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S1. Proofs of Theorems and Corollaries 

S1.1 Proof of Theorem 1 

If Equation (14) is used to acquire ,i jp , ,i jp  will be the 

probability that has the same evidential meaning as likelihood 

,i jc  according to the principle of likelihood. Putting it into 

Equation (13) results in 
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Equation (S1-1) asserts that the ER rule becomes equivalent 

to Bayes’ rule given Equation (14) with 
0,i jh e ep   being the 

probability generated by the orthogonal sum of two 

independent probability distributions. Therefore, Equation (14) 

is a sufficient condition for the assertion of the theorem. 

In the following, it is limited to discrete cases to prove that 

the condition given by Equation (14) is also necessary in order 

to ensure that the ER process is a probabilistic inference 

process, while a continuous case can be discretised as shown 

later in this paper. A discrete case can in general be illustrated 

in Table S1-1. In Table S1-1, ,i js  stands for the number of 

observations of both state ih  and test result jt , iS  for the 

number of all observations for state ih , jT  for the number of 

all observations for test result jt , and S  for the number of all 

observations in the experiment. 

Table S1-1 Sample Data 

Frequency 
Test result Total  

observation 1t   
jt   

Lt  

System 

state 

1h  1,1s   
1, js   1,Ls  1S  

       

ih  
,1is   

,i js   
,i Ls  iS  

       

Nh  ,1Ns   
,N js   

,N Ls  NS  

Total test 1T   
jT   

LT  S  
 

If test result jt  is observed independently, combining 

evidence 0e  (prior distribution) and probabilistic evidence je  

(test result jt ) by the ER rule must result in posterior 

probability ,i j js T  for any 1, ,i N= , which is the relative 

frequency or the conditional probability of state ih  given test 

result jt  in the experiment. That is, there must be 
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In the prior distribution 0e  generated from Table S1-1, there 

is ,0n np S S=  for any 1, ,n N= . Putting this into Equation 

(S1-2) leads to 
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In the above equation, note that for evidence je  the three 

terms: ( ) ,1

N

n n jn
S S p

= , S  and jT  are all constant with 

respect to i for any ih Θ . Since the above equation is true for 

any kh Θ , dividing Equation (S1-3) for kh  by Equation (S1-

3) for ih  leads to the following equation 

,
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On the other hand, as je  is a probability distribution on the 

whole set of states, there is 
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Solving Equations (S1-4) and (S1-5) leads to Equation (14) 

with , ,i j i j ic s S= . This proves that Equation (14) is also 

necessary.                       □ 

 

S1.2 Proof of Corollary 1 

Evidence je  and total ignorance prior 0e  for this corollary 

can be profiled as the following basic probability distributions 
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Applying Equation (10) to combine je  and 0e  with 

0 1w w=  1=  leads to 
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Note that , ,j i jp p =  for any ih Θ =           □ 

 

S1.3 Proof of Theorem 2 

In Equation (10), the joint probability mass that both 0e  and 

je  exactly support state   is given by ,0 , jm m K  , where K 

is a normalisation factor common to all  , with ,0m  and , jm  

calculated by ,0 0 ,0 0m w p w S S  = =  and , ,j j jm w p = , 

respectively. If Equation (23) is used to acquire basic 

probability , jp , we will have 
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In Equation (S1-6), , j js T  is the relative frequency of the 

, js  observations of both state   and test result jt  over all 

the jT  observations of jt , or the posterior probability that state 

  is true given that test result jt  is observed. Note that 0, jK  

in Equation (S1-6) is constant for any  . ,0 , jm m K   is thus 

proportional to , j js T  for any  . According to the principle 

of likelihood [5], the former has the same evidential meaning as 

the latter. As such, Equation (23) is a sufficient condition for 

the assertion of this theorem. 

On the other hand, suppose it is required that the joint 

probability mass ,0 , jm m K   must have the same evidential 

meaning as posterior probability, or the former be proportional 

to the latter: 

,
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where K  is a positive constant so that ( ), j js T K
 is 

proportional to ( ), j js T
. It can be shown that basic 

probability , jp  must be calculated by Equation (23). 

In fact, note that in Equation (S1-7) the terms 0w , jw , S , 

K , jT and K  are all constant with regard to any Θ  . As 

Equation (S1-7) is required for any Θ  , dividing Equation 

(S1-7) for A  by Equation (S1-7) for   leads to the following 

equation 
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Since ,A jp  is the basic probability that test result jt  points 

to state A , from Equation (8), the following equation holds 
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Then, solving Equations (S1-8) and (S1-9) for , jp  leads to 
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Hence, Equation (23) is also a necessary condition for the 

assertion of the theorem.                 □ 

 

S1.4 Proof of Corollary 3 

Evidence je  and total ignorance prior 0e  for this corollary 

can be profiled as the following basic probability distributions 
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S2. Illustration of likelihood inference  

Given Theorem 2 and Corollary 2, we are now in a position 

to analyse imbalanced data with ambiguity to support evidence-

based decision making and come back to investigate Example 

1. Let 𝑐1,1 , 𝑐2,1  and 𝑐𝛩,1  represent the likelihoods that an 

individual is expected to have a positive test result given that he 

is a steroid user, steroid free and in an unknown state of steroid 

use, respectively. From Table 2 and Equation (20), 𝑐1,1, 𝑐2,1 and 

𝑐𝛩,1 are calculated as follows: 
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𝑐1,1 =
190

203
= 0.936, 𝑐2,1 =

270

1830
= 0.1475, 

 𝑐𝛩,1 =
60

187
= 0.3209 

 Let 𝑝1,1, 𝑝2,1 and 𝑝𝛩,1 represent the basic probabilities that a 

positive test result points to the three states: steroid user, steroid 

free and unknown, respectively. From Equation (23), 𝑝1,1, 𝑝2,1 

and 𝑝𝛩,1 are given as follows. 

 𝑝1,1 =
𝑐1,1

𝑐1,1+𝑐2,1+𝑐𝛩,1
=

0.936

1.4044
= 0.6664, 

𝑝2,1 =
0.1475

1.4044
= 0.1051, 𝑝𝛩,1 =

0.3209

1.4044
= 0.2285 

A positive test result using test Method I can then be profiled 

as the following BPD. 

( ) ( )

( )
1

 ,0.6664 ,  ,0.1051 ,

,  0.2285

Steroid user Steroid free
e

Unknown

  
=  
  

(S2-1) 

The above likelihood distribution shows that a positive test 

result for an athlete means that the probabilities of the athlete 

being a steroid user, steroid free and unknown are 0.6664, 

0.1051 and 0.2285, respectively. If the prior distribution of the 

athlete’s state of steroid use is completely unknown, as given 

by the following vacuum basic probability distribution [29]. 

 ( ) ( ) ( ) 0  ,0 ,  ,0 , ,1e Steroid user Steroid free Unknown= (S2-2) 

It can be shown that, by using the ER rule of Equation (10), the 

combination of 1e  given by Equation (S2-1) with 0e  given by 

Equation (S2-2) results in 1e  itself. 

Note that uniform distribution is not the same as completely 

unknown. In fact, if Equation (10) is used to combine 1e  of 

Equation (S2-1) with the following uniform distribution on the 

two states: steroid user and steroid free 

( ) ( ) ( ) '
0  ,0.5 ,  ,0.5 , ,0e Steroid user Steroid free Unknown=  

It will result in the following combined distribution. 

 ( )
( ) ( )

( )
'
0 1

 ,0.729 ,  ,0.271 ,

,0

Steroid user Steroid free
e e

Unknown

  
 =  

  

 

The above result shows the difference that a uniform prior 

and a completely unknown prior can make in inference when 

there is ambiguity in data, while there is no such difference 

when there is no ambiguity in data, as proved in Corollary 1 and 

Corollary 2. If a prior distribution is not known in advance, 

unknown should be explicitly modelled as vacuum evidence in 

inference, such as by Equation (S2-2), rather than assuming 

uniform prior. Otherwise, unintentional or biased inference 

results may be incurred. This is because a uniform distribution 

does not really mean unknown but is as informative as 

assuming that it is equally likely that the athlete could be a 

steroid user or steroid free with no ambiguity or unknown. As 

such, the inferred probability of 0.729 for the steroid user state 

in the above result will not be credible unless the uniform prior 

accurately represents the athlete’s true prior condition. 

Since the ambiguity in evidence 1e  is as high as 22.85%, it 

could be controversial to use 1e  alone to infer whether the 

athlete is a steroid user or steroid free. A more sensible and less 

controversial approach is to gather more evidence before a 

robust decision could be made beyond reasonable doubt. 
Suppose two other different methods: Method II and Method 

III are available for detecting steroid use, and the effectiveness 

of Method II and Method III is investigated by two independent 

experiments as shown in Table S2-1 and Table S2-2. In Table 

S2-1, more steroid users are tested using Method II, while in 

Table S2-2 more steroid free individuals are tested using 

Method III, so the two datasets are imbalanced in different 

orientations. Nevertheless, both Method II and Method III are 

effective in detecting steroid use in the sense that among steroid 

users they generate positive result over 96% and 94% of the 

occasions, respectively. 
 

Table S2-1  Sample Data Using Method II 

Frequency 
Test results 

Positive  Negative  Inconclusive 

System 

states 

Steroid 

user  
492 14 6 

Steroid 

free  
25 115 3 

Unknown  12 66 8 
 

Table S2-2  Sample Data Using Method III 

Frequency 
Test results 

Positive  Negative  Inconclusive 

System 

states 

Steroid 

user  
260 12 4 

Steroid 

free  
400 2300 45 

Unknown  70 160 36 
 

If the athlete is also tested using Method II and Method III 

and the results are both positive, what is the probability that the 

athlete is a steroid user? To answer the question, the two new 

pieces of evidence need to be combined with the first piece of 

evidence 1e  acquired by using Method I. 

Suppose 𝑝1,1,𝐼𝐼 , 𝑝2,1,𝐼𝐼  and 𝑝𝛩,1,𝐼𝐼  represent the basic 

probabilities that a positive test result generated by using 

Method II points to states 1h , 2h  and Θ , respectively. From 

Equation (23) and Table S2-1, we get 𝑝1,1,𝐼𝐼 = 0.754, 𝑝2,1,𝐼𝐼 =

0.137 and 𝑝𝛩,1,𝐼𝐼 = 0.109. 

Similarly, suppose 𝑝1,1,𝐼𝐼𝐼 , 𝑝2,1,𝐼𝐼𝐼  and 𝑝𝛩,1,𝐼𝐼𝐼  represent the 

basic probabilities that a positive test result generated by using 

Method III points to states 1h , 2h  and Θ , respectively. From 

Equation (23) and Table S2-2, we get 𝑝1,1,𝐼𝐼𝐼 = 0.697, 𝑝2,1,𝐼𝐼𝐼 =

0.108  and 𝑝𝛩,1,𝐼𝐼𝐼 = 0.195. 

The positive test result generated by using Method II and 

Method III can then be profiled as the following basic 

probability distributions, represented by 1,IIe  and 1,IIIe , 

respectively. 

( ) ( )

( )
1,

 ,0.754 ,  ,0.137 ,

,0.109
II

Steroid user Steroid free
e

Unknown

  
=  
  

(S2-3) 
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( ) ( )

( )
1,

 ,0.697 ,  ,0.108 ,

,0.195
III

Steroid user Steroid free
e

Unknown

  
=  
  

(S2-4) 

Using Equation (10), the combination of the three pieces of 

independent evidence from the three positive test results, i.e. 

1e  from Equation (S2-1), 1,IIe  and 1,IIIe  above, is given by 

( )
( )

( ) ( )
1 1, 1,

 ,0.96 ,

 ,0.03 , ,0.01
II III

Steroid user
e e e

Steroid free Unknown

  
  =  

  

 

The assertion that the athlete is a steroid user is highly 

supported by the three pieces of evidence in that the combined 

probability for this assertion is 0.96, that against it is only 0.03 

and unknown about it is 0.01. While there is significant 

ambiguity in each of the three pieces of evidence (23%, 11% 

and 20%, respectively), the ambiguity in the combined 

evidence is reduced to 1%. This is one of the main features of 

ER that ambiguity diminishes with accumulation of more 

evidence. Based on such an inference result, one may assert that 

the athlete is a steroid user beyond reasonable doubt. Therefore, 

it should be less controversial to come up with a guilty verdict 

and take disciplinary actions against the athlete. 

However, if the two new test results using Method II and 

Method III were both negative, the conclusion would be rather 

different. In such a case, the combined probability for the above 

assertion would be only 0.3189 but that against it would be 

0.5859, although the ambiguity would still be as low as 9.52%. 

Given such mixed test results, however, it would be premature 

to take any action again the athlete. In this case, it should be 

sensible to collect more pieces of evidence for analysis before 

a final decision could be made. 

In the example, if we estimate prior from sample data, we 

obtain the following three different prior distributions from 

Table 2, Table S2-1 and Table S2-2, respectively. 

𝑒0,𝐼 = {
(𝑆𝑡𝑒𝑟𝑜𝑖𝑑 𝑢𝑠𝑒𝑟, 0.0914), (𝑆𝑡𝑒𝑟𝑜𝑖𝑑 𝑓𝑟𝑒𝑒, 0.8243),

(𝑈𝑛𝑘𝑛𝑜𝑤𝑛, 0.0842)
} 

𝑒0,𝐼𝐼 = {
(𝑆𝑡𝑒𝑟𝑜𝑖𝑑 𝑢𝑠𝑒𝑟, 0.6910), (𝑆𝑡𝑒𝑟𝑜𝑖𝑑 𝑓𝑟𝑒𝑒, 0.1930),

(𝑈𝑛𝑘𝑛𝑜𝑤𝑛, 0.1161)
} 

𝑒0,𝐼𝐼𝐼 = {
(𝑆𝑡𝑒𝑟𝑜𝑖𝑑 𝑢𝑠𝑒𝑟, 0.0840), (𝑆𝑡𝑒𝑟𝑜𝑖𝑑 𝑓𝑟𝑒𝑒, 0.8351),

(𝑈𝑛𝑘𝑛𝑜𝑤𝑛, 0.0809)
} 

As they are very different, we have only conducted 

likelihood inference without considering any of the priors. If the 

prior distribution of the athlete’s state of steroid use becomes 

available, it can and indeed should be treated as a piece of 

independent evidence in the ER framework and combined with 

other evidence to generate more robust and less ambiguous 

conclusions. 

 

S3. Likelihood inference for fault diagnosis 

In this section, a case study about fault diagnosis for rail track 

maintenance management is used to demonstrate how ER can 

be implemented for likelihood inference with ambiguous data 

collected from an engineering system. A more detailed 

description and analysis of the case can be found in Section S4 

of the Supplementary Material. 

The data sources of the case study are three sensors installed 

in different parts of a train, which are separated by springs. 

Therefore, these sensors are deemed to record train acceleration 

data independently, denoted by f1(t), f2(t), f3(t), in the sense that 

how one sensor generates data does not depend on how the 

other sensors work. These are continuous readings in nature and 

are each discretized into five equal intervals (ti,j, i = 1,…,5; j = 

1, 2, 3, as shown in Table S3-1 to Table S3-3) for illustration 

purpose. The irregularity of rail track is measured by absolute 

vertical displacement, denoted by Ir(t). Ir(t) is recorded by 

running a special train with expensive high accuracy 

instruments. It is also a continuous variable and is discretized 

into three system states: normal (h1), transient (h2) and faulty 

(h3) according to policy guidance for rail track maintenance 

management. 

In this case study, there are 880 imperfect records out of 

10309 collected in total. Table S3-1 shows all the cases where 

imperfect data were collected from different sensors mounted 

in different parts of a train, where “√” or “×” means that the 

reading fk(t) (k = 1, 2 or 3) and Ir(t) were recorded or were not 

recorded at time t. The last row in Table S3-1 shows the total 

number of missing datasets for each case. For example, Case 1 

means that all acceleration data were recorded from the three 

sensors, but the corresponding absolute vertical displacement 

Ir(t) was not recorded. 
 

Table S3-1  10 different cases of missing data 

Case 1 2 3 4 5 6 7 8 9 10 

f1(t) √ √ × √ ×
 

× × × √ √ 

f2(t) √ × √ √ √
 

√ √ × √ × 

f3(t) √ √ × × √
 

√ × √ × × 

Ir(t) × × √ √ √
 

× × × × × 

Total 350 50 100 100 100 50 40 40 50 0 
 

Note that such missing information means that there is a 

degree of ambiguity or unknown that rail track is in any of the 

three defined states: normal (h1), transient (h2) and faulty (h3). 

So, missing information is referred to as unknown, or global 

ignorance, and measured by beliefs assigned to the system 

space  1 2 3, ,Θ h h h= , as shown in Table S3-2, Table S3-3 

and Table S3-4 below. In an engineering system, there can be 

local ignorance as well, or beliefs assigned to subsets of states. 

For example, the state of a rail track may be judged to be not 

normal, that is, it could be in either transient state or faulty state. 

Such locally ambiguous information can be measured by a 

belief assigned to the subset of states  2 3,h h  as a whole 

without a need to assume that the belief has to be further 

assigned to 2h  or 3h  individually. This way, ambiguity in one 

data source is duly respected and explicitly measured without 

having to making unnecessary assumptions, and later can be 

reduced by combining evidence from another data source. In 

general, ambiguity can be reduced by accumulating evidence. 

The sample datasets discretized in this case study are shown 

from Table S3-2 to Table S3-4. A sample record f321= [f1(t), 

f2(t), f3(t), Ir(t)]=[2.8992, 0.0088, 0.5371, 9.195] is chosen to 
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illustrate how the set of evidence acquired from the reading of 

the three sensors can be used to predict the state of the railway 

track, which is faulty because Ir(t)=9.195 > 8 (the threshold 

above which the track is faulty). From Table S3-2 to Table S3-

4, this sample f321 is mapped to three pieces of evidence: 3,1e  

2,2e  and 1,3e  because f1(t) = 2.8992 falls into interval 3,1t = 

[2.0405, 3.007] for sensor 1, f2(t) = 0.0088 falls into interval 

2,2t  = [0.0051, 0.009] for sensor 2, and f3(t) = 0.5371 falls into 

interval 1,3t  = [0.4719, 0.5903] for sensor 3. Following the 

procedure as given in Section 3.1 and illustrated in Section 3.2, 

3,1e , 2,2e  and 1,3e  are acquired from Table S3-2 to Table S3-

4 as follows. 

( ) ( ) ( ) ( ) 3,1 1 2 3,0.0022 , ,0.0643 , ,0.8514 , ,0.0822e h h h Θ=  

( ) ( ) ( ) ( ) 2,2 1 2 3,0.3134 , ,0.3410 , ,0.1221 , ,0.2235e h h h Θ=  

( ) ( ) ( ) ( ) 1,3 1 2 3,0.2263 , ,0.2498 , ,0.1839 , ,0.3399e h h h Θ=  

Table S3-2  Discretized sample datasets from sensor 1 (f1(t)) 

Frequency 
1,1t  2,1t  3,1t  4,1t  5,1t  Missing 

readings [0.1075, 

1.074) 

[1.074, 

2.0405) 

[2.0405, 

3.007) 

[3.007, 

3.9734) 

[3.9734, 

4.9399] 

h1 0<Ir≤5 9230 80 6 2 3 180 

h2 5<Ir≤8 167 22 4 0 0 19 

h3 8<Ir≤12 8 2 4 1 0 1 

Θ Unknown 404 26 14 6 0 130 
 

Table S3-3  Discretized sample datasets from sensor 2 (f2(t)) 

Frequency 1,2t  2,2t  3,2t  4,2t  5,2t  Missing 
readings 

 
[0.0012, 

0.0051) 

[0.0051, 

0.009) 

[0.009, 

0.0129) 

[0.0129, 

0.0168) 

[0.0168, 

0.0207  

h1 0<Ir≤5 3842 4571 933 149 6 0 

h2 5<Ir≤8 40 111 45 16 0 0 

h3 8<Ir≤12 1 3 4 1 7 0 

Θ Unknown 258 199 33 0 0 90 
 

Table S3-4  Discretized sample datasets from sensor 3 (f3(t)) 

Frequency 1,3t  2,3t  3,3t  4,3t  5,3t  Missing 

readings 

 
[0.4719, 

0.5903) 

[0.5903, 

0.7086) 

[0.7086, 

0.827) 

[0.827, 

0.9454) 

[0.9454, 

1.0638]  

h1 0<Ir≤5 3654 4464 1015 152 26 190 

h2 5<Ir≤8 90 79 23 7 4 9 

h3 8<Ir≤12 5 2 7 1 0 1 

Θ Unknown 335 118 26 11 0 90 
 

Note that there are significant amounts of ambiguity in 

evidence 2,2e  and evidence 1,3e , measured by the probabilities 

of 0.2235 and 0.3399 assigned to system space Θ , 

respectively. 

It is interesting to note that evidence 3,1e  acquired from 

sensor 1 to a large extent points to faulty state h3, with a high 

probability of 0.8514, whilst evidence 2,2e  and evidence 1,3e , 

acquired from sensor 2 and sensor 3, respectively, point to non-

faulty state h1 or h2 to larger degrees than those to h3. 

Nevertheless, if these sensors are reliable, the three pieces of 

evidence should be combined to generate a more robust and less 

ambiguous diagnosis than any single sensor can provide. Using 

the ER rule or Equation (10) recursively and assuming that the 

weight of each piece of evidence is 1 for illustration purpose, 

we get the following combined result 

( )
( ) ( )

( ) ( )
1 2

3,1 2,2 1,3

3

,0.0841 , ,0.1841 ,

,0.7048 , ,0.027

h h
e e e

h Θ

  
  =  

  
  (S3-1) 

Note that in engineering applications the weight of pieces of 

evidence generated from sensors should be estimated rather 

than assumed. In Section S4 of the supplementary material, a 

method for estimation of evidence weight is discussed in 

relation to this rail track maintenance management problem. 

In the above result, the probability for faulty state h3 is 

( )3p h = 0.7048 and the probability against h3 is 0.2682 

(0.0841+0.1841), with a very low probability of 0.027 left for 

unknown. This combined diagnosis result is much less 

ambiguous than any individual sensor can predict, providing a 

panoramic view for informative maintenance decision making. 

To analyze the impact of ambiguity in data on probabilistic 

inference, let us use the common listwise deletion approach. to 

clean the ambiguous cases from the original data by deleting all 

the data of the last row and last column from each of Table1 S3-

2 to Table S3-4. As shown in Section S4 of the supplementary 

material, the combined result generated by using the cleaned 

data with no ambiguity for the same sample f321 is given by 

( ) ( ) ( ) ( ) * * *

3,1 2,2 1,3 1 2 3,0.0055 , ,0.2076 , ,0.7869e e e h h h  =  

                     (S3-2) 

where “*” means 
*

3,1e , 
*

2,2e  and 
*

1,3e  are acquired from the 

cleaned data. 

In Equation (S3-2), there is a high probability of 0.7869 for 

state 3h  and only a low probability of 0.2131 against it with no 

ambiguity. Although these results are not dramatically different 

from those of Equation (S3-1), they nevertheless provide an 

illusion about a higher degree in favor of 3h  with no ambiguity 

rather than what the data actually exhibits. 

Note that the results of Equation (S3-1) were generated by 

means of recursive likelihood inference with prior distribution 

taken as total ignorance. This is appropriate for fault diagnosis 

in engineering systems where prior distributions about system 

states are difficult to estimate in general, a fault occurs with low 

probability, and prior distribution from sample data may not 

reflect the true prior condition of system states. In this rail track 

case study, not only can the prior distribution change with the 

change of the lengths of rail track sections where data was 

sampled, but the prior generated from the sample data of Table 

S3-2 (Table S3-3 or Table S3-4) does not represent the true 

prior condition of the rail track at the very location where the 

sample dataset f321 was taken. In fact, the data of Table S3-2 to 

Table S3-4 was recorded at a regular interval of every few 

meters along a section of the rail track when a train was moving 

on it, rather than from the same location where the sample 

record f321 was taken. While the data in Table S3-2 to Table S3-

4 contain useful information about the relationship between the 

sensor readings and the irregularity of rail track, it does not 
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provide the information about the prior condition of the rail 

track at a particular location. To estimate the prior distribution 

of rail track irregularity at a specific location, many more 

datasets need to be generated from the very location, which may 

not be impossible but could be difficult, costly and impractical. 

Nevertheless, the impact of prior on fault diagnosis diminishes 

with accumulation of evidence acquired from more sensors. 

 

S4. Fault diagnosis in railway track maintenance 

S4.1 Evidence acquisition and combination 

In this subsection, a case study on fault diagnosis for railway 

track is investigated to show that the ER process is a likelihood 

inference process and is capable of detecting system fault, even 

though the system fault is a low probability state in the sense 

that the sample data is severely imbalanced towards non-faulty 

states. This is significant because fault is often a small 

probability event in many engineering systems. 

In railway systems, trains are guided on railway tracks by 

wheelsets (wheels and axles), which are connected to bogie 

frames via axle boxes and suspension. Due to such factors as 

heavy loads and uneven subgrade settlement, the geometric 

deformation of tracks can occur and is mainly expressed as 

vertical and lateral track irregularities. The abnormal vibration 

of train caused by track irregularities can lead to poor ride 

quality and even derailment. Therefore, track irregularity faults 

should be diagnosed and eliminated through maintenance to 

keep good ride quality and train safety. Rail track irregularities 

in conventional and high speed railways can be measured by 

track inspection vehicle such as GJ-4 and GJ-5. For example, a 

GJ-4 vehicle uses the inertial reference measurement method to 

calculate the vertical displacement (denoted as dv) of 

irregularity by car-body-mounted accelerometers, displacement 

sensors, clinometers and gyroscopes. Although a GJ-4 vehicle 

can provide the precise estimation of vertical displacement, it 

needs very expensive clinometers and gyroscopes and requires 

specially designed structure for installation. This makes it 

difficult to use track inspection vehicles to conduct real-time 

monitoring for a large railway network. 

As an alternative solution to this problem, irregularity fault 

identification and estimation can be done by using vibration 

acceleration data measured from the axle-boxes, bogies and car-

bodies of in-service trains. The alternative solution can be 

applied on in-service trains using cheap accelerometers, so that 

real-time monitoring can be realized and the cost of 

measurement can be significantly reduced. As the distinctive 

signals of irregularity are hidden in the natural frequency of 

vehicle vibration, signal processing methods need to be used to 

extract frequency-domain features and identify irregularity 

faults. 

According to Chinese railway line maintenance policy [1], 

track irregularity levels can be used as a specific standard for 

diagnosis and track maintenance. For example, when vehicle 

speed is limited in the interval [160, 200]km/h, dynamic 

management levels under the 42m waveband is given in Table 

S4-1, where Ir is the absolute value of dv in millimeter (mm). 

Level I means that track is in good condition and only routine 

maintenance is required. For 5mm<Ir≤8mm (Level II), car-

body vibration can discomfort passengers but is still tolerable 

from the maintenance point of view. If geometric deformation 

deteriorates further to Level III (8mm<Ir≤12mm), alarm must 

be generated and maintenance engineers have to do on-site 

repair as soon as possible. If Ir>12mm, serious defect occurs 

and poses a threat to train safety. In this case, a speed limit must 

be set immediately. Therefore, Level II is a transitional level 

from normal (Level I) condition (state) to abnormal (Level III) 

condition (state) or fault state as named in this paper. 
 

Table S4-1 dynamic levels of vertical irregularity of track 

(160 km/h~ 

200 km/h) 
Acceptance Discomfort 

Temporary 

repair 
Speed limit 

Level I II III IV 

Standard(mm) 0≤Ir≤5 5<Ir≤8 8<Ir≤12 12<Ir 
 

For railway safety, it is necessary to diagnose track 

irregularity to support the dynamic management and 

maintenance of rail tracks. In this subsection, we demonstrate 

how the ER inference process investigated in this paper can be 

used to diagnose track irregularity levels by using the data 

generated from the accelerometers mounted in the axle-box, 

bogie and car-body of a train, as shown in Figure S4-1, in 

comparison with Bayesian inference. In the next subsection, we 

will show that inaccuracy and ambiguity are inherent in such 

data and need to be treated with respect, instead of deleting 

inaccurate and missing datasets or imputing data under 

unrealistic assumptions. 

Figure S4-1 shows the vertical vibration readings in time-

domain recorded from a section of an operational railway line 

of about 2.357 kilometers. The data are measured by the 

accelerometers mounted in the axle-box, car-body and bogie of 

a GJ-4 vehicle and denoted by vr1, vr2 and vr3, respectively. The 

vertical displacement dv of the rail track is calculated by using 

the inertial reference measurement method. vr1, vr2 and vr3 are 

sampled per 0.25m, so time step is t=1,…,T, with T being the 

number of total samples and T=(2.357/0.25)×103 = 9429. 

 
Figure S4-1  Vertical vibration readings and displacement in 

time-domain 

At each step, the short-time Fourier transform is used to 

obtain the frequency amplitudes of acceleration with a window 

size of 5.25m. The mean values of the absolute amplitudes are 

denoted by f1(t), f2(t) and f3(t), respectively, and the absolute 

value of dv by Ir(t), as shown in Figure S4-2. Sample datasets 

are defined as S1={f1(t)|t=1, 2 ,…, T}, S2={f2(t)|t=1, 2,…, T}, 
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S3={f3(t)|t=1, 2,…, T}, and SIr={Ir(t)|t=1, 2,…, T}, with 

f1(t)∈SI1=[0.1705, 4.9399], f2(t)∈SI2= [0.0012, 0.0207] and 

f3(t)∈SI3=[0.4719,1.638]. In this paper, the data sources f1, f2 

and f3 are assumed to be independent of each other because 

these accelerometers are installed on the different parts of a 

train separated by suspension and springs so that each 

accelerometer works on its own without affecting others. 

 
Figure S4-2  The mean values f1(t), f2(t), f3(t) and the absolute 

value Ir(t)  

Since there is no sample such that Ir(t)>12mm (Level IV), in 

this subsection, the whole set of states is given by Θ={h1(I), 

h2(II), h3(III)}. For simplicity of discussion, SIk (k=1, 2, 3) is 

uniformly divided into 5 subintervals or bins denoted by 
,j ke  

(j=1, 2, …, 5), and then the number of samples cast in 
,j ke  is 

counted as shown in Table S4-2, Table S4-3 and Table S4-4. 

Note that while this casting approach is simple to generate 

frequency tables, it does not make full use of the information of 

a continuous variable and can cause approximation error in the 

process of generating frequency tables, leading to concern on 

accuracy in machine learning (ML). In ML, variables can be 

discretized continuously using the reference point approach [2]. 
 

Table S4-2    The casting result of sample f1(t) 

Frequency 1,1e  2,1e  3,1e  4,1e  5,1e  Total 

observation 
[0.1075,1.074) [1.074,2.0405) [2.0405,3.007) [3.007,3.9734) [3.9734,4.9399] 

h1 I:0<Ir≤5 9130 80 6 2 3 9221 

h2 II:5<Ir≤8 167 22 4 0 0 193 

h3 III:8≤Ir≤12 8 2 4 1 0 15 

Total cast 9305 104 14 3 3 9429 
 

Table S4-3    The casting result of sample f2(t) 

Frequency 1,2e  2,1e  3,2e  4,2e  5,2e  Total 

observation 
[0.0012,0.0051) [0.0051,0.009) [0.009,0.0129) [0.0129,0.0168) [0.0168,0.0207] 

h1 I:0<Ir≤5 3596 4537 933 149 6 9221 

h2 II:5<Ir≤8 37 98 42 16 0 193 

h3 III:8≤Ir≤12 0 3 4 1 7 15 

Total cast 3633 4368 979 166 13 9429 
 

Table S4-4    The casting result of sample f3(t) 

Frequency 1,3e  2,3e  3,3e  4,3e  5,3e  Total 

observation 
[0.4719,0.5903) [0.5903,0.7086) [0.7086,0.827) [0.827,0.9454) [0.9454,1.0638] 

h1 I:0<Ir≤5 3603 4428 1012 152 26 9221 

h2 II:5<Ir≤8 86 73 23 7 4 193 

h3 III:8≤Ir≤12 5 2 7 1 0 15 

Total cast 3694 4503 1042 160 30 9429 
 

According to the casting results, likelihood 
, ,i j kc  can be 

calculated as shown in Table S4-5, Table S4-6 and Table S4-7, 

to which the jth piece of evidence 
,j ke  of the data source Sk is 

expected to occur given that the ith (i=1, 2, 3) state (hi) is true. 

Then, Equation (14) in the paper is used to acquire the 

corresponding basic probability 
, ,i j kp  that evidence 

,j ke  

points to the ith state hi, as listed in Table S4-8, Table S4-9 and 

Table S4-10. Since the missing data is deleted in this 

subsection, all data are cast into h1(I), h2(II) or h3(III) in this 

casting process, without any data cast to Θ or any of its other 

subsets. 
 

   Table S4-5    The likelihood 
, ,1i jc  from data source S1 

Likelihood 1,1e  2,1e  3,1e  4,1e  5,1e  

h1 
1,1,1c =  

0.9901 

1,2,1c =  

0.0087 

1,3,1c =  

0.0007 

1,4,1c =  

0.0002 

1,5,1c =  

0.0003 

h2 
2,1,1c =  

0.8653 

2,2,1c =  

0.1140 

2,3,1c =  

0.0207 

2,4,1c =  

0.0000 

2,5,1c =  

0.0000 

h3 
3,1,1c =  

0.5333 

3,2,1c =  

0.1333 

3,3,1c =  

0.2667 

3,4,1c =  

0.0667 

3,5,1c =  

0.0000 
 

   Table S4-6    The likelihood 
, ,2i jc  from data source S2 

Likelihood 1,2e  2,2e  3,2e  4,2e  5,2e  

h1 
1,1,2c =

0.3900 

1,2,2c =

0.4920 

1,3,2c =

0.1012 

1,4,2c =

0.0162 

1,5,2c =

0.0007 

h2 
2,1,2c =

0.1917 

2,2,2c =

0.5078 

2,3,2c =

0.2176 

2,4,2c =

0.0829 

2,5,2c =

0.0000 

h3 
3,1,2c =

0.0000 

3,2,2c =

0.2000 

3,3,2c =

0.2667 

3,4,2c =

0.0667 

3,5,2c =

0.4667 
 

   Table S4-7    The likelihood 
, ,3i jc  from data source S3 

Likelihood 1,3e  2,3e  3,3e  4,3e  5,3e  

h1 
1,1,3c =

0.3907 

1,2,3c =

0.4802 

1,3,3c =

0.1097 

1,4,3c =

0.0165 

1,5,3c =

0.0028 

h2 
2,1,3c =

0.4456 

2,2,3c =

0.3782 

2,3,3c =

0.1192 

2,4,3c =

0.0363 

2,5,3c =

0.0207 

h3 
3,1,3c =

0.3333 

3,2,3c =

0.1333 

3,3,3c =

0.4667 

3,4,3c =

0.0667 

3,5,3c =

0.0000 
 

In order to demonstrate the equivalence and difference 

between Bayesian inference and the ER process, data record 

f321=[f1(t), f2(t), f3(t), Ir(t)]=[2.8992, 0.0088, 0.5371, 9.195] is 

chosen from the datasets as a test record, and analyzed using the 

following three alternative inference methods based on both the 

ER process and Bayesian inference. From the sample data ( 0I

) shown in Table S4-2 to Table S4-4, it is clear that test record 

f321 activates three pieces of evidence: 3,1e , 2,2e  and 1,3e  as the 

values of f1(t), f2(t) and f3(t) are in those three bins, respectively. 

It is also noted that this sample is taken at fault state h3 as Ir(t) 

= 9.195. The corresponding likelihoods can then be acquired 
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from Table S4-5 to Table S4-7. In addition, the prior 

probabilities can be generated directly from the last column of 

Table S4-2 by [p10, p20, p30]T=[0.9779, 0.0205, 0.0016] T. 
 

 Table S4-8   Basic probability 
, ,1i jp  from data source S1 

Probability 1,1e  2,1e  3,1e  4,1e  5,1e  

h1 
1,1,1p =

0.4145 

1,2,1p =

0.0339 

1,3,1p =

0.0022 

1,4,1p =

0.0032 

1,5,1p =

1 

h2 
2,1,1p =

0.3622 

2,2,1p =

0.4453 

2,3,1p =

0.0720 

2,4,1p =

0.0000 

2,5,1p =

0 

h3 
3,1,1p =

0.2233 

3,2,1p =

0.5208 

3,3,1p =

0.9258 

3,4,1p =

0.9968 

3,5,1p =

0 
 

 Table S4-9   Basic probability 
, ,2i jp  from data source S2 

Probability 1,2e  2,2e  3,2e  4,2e  5,2e  

h1 
1,1,2p =

0.6704 

1,2,2p =

0.4101 

1,3,2p =

0.1728 

1,4,2p =

0.0975 

1,5,2p =

0.0014 

h2 
2,1,2p =

0.3296 

2,2,2p =

0.4232 

2,3,2p =

0.3717 

2,4,2p =

0.5002 

2,5,2p =

0.0000 

h3 
3,1,2p =

0.0000 

3,2,2p =

0.1667 

3,3,2p =

0.4555 

3,4,2p =

0.4023 

3,5,2p =

0.9986 
 

Table S4-10   Basic probability 
, ,3i jp  from data source S3 

Probability 1,3e  2,3e  3,3e  4,3e  5,3e  

h1 
1,1,3p =

0.334 

1,2,3p =

0.4842 

1,3,3p =

0.1578 

1,4,3p =

0.138 

1,5,3p =

0.1198 

h2 
2,1,3p =

0.381 

2,2,3p =

0.3814 

2,3,3p =

0.1713 

2,4,3p =

0.3037 

2,5,3p =

0.8802 

h3 
3,1,3p =

0.285 

3,2,3p =

0.1344 

3,3,3p =

0.6709 

3,4,3p =

0.5583 

3,5,3p =

0.0000 
 

Method 1: First of all, all the three pieces of evidence 3,1e , 

2,2e  and 1,3e  are combined with the prior distribution e0 by 

applying the ER rule with wi=1 (i=0, 1, 2, 3) assumed. Equation 

(13) is used to calculate the combined result as follows, where 

0 3,1 2,2 1,3( )
khp e e e e    is the probability that 3,1e , 2,2e , 

1,3e  and e0 jointly support the kth state hk (k=1, 2, 3). 

1 2

3

0 3,1 2,2 1,3 0 3,1 2,2 1,3

0 3,1 2,2 1,3

[ ( ),  ( ),

( )]

h h

T

h

p e e e e p e e e e

p e e e e

     

  
 

[0.4961,  0.3892,  0.1147]T=  

Method 2: According to the conventional Bayesian 

inference as discussed in Section 2.1, the combined result of 

evidence e0 and evidence 3,1e  can be generated by 

3,1 0 0 ,3,1 ,0

3,1 0 3 3

3,1 0 0 ,3,1 ,01 1

( | , ) ( | )
( | , )

( | , ) ( | )

i i i i

i

i i i ii i

p e h I p h I c p
p h e I

p e h I p h I c p
= =


= =

 
 

Similarly, take the above combined result as new prior 

probability, and continue to combine it with evidence 2,2e  and 

evidence 1,3e  recursively, leading to the following result. 

1 0 3,1 2,2 1,3 2 0 3,1 2,2 1,3

3 0 3,1 2,2 1,3

( | , , , ),  ( | , , , ),

( | , , , )

T
p h I e e e p h I e e e

p h I e e e

 
 
  

 

[0.4961,  0.3892,  0.1147]T=  

Method 3: The ER rule is employed to combine the three 

pieces of evidence but take the prior as total ignorance. The 

combined result is given by 

1 2

3

3,1 2,2 1,3 3,1 2,2 1,3

3,1 2,2 1,3

( ),  ( ),

( )

T

h h

h

p e e e p e e e

p e e e

    
 

   

 

[0.0055,  0.2076,  0.7869]T=  

The above analyses show that Method 1 and Method 2 lead 

to the same combined result, just as expected by Theorem 1; 

however, both methods fail to identify faulty state h3 for this 

sample as the posterior probability for h3 is as low as 0.1147. 

On the other hand, the combined probability generated using 

Method 3 with the prior taken as total ignorance leads to a 

credible result in the sense that the probability for h3 is as high 

as 0.7869. This is a satisfactory result and reflects the true track 

irregularity level of this test sample to a great extent. This is 

significant because there are only 15 samples pointing to h3 in 

all the sample datasets. Compared with the other states, h3 is a 

very small probability state as revealed by the sample data. If 

the prior distribution e0 generated from the imbalanced sample 

data is taken into account, which points to the normal state (h1) 

to a great extent, it will have significant impact on the combined 

result for such a small probability event, leading to the missed 

identification of faulty state, just as shown by this example. It 

is a common situation in system fault diagnosis that a faulty 

state for a seemingly normal system is often a small probability 

event. As such, it makes sense to apply likelihood inference 

methods for fault diagnosis. 

However, from the above results it would be inappropriate to 

conclude that no prior distribution should be used in inference 

for fault diagnosis. Rather, one should check whether a prior 

distribution can reflect true prior system conditions or not. In 

the above analysis, for example, the prior generated from Table 

S4-9 does not represent the true prior condition of rail track at 

the location where the test dataset f321 was recorded. In fact, the 

data of Table S4-9 are imbalanced because they were recorded 

from different locations when the inspection train was moving 

along a section of rail track, rather than from the same location 

where f321 was taken. While the dataset of Table S4-9 is believed 

to hold useful information about the relationship between the 

sensor readings and the irregularity of rail track, it may not 

provide adequate information about the prior condition of rail 

track at a particular location. To estimate the prior distribution 

of rail track irregularity at a specific location, many more 

datasets need to be generated from the very location, which may 

not be impossible but could be difficult, costly and impractical. 
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S4.2 Evaluating the weight of evidence 

In the above analysis, the evidence acquired from each of the 

three sensors is assumed to be fully reliable. However, this is 

not the case as the quality of data collected from the three 

sensors is different, as shown in Figure S4-2. There is therefore 

a need to estimate the weight of evidence acquired from these 

data sources. In principle, the weight of evidence acquired from 

a data source or a sensor represents the importance of the role 

that the data source plays to provide correct identification of rail 

track irregularities. In this context, we need to consider two 

factors to estimate the weight of evidence in this case study. 

One is the weight of the information source fk itself, and the 

other is the precision of the partitioned evidence intervals. It is 

suggested that the more important an information source is, the 

more exactly it follows the vertical irregularities. That is, the 

higher the vertical displacement, the larger fk, and vice versa. 

Hence, we firstly define the relative changes of the readings fk(t) 

and Ir(t) as follows. 

( )
( )=

max( ( ))

k
k

k
t

f t
Cf t

f t
                (S4-1) 

( )
( )=

max( ( ))
t

Ir t
CIr t

Ir t
               (S4-2) 

The ability of fk following Ir can then be described by 

1
= ( )- ( )

T

k kt
af CIr t Cf t

=              (S4-3) 

Obviously, the smaller kaf  is, the more accurately fk reflects 

the variation trends of Ir. As such, the weight of information 

source fk can be defined as follows. 

min( )
=

i
i

k

k

af
Rf

af
                 (S4-4) 

Equation (S4-4) implies that fk is the most important, with 

=1kRf , if min( )=i k
i

af af . The weight of the other sources is 

measured by comparison with the most important one. 

On the other hand, evidence set { | 1,2,...,5}k k

jE e j= =  for 

each data source was constructed by uniformly partitioning the 

interval SIk=[lbk, ubk], where lbk=mint(fk(t)) and ubk =maxt(fk(t)) 

are the lower and upper bounds of fk(t). In practice, fk(t) is an 

accurate reading but has %  observation error. To take into 

account the error, we add %  or %−  perturbation to each 

reading in dataset Sk and then calculate the number of those 

noisy readings falling outside of SIk, denoted as Tk. If those 

noisy readings fall outside of the discussed domain SIk, data 

source fk will not be regarded as fully reliable. Therefore, the 

weight of information source fk, i.e. evidence set Ek derived 

from observation error, can be defined as follows. 

( )= -k kRn T T T                  (S4-5) 

Finally, the overall weight of evidence set Ek is synthesized 

as follows. 

k k kw Rf Rn=                   (S4-6) 

 

S4.3 Evidence acquisition and combination with 

missing data taken into account 
In the case study shown in Section S4.1, incomplete data 

were not taken into account in the comparison study of 

Bayesian inference with the equivalent likelihood inference 

based on the ER Rule. In fault diagnosis for railway tracks, it is 

common to face missing data, because acceleration data is 

gathered from sensors installed in fast moving trains and such 

sensors can fail to record data from time to time. 

In this case study, there are a total number of 880 incomplete 

sample datasets, which were not considered in the analysis of 

Section S.1. Table S3-1 shows all the cases where incomplete 

data were collected from different accelerometers mounted in 

different parts of the train. 

After taking these incomplete sample datasets into account, 

we can construct new data casting results, as shown in Table 

S4-11 to Table S4-16, from which a set of new evidence can be 

acquired. In this situation, we also choose the data record f321 

=[f1(t), f2(t), f3(t), Ir(t)] = [2.8992, 0.0088, 0.5371, 9.195] as the 

test record, and use the ER rule to combine the three pieces of 

the observed evidence 3,1e , 2,2e  and 1,3e . The weights of 

evidence related to data inaccuracy are calculated by 

Rn1=0.9243, Rn2=0.9437, Rn3=0.9243 using Equation (S4-5) 

for % =5%. The synthesized weights are given by Equation 

(S4-6) as w1=0.9237，w2=0.5311 and w2=0.2068. We then get 

the final combined result as follows. 

1 2

3

3,1 2,2 1,3 3,1 2,2 1,3

3,1 2,2 1,3 3,1 2,2 1,3

( ),  ( ),

( ),  ( )

T

h h

h Θ

p e e e p e e e

p e e e p e e e

    
 

     
 

 0.0458,  0.1148,  0.7611,  0.0783
T

=     (S4-7) 

Note that the above result is generated with the prior taken as 

total ignorance. The weight of the above final combined result 

is given by 0.9565w = . 

 

Table S4-11  Casting result of sample f1(t) with incomplete data 

Frequency 
1,1e  2,1e  3,1e  4,1e  5,1e  ,1Θe  Total 

observation [0.1075, 

1.074) 

[1.074, 

2.0405) 

[2.0405, 

3.007) 

[3.007, 

3.9734) 

[3.9734, 

4.9399] 
Unknown 

h1 I:0<Ir≤5 9230 80 6 2 3 180 9501 

h2 II:5<Ir≤8 167 22 4 0 0 19 212 

h3 III:8≤Ir≤12 8 2 4 1 0 1 16 

Θ Unknown 404 26 14 6 0 130 580 

Total cast 9809 130 28 9 3 330 10309 
 

Table S4-12  Casting result of sample f2(t) with incomplete data 

Frequency 
1,2e  2,2e  3,2e  4,2e  5,2e  ,2Θe  Total 

observation [0.0012,

0.0051) 

[0.0051,

0.009) 

[0.009,0.

0129) 

[0.0129,

0.0168) 

[0.0168,

0.0207] 
Unknown 

h1 I:0<Ir≤5 3842 4571 933 149 6 0 9501 

h2 II:5<Ir≤8 40 111 45 16 0 0 212 

h3 III:8≤Ir≤12 1 3 4 1 7 0 16 

Θ Unknown 258 199 33 0 0 90 580 

Total cast 4141 4884 1015 166 13 90 10309 
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Table S4-13  Casting result of sample f3(t) with incomplete data 

Frequency 
1,3e  2,3e  3,3e  4,3e  5,3e  ,3Θe  Total 

observation [0.4719,

0.5903) 

[0.5903,

0.7086) 

[0.7086,

0.827) 

[0.827,0.

9454) 

[0.9454,

1.0638] 
Unknown 

h1 I:0<Ir≤5 3654 4464 1015 152 26 190 9501 

h2 II:5<Ir≤8 90 79 23 7 4 9 212 

h3 III:8≤Ir≤12 5 2 7 1 0 1 16 

Θ Unknown 335 118 26 11 0 90 580 

Total cast 4084 4663 1071 171 30 290 10309 
 

   Table S4-14 Probability 
, ,1i jp  of incomplete data source S1 

Probability 1,1e  2,1e  3,1e  4,1e  5,1e  ,1Θe  

h1 
1,1,1p =

0.3287 

1,2,1p =

0.0299 

1,3,1p =

0.0022 

1,4,1p =

0.0029 

1,5,1p =

1 

1, ,1Θp =

0.0479 

h2 
2,1,1p =

0.2665 

2,2,1p =

0.3680 

2,3,1p =

0.0643 

2,4,1p =

0.0000 

2,5,1p =

0 

2, ,1Θp =

0.2268 

h3 
3,1,1p =

0.1692 

3,2,1p =

0.4432 

3,3,1p =

0.8514 

3,4,1p =

0.8555 

3,5,1p =

0 

3, ,1Θp =

0.1581 

Θ ,1,1Θp =

0.2357 
,2,1Θp =

0.1590 
,3,1Θp =

0.0822 
,4,1Θp =

0.1416 
,5,1Θp =

0 
, ,1Θ Θp =

0.5671 
 

   Table S4-15 Probability 
, ,2i jp  of incomplete data source S2 

Probability 1,2e  2,2e  3,2e  4,2e  5,2e  ,2Θe  

h1 
1,1,2p =

0.3675 

1,2,2p =

0.3134 

1,3,2p =

0.1591 

1,4,2p =

0.1021 

1,5,2p =

0.001 

1, ,2Θp =

0 

h2 
2,1,2p =

0.1715 

2,2,2p =

0.3410 

2,3,2p =

0.3438 

2,4,2p =

0.4912 

2,5,2p =

0.000 

2, ,2Θp =

0 

h3 
3,1,2p =

0.0568 

3,2,2p =

0.1221 

3,3,2p =

0.4049 

3,4,2p =

0.4068 

3,5,2p =

0.999 

3, ,2Θp =

0 

Θ ,1,2Θp =

0.4042 
,2,2Θp =

0.2235 
,3,2Θp =

0.0922 
,4,2Θp =

0.0000 
,5,2Θp =

0.000 
, ,2Θ Θp =

1 
 

   Table S4-16 Probability 
, ,3i jp  of incomplete data source S3 

Probability 1,3e  2,3e  3,3e  4,3e  5,3e  ,3Θe  

h1 
1,1,3p =

0.2263 

1,2,3p =

0.4013 

1,3,3p =

0.1531 

1,4,3p =

0.1226 

1,5,3p =

0.13 

1, ,3Θp =

0.0714 

h2 
2,1,3p =

0.2498 

2,2,3p =

0.3182 

2,3,3p =

0.1555 

2,4,3p =

0.2531 

2,5,3p =

0.87 

2, ,3Θp =

0.1516 

h3 
3,1,3p =

0.1839 

3,2,3p =

0.1068 

3,3,3p =

0.6271 

3,4,3p =

0.4790 

3,5,3p =

0.00 

3, ,3Θp =

0.2231 

Θ ,1,3Θp =

0.3399 
,2,3Θp =

0.1737 
,3,3Θp =

0.0643 
,4,3Θp =

0.1453 
,5,3Θp =

0.00 
, ,3Θ Θp =

0.5539 
 

From the above result, it can be concluded that the 

probability for the fault state 3h  is given by 3( ) 0.7611p h =

, that against 3h  by 3( ) 0.0458 0.1148 0.1606cp h = + = , 

and the probability of unknown about 3h  by 

3( ) 0.0783rp h = . In fault diagnosis, this is a satisfactory 

conclusion for the correct prediction of the fault state 3h  for the 

sample in question. Compared with the results generated in 

Section 2.1, this is a more realistic and credible conclusion 

because in this case the incomplete data was duly taken into 

account rather than being neglected as in the previous analyses. 
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