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S1. Proofs of Theorems and Corollaries
S1.1 Proof of Theorem 1

If Equation (14) is used to acquire P;;, P; will be the
probability that has the same evidential meaning as likelihood

G,; according to the principle of likelihood. Putting it into
Equation (13) results in

phi,eerj =
PioPi; Cij N Co.j
= = pi, X n= pn, x
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(S1-1)

Equation (S1-1) asserts that the ER rule becomes equivalent
to Bayes’ rule given Equation (14) with P ¢ e being the

probability generated by the orthogonal sum of two
independent probability distributions. Therefore, Equation (14)
is a sufficient condition for the assertion of the theorem.

In the following, it is limited to discrete cases to prove that
the condition given by Equation (14) is also necessary in order
to ensure that the ER process is a probabilistic inference
process, while a continuous case can be discretised as shown
later in this paper. A discrete case can in general be illustrated

in Table S1-1. In Table S1-1, S; ; stands for the number of
observations of both state N and test result t i Si for the

number of all observations for state hi , TJ- for the number of

all observations for test result tj ,and S for the number of all

observations in the experiment.
Table S1-1 Sample Data

Test result Total
Frequency t || Y || t_ | observation
byospy | S| | SLL Sy
System
state b | osia || S| ] S Si
by | S| [SNj SN,L Sn
Total test Tl T T S

If test result t; is observed independently, combining

evidence €, (prior distribution) and probabilistic evidence €;

(test result t; ) by the ER rule must result in posterior
probability s, ; /T; for any i=1,---,N , which is the relative

frequency or the conditional probability of state hi given test
result t; in the experiment. That is, there must be

phi,eOAej:& Sii Vhie@

N =
Zn:l pn,O pn,j ]
In the prior distribution €, generated from Table S1-1, there
IS po=S,/S forany n=1,---,N . Putting this into Equation
(S1-2) leads to
CIDL Y Y
anl(Sn/S) pn,j Ti

In the above equation, note that for evidence €; the three

(S1-2)

(S1-3)

N
terms: anl(sn/s)pn,j , S and T; are all constant with
respect to i for any hi € O . Since the above equation is true for
any h, €0 dividing Equation (S1-3) for N by Equation (S1-

3) for hi leads to the following equation

Sk S.
([ v

On the other hand, as €; is a probability distribution on the

(S1-4)

whole set of states, there is

N
Zk:1 Py, =1 (81-5)
Solving Equations (S1-4) and (S1-5) leads to Equation (14)
with G ; =si,j/Si . This proves that Equation (14) is also

necessary. O

S1.2 Proof of Corollary 1

Evidence €; and total ignorance prior €y for this corollary

can be profiled as the following basic probability distributions

eJ' :{(hi’ pi1j>,vhi EQ’Zpi,j :1,(€, 0),V9g@,96§@}
he®



SMCA-22-12-3314

& =1{(0,0), voce; (6, 1)

Applying Equation (10) to combine €; and € with
WO = W]. = l |eadS to
0 0c0,0¢06
pe,egme1 = pg'j * p@,o = p&,j - = po,j 0ec®
Z(pD,j x p@,o) Z(pA,j Xl)
De® Ae®
Note that P, = P, ; forany 0= €® O

S1.3 Proof of Theorem 2

In Equation (10), the joint probability mass that both €, and
e; exactly supportstate @ is given by m,om, ; /K, where K
is a normalisation factor common to all &, with My and My ;
calculated by My =WyPyo = Wosg/s and My ; =W;Py; ,
respectively. If Equation (23) is used to acquire basic
probability Py ;, we will have

S
me,oma,j/K =Wo ?QWJ' Po, /K

= (003 /(X 1)) (59)
Sy T
:STJ { /[SKZAC@SSAAJ j] SQJJ Ko, VOO

- S B
with Ko =wow;T, / [SKZAC@SA’JJ (S1-6)
= A

In Equation (S1-6), Sy, /Tj is the relative frequency of the

Sp,j Observations of both state & and test result t; over all

the TJ- observations of t;, or the posterior probability that state
@ is true given that test result t; is observed. Note that Ky ;
in Equation (S1-6) is constant for any &. My oMy ; /K is thus

proportional to Sg’j/TJ‘ forany & . According to the principle

of likelihood [5], the former has the same evidential meaning as
the latter. As such, Equation (23) is a sufficient condition for
the assertion of this theorem.

On the other hand, suppose it is required that the joint

probability mass mg’omg’j/K must have the same evidential

meaning as posterior probability, or the former be proportional
to the latter:

S S, —
mg,omg,j/K=w0?9wj pgvj/Kz%K voc o (S1-7)
]

where K is a positive constant so that (Se,j/Tj)R is
proportional to (Sg,j/T,-) . It can be shown that basic
probability Py ; must be calculated by Equation (23).

In fact, note that in Equation (S1-7) the terms W, W;, S,

K, Tjand K are all constant with regard to any 6 — @ . As
Equation (S1-7) is required for any @ < @, dividing Equation

(S1-7) for A by Equation (S1-7) for @ leads to the following
equation

Saj || Se
== VAC O
Pa,j [SA J[Sejjpﬁj c

Since Paj is the basic probability that test result t; points

(S1-8)

to state A, from Equation (8), the following equation holds
ZAQ(-) Paj=1 (S1-9)
Then, solving Equations (S1-8) and (S1-9) for Py ; leads to

S0, Sh.j Co.j
Y
S /[Ac@ Sa ZAQ@CA’j

Hence, Equation (23) is also a necessary condition for the
assertion of the theorem. O

VAc © (S1-10)

S1.4 Proof of Corollary 3

Evidence €; and total ignorance prior € for this corollary
can be profiled as the following basic probability distributions

g ={(9, pgyj),veg@, Zag@pai :1}

& =1{(0,0), voce; (6, 1)

Applying Equation (10) to combine €; and € with
Wy =W, =1 leads to
0 0=0
. X . ><1
pe,eOAel _ p@,J p@,O _ pa,_i _ pH,j 0+
Z(pA,jXp@,O) Z(pA,jX1)
AcoO AcO
O

S2. lllustration of likelihood inference

Given Theorem 2 and Corollary 2, we are now in a position
to analyse imbalanced data with ambiguity to support evidence-
based decision making and come back to investigate Example
1. Let ¢y, c31 and cq represent the likelihoods that an
individual is expected to have a positive test result given that he
is a steroid user, steroid free and in an unknown state of steroid
use, respectively. From Table 2 and Equation (20), ¢, 4, ¢, 1 and
o, are calculated as follows:
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190
€11 =52

=20 = 0936, c,, = 2 = 0.1475,
203 ’ 1830
Cop = % =0.3209
Let p; 1, P21 and p, 1 represent the basic probabilities that a
positive test result points to the three states: steroid user, steroid
free and unknown, respectively. From Equation (23), p1 1, P21

and p, 1 are given as follows.
€11 0936

P11 = = = 0.6664,
’ c11+Cc21+Ce1 14044
0.1475 0.3209
p2,1 = 14044 01051, p@,l = Taoma = 0.2285

A positive test result using test Method I can then be profiled
as the following BPD.

(Steroid user,0.6664), (Steroid free,0.1051),
% =] (Unknown, 0.2285)

The above likelihood distribution shows that a positive test
result for an athlete means that the probabilities of the athlete
being a steroid user, steroid free and unknown are 0.6664,
0.1051 and 0.2285, respectively. If the prior distribution of the
athlete’s state of steroid use is completely unknown, as given
by the following vacuum basic probability distribution [29].

& = {(Steroid user,0), (Steroid free,O),(Unknown,l)} (S2-2)
It can be shown that, by using the ER rule of Equation (10), the

} (S2-1)

combination of €; given by Equation (S2-1) with €y given by

Equation (S2-2) results in € itself.
Note that uniform distribution is not the same as completely
unknown. In fact, if Equation (10) is used to combine € of

Equation (S2-1) with the following uniform distribution on the
two states: steroid user and steroid free

& = {(Steroid user,0.5),(Steroid free,0.5), (Unknown,0)}

It will result in the following combined distribution.

( , ) (Steroid user,0.729), (Steroid free,0.271),
e =
0 NG (Unknown,0)

The above result shows the difference that a uniform prior
and a completely unknown prior can make in inference when
there is ambiguity in data, while there is no such difference
when there is no ambiguity in data, as proved in Corollary 1 and
Corollary 2. If a prior distribution is not known in advance,
unknown should be explicitly modelled as vacuum evidence in
inference, such as by Equation (S2-2), rather than assuming
uniform prior. Otherwise, unintentional or biased inference
results may be incurred. This is because a uniform distribution
does not really mean unknown but is as informative as
assuming that it is equally likely that the athlete could be a
steroid user or steroid free with no ambiguity or unknown. As
such, the inferred probability of 0.729 for the steroid user state
in the above result will not be credible unless the uniform prior
accurately represents the athlete’s true prior condition.

Since the ambiguity in evidence €; is as high as 22.85%, it

could be controversial to use €, alone to infer whether the

athlete is a steroid user or steroid free. A more sensible and less
controversial approach is to gather more evidence before a
robust decision could be made beyond reasonable doubt.

Suppose two other different methods: Method 11 and Method
I11 are available for detecting steroid use, and the effectiveness
of Method 11 and Method 111 is investigated by two independent
experiments as shown in Table S2-1 and Table S2-2. In Table
S2-1, more steroid users are tested using Method 11, while in
Table S2-2 more steroid free individuals are tested using
Method 11, so the two datasets are imbalanced in different
orientations. Nevertheless, both Method 1l and Method 111 are
effective in detecting steroid use in the sense that among steroid
users they generate positive result over 96% and 94% of the
occasions, respectively.

Table S2-1  Sample Data Using Method 11
Erequenc Test results
g Y Positive | Negative | Inconclusive
Steroid 492 14 6
System user
states | ool 25 115 3
free
Unknown 12 66 8
Table S2-2  Sample Data Using Method 11l
Frequenc Test results
g Y Positive | Negative | Inconclusive
Steroid 260 12 4
System user
states | €101 400 | 2300 45
ree
Unknown 70 160 36

If the athlete is also tested using Method Il and Method 111
and the results are both positive, what is the probability that the
athlete is a steroid user? To answer the question, the two new
pieces of evidence need to be combined with the first piece of

evidence €, acquired by using Method 1.

Suppose pi1gr » P2 and peqg represent the basic
probabilities that a positive test result generated by using
Method Il points to states hl h2 and @, respectively. From
Equation (23) and Table S2-1, we get p; 1 ;; = 0.754, py 1y =
0.137 and pg 1 ;; = 0.109.

Similarly, suppose py 1111, P21, and pg 1y represent the
basic probabilities that a positive test result generated by using
Method I11 points to states hl hg and @, respectively. From
Equation (23) and Table S2-2, we get p; 1 ;;; = 0.697, poy 1 =
0.108 and pg 1 ;; = 0.195.

The positive test result generated by using Method 1l and
Method 1l can then be profiled as the following basic

probability distributions, represented by €, and € ,
respectively.
(Steroid user,0.754),(Steroid free,0.137),
Cn = (S2-3)
(Unknown, 0.109)
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(Steroid user,0.697),(Steroid free,0.108),
= (S2-4)
(Unknown,0.195)

Using Equation (10), the combination of the three pieces of
independent evidence from the three positive test results, i.e.

€ from Equation (S2-1), &, and €, above, is given by

(Steroid user,0.96),
(Steroid free,0.03),(Unknown, 0.01)

The assertion that the athlete is a steroid user is highly
supported by the three pieces of evidence in that the combined
probability for this assertion is 0.96, that against it is only 0.03
and unknown about it is 0.01. While there is significant
ambiguity in each of the three pieces of evidence (23%, 11%
and 20%, respectively), the ambiguity in the combined
evidence is reduced to 1%. This is one of the main features of
ER that ambiguity diminishes with accumulation of more
evidence. Based on such an inference result, one may assert that
the athlete is a steroid user beyond reasonable doubt. Therefore,
it should be less controversial to come up with a guilty verdict
and take disciplinary actions against the athlete.

However, if the two new test results using Method Il and
Method 111 were both negative, the conclusion would be rather
different. In such a case, the combined probability for the above
assertion would be only 0.3189 but that against it would be
0.5859, although the ambiguity would still be as low as 9.52%.
Given such mixed test results, however, it would be premature
to take any action again the athlete. In this case, it should be
sensible to collect more pieces of evidence for analysis before
a final decision could be made.

In the example, if we estimate prior from sample data, we
obtain the following three different prior distributions from
Table 2, Table S2-1 and Table S2-2, respectively.

_ {(Steroid user,0.0914), (Steroid free, 0.8243),}
o1 = (Unknown, 0.0842)

(Steroid user,0.6910), (Steroid free, 0.1930),}
(Unknown, 0.1161)

(Steroid user, 0.0840), (Steroid free, 0.835 1),}
(Unknown, 0.0809)

(e neyy Ael,...)={

€011 = {

€o,111 = {

As they are very different, we have only conducted
likelihood inference without considering any of the priors. If the
prior distribution of the athlete’s state of steroid use becomes
available, it can and indeed should be treated as a piece of
independent evidence in the ER framework and combined with
other evidence to generate more robust and less ambiguous
conclusions.

S3. Likelihood inference for fault diagnosis

In this section, a case study about fault diagnosis for rail track
maintenance management is used to demonstrate how ER can
be implemented for likelihood inference with ambiguous data
collected from an engineering system. A more detailed
description and analysis of the case can be found in Section S4

of the Supplementary Material.

The data sources of the case study are three sensors installed
in different parts of a train, which are separated by springs.
Therefore, these sensors are deemed to record train acceleration
data independently, denoted by fi(t), f2(t), fa(t), in the sense that
how one sensor generates data does not depend on how the
other sensors work. These are continuous readings in nature and
are each discretized into five equal intervals (tij, i=1,...,5; ] =
1, 2, 3, as shown in Table S3-1 to Table S3-3) for illustration
purpose. The irregularity of rail track is measured by absolute
vertical displacement, denoted by Ir(t). Ir(t) is recorded by
running a special train with expensive high accuracy
instruments. It is also a continuous variable and is discretized
into three system states: normal (h1), transient (h,) and faulty
(hs) according to policy guidance for rail track maintenance
management.

In this case study, there are 880 imperfect records out of
10309 collected in total. Table S3-1 shows all the cases where
imperfect data were collected from different sensors mounted
in different parts of a train, where “N” or “x” means that the
reading fu(t) (k = 1, 2 or 3) and Ir(t) were recorded or were not
recorded at time t. The last row in Table S3-1 shows the total
number of missing datasets for each case. For example, Case 1
means that all acceleration data were recorded from the three
sensors, but the corresponding absolute vertical displacement
Ir(t) was not recorded.

Table S3-1 10 different cases of missing data
Case | 1 | 2 | 3|4 | 5|6 |7 |8]9]10
) | VN x [V x| x| x| x[~N]N
B | NI x [ VIV N x | V]x
fa® | NI N[ x [ x [V N[ x| ~N]|x]x
Ir(t) X X \/ N \/ X X X X X
Total |350| 50 |100|100]100| 50 | 40 | 40 |50 | O

Note that such missing information means that there is a
degree of ambiguity or unknown that rail track is in any of the
three defined states: normal (hs), transient (hz) and faulty (hs).
So, missing information is referred to as unknown, or global
ignorance, and measured by beliefs assigned to the system

space @ ={hy,h,,hy} , as shown in Table S3-2, Table S3-3

and Table S3-4 below. In an engineering system, there can be
local ignorance as well, or beliefs assigned to subsets of states.
For example, the state of a rail track may be judged to be not
normal, that is, it could be in either transient state or faulty state.
Such locally ambiguous information can be measured by a

belief assigned to the subset of states {h,,h;} as a whole
without a need to assume that the belief has to be further
assigned to h2 or h3 individually. This way, ambiguity in one

data source is duly respected and explicitly measured without
having to making unnecessary assumptions, and later can be
reduced by combining evidence from another data source. In
general, ambiguity can be reduced by accumulating evidence.
The sample datasets discretized in this case study are shown
from Table S3-2 to Table S3-4. A sample record fz1= [fi(t),
fa(t), fa(t), Ir(t)]=[2.8992, 0.0088, 0.5371, 9.195] is chosen to
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illustrate how the set of evidence acquired from the reading of
the three sensors can be used to predict the state of the railway
track, which is faulty because Ir(t)=9.195 > 8 (the threshold
above which the track is faulty). From Table S3-2 to Table S3-

4, this sample f321 is mapped to three pieces of evidence: €;,
€,, and € ; because fi(t) = 2.8992 falls into interval t;; =
[2.0405, 3.007] for sensor 1, fo(t) = 0.0088 falls into interval
t, , =[0.0051, 0.009] for sensor 2, and f3(t) = 0.5371 falls into
interval t, = [0.4719, 0.5903] for sensor 3. Following the
procedure as given in Section 3.1 and illustrated in Section 3.2,
€1, €, and € ; are acquired from Table S3-2 to Table S3-
4 as follows.

e,, ={(h,,0.0022),(h,,0.0643),(h,,0.8514),(©,0.0822)}

e,, ={(h,0.3134),(h,,0.3410),(h;,0.1221),(®,0.2235)}

&, ={(h,0.2263),(h,,0.2498), (h;,,0.1839),(©,0.3399)}

Table S3-2 Discretized sample datasets from sensor 1 (fi(t))
tl,l t2,1 t3,1 t4,1 t5,1

Missing

Frequency [0.1075, | [1.074, | [2.0405, | [3.007, | [3.9734, |readings
1.074) | 2.0405) | 3.007) | 3.9734) | 4.9399]
hy 0<lIr<s 9230 80 6 2 3 180
h, 5<Ir<8 167 22 4 0 0 19
hs 8<Ir<12 8 2 4 1 0 1
e Unknown 404 26 14 6 0 130
Table S3-3 Discretized sample datasets from sensor 2 (fa(t))
Frequency b, | b, by | L ks :Z!Z?LZ%
[0.0012, | [0.0051, | [0.009, | [0.0129, | [0.0168,
0.0051) 0.009) 0.0129) 0.0168) 0.0207
hy 0<Ir<s 3842 | 4571 | 933 149 6 0
h 5<Ir<8 40 111 45 16 0
hs 8<Ir<12 1 3 4 1 7 0
® | Unknown | 258 199 33 0 0 90

Table S3-4 Discretized sample datasets from sensor 3 (f3(t))

Frequency t1,3 tz,g t3,3 t4,3 ts,s Missing

readings
[0.4719, | [05903, | [0.7086, | [0.827, | [0.9454,
05903) | 07086) | 0.827) | 0.9454) | 1.0638]

hy 0<Ir<s 3654 | 4464 | 1015 | 152 26 190
h, 5<Ir<8 90 79 23 7 4 9
hs 8<Ir<12 5 2 7 1 0 1
® | Unknown | 335 118 26 11 0 90

Note that there are significant amounts of ambiguity in
evidence €,, andevidence €, ; , measured by the probabilities
of 0.2235 and 0.3399 assigned to system space @ |,
respectively.

It is interesting to note that evidence €;, acquired from
sensor 1 to a large extent points to faulty state hs, with a high
probability of 0.8514, whilst evidence €, , and evidence €, 5,
acquired from sensor 2 and sensor 3, respectively, point to non-
faulty state hy or h, to larger degrees than those to ha.

Nevertheless, if these sensors are reliable, the three pieces of
evidence should be combined to generate a more robust and less

ambiguous diagnosis than any single sensor can provide. Using
the ER rule or Equation (10) recursively and assuming that the
weight of each piece of evidence is 1 for illustration purpose,
we get the following combined result

_ {(h,0.0841),(h,,0.1841),
(63,1 /\ez,z A el,s) = {(h3,07048),(@,0027) } (83-1)

Note that in engineering applications the weight of pieces of
evidence generated from sensors should be estimated rather
than assumed. In Section S4 of the supplementary material, a
method for estimation of evidence weight is discussed in
relation to this rail track maintenance management problem.

In the above result, the probability for faulty state hs is

p(h3)= 0.7048 and the probability against hs is 0.2682

(0.0841+0.1841), with a very low probability of 0.027 left for
unknown. This combined diagnosis result is much less
ambiguous than any individual sensor can predict, providing a
panoramic view for informative maintenance decision making.
To analyze the impact of ambiguity in data on probabilistic
inference, let us use the common listwise deletion approach. to
clean the ambiguous cases from the original data by deleting all
the data of the last row and last column from each of Tablel S3-
2 to Table S3-4. As shown in Section S4 of the supplementary
material, the combined result generated by using the cleaned
data with no ambiguity for the same sample fs21 is given by

(e3, A€, Aery)={(h,0.0055),(h,,0.2076),(h;,0.7869)}
(S3-2)
where “*” means €;,, €,, and €, are acquired from the

cleaned data.
In Equation (S3-2), there is a high probability of 0.7869 for

state h3 and only a low probability of 0.2131 against it with no

ambiguity. Although these results are not dramatically different
from those of Equation (S3-1), they nevertheless provide an

illusion about a higher degree in favor of h3 with no ambiguity

rather than what the data actually exhibits.

Note that the results of Equation (S3-1) were generated by
means of recursive likelihood inference with prior distribution
taken as total ignorance. This is appropriate for fault diagnosis
in engineering systems where prior distributions about system
states are difficult to estimate in general, a fault occurs with low
probability, and prior distribution from sample data may not
reflect the true prior condition of system states. In this rail track
case study, not only can the prior distribution change with the
change of the lengths of rail track sections where data was
sampled, but the prior generated from the sample data of Table
S3-2 (Table S3-3 or Table S3-4) does not represent the true
prior condition of the rail track at the very location where the
sample dataset f321 was taken. In fact, the data of Table S3-2 to
Table S3-4 was recorded at a regular interval of every few
meters along a section of the rail track when a train was moving
on it, rather than from the same location where the sample
record fs»; was taken. While the data in Table S3-2 to Table S3-
4 contain useful information about the relationship between the
sensor readings and the irregularity of rail track, it does not
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provide the information about the prior condition of the rail
track at a particular location. To estimate the prior distribution
of rail track irregularity at a specific location, many more
datasets need to be generated from the very location, which may
not be impossible but could be difficult, costly and impractical.
Nevertheless, the impact of prior on fault diagnosis diminishes
with accumulation of evidence acquired from more sensors.

S4. Fault diagnosis in railway track maintenance
S4.1 Evidence acquisition and combination

In this subsection, a case study on fault diagnosis for railway
track is investigated to show that the ER process is a likelihood
inference process and is capable of detecting system fault, even
though the system fault is a low probability state in the sense
that the sample data is severely imbalanced towards non-faulty
states. This is significant because fault is often a small
probability event in many engineering systems.

In railway systems, trains are guided on railway tracks by
wheelsets (wheels and axles), which are connected to bogie
frames via axle boxes and suspension. Due to such factors as
heavy loads and uneven subgrade settlement, the geometric
deformation of tracks can occur and is mainly expressed as
vertical and lateral track irregularities. The abnormal vibration
of train caused by track irregularities can lead to poor ride
quality and even derailment. Therefore, track irregularity faults
should be diagnosed and eliminated through maintenance to
keep good ride quality and train safety. Rail track irregularities
in conventional and high speed railways can be measured by
track inspection vehicle such as GJ-4 and GJ-5. For example, a
GJ-4 vehicle uses the inertial reference measurement method to
calculate the wvertical displacement (denoted as dy) of
irregularity by car-body-mounted accelerometers, displacement
sensors, clinometers and gyroscopes. Although a GJ-4 vehicle
can provide the precise estimation of vertical displacement, it
needs very expensive clinometers and gyroscopes and requires
specially designed structure for installation. This makes it
difficult to use track inspection vehicles to conduct real-time
monitoring for a large railway network.

As an alternative solution to this problem, irregularity fault
identification and estimation can be done by using vibration
acceleration data measured from the axle-boxes, bogies and car-
bodies of in-service trains. The alternative solution can be
applied on in-service trains using cheap accelerometers, so that
real-time monitoring can be realized and the cost of
measurement can be significantly reduced. As the distinctive
signals of irregularity are hidden in the natural frequency of
vehicle vibration, signal processing methods need to be used to
extract frequency-domain features and identify irregularity
faults.

According to Chinese railway line maintenance policy [1],
track irregularity levels can be used as a specific standard for
diagnosis and track maintenance. For example, when vehicle
speed is limited in the interval [160, 200]km/h, dynamic
management levels under the 42m waveband is given in Table
S4-1, where Ir is the absolute value of dy in millimeter (mm).

Level | means that track is in good condition and only routine
maintenance is required. For 5mm<Ir<8mm (Level II), car-
body vibration can discomfort passengers but is still tolerable
from the maintenance point of view. If geometric deformation
deteriorates further to Level 111 (8mm<Ir<12mm), alarm must
be generated and maintenance engineers have to do on-site
repair as soon as possible. If Ir>12mm, serious defect occurs
and poses a threat to train safety. In this case, a speed limit must
be set immediately. Therefore, Level Il is a transitional level
from normal (Level I) condition (state) to abnormal (Level I1)
condition (state) or fault state as named in this paper.

Table S4-1 dynamic levels of vertical irregularity of track

(160 km/h~ . Temporary -
200 km/h) Acceptance Discomfort repair Speed limit
Level | I Il v
Standard(mm)  0<Ir<5 5<Ir<8  8<Ir<12 12<Ir

For railway safety, it is necessary to diagnose track
irregularity to support the dynamic management and
maintenance of rail tracks. In this subsection, we demonstrate
how the ER inference process investigated in this paper can be
used to diagnose track irregularity levels by using the data
generated from the accelerometers mounted in the axle-box,
bogie and car-body of a train, as shown in Figure S4-1, in
comparison with Bayesian inference. In the next subsection, we
will show that inaccuracy and ambiguity are inherent in such
data and need to be treated with respect, instead of deleting
inaccurate and missing datasets or imputing data under
unrealistic assumptions.

Figure S4-1 shows the vertical vibration readings in time-
domain recorded from a section of an operational railway line
of about 2.357 kilometers. The data are measured by the
accelerometers mounted in the axle-box, car-body and bogie of
a GJ-4 vehicle and denoted by vri, vrz and vrs, respectively. The
vertical displacement dy of the rail track is calculated by using
the inertial reference measurement method. vry, vr, and vrs are
sampled per 0.25m, so time step is t=1,...,T, with T being the
number of total samples and T=(2.357/0.25)x10°% = 9429.
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Figure S4-1 Vertical vibration readings and displacement in
time-domain

At each step, the short-time Fourier transform is used to
obtain the frequency amplitudes of acceleration with a window
size of 5.25m. The mean values of the absolute amplitudes are
denoted by fi(t), fo(t) and fa(t), respectively, and the absolute
value of dy by Ir(t), as shown in Figure S4-2. Sample datasets
are defined as Si={fi(t)|t=1, 2 ,..., T}, So={fa(D)|t=1, 2,..., T},
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Ss={fz(t)[t=1, 2,..., T}, and Si={Ir()t=1, 2,..., T}, with
f1(t)eSI1=[0.1705, 4.9399], fx(t)eSI,= [0.0012, 0.0207] and
f3(t)€S15=[0.4719,1.638]. In this paper, the data sources fi, >
and f; are assumed to be independent of each other because
these accelerometers are installed on the different parts of a
train separated by suspension and springs so that each
accelerometer works on its own without affecting others.
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Figure S4-2 The mean values fi(t), f2(t), f3(t) and the absolute
value Ir(t)

Since there is no sample such that Ir(t)>12mm (Level 1V), in
this subsection, the whole set of states is given by @={hi(l),
ha(11), hs(111)}. For simplicity of discussion, Sl (k=1, 2, 3) is
uniformly divided into 5 subintervals or bins denoted by e;

ll“ s

I o
0 1000

arihly
7000

(=1, 2, ..., 5), and then the number of samples cast in €k is

counted as shown in Table S4-2, Table S4-3 and Table S4-4.
Note that while this casting approach is simple to generate
frequency tables, it does not make full use of the information of
a continuous variable and can cause approximation error in the
process of generating frequency tables, leading to concern on
accuracy in machine learning (ML). In ML, variables can be
discretized continuously using the reference point approach [2].

Table S4-2  The casting result of sample fi(t)

calculated as shown in Table S4-5, Table S4-6 and Table S4-7,
to which the j™ piece of evidence e, of the data source Sy is

expected to occur given that the i (i=1, 2, 3) state (h;) is true.
Then, Equation (14) in the paper is used to acquire the
corresponding basic probability p;;  that evidence e;,

points to the i state h;, as listed in Table S4-8, Table S4-9 and
Table S4-10. Since the missing data is deleted in this
subsection, all data are cast into hy(l), h2(1) or hs(11l) in this
casting process, without any data cast to @ or any of its other
subsets.

Table S4-5 The likelihood ¢ ;, from data source S

Likelihood | €, €1 €1 €1 €5,

hy C11= [ Co1=[C31=|Cu1=|Cs1=
0.9901 | 0.0087 | 0.0007 | 0.0002 | 0.0003

hy Co11 =021 =1Co31=|Coa1=|Co51=
0.8653 | 0.1140 | 0.0207 | 0.0000 | 0.0000

hs C311= [ C321= [ C331= | C341= | G350 =
0.5333|0.1333 | 0.2667 | 0.0667 | 0.0000

Table S4-6 The likelihood c. ., from data source S;

i,j,2

Likelihood | €, e, €, €. &,

hy Cl12={Clo2=|C32=|Cs2=|Cs2=
0.3900 | 0.4920 | 0.1012 | 0.0162 | 0.0007

hy Cono=1Co22=(Co32=(Co42=|Cr52=
0.1917 | 0.5078 | 0.2176 | 0.0829 | 0.0000

hs C312=C322=|C332 = [C342=|C35. =
0.0000 | 0.2000 | 0.2667 | 0.0667 | 0.4667

Table S4-7 The likelihood c. ., from data source S3

i,j,3

e e e e e Total
Frequenc 1,1 2,1 31 4.1 5,1 . eali
q Y [0.1075,1.074) | [1.074,2.0405) | [2.0405,3.007) | [3.007,3.9734) |[3.9734,4.9399] bservation Likelihood e1,3 e2y3 e3,3 e4,3 eS,S
hy [ to<iss | 9130 | 80 6 2 3 9221 ¢ =lc..=lc..=lc. .=|c..=
h | 15<ir<s 167 22 4 0 0 193 hl 11,3 1,2,3 1,3,3 1,4,3 15,3
hs ls<ir<i?l 8 2 4 1 0 15 0.3907 | 0.4802 | 0.1097 | 0.0165 | 0.0028
Total cast| 9305 104 14 3 3 9429 e Cr13=[Crp5=|Cr33=|Crss=]Crss=
Table S4-3 The casting result of sample f(t) 0.4456 | 0.3782 | 0.1192 | 0.0363 | 0.0207
Frequency| €, €1 €32 €42 €. bs-'le—?\:giion hs Ca13= | Ca23= | C333= |Ca43=|C353=
[0.0012,0.0051)| [0.0051,0.009) | [0.009,0.0129) [[0.0129,0.0168)|[0.0168,0.0207]
e e B T TR ool 0.3333 | 0.1333 | 0.4667 | 0.0667 | 0.0000
ha | ms<ir8| 37 98 42 16 0 193 In order to demonstrate the equivalence and difference
hs jie<is12. 0 3 4 1 7 15 between Bayesian inference and the ER process, data record
Total cast| 3633 | 4368 979 166 13 9429

Table S4-4  The casting result of sample f5(t)

e e e e e Total
Frequency [0.4719],-819031 [0.59032,57086) [0.7083,’0:.5827) [0.8271‘.3454) [0.94551‘?]63_8] bservation
hi | to<irss | 3603 | 4428 | 1012 152 26 9221
ho [ms<ir8 | 86 73 23 7 4 193
hs [lss<ir<12l 5 2 7 1 0 15
Total cast| 3694 | 4503 | 1042 160 30 9429
According to the casting results, likelihood ¢, ;, can be

fan=[fi(t), fa(t), fa(t), Ir(t)]=[2.8992, 0.0088, 0.5371, 9.195] is
chosen from the datasets as a test record, and analyzed using the
following three alternative inference methods based on both the

ER process and Bayesian inference. From the sample data ( |,
) shown in Table S4-2 to Table S4-4, it is clear that test record
fs21 activates three pieces of evidence: €,,, €,, and €, ; asthe

values of fi(t), f2(t) and fs(t) are in those three bins, respectively.
It is also noted that this sample is taken at fault state hs as Ir(t)
= 90.195. The corresponding likelihoods can then be acquired
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from Table S4-5 to Table S4-7. In addition, the prior
probabilities can be generated directly from the last column of
Table S4-2 by [p1o, P20, P3o]'=[0.9779, 0.0205, 0.0016] .

Table S4-8 Basic probability p, ;, from data source S

Probability € €1 €, €1 €5,

hy Piia = | Puoi =] Pus1 = | Prags = | Piss =
0.4145 | 0.0339 | 0.0022 | 0.0032 1

hy Po11=|P221=|Po31=|Poa1=|P2s1=
0.3622 | 0.4453 | 0.0720 | 0.0000 0

hs P311=| P321=| P331=| P3s1=| P3s1=
0.2233 | 0.5208 | 0.9258 | 0.9968 0

Table S4-9 Basic probability p; ;, from data source S,

Probability | €, e, €, €. &,

hy Pii2 = Proo =| Pizz = | Praz =| P52 =

0.6704 | 0.4101 | 0.1728 | 0.0975 | 0.0014

hy Po12 = Poo2 =| Paz2 =| Pos2 =| Pas2 =

0.3296 | 0.4232 | 0.3717 | 0.5002 | 0.0000

hs P310=|P322=| P332 =|Ps42=]|Ps5.=

0.0000 | 0.1667 | 0.4555 | 0.4023 | 0.9986

Table S4-10 Basic probability p; ; ; from data source Ss

Probability | €, , €3 €33 €3 €; 3

hy Piis=| Pios=|Piss=|Prsz=|Pis3=

0.334 | 0.4842 | 0.1578 | 0.138 | 0.1198

hy Po13=| Poos = | Pozs = | Poaz=|Pos3=

0.381 | 0.3814 | 0.1713 | 0.3037 | 0.8802

hs P313=| P33 =] P333=|P3az=|Ps55=

0.285 | 0.1344 | 0.6709 | 0.5583 | 0.0000

Method 1: First of all, all the three pieces of evidence €;,,

€,, and €, are combined with the prior distribution e, by

applying the ER rule with wi=1 (i=0, 1, 2, 3) assumed. Equation
(13) is used to calculate the combined result as follows, where

Py (& A€ A€y, A€ L) is the probability that €, €, ,
€ 5 and eo jointly support the k™ state hx (k=1, 2, 3).

[prh (6 A€y Ay, ABY), Pr, (6 A€y Ay, AB),

P, (& A ZPRALPIAN el,s)]T

=[0.4961, 0.3892, 0.1147]"

Method 2: According to the conventional Bayesian
inference as discussed in Section 2.1, the combined result of

evidence e and evidence €;; can be generated by

p(e | hi! I )p(hl | I ) Ci X pi
p(hy | €10 )= 3 = : 0 =— 31 0
Zi:1 p(e3~1 | hi' |0) p(hi | Io) Zi:lci,S,l X Pio

Similarly, take the above combined result as new prior
probability, and continue to combine it with evidence €,, and

evidence €, , recursively, leading to the following result.

(N [ 16,851,855.805), P(, [ 15,850.855,805), T
p(hS | IO’ES,l’eZ,Z'elj)

=[0.4961, 0.3892, 0.1147]"

Method 3: The ER rule is employed to combine the three
pieces of evidence but take the prior as total ignorance. The
combined result is given by

.
Pr, (B3 A€ AC), Py, (B3 A€, AC ),
Pr, (B31 A€, A€3)

=[0.0055, 0.2076, 0.7869]"

The above analyses show that Method 1 and Method 2 lead
to the same combined result, just as expected by Theorem 1;
however, both methods fail to identify faulty state hs for this
sample as the posterior probability for hs is as low as 0.1147.
On the other hand, the combined probability generated using
Method 3 with the prior taken as total ignorance leads to a
credible result in the sense that the probability for hs is as high
as 0.7869. This is a satisfactory result and reflects the true track
irregularity level of this test sample to a great extent. This is
significant because there are only 15 samples pointing to hs in
all the sample datasets. Compared with the other states, hs is a
very small probability state as revealed by the sample data. If
the prior distribution eo generated from the imbalanced sample
data is taken into account, which points to the normal state (h1)
to a great extent, it will have significant impact on the combined
result for such a small probability event, leading to the missed
identification of faulty state, just as shown by this example. It
is @ common situation in system fault diagnosis that a faulty
state for a seemingly normal system is often a small probability
event. As such, it makes sense to apply likelihood inference
methods for fault diagnosis.

However, from the above results it would be inappropriate to
conclude that no prior distribution should be used in inference
for fault diagnosis. Rather, one should check whether a prior
distribution can reflect true prior system conditions or not. In
the above analysis, for example, the prior generated from Table
S4-9 does not represent the true prior condition of rail track at
the location where the test dataset f3»1 was recorded. In fact, the
data of Table S4-9 are imbalanced because they were recorded
from different locations when the inspection train was moving
along a section of rail track, rather than from the same location
where f3» was taken. While the dataset of Table S4-9 is believed
to hold useful information about the relationship between the
sensor readings and the irregularity of rail track, it may not
provide adequate information about the prior condition of rail
track at a particular location. To estimate the prior distribution
of rail track irregularity at a specific location, many more
datasets need to be generated from the very location, which may
not be impossible but could be difficult, costly and impractical.
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S4.2 Evaluating the weight of evidence

In the above analysis, the evidence acquired from each of the
three sensors is assumed to be fully reliable. However, this is
not the case as the quality of data collected from the three
sensors is different, as shown in Figure S4-2. There is therefore
a need to estimate the weight of evidence acquired from these
data sources. In principle, the weight of evidence acquired from
a data source or a sensor represents the importance of the role
that the data source plays to provide correct identification of rail
track irregularities. In this context, we need to consider two
factors to estimate the weight of evidence in this case study.
One is the weight of the information source fi itself, and the
other is the precision of the partitioned evidence intervals. It is
suggested that the more important an information source is, the
more exactly it follows the vertical irregularities. That is, the
higher the vertical displacement, the larger fi, and vice versa.
Hence, we firstly define the relative changes of the readings fi(t)

and Ir(t) as follows.
_ f® _
O (1, 0) -

cir(t)=—"®__ (54-2)

- mtax(lr(t))
The ability of fi following Ir can then be described by
T
af, =) [Clr(t)-Cf, (t) (S4-3)
Obviously, the smaller af, is, the more accurately fx reflects
the variation trends of Ir. As such, the weight of information
source fi can be defined as follows.
min(af;)
Rfy=——— (S4-4)
af,
Equation (S4-4) implies that fy is the most important, with
Rf =1, if min(af,)=af, . The weight of the other sources is
I

measured by comparison with the most important one.
On the other hand, evidence set E“ ={e; | j =1,2,...,5} for

each data source was constructed by uniformly partitioning the
interval Sli=[lbx, uby], where Ibi=min(fi(t)) and ubx =max(fi(t))
are the lower and upper bounds of fi(t). In practice, fq(t) is an
accurate reading but has £6% observation error. To take into
account the error, we add 6% or —6% perturbation to each
reading in dataset Sk and then calculate the number of those
noisy readings falling outside of Sli, denoted as Ti. If those
noisy readings fall outside of the discussed domain Sly, data
source fi will not be regarded as fully reliable. Therefore, the
weight of information source fi, i.e. evidence set E* derived
from observation error, can be defined as follows.

Rn.=(T-T,)/T (S4-5)
Finally, the overall weight of evidence set EX is synthesized
as follows.

w, = Rf, xRn, (S4-6)

S4.3 Evidence acquisition and combination with
missing data taken into account

In the case study shown in Section S4.1, incomplete data
were not taken into account in the comparison study of
Bayesian inference with the equivalent likelihood inference
based on the ER Rule. In fault diagnosis for railway tracks, it is
common to face missing data, because acceleration data is
gathered from sensors installed in fast moving trains and such
sensors can fail to record data from time to time.

In this case study, there are a total number of 880 incomplete
sample datasets, which were not considered in the analysis of
Section S.1. Table S3-1 shows all the cases where incomplete
data were collected from different accelerometers mounted in
different parts of the train.

After taking these incomplete sample datasets into account,
we can construct new data casting results, as shown in Table
S4-11 to Table S4-16, from which a set of new evidence can be
acquired. In this situation, we also choose the data record fs»
=[fu(t), f2(1), fa(t), Ir(t)] = [2.8992, 0.0088, 0.5371, 9.195] as the
test record, and use the ER rule to combine the three pieces of
the observed evidence €;,, €,, and €, . The weights of

evidence related to data inaccuracy are calculated by
Rn1=0.9243, Rn»=0.9437, Rn3=0.9243 using Equation (S4-5)
for 0% =5%. The synthesized weights are given by Equation
(S4-6) as w1=0.9237, w,=0.5311 and w»=0.2068. We then get
the final combined result as follows.

T
Pr, (€1 A8y 5 AELY), Pr, (€51 A8y AELY),
P, (eS,l A€y A e1,3)1 Po (e3,1 A€y A e1,3)

=[0.0458, 0.1148, 0.7611, 0.0783]' (S4-7)

Note that the above result is generated with the prior taken as
total ignorance. The weight of the above final combined result
is given by w=0.9565.

Table S4-11 Casting result of sample f;(t) with incomplete data

€1 | €1 | €1 | € | €1 | Cou Total
Frequency [0.1075, | [1.074, [[2.0405, | [3.007, [[3.9734,] . lobservation
1.074) | 2.0405) | 3.007) | 3.9734) | 4.9399]
hi | ro<irss | 9230 | 80 6 2 3 180 9501
hy | 1:s<ir<8 | 167 22 4 0 0 19 212
hs [s<ir<12| 8 2 4 1 0 1 16
@ | unknown | 404 26 14 6 0 130 580
Total cast| 9809 | 130 28 9 3 330 10309

Table S4-12 Casting result of sample f»(t) with incomplete data

e1,2 e2,2 e3,2 e4,2 e5,2 e@,2

Total

Frequency i o012, 10,0051, [0.009.0.[0.0129, | [0.0166, Unienoan lODSEIVaLiON
0.0051) | 0.009) | 0129) |0.0168) |0.0207]

hi | ro<irss | 3842 | 4571 | 933 149 6 0 9501
hy | :s<ir<s | 40 111 45 16 0 0 212
hs [111:8<1r<12] 1 3 4 1 7 0 16
@ | Unknown | 258 199 33 0 0 90 580
Total cast| 4141 | 4884 | 1015 | 166 13 90 10309
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Table S4-13 Casting result of sample f3(t) with incomplete data

€ | €3 | €3 | s | C3 | €5 | Total
Frequency i z71s,110.5003 | [0.7086, [0.827,0, [0.9454, Unioun loDSETVaLION
0.5903) | 0.7086) | 0.827) | 9454) |1.0638]
hi | ro<irss | 3654 | 4464 | 1015 | 152 26 190 9501
hy | ns<ir<s| 90 79 23 7 4 9 212
hg [in:8<ir<12) 5 2 7 1 0 1 16
@ | Unknown | 335 118 26 11 0 90 580
Total cast| 4084 | 4663 | 1071 | 171 | 30 | 290 | 10309

Table S4-14 Probability p; ;, of incomplete data source S

Probability €, €4 €31 €1 €5, €91
hy Pris = | Pros = | Pisi = | Pras =| Prsi =] Pres =
0.3287 0.0299 | 0.0022 | 0.0029 1 0.0479
hs Pa11 = Pa21 =| Pasi =| P241 =|P2s1 =| Pres1 T
0.2665 | 0.3680 | 0.0643 | 0.0000 0 0.2268
hs P311=| P321=| Psz1=| Ps41=|Pss1=| Pse1 T
0.1692 | 0.4432 | 0.8514 | 0.8555 0 0.1581
o Po11 =|Po21=|Pos1 =|Pos1=|Posi=| Peo1F
0.2357(0.1590 | 0.0822 | 0.1416 0 0.5671

Table S4-15 Probability p;

i

2

of incomplete data source S

Probability | €, , €, €, €, €, €o.2

hy Pri2 =| Pioo =| Pis2 = | Pra2=|Pisz =| Pro2 T
0.3675(0.3134(0.1591 { 0.1021 | 0.001 0

hy P212 = Pa22 = Pas2 =| Paa2 =| Pas2 =| Pren F
0.1715(0.3410 | 0.3438 [ 0.4912 | 0.000 0

hs P312 = | Ps22 = Psz2 =|Psa2=|P352=| P32
0.0568 | 0.1221 | 0.4049 | 0.4068 | 0.999 0

o Po12 =|Po22 = Pos2 =|Pos2 = Posz = Poe2 T
0.4042 | 0.2235(0.0922 | 0.0000 | 0.000 1

Table S4-16 Probability p;

j.5 of incomplete

data source S3

Probability | €, €3 €33 €3 €3 | €os
hy Piis =|Puos=|Prss =| Prasz=|Piss =] Pres I
0.22630.4013|0.1531|0.1226| 0.13 |0.0714
hy Po13 =1 P23 =| P33 =|Poa3=|Pos3=| Paos T
0.2498 |0.3182(0.1555(0.2531| 0.87 |0.1516
hs P313={P323=|Pazs=|Ps43=|P353=| P03
0.1839(0.1068 | 0.6271{0.4790| 0.00 |0.2231
) Po13 =|Po23=|Pos3 =|Poss =|Poss=| Poos T
0.3399(0.1737 | 0.0643 [ 0.1453 | 0.00 |0.5539

From the above result, it can be concluded that the
probability for the fault state h, is given by p(h;)=0.7611

, that against h, by p°(h,)=0.0458+0.1148 = 0.1606,

and the

probability

of

unknown

about

h3 by

p"(h,) =0.0783. In fault diagnosis, this is a satisfactory

10

conclusion for the correct prediction of the fault state h, for the

sample in question. Compared with the results generated in
Section 2.1, this is a more realistic and credible conclusion
because in this case the incomplete data was duly taken into
account rather than being neglected as in the previous analyses.

References

[1] Ministry of Railways of the People’s Republic of China:
Railway Line Repair Rules. Chinese Railway Press,
Beijing (2006).

[2] X.B. Xu, J. Zheng, J. B. Yang, D. L. Xu and Y. W. Chen,
“Data classification using evidence reasoning rule”,
Knowledge-Based Systems, Vol.116, 2017, pp.144-151.



