by Bayesian infer-
ence based on the uniform prior distribution. This implies
that the basic probabilities generated by (14) are equivalent
to Bayesian posterior probabilities generated from the same
likelihood function and a uniform prior distribution.

The above implication does not incur accidentally. In fact,
from Tables III and IV the calculation of p1,1 can be refor-
mulated as the process of calculating the relative frequency of
190 cases of joint “positive test result and steroid user” out of
200 steroid users, over the sum of the same 190 cases and the
number of the cases of joint “positive test result and steroid
free individuals” out of an equal number of 200 steroid free
individuals, which is equal to (270/1800) × 200, that is

p1,1 = 190

190 + (270/1800) × 200

= (190/200)

(190/200) + (270/1800)
= c1,1

c1,1 + c2,1
. (16)

The above equation shows that the calculation of p1,1 does
not depend on the prior distribution of steroid user and steroid
free, nor on any resampling. Similarly, the calculation of p2,1
does not depend on the prior distribution or resampling either
and can be reformulated as follows:

p2,1 = 270

(190/200) × 1800 + 270

= (270/1800)

(190/200) + (270/1800)
= c2,1

c1,1 + c2,1
. (17)

The above calculations and interpretation show that vector
[p1,1, p2,1]T is proportional to vector [c1,1, c2,1]T . That is,
p1,1 and p2,1 are the basic probabilities that possess the same
evidential meaning as c1,1 and c2,1. From the above discus-
sions, basic probability calculated by (14) has the following
interpretation.

Corollary 2: Basic probability pi,j calculated by (14) for
test result tj is the same as the posterior probability gener-
ated from the observation of tj and an assumed uniform prior
distribution e0 as defined by (1) with pi,0 = pn,0 for any
i, n = 1, . . . , N.

Proof: Given the conditions pi,0 = pn,0 ∀i, n = 1, . . . , N,
the proof is straightforward as follows:

pi,j = ci,j∑N
n=1 cn,j

= ci,jpi,0∑N
n=1 cn,jpn,0

= p
(
hi|tj, I0

)
. (18)

If the prior distribution of the data in Table III is calculated
by (3), using (13) to combine it with the evidence of observing
a positive test result leads to the following outcome:

ph1,e0∧e1 = p1,1p1,0

p1,1p1,0 + p2,1p2,0

= 0.8636 × 0.1

0.8636 × 0.1 + 0.1364 × 0.9
= 0.413. (19)

The outcome is the same as the posterior probability of (5)
generated by using Bayes’ rule, i.e., ph1,e0∧e1 = p(h1|t1, I0) =
190/(190 + 270) = 0.413.

However, it should be noted that while they are equiva-
lent when applied under the conditions where Bayes inference
can also be applied, namely, with w0 = w1 = 1 in (10) and
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TABLE V
LIKELIHOOD FROM EXPERIMENT

ambiguous data cleaned, the ER and Bayesian inference are
not the same in general. The meaning of p(t1|h1, I0)p(h1|I0),
which is the numerator in (5) for calculating p(h1|t1, I0) in
Bayesian inference, is not the same as p1,1p1,0, which is the
numerator in (19) for calculating ph1,e0∧e1 in the ER rule. The
former is the joint probability of the occurrence of both pos-
itive test result t1 and the state “steroid user h1” given the
cleaned sample data of the experiment (I0), while p1,1p1,0 is
the joint probability mass that the positive test result and the
prior distribution e0 independently support the detection of
steroid user h1. More specifically, we can see that p(h1|I0) =
p1,0 = 0.1 but p(t1|h1, I0) = 0.95 �= p1,1 = 0.8636.

E. Illustration of the ER Rule for Recursive Likelihood
Inference

In the previous section, it was shown that Theorem 1 under-
pins the ER rule so that it can perform equivalent Bayesian
inference symmetrically. In this section, another example is
used to illustrate the recursive nature of ER for likelihood
inference.

Example 2: Suppose a company supplies large quantities of
parts by lots to its customers. Each lot contains some defec-
tive parts and can be classified as good lot (h1) or bad lot
(h2). There is different cost implication if a good or bad lot
is shipped to a customer, so the company conducts n inde-
pendent random tests before any shipment to minimize cost.
The likelihood of getting a defective part by randomly picking
up a part from a good (or bad) lot is p1 (or p2). Suppose h1
and h2 are two mutually exclusive and collectively exhaustive
states, xk is the result from the kth random test, which can be
defective (xk = 1) or faultless (xk = 0), as shown in Table V,
and a part is put back to a lot after test. If n random tests are
conducted for shipment decision making, with l of them being
defective and the rest being faultless, what is the probability
that h1 (or h2) is true?

Note that mathematically Example 2 is the same as the
example analyzed in [30], where inference based on a carefully
constructed belief function can only approximate Bayesian
inference in general. In this section, we demonstrate that the
ER rule generates the same result as Bayesian inference does
when evidence is acquired by applying the proposed likelihood
analysis method.

In this example, we have � = {h1, h2}. Let ej,k stand for the
evidence of observing xk = j and pi,jk for the basic probability
that evidence ej,k points to state hi, with i ∈ {1, 2} and j ∈
{0, 1}. Applying Theorem 1, we can acquire evidences e1,k

and e0,k from Table V, as shown in Table VI, and they are

TABLE VI
BASIC PROBABILITY ACQUIRED FROM LIKELIHOOD

profiled as follows:

e1,k = {(
h1, p1,1k

)
,
(
h2, p2,1k

)}
and

e0,k = {(
h1, p1,0k

)
,
(
h2, p2,0k

)}
.

Since the n test results are independently generated, they
can be combined recursively using the ER rule in any order
without changing the final result [46]. As such, without loss
of generality, let us initially combine the first group of all
the l test results that are defective or xk = 1(k = 1, . . . , l),
then the second group of all the n – l test results that
are faultless or xk = 0(k = l + 1, . . . , n), and finally the
two groups to generate the required probabilities. Let the
outcomes be denoted by phi,e1,1∧···∧e1,l , phi,e0,l+1∧···∧e0,n , and
phi,(e1,1∧···∧e1,l)∧(e0,l+1∧···∧e0,n)i ∈ {1, 2}, respectively.

Suppose each test result is regarded as fully reliable, mean-
ing w0 = w1 = 1 in (10). Note that from Table V, there is no
ambiguity in data and therefore basic probability assigned to
� is zero in e1,k and e0,k for any k. From (10) or (13), we
then get

m̃hi,e1,1
∧

e1,2 = pi,11 × pi,12

= pi

p1 + p2
× pi

p1 + p2
= (pi)

2

(p1 + p2)
2

so phi,e1,1∧e1,2 = [(pi)
2/c12], where c12 = ∑2

t=1(pt)
2 is a

constant with respect to i.
Next, let us suppose phi,e1,1∧···∧e1,l−1 = (pi)

l−1/c1···l−1 with
c1···l−1 = ∑2

t=1(pt)
l−1 being a constant with respect to i.

Applying the ER rule (10) again to combine e1,1, . . . , e1,l−1
with e1,l leads to

m̃hi,e1,1
∧··· ∧ e1,l = (pi)

l−1

c1···l−1
× pi

p1 + p2
= (pi)

l

c1···l−1(p1 + p2)

so phi,e1,1∧···∧e1,l = [(pi)
l/c1···l], where c1···l = ∑2

t=1(pt)
l is a

constant with respect to i.
Following a similar process, we can combine

e0,l+1, . . . , e0,n and get phi,e0,l+1∧···∧e0,n = (1 − pi)
n−l/cl+1···n,

where cl+1···n = ∑2
t=1(1 − pt)

n−l is a constant with respect
to i.

Applying the ER rule again to combine (e1,1 ∧ · · · ∧ e1,l)

with (e0,l+1 ∧ · · · ∧ e0,n) leads to

m̃hi,(e1,1
∧··· ∧ e1,l)

∧
(e0,l+1

∧··· ∧ e0,n)

= (pi)
l

c1···l
× (1 − pi)

n−l

cl+1···n
= (pi)

l(1 − pi)
n−l

c1···lcl+1···n
.

Note that c1···l and cl+1···n are each constant with respect to i.
From (10), the required probabilities are finally generated by
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TABLE VII
SAMPLE DATA WITH AMBIGUITY

the following normalization [46]:

phi,e1,1∧···∧e1,l∧e0,l+1∧···∧e0,n

= m̃hi,(e1,1
∧··· ∧ e1,l)

∧
(e0,l+1

∧··· ∧ e0,n)∑2
t=1 m̃ht,(e1,1

∧··· ∧ e1,l)
∧

(e0,l+1
∧··· ∧ e0,n)

= (pi)
l(1 − pi

)n−l

∑2
t=1 (pt)

l(1 − pt

)n−l
.

III. LIKELIHOOD ANALYSIS AND INFERENCE WITH

IMBALANCED AND AMBIGUOUS DATA

In the previous section, the likelihood method for analyzing
imbalanced data without ambiguity was proposed to enable
the ER rule to perform Bayesian inference symmetrically and
equivalently. In this section, this method will be generalized to
analyze imbalanced data with ambiguity, as shown in Table II,
without resampling, deleting, or imputing ambiguous data.

A. Likelihood Analysis of Imbalanced and Ambiguous Data

In the previous section, ambiguous data was deleted for con-
ventional Bayesian analysis. In this section, ambiguous data
is taken into account as it stands with its impact on inference
and decision making evaluated. Table VII illustrates a general
inference problem with N mutually exclusive and collectively
exhaustive singular states and L test results, which cover all
possible outcomes of the test, categorical, or discretised, where
data can be ambiguous in the sense that a test result can point
to any subset of singular states. In Table VII, θ stands for state,
which can be a singular state or a subset of singular states,
tj for the jth test result, sθ,j for the number of observations
where both state θ is true and test result tj is observed, Sθ for
the number of all observations where state θ is true, Tj for the
number of all observations where test result tj is observed, and
S for the total number of all observations in the sample. So, Sθ

= ∑L
j=1 sθ,j, Tj = ∑

θ⊆� sθ,j, and S = ∑
θ⊆� Sθ = ∑L

j=1 Tj.
Let pθ,0 stand for the sample prior probability of state

θ , and cθ,j for the likelihood that the jth test result (tj) is
expected to occur given θ . Both are calculated from the data
of Table VII by

pθ,0 = Sθ /S and cθ,j = sθ,j/Sθ

∀θ ⊆ � and j = 1, . . . , L (20)

Let pθ,j stand for the basic probability that the jth test result
points to state θ , with

∑
θ⊆� pθ,j = 1 for any j = 1, . . . , L.

Suppose e0 stands for the sample prior distribution with weight
w0, and ej for the evidence mapped from the jth test result with
weight wj, profiled as follows:

e0 =
⎧⎨
⎩(

θ, pθ,0
)
, θ ⊆ �,

∑
θ⊆�

pθ,0 = 1

⎫⎬
⎭ (21)

ej =
⎧⎨
⎩(

θ, pθ,j
)
, θ ⊆ �,

∑
θ⊆�

pθ,j = 1

⎫⎬
⎭j = 1, . . . , L. (22)

The first question is how to generate basic probability pθ,j

from imperfect data so that the ER process constitutes a prob-
abilistic inference process even when data are imperfect. To
answer this question, it is asserted that both the principle of
likelihood and Bayesian principle be followed. This assertion
leads to the following likelihood analysis method to acquire
evidence from imperfect data.

Theorem 2: Suppose two pieces of evidence e0 and ej

(j = 1, . . . , L) are defined in (21) and (22), respectively. The
joint probability that both e0 and ej support state θ , generated
by applying the ER rule, has the same evidential meaning as
the posterior probability that state θ is true given e0 and the
observation of test result tj if and only if basic probability pθ,j

is acquired as follows:

pθ,j = cθ,j/

⎛
⎝∑

A⊆�

cA,j

⎞
⎠ ∀θ ⊆ � and j = 1, . . . , L. (23)

Proof: See Section S1.3 proof of Theorem 2 of the
Supplementary Material part for this article.

Similar to the interpretation for Theorem 1, the rationale
of Theorem 2 can also be interpreted in terms of relative
frequency by noting that pθ,j is taken as the ratio of sθ,j over
the sum of sA,j rescaled to Sθ for all A ⊆ �, or

pθ,j = sθ,j

sθ,j + ∑
A⊆�,A�=θ

(
sA,j/SA

) × Sθ

=
(
sθ,j/Sθ

)
(
sθ,j/Sθ

) + ∑
A⊆�,A�=θ

(
sA,j/SA

) = cθ,j∑
A⊆� cA,j

. (24)

This means that evidence ej is generated without relying
on the prior distribution of the sample data, or the former is
independent of the latter. It is also worth noting that the acqui-
sition of evidence ej using (23) makes full use of all sample
data without resampling. Theorem 2 establishes a mapping
from imperfect data to evidence in the sense that the obser-
vation of a test result is transformed into a piece of evidence,
independent of the prior and other evidence from subsequent
tests if the tests are conducted independently.

Theorem 2 asserts that in the ER framework evidence must
be acquired as normalized likelihoods in order that the com-
bination of such evidence using the ER rule constitutes a
probabilistic inference process. The following corollary shows
that such an ER process is a likelihood inference process and
is independent of sample prior, or irrespective of whether data
is imbalanced or not.
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Corollary 3: Suppose evidence ej is acquired by assigning
basic probability pθ,j using (23) for any θ ⊆ �, and is fully
reliable. If ej is combined with an unknown prior (e0) that is
also fully reliable and has the basic probability of one assigned
to the system space and zero to any other subsets of singular
states, the resultant probabilities are the same as the basic
probabilities of ej.

Proof: See Section S1.4 proof of Corollary 3 of the
Supplementary Material part for this article.

B. Illustration of Likelihood Inference With Imperfect Data

This section is moved to the Supplementary Materials part
for this article due to the page limit. The purpose of this sec-
tion is to analyze imbalanced data with ambiguity to support
evidence-based decision making and come back to investigate
Example 1. The details of this section can be found from
Section “S2. Illustration of likelihood inference with imperfect
data” of the Supplementary Material part.

C. Likelihood Inference for Fault Diagnosis

This section is moved to the Supplementary Materials part
for this article due to the page limit. The purpose of this sec-
tion is to use a case study about fault diagnosis for rail track
maintenance management to demonstrate how the ER rule can
be implemented for likelihood inference with ambiguous data
collected from an engineering system. The details of this sec-
tion can be found from Section “S3. Likelihood inference for
fault diagnosis” of the Supplementary Material part.

IV. CONCLUSION

In this article, the two questions were investigated: 1) how
to acquire evidence from imbalanced data without resampling
and 2) how to deal with ambiguous data in the processes of
acquiring and combining evidence in a principled manner for
probabilistic inference and evidence-based decision making.
After a brief introduction to Bayes’ rule and the ER rule,
the relationship between them was investigated. By follow-
ing the principle of likelihood and Bayesian principle, a new
sufficient and necessary condition was established to acquire
evidence from imbalanced data without ambiguity, showing
that basic probability must and must only be generated as
normalized likelihood. Under this condition, the combination
of prior probability and basic probability using the ER rule
leads to the same posterior probability as what Bayesian infer-
ence generates when there is no ambiguity in data. It was also
shown that when there is no prior information available, the
ER rule operates as a likelihood inference process with prior
taken as total ignorance. The outcome of the likelihood infer-
ence is the same as that of Bayesian inference by assuming
uniform prior. Two examples in decision analysis under uncer-
tainty were analyzed to demonstrate how the ER rule can be
used for symmetrical Bayesian inference when prior distri-
bution is known and for likelihood inference when prior is
unknown.

The above investigation was then extended to construct a
new sufficient and necessary condition for probabilistic infer-
ence with both imbalanced and ambiguous data. Underpinned

by this condition, the inference process based on the ER rule
is established as a framework for likelihood inference, where
the basic probability can be assigned to singular states or any
subset of singular states to deal with ambiguity in data. In this
general framework, imbalanced and ambiguous data from dif-
ferent sources can be used for probabilistic inference without
resampling, deleting, or imputing data. An example in decision
making under uncertainty and a case study for fault diagno-
sis in railway track maintenance management were examined
to elaborate how this general likelihood inference process can
be implemented to acquire and combine evidence when there
is ambiguity in data and for identification of low probability
events such as system faults.

In summary, the research finds that in principle evidence
must and must only be acquired as a normalized likelihood dis-
tribution for probabilistic inference in the ER framework. The
proposed likelihood method provides a principled and prac-
tical means for analyzing imperfect data in situations where
data is routinely recorded from different sources, instead of
from carefully designed and strictly controlled laboratory con-
ditions, and thus may not capture true system prior conditions.
The case study demonstrated the application of the likeli-
hood method to analyze data for fault diagnosis in engineering
systems, with more applications of the method reported in
other papers from healthcare to financial services, although its
potential applications are by no means limited to these areas.

The likelihood method developed in this article can be used
to acquire evidence from data sources individually under the
assumption that one data source is independent of another in
the process of evidence acquisition. However, this assumption
may not always be true. There is therefore a need to investigate
how to acquire evidence from data sources that are not inde-
pendent of each other and how to use such evidence to support
probabilistic inference and evidence-based decision analysis.
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