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A B S T R A C T

In this paper, we aim at generalising the evidential reasoning (ER) rule to establish a new
maximum likelihood evidential reasoning (MAKER) framework for probabilistic inference from
inputs to outputs in a system space, with their relationships characterised by imperfect data. The
MAKER framework consists of three models: system state model (SSM), evidence acquisition model
(EAM) and evidential reasoning model (ERM). SSM is introduced to describe system output in the
form of ordinary probability distribution on singleton states of the system space to model
randomness only, or more generally basic probability distribution on singleton states and their
subsets, referred to as states for short, to depict both randomness and ambiguity explicitly. EAM is
established to acquire evidence from a data source as system input in the form of basic probability
distribution on the evidential elements of the data source, with each evidential element pointing
to a state in the system space. ERM is created to combine pieces of acquired evidence, with each
represented in the form of basic probability distribution on all the states and the powerset of the
system space to facilitate an augmented probabilistic inference process where the trustworthiness
of evidence is explicitly modelled alongside its randomness and ambiguity.
Within the MAKER framework, the trustworthiness of evidence is defined in terms of its reli-

ability and expected weight to measure the total degree of its support for all states. Interdepen-
dence between pairs of evidence is also measured explicitly. A general conjunctive MAKER rule
and algorithm are then established to infer system output from multiple inputs by combining
multiple pieces of evidence that have weights and reliabilities and are dependent on each other in
general. Several special MAKER rules and algorithms are deduced to facilitate inference in special
situations where evidence is exclusive or independent of each other. Specific conditions are
identified and proven where the MAKER rule reduces to the ER rule, Dempster’s rule and Bayes’
rule. A bi-objective nonlinear pre-emptive minimax optimisation model is built to make use of
observed data for optimal learning of evidence weights and reliabilities by maximising the pre-
dicted likelihood of the true state for each observation. Two numerical examples are analysed to
demonstrate the three constituent models of the MAKER framework, the MAKER rules and al-
gorithms, and the optimal learning model. A case study for human well-being analysis is provided
where data from a panel survey are used to show the potential applications of the MAKER
framework for probabilistic reasoning and decision making under different types of uncertainty.
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1. Introduction

In this paper, we aim to generalise the ER rule that was established to enable probabilistic inference by combining multiple pieces of
evidence, with each having weight and reliability and all being independent of each other [71]. Since its establishment, persistent
efforts have been made to improve and apply the ER rule in various fields, including professional services such as healthcare [1,25–28,
31,77,87,88], insurance [35,36,45] and finance [38,43,44,51], multiple criteria decision analysis [17,19,20,34,81–85], machine
learning [8–10,61,62,78], engineering and manufacturing systems [29,50,52,63], environment and sustainability [48,49,60], energy
systems [30,57], transportation systems [7,72,79], project management [32,33,53,86], and social systems [11,42,54,55,75,76],
among others.

From the extensive work on improving and applying the ER rule, such as those mentioned above, lessons have been learnt, which
have inspired researchers to enhance and generalise it for wider and more robust applications. One such key lesson is about the
interpretability and transparency of the inference process, essential for applications in many areas, such as professional services, where
decision makers (doctors, lawyers, claim handlers, loan underwriters, etc.) would not accept recommendations generated by AI De-
cision Support Systems (AI-DSSs) unless it can provide interpretations on how the recommendations are generated step-by-step and
why and to what extent they can be trusted [43,44]. In the ER rule, weight and reliability are introduced as one of its unique features;
however, there is a lack of explicit definitions and procedures to guide how they should be interpreted and acquired from historical
data, human knowledge or a mix of them. With surging interests in big data and AI from almost every corner of the world more than
ever before, it is inevitable that any application of the ER rule needs to make use of data, although it is always advisable not to un-
derestimate the importance and value of human knowledge. Another key lesson learnt is also related to data, specifically, how to
acquire evidence from data and use it in inference when multiple pieces of evidence tend to be dependent on each other in general,
rather than always independent of each other. It is the development of the likelihood analysis method [72] that creates a robust process
to acquire evidence from data and makes it possible to model interdependency explicitly among multiple pieces of evidence, to be
explored further in this paper.

In fact, transparency, interpretability and dependency are key issues not unique to AI-DSSs built upon the ER rule but common to
any AI systems that are also built to learn, reason and decide. For instance, Mittelstadt [39] stated that AI systems are frequently
thought of as opaque, meaning their performance or logic is thought to be inaccessible or incomprehensible to human observers, and
emphasized that explaining the functionality and behaviour of AI systems in a meaningful and useful way to people designing,
operating, regulating, or affected by their outputs is extremely challenging. Markus et al. [37] argued that AI has huge potential to
improve the health and well-being of people, but adoption in clinical practice is still limited, and lack of transparency is identified as
one of the main barriers to implementation, as clinicians should be confident the AI system can be trusted. Balasubramaniam et al. [2]
analysed the ethical guidelines and revealed that the importance of transparency is highlighted by almost all of the organizations and
explainability is considered as an integral part of transparency. Ribeiro et al. [41] investigated dependency factors in the
Dempster-Shafer theory by proposing a new approach based on Bayesian net, Pearson’s test, and linear regression for multi-sensor
information fusion and applied it in adverse drug reactions, emphasising the importance of addressing the issue of dependency
among factors.

To deal with those key issues it is necessary to explain the functionality and behaviour of AI systems in a meaningful and useful way
[39]. In this paper, we focus our efforts on addressing the issues of transparency, interpretability and dependency related to the ER rule
and identified from its applications in theoretical, methodological and technical aspects. That is, when evidence is acquired from
imperfect data [72], how should weight and reliability be defined and interpreted and how should interdependence among multiple
pieces of evidence be measured and taken into account in reasoning and decision making? It is possible to adjust probabilities or beliefs
for better data fusion and mitigate possible correlations or dependencies among evidence using a mixed approach [41]. However, we
believe that complying with widely recognised scientific principles is a prerequisite for any reasoning approach to be considered
intrinsically transparent and interpretable. It is due to this belief that in this paper we will investigate the theoretical, methodological
and technical issues in a systematic manner and endeavour to explore a principled approach for establishing a unique MAKER
framework.

In the MAKER framework, evidence weight and reliability are explicitly defined and can be learnt from data, the trustworthiness of
evidence or any inferred conclusion is clearly defined in relation to evidence weight and reliability, and interdependence among
evidence is also precisely defined and can be calculated from data. The original thinking that leads to the creation of the uniqueMAKER
framework not only results from the persistent efforts to improve and apply the ER rule but also is inspired by Dempster’s pioneer work
on generalising Bayesian inference to model both randomness and ambiguity that are common in imperfect data [12,13] and his
system view on how ambiguity should be handled [14], as well as Shafer’s creative thinking on the nature of evidence as described in
the first three chapters of his book [46].

The MAKER framework takes a system view in terms of using evidence acquired from data as system inputs to infer conclusions as
system outputs in order to support evidence-based decision making with single criterion or multiple criteria under different types of
uncertainty [4,16,18,19,24,47,56,58,64,66–68,85] and for probabilistic modelling and inference based on the belief rule base
methodology [9,45,59,69,70]. It consists of three models: SSM, EAM and ERM, where evidence is profiled as basic probability dis-
tributions for probabilistic inference and both input and output models as well as the inference processes are described in the format of
evidence.

SSM is rooted in Dempster’s pioneer work and system view for generalising Bayesian inference [12–14] and is probably the most
important of his work and views. The innovative thinking behind it is unambiguously footed on the widely recognised principle of
Bayesian inference that is perhaps a perfect inference engine given perfect data with randomness explicitly taken into account [3,21,
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22]. SSM sets the foundation of the MAKER framework and is first introduced to describe system output in the form of ordinary
probability distribution on singleton states of a system space to model randomness only, or more generally in the form of basic
probability distribution on both singleton states and their subsets of the system space, all referred to as states for short, to depict both
randomness and ambiguity [14].

EAM is established to acquire evidence from a data source as system input in the form of basic probability distribution on the
evidential elements of the data source, with each evidential element pointing precisely to a state in the system space. Note that every
data source is equipped with its own EAM, where each of its own evidential elements corresponds to a specific state in the system space.
The creation of EAM for a data source provides a basis to acquire evidence from the data source and enables the definition and
interpretation of weight as a measure of the data source’s ability to provide correct judgements for reasoning and decision making.

ERM is created to profile acquired evidence in the form of basic probability distribution on all the states and the powerset of the
system space and provide a basis to model the reliability and trustworthiness (or untrustworthiness) of the acquired evidence. The
reliability of a piece of evidence measures the extent to which it can represent a correct outcome (conclusion or assessment) in terms of
probability distribution on all states. The trustworthiness of evidence is defined in terms of its reliability and expected weight to
measure the total degree of its support for all states. It is within ERM that probabilistic inference is performed by combining multiple
pieces of evidence with randomness, ambiguity and untrustworthiness all duly taken into consideration under the united framework.
In the inference process, interdependence among evidence is explicitly taken into account to infer complex system behaviours in a
probabilistic manner. An interdependence index among pieces of evidence is defined precisely and calculated from probabilities.

A general conjunctive MAKER rule and algorithm are established to infer system output from system inputs by combining multiple
pieces of evidence that each have weights and reliability and are dependent on each other in general. The establishment of the MAKER
rule is underpinned by the widely recognised principles governing probabilistic inference, in particular, Bayesian principle and the
likelihood principle [3,5,22,72], as well as Dempster’s principle as introduced in this paper. Several special MAKER rules and algo-
rithms are deduced to facilitate inference in special cases where multiple pieces of evidence are either exclusive or independent of each
other. The concepts of mutual exclusiveness and independence are explicitly defined in terms of basic probability functions within the
MAKER framework to facilitate probabilistic inference with imperfect data or knowledge. Specific conditions are identified and proven
where the MAKER rule reduces to the ER rule, Dempster’s rule and Bayes’ rule.

To facilitate the application of the MAKER rules and algorithms, a bi-objective nonlinear minimax optimisation model is built to
make use of observation data for optimal learning of evidence weights and reliabilities by means of maximising the predicted like-
lihood of the true state for each observation. The two objectives are prioritised, and a solution method is proposed to solve the
optimisation problem in two steps to optimise the two objectives in sequence. The model is non-smooth in its original format and is
transformed to an equivalent smooth model, so that it can be solved by the Evolutionary engine or the GRG Nonlinear engine of Excel
Solver, or similar optimisation tools in other platforms.

Two illustrative examples are analysed to demonstrate the three basic models of the MAKER framework, the MAKER rules and
algorithms, and the optimal learning model. The first example is related to disease diagnosis via different tests, e.g. saliva test and
blood test, and is composed from experiences gained frommany research projects in healthcare. It is so designed that typical features of
imperfect data are included and analysed. It is used throughout the paper to elaborate the new concepts and formulae of the MAKER
framework, rules and algorithm as well as the optimal learning model. The second example is dedicated to illustrating the MAKER
framework in detail by showing the step-by-step calculations of how it can be applied to mimic the process of a jury reaching its verdict
by combining jurors’ conclusions that are not fully reliable in nature and are assumed to be mutually independent [40]. A case study
for human well-being analysis is provided, where the British Household Panel Survey (BHPS) data [23,73,74] is used to show why the
MAKER framework is useful to analyse the data of high quality yet still imperfect due to missing and imbalanced data, and how widely
it may be applied for reasoning and decision making under different types of uncertainty. The detailed calculation processes for the
examples and case study are recorded in Excel sheets together with Solver models that are provided as the supplementary materials of
the paper.

2. The likelihood method for analysis of imperfect data

The type of probabilistic inference investigated in this paper is based on a system view and concerned with how to acquire evidence
from data by means of probability distributions as system inputs, and how to generate system output as probability distributions by
combining multiple pieces of evidence. The main idea and requirements of such probabilistic inference are explained using an example
discussed in this section, in particular how to acquire evidence from data using a likelihood method. This example is used to
demonstrate the original thinking, theoretical developments, modelling processes and new algorithms throughout this paper.

2.1. A data-driven disease diagnosis example

The example is concerned with how to use routinely collected data to predict disease given different tests, such as saliva test and
blood test, among others. In such inferential model-based prediction, disease outcome is taken as system output, with saliva test and
blood test as system inputs. The output variable is labelled as y and takes three categorical values: whether it is true (y = y1), false (y =

y2) or unknown (y = Θ = {true, false}) that a patient has disease. The first input variable is the saliva test result, is labelled by x1 and
takes two categorical values: saliva positive (x1 = x11) or saliva negative (x1 = x12). The second input variable is the blood test result,
is labelled by x2 and takes two categorical values: blood positive (x2 = x21) or blood negative (x2 = x22). To simplify description, the
records having the same input and output values are grouped together. The simulated data of 6300 patient records for the example are
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shown in Table 1.1 and Table 1.2, where complete and incomplete patient records are listed separately to facilitate discussions in the
following sections.

The data shown in Table 1.1 and Table 1.2 are imperfect in the sense that they involve different types of uncertainty, that is,
randomness, ambiguity, incompleteness, inaccuracy, and insufficiency caused by imbalance or lack of data. The data is random
because the same test results can lead to different outputs. For example, patients 1-93 have positive saliva and positive blood test
results and have the disease; however, patients 101-120 also have positive saliva and positive blood test results but do not have the
disease. Some of the data is ambiguous in that it is unknown whether the following patients have the disease or not: patients 1001-
1100, 3101-3200, and 6201-6300. The data is incomplete in that patients 1101-3200 only have saliva test results, whilst patients
3201-6300 only have blood test results. There is also an issue of data insufficiency caused by data imbalance, which affects data quality
and is not obvious from Table 1.1 and Table 1.2 but will be revealed by descriptive data analysis later. In addition to the above, one
may also be concerned that the test results and the diagnostic outcomes of the collected data can be inaccurate due to, for example: (i)
possible errors in the test, diagnosis and data recording processes, (ii) the number of collected records not being large enough for
estimation of population behaviours with high trustworthiness, (iii) inadequacy of using only saliva test and blood test to make reliable
prediction of the disease, (iv) the relationships between the disease and saliva test or blood test not being adequately captured by the
data of Table 1.1 and Table 1.2, among other possible reasons. That is, the veracity of the data can be a concern, or how trustworthy it is
to use the test results to predict the disease.

2.2. Representation and descriptive analysis of imperfect data

Conventional probabilistic inference relies on complete and unambiguous data. This means that only the records of patients 1-1000
of Table 1.1 may be used for inference, while the other records with missing or unknown values may be deleted or imputation may be
used to estimate missing or unknown values. However, deleting incomplete or ambiguous data can lead to loss of vital information, and
imputing data can change the nature of original data with the risk of leading to less reliable data and potentially biased or distorted
outcomes [72].

This paper aims to establish the MAKER framework to handle imperfect data in modelling and inference without data deletion or
imputation. In the MAKER framework, the data shown in Table 1.1 and 1.2 is represented as three parts: 1) the complete patient
records shown in Table 1.1, where both test results are recorded, 2) all patient records with saliva tests as shown in Table 2, and 3) all
patient records with blood tests as shown in Table 3. Note that the records of Table 1.1 are also used for constructing Table 2 and
Table 3, to ensure that all records having saliva test (or blood test) are used to estimate the relationship between the disease and saliva
test (or blood test). While data analysis with larger datasets should be of better quality, this makes Table 2 and Table 3 dependent on
each other.

The 1100 records of Table 1.1 hold information about the interdependency between saliva test and blood test in their joint support
for diagnosis of the disease, although such support may not be deemed fully reliable due to the relatively small sample size, among
other concerns. To make sense of the data in Table 1.1, a joint contingency table is constructed in Table 4, where HSBtT is an evidential
element for the data source of Table 1.1, standing for “both tests point to disease being true”, HSBtF is for “both tests point to disease
being false”, and HSBtU is for “both tests point to disease being unknown”. Introduction of evidential elements implies that even if the
two tests jointly point to the disease being true (or false or unknown) to certain extents, as shown in Table 4, it does not necessarily
mean that the disease is true (or false or unknown) to the same extents due to such factors as the limited sample size of 1100 records,
possible errors in gathering and processing the data and data imbalance, among others.

The data in Table 4 is significantly imbalanced. For instance, the ratio of the number of patients without disease (false) over that
with disease (true) is 9 (900/100); among the patients with negative saliva test, the ratio of the number with negative blood test over
that with positive blood test is more than 32 (873 / 27).

Table 4 is used to explore the interdependence between saliva test and blood test for disease prediction. Table 5 and Table 6 are
constructed from Table 2 and Table 3 for acquiring evidence from saliva test or blood test, respectively. In Table 5,HStT is an evidential

Table 1.1
Complete Patient Records.

Record No. Input variables Disease Output (y)

Saliva (x1) Blood (x2)

1-93 Positive Positive True
94-95 Positive Negative True
96-99 Negative Positive True
100 Negative Negative True
101-120 Positive Positive False
121-160 Positive Negative False
161-180 Negative Positive False
181-1000 Negative Negative False
1001-1043 Positive Positive Unknown
1044-1045 Positive Negative Unknown
1046-1048 Negative Positive Unknown
1049-1100 Negative Negative Unknown
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element for the data source of Table 2, standing for “Saliva test points to disease being true”, HStF is for “Saliva test points to disease
being false”, and HStU is for “Saliva test points to disease being unknown (i.e. either HStT or HStF)”. In Table 6, HBtT is an evidential
element for the data source of Table 3, standing for “Blood test points to disease being true”, HBtF is for “Blood test points to disease

Table 1.2
Incomplete Patient Records.

Record No Input variables Disease Output (y)

Saliva (x1) Blood (x2)

1101-1280 Positive ̶ True
1281-1295 Negative ̶ True
1296-1450 Positive ̶ False
1451-3100 Negative ̶ False
3101-3150 Positive ̶ Unknown
3151-3200 Negative ̶ Unknown
3201-3450 ̶ Positive True
3451-3470 ̶ Negative True
3471-3610 ̶ Positive False
3611-6200 ̶ Negative False
6201-6254 ̶ Positive Unknown
6255-6300 ̶ Negative Unknown

Table 2
Data Records for Saliva Test.

Record No. Saliva Test (x1) Disease (y)

1-95 Positive True
96-100 Negative True
101-160 Positive False
161-1000 Negative False
1001-1045 Positive Unknown
1046-1100 Negative Unknown
1101-1280 Positive True
1281-1295 Negative True
1296-1450 Positive False
1451-3100 Negative False
3101-3150 Positive Unknown
3151-3200 Negative Unknown

Table 3
Data Records for Blood Test.

Record No. Blood Test (x2) Disease (y)

1-93,96-99 Positive True
94-95,100 Negative True
101-120,161-180 Positive False
121-160, 181-1000 Negative False
1001-1043, 1046-1048 Positive Unknown
1044-1045, 1049-1100 Negative Unknown
3201-3450 Positive True
3451-3470 Negative True
3471-3610 Positive False
3611-6200 Negative False
6201-6254 Positive Unknown
6255-6300 Negative Unknown

Table 4
Contingency Table for Both Saliva and Blood Tests.

Frequency Positive Saliva Negative Saliva Row total

Positive Blood Negative Blood Positive Blood Negative Blood

HSBtT 93 2 4 1 100
HSBtF 20 40 20 820 900
HSBtU 43 2 3 52 100
Column total 156 44 27 873 1100
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being false”, and HBtU is for “Blood test points to disease being unknown (i.e. either HBtT or HBtF)”. Note that the data for saliva test in
Table 5 is imbalanced, so is the data for blood test in Table 6, leading to the prior distribution of Table 5 being different from that of
Table 6.

2.3. Likelihood analysis of imperfect data for evidence acquisition

In this subsection, the likelihood method for analysing imperfect data [72] is discussed using the above example, for acquisition of
evidence and in preparation for the theoretical discussions of the later sections. In Table 4, there is ambiguous data as shown in the 2nd

last row. This makes it inappropriate to use conventional probabilistic inference approaches to draw conclusions directly. For example,
out of the 1100 patients who have both saliva and blood tests, 93 patients having the disease are positive in both tests. However, it is
inappropriate to conclude that the probability of a patient having the disease given both positive saliva and blood tests is precisely
0.5962 (93/156) due to the ambiguity. There are 43 patients who also have both positive tests, but they may or may not have the
disease. This makes it difficult to interpret joint probabilities calculated using the data of Table 4 alone.

The data of Table 4 is not sufficient or balanced, leading to questions on whether it is trustworthy to use Table 4 alone for inference.
For instance, it is argued that as a general rule of thumb the expected count per cell in a contingency table should be no less than 5 for
inference to be valid [6,80], and some other rules of thumb have also been suggested. For example, Yates et al. [80] suggested that “No
more than 20% of the expected counts should be less than 5 and all individual expected counts should be greater than or equal to 1.
Some expected counts can be <5, provided none <1, and 80% of the expected counts should be equal to or greater than 5”. Table 7 is
generated by calculating expected counts for all cells of Table 4 using a simple approach of Row Total times Column Total divided by
Total, e.g. 14.18 =100*156/1100 for the cell at the HSBtT row and the “Saliva Positive - Blood Positive” column.

In Table 7, there are 4 expected counts < 5, so the general rule of thumb is not satisfied. Yates’ rule of thumb is not met either as in
Table 7 there are more than 33% (4/12) of expected counts < 5. One may argue that compliance with these rules of thumb may not
guarantee the inference to be always valid. On the other hand, if they are violated by data, one has to question how trustworthy the
inference could be if it is purely driven by the data.

The above discussions call for new thinking for probabilistic inference with imperfect data. A new framework to be established in
this paper will be based on acquisition of evidence as likelihood distribution generated from imperfect datasets. In Table 5, for
example, the likelihoods of observing positive saliva test given states HStT, HStF and HStU are calculated as 0.9322 (275/295), 0.0795
(215/2705) and 0.475 (95/200), respectively. By normalising these likelihoods so that they sum to one [72], we get the normalised
likelihood of 0.627 (0.9322/(0.9322+0.0795+0.475) for HStT, 0.0535 for HStF, and 0.3195 for HStU, as shown in the second column of
Table 8. These normalised likelihoods formulate a likelihood distribution for profiling a positive saliva test result, referred to as a piece
of evidence. Similarly, a negative saliva test result is profiled by another likelihood distribution in the last column of Table 8; positive
and negative blood test results are profiled as two pieces of evidence as shown in the last two columns of Table 9.

The data of Table 5 and Table 6 is regarded to be of good quality in the sense that expected counts in cells in Table 5 and Table 6 are
all much larger than 5. So, evidence acquired from these tables should also be of good quality. The question of interest is then how to

Table 5
Contingency Table for Saliva Test.

Frequency Positive Saliva Negative Saliva Row total

HStT 275 20 295
HStF 215 2490 2705
HStU 95 105 200
Column total 585 2615 3200

Table 6
Contingency Table for Blood Test.

Frequency Positive Blood Negative Blood Row total

HBtT 347 23 370
HBtF 180 3450 3630
HBtU 100 100 200
Column total 627 3573 4200

Table 7
Expected Counts for Both Saliva and Blood Tests.

Expected counts Positive Saliva Negative Saliva

Positive Blood Negative Blood Positive Blood Negative Blood

HSBtT 14.18 4.00 2.45 79.36
HSBtF 127.64 36.00 22.09 714.27
HSBtU 14.18 4.00 2.45 79.36
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use evidence acquired from individual tests, as shown in Table 8 and Table 9, for likelihood inference.
By applying the above process to Table 4, the joint likelihoods of observing positive or negative saliva and blood tests given HSBtT,

HSBtF and HSBtU can be calculated, and then normalised to construct Table 10. The normalised joint likelihoods provide information
about the interrelationship between saliva and blood tests for disease diagnosis, which will be explored in the following sections.

3. Basic models of the MAKER framework

From a system point of view, inference is a systematic process of predicting the output of a system from its inputs, in which the
interdependence and interaction among the inputs and between the inputs and output need to be taken into account. If an explicit
mathematical function between system inputs and output is known a priori, inference could be as direct as to use the known function to
calculate the output for given inputs; otherwise, data or judgements about system relationships and behaviours should be gathered and
described to enable inference.

It is to enable data-driven and knowledge-based inference that the MAKER framework is established. In this section, the concepts
and constituent components of the MAKER framework will be explored, including a system state model to represent system output
associated with randomness and ambiguity, an evidence acquisition model to acquire evidence as system inputs from imperfect data,
and an evidential reasoning model to enable inference in terms of evidence combination with the weights of variables and the reli-
ability of evidence being explicitly and consistently taken into account together with randomness and ambiguity.

3.1. System State Model – SSM

The concept of System State Model (SSM for short) was proposed by Dempster following his pioneer work [12,13] and his system
view [14]. In SSM, system output is characterised by a number of states, which form a system space. The mechanism of SSM is most
easily introduced by assuming a system space that consists of a finite number of states. Dempster’s pioneer work and system view lays
the foundation of SSM.

Let Hn stand for a singleton state (also termed as hypothesis, assertion or proposition in literature). Without loss of generality,
suppose a system space has N singleton states that are mutually exclusive and collectively exhaustive, denoted by Θ = {H1⋯Hn⋯HN}

withHi ∩ Hj = ∅ for any i ∕= j. Probability can be assigned to any singleton states and their subsets. The collection of all singleton states
and their subsets in Θ is referred to as the power set of Θ, denoted by 2Θ. Note that the power set of Θ includes empty set ∅ and system
space Θ.

A system output is modelled by a unique set function, called basic probability function, defined as an ordinary probability dis-
tribution over the nonempty subsets of Θ as follows.

Definition 1. (Basic probability function) A set function p : 2Θ→[0, 1] is called a basic probability function if the following con-
ditions are met:

Table 8
Normalised Likelihood for Saliva.

Likelihood pHStθ ,1i Positive Saliva (x11) Negative Saliva (x12)

HStT 0.6270 0.0448
HStF 0.0535 0.6083
HStU 0.3195 0.3469

Table 9
Normalised Likelihood for Blood.

Likelihood pHBtθ ,2j Positive Blood (x21) Negative Blood (x22)

HBtT 0.6305 0.0411
HBtF 0.0333 0.6283
HBtU 0.3362 0.3306

Table 10
Joint Normalised Likelihood for Both Saliva and Blood.

Likelihood pHSBtθ ,(1i,2j) Positive Saliva (x11) Negative Saliva (x12)

Positive Blood (x21) Negative Blood (x22) Positive Blood (x21) Negative Blood (x22)

HSBtT 0.6728 0.2368 0.4337 0.0069
HSBtF 0.0161 0.5263 0.2410 0.6322
HSBtU 0.3111 0.2368 0.3253 0.3608
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0 ≤ p(θ) ≤ 1, ∀θ ⊆ Θ;
∑

θ⊆Θ
p(θ) = 1; p(∅) = 0 (1)

θ can be any singleton state or any subset of singleton states and is referred to as state for short. p(θ) is the basic probability
committed exactly to state θ, which cannot be split into pieces to be assigned to any subsets of θ. In other words, p(θ)measures the part
of evidence that exactly supports state θ as a whole.

The above definition means that one and only one state occurs surely as an outcome when an experiment is conducted. Therefore,
the sample space of the probability space, where the experiment is conducted, has 2N − 1 states because basic probabilities can be
assigned to any state but not to empty set ∅. For ease of discussion, the above probability space is coined as System Output Prob-
ability Space (SOPS for short) in general. If there is a basic probability assigned to any subset of two or more singleton states, or there
exists ambiguity, the SOPS is referred to as Dempster’s probability space, to respect Dempster’s pioneer work on modelling am-
biguity. If basic probabilities are only allowed to be assigned to singleton states, then the SOPS is referred to as Bayes’ probability
space, whose sample space has only N singleton states because only a singleton state can be a sure outcome when an experiment is
conducted. Bayes’ probability space is the ordinary probability space.

A basic probability function constructed in Bayes’ probability space can only model randomness among singleton states in the sense
that the probability assigned to any singleton state and the probability assigned to its negation always add up to one, leaving no room
to model ambiguity among any singleton states. In Dempster’s probability space, however, both randomness and ambiguity can be
modelled in the same framework because the basic probability assigned to a subset of singleton states as a whole measures the degree
to which it is ambiguous or unknown which of the singleton states in the subset may be true.

Given observations of input variables, one or multiple pieces of evidence can be acquired, from which a system output can be
generated and in general represented as a basic probability distribution defined as follows.

Definition 2. (System output) In SOPS, system output y given evidence e as system input is profiled as a basic probability distribution
(bpd for short) over all states as follows.

y(e) =

{

(θ, p(θ|e)), ∀θ ⊆ Θ with θ ∕= ∅ and
∑

θ⊆Θ
p(θ|e) =1

}

(2)

p(θ|e) is the basic probability, or the conditional probability, that state θ is true given evidence e. Element (θ, p(θ|e)) represents a
judgement or an assertion that θ is true with a probability of p(θ|e). If p(θ|e) > 0, element (θ, p(θ|e)) is called a focal element. Since no
probability is allowed to be assigned to empty set, there is always p(∅|e) = 0. Therefore, (∅, 0) does not need to be included in
Equation (2).

In the example of Section 2, letH1 stand for a singleton state that “a patient has the disease” andH2 for the other singleton state that
“a patient does not have the disease”. Then, the system space is defined by Θ = {H1,H2}. If a test result for a patient is represented by
evidence e1 as system input, a diagnosis result for the patient given the test result is in general represented by the following bpd as
system output:

y(e1) = {(H1, p(H1|e1)), (H2, p(H2|e1)), (Θ, p(Θ|e1)) }. (3)

where p(H1|e1) (p(H2|e1)) is the basic probability that stateH1 (H2) is true given evidence e1 and p(Θ|e1) is the basic probability that it is
ambiguous or unknown whether the patient has the disease or not given evidence e1.

System output y(e1) can be visualised by a probability pie chart, with state Hi represented by the ith sector of the pie chart and
p(Hi|e1) equal to the proportion of the sector area to the total area of the pie chart. If p(H1|e1), p(H2|e1) and p(Θ|e1) are assumed to be
0.6, 0.1, 0.3, respectively, then system output y(e1) can be visualised by a pie chart as shown in Fig. 1.

Although a bpd provides a unique and panoramic description for an output as a whole, uncertainty about each state can be
characterised and interpreted in more detail for reasoning and decision making. The system view proposed by Dempster [14] provides

Fig. 1. Pie chart for system output y(e1).
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a basis to describe how uncertainty about a state should be presented and probabilistic operations conducted for inference with both

randomness and ambiguity taken into account. In Dempster’s system view, uncertainty about state θ is characterised by a triplet
(

pt
θ,

pf
θ, pu

θ

)
, with pt

θ measuring the probability that the evidence is for the truth of θ, given by

pt
θ =

∑

A⊆θ
p(A|e) (4)

That is, pt
θ accumulates the basic probabilities for all the subsets of states that belong to θ and represents the probability that is

unambiguously assigned to θ. As such, pt
θ is the successor of ordinary probability to which state θ is true.

On the other hand, pf
θ measures the probability that the evidence is against the truth of θ, or the degree to which θ is believed to be

false, calculated by

pf
θ = pt

θc =
∑

B∩θ=∅
p(B|e) (5)

which is the probability for the truth of the negation of θ, denoted by θc. pt
θ and pf

θ given above are defined so that the assignment of
nonzero probability is allowed to be given to “unknown”, denoted by pu

θ and given by

pu
θ = 1 − pt

θ − pf
θ (6)

In summary, state θ can be interpreted by three probabilities
(

pt
θ, pf

θ, pu
θ

)
assigned to the triad of the state being “true”, “false” and

“unknown”. In other words, probability is not restricted to pt
θ and pf

θ with pt
θ + pf

θ = 1 as in Bayes’ probability space, but is allowed for
pu

θ = 1 − pt
θ − pf

θ, to quantify the ambiguity of state θ, so that inference can be conducted with ambiguous information. In SSM, while

an output is profiled by a unique bpd, uncertainty about every state of the bpd in the output can be characterised by a
(

pt
θ, pf

θ, pu
θ

)

triplet.
However, while pt

θ, pf
θ and pu

θ are directly interpretable as probabilities and thus useful in decision making, it should be noted that
they are not directly usable for probabilistic inference in SOPS. This is because the components pt

θ, pf
θ and pu

θ are partial sums of basic
probabilities and therefore not bpd. As such, the concept of bpd is technically fundamental because it is the unique measure of a system
output. Only a bpd takes the familiar mathematical form of an ordinary probability distribution in SOPS and therefore it is only bpd or
basic probability function that is subject to probabilistic operations and computations in SOPS [14].

The above-summarised Dempster’s original work and system view on how to handle ambiguity is coined as Dempster’s principle
that consists of three main components. That is, i> basic probability assigned to state θ cannot be split into pieces to be assigned to any
subsets of θ; ii> probabilistic operations and computations can only be conducted on a basic probability function as defined in

Equation (2) and implemented in Equation (3); iii> uncertainty about state θ is characterised and interpreted by a triplet
(

pt
θ, pf

θ, pu
θ

)

with Equation (4) to Equation (6) duly satisfied. It is essential that Dempster’s principle be strictly followed whenever ambiguity needs
to be handled for probabilistic inference.

3.2. Evidence Acquisition Model – EAM

The initial inspiration for creating an Evidence Acquisition Model (EAM for short) came from reading the first three chapters of
Shafer’s book [46], where vivid terms are used to describe that evidence acquired from data or human knowledge should point to
different states (hypotheses or propositions) and provide support for or objection against whether a state is true or not. In other words,
any acquired evidence should have a relative (not always absolute) role or weight in inference. These descriptions are consistent with
the system view that whether a state in a system space is asserted to be true or not depends on whether or not there is evidence pointing
towards this state and supporting it. That is, if there is evidence pointing to a state and the evidence is reliable to a certain degree, the
state should be true to some degree.

The above system view also means that if a piece of evidence is acquired from a data source and points to a state, it does not always
guarantee that the state is necessarily true. As such, evidence should be acquired as system input in association with states, rather than
as system output directly profiled by bpd on states. This thinking leads to decomposing evidence into evidential elements with each
pointing to a state, and to profiling evidence by bpd on evidential elements. It is to describe the process of acquiring evidence from a
data source and profiling it to form system inputs that an evidence acquisition model (EAM) is established in this section.

Let eθl be an evidential element pointing exactly to state θ from a data source where input variable xl takes its values. In other words,
eθl is the mapping of state θ to the data source. A basic probability function pl over evidential elements eθl (θ ⊆ Θ), referred to as
evidence probability function, is then defined as follows.

Definition 3. (Evidence probability function) An evidence probability function pl for input variable xl is a basic probability function
defined over evidential elements as follows.

0 ≤ pl(eθl) ≤ 1, ∀θ ⊆ Θ;
∑

θ⊆Θ
pl(eθl) = 1; pl(∅) = 0 (7)
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The above definition requires that one and only one evidential element be taken as the outcome for sure by input variable xl when
an experiment is conducted. The sample space of a probability space where the experiment is conducted has 2N − 1 evidential elements
because each evidential element points to one and only one non-empty state in SOPS. In other words, the new probability space
spanned by all the 2N − 1 evidential elements is the mapping of SOPS to the data source for input variable xl. For convenience of
discussion, this new probability space is coined as System Input Probability Space (SIPS for short). This means that a SIPS should be
constructed for each data source where single or multiple input variables take values.

When variable xl takes a value from its data source, a piece of evidence is acquired that may point to one or multiple states with
different probabilities. Let pθli = pl(eθl|xl = xli) be the basic probability that state θ is pointed to when input variable xl takes value xli, or
that xl points to θ at xl = xli for short. Let eli be a piece of evidence acquired when input variable xl takes value xli. Then, evidence eli is
defined as follows.

Definition 4. (System input) A piece of evidence eli, which is taken as system input and acquired when input variable xl takes value
xli, is profiled as a bpd over evidential elements by

eli =

{

(eθl, pθli = pl(eθl|xl = xli)), ∀θ ⊆ Θ with θ ∕= ∅ and
∑

θ⊆Θ
pθli =1

}

(8)

Basic probability pθli can be calculated by applying the likelihood analysis method [72] as briefly described in Section 2.3. Suppose
cθli is the likelihood that value xli is observed given evidential element eθl. pθli can then be acquired as normalised likelihood by applying
the likelihood method,

pθli = cθli

/
∑

A⊆Θ
cAli ∀θ ⊆ Θ (9)

For instance, in the example introduced in Section 2, suppose saliva test is denoted by variable x1 and a positive saliva test result by
variable value x11, or x1 = x11. Let e11 stand for the evidence that x11 is observed, and eH11, eH21 and eΘ1 for the evidential elements that
saliva test points to the disease being true, false, and unknown, respectively. Given that the basic probabilities for e11 were acquired as
the normalised likelihoods of Table 8, we have pH111 = 0.627, pH211 = 0.0535 and pΘ11 = 0.3195, and can model e11 as a bpd in SIPS as
follows:

e11 = {(eH11, 0.627), (eH21, 0.0535), (eΘ1, 0.3195)} (10)

If variable xl is discrete, the observation of each of its discrete values can be represented by Definition 4, leading to a discrete EAM
for probabilistically associating input variable xl to output variable y, denoted by El = {el1, el2⋯,eli⋯}. For example, x1 has two values:
positive saliva test result x11 and negative one, denoted by x12. If x12 is observed, then a new piece of evidence can be acquired as a bpd
in the same SIPS as for x1, denoted by e12. From Table 8, basic probabilities for e12 are generated by pH112 = 0.0448, pH212 = 0.6083 and
pΘ12 = 0.3469, respectively, and e12 is then given as follows:

e12 = {(eH11, 0.0448), (eH21, 0.6083), (eΘ1, 0.3469)} (11)

The discrete EAM for variable x1 consists of two piece of evidence and is represented by E1 = {e11, e12}, showing the probabilistic
relationships between saliva test and the disease prediction.

Evidence eli can be visualised by a probability pie chart, with eθi represented by the ith sector of the pie chart and pθli equal to the
proportion of the sector area to the total pie chart area. For example, the probability pie charts for e11 and e12 are shown in Fig. 2.1 and
Fig. 2.2, where the green, red and grey sectors of the pie chart represent three evidential elements: eH11, eH21 and eΘ1, respectively. For
each piece of evidence, the sector areas divided by the total area of the pie chart are equal to the basic probabilities for the three
evidential elements.

Fig. 2.1. Pie chart for evidence e11.

J.-B. Yang and D.-L. Xu Artiϧcial Intelligence 340 (2025) 104289 

10 



3.3. Evidential Reasoning Model – ERM

The inspiration for establishing an Evidential Reasoning Model (ERM for short) stems from the authors’ original work on estab-
lishing the ER approach for Multiple Attribute Decision Making (MADM) [64,66,67]. In MADM, the importance of an attribute is
measured by its weight, and the assignment of weight depends on the Decision Maker’s (DM’s) preferences; on the other hand, there
can be ignorance or ambiguity in assessing alternative actions on attributes due to lack of data or experience. While both the DM’s
preferences and assessor’s ignorance are uncertain in nature, they are different types of uncertainty. The weight of an attribute as
perceived by the DM and the ignorance or ambiguity incurred in assessing alternative actions on the attribute should therefore be
modelled differently.

In the previous section, it was shown how to acquire evidence when an input variable takes a specific value from a data source and
how to profile it as a bpd over evidential elements that point to different states in SOPS. Such acquired evidence provides support for
states. If such acquired evidence points to a state to some degree, however, it does not necessarily mean that the state is true to the same
degree. This is because no input variable is able to guarantee that every value (judgment or assertion) it takes is always correct without
any doubt. As such, an input variable should not always be assumed to have the highest weight, and consequently the evidence ac-
quired when the input variable takes a specific value should not always be regarded as absolutely reliable or trustworthy either. It is to
model the weights of input variables and the reliability and trustworthiness of evidence, as well as to enable the combination of
multiple pieces of dependent evidence, that ERM is established.

As discussed in the previous section, pθli = pl(eθl|xl = xli) is the basic probability that variable xl points to state θ at xl = xli, or that
evidence eli points to state θ, which is measured in SIPS. However, this does not necessarily mean that θ is true to the same degree of pθli.
What should be considered is the joint event that θ is true while xl points to θ. This joint event is mathematically represented by the
intersection sθl = θ ∩ eθl, with symbol sθl standing for the event that variable xl supports state θ. The probability that xl supports state θ
at xl = xli, or that evidence eli supports θ, is measured by p(sθl|eli) in SOPS. The above discussions lead to the following definition of
evidence trustworthiness.

Definition 5. (Evidence trustworthiness) The trustworthiness of evidence eli is defined as the total probability that eli supports θ for all
θ ⊆ Θ, denoted by tli as follows:

tli =
∑

θ⊆Θ
p(sθl|eli) with 0 ≤ tli ≤ 1 (12)

The conditional probability that state θ is true given evidence eli is calculated by:

p(θ|eli) = p(sθl|eli)/tli (13)

The system output given evidence eli is then generated as the following bpd:

y(eli) =

{

(θ, p(θ|eli)), ∀θ ⊆ Θ with θ ∕= ∅ and
∑

θ⊆Θ
p(θ|eli)=1

}

(14)

Evidence eli is 100% or completely trusted if tli = 1, and not trusted at all if tli = 0.
The above bpd provides a panoramic view of system output y(eli) under the two types of uncertainty: randomness and ambiguity,

which can be characterised by using a triplet for each state as discussed in Section 3.1. Since tli is the total probability that all states are
supported by evidence eli, it measures how much eli is trusted, thus named as the trustworthiness of eli. If tli < 1, (1 − tli) is the
probability that eli is unable to support any state or is untrusted, thus coined as the untrustworthiness of eli. Since (1 − tli) actually
measures what is left-over by eli’s inability to provide 100% support for all states, it is also referred to as eli’s residual support.

When multiple pieces of evidence acquired from different input variables are combined to infer system output, both the trust-
worthiness and untrustworthiness of each piece of evidence should be taken into account alongside its randomness and ambiguity.
That is, basic probability p(θ|eli) should be discounted by tli and (1 − tli) should be considered as well when eli is combined with other

Fig. 2.2. Pie chart for evidence e12.
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evidence. Basic probability p(θ|eli) discounted by tli measures evidence eli’s support for state θ, and is denoted by:

m̃θli = tlip(θ|eli) = p(sθl|eli) ∀θ ⊆ Θ (15)

It has been argued from different perspectives such asMADM [67,71] that it is irrational and violates the likelihood principle [5] to
assign the residual support or untrustworthiness to any state of a system space. On the other hand, it is rational and necessary to retain
it to the powerset as untrustworthiness is a new dimension of uncertainty, different from randomness or ambiguity, and can only be
robustly modelled in an augmented SOPS by taking the powerset as an augmented state to hold the new type of uncertainty.

For ease of discussion, the augmented SOPS is referred to as the ER Probability Space (ERPS for short). In essence, a piece of
evidence is profiled by two main parts in ERPS. In the first part, the basic probabilities of the evidence are each discounted by the same
factor (its trustworthiness) and assigned to their respective states in SOPS, thus with their probability meanings kept intact; in the
second part, the untrustworthiness of the evidence is not assigned to any state but is retained to the powerset as a whole and kept intact,
ready for combination with other evidence. Such retainment is appropriate, rigorous, logical and convenient for evidence
combination.

• First, the powerset is built upon the same system space in that it consists of only and all the states of the system space with no alien
state fabricated. It is therefore appropriate to hold the untrustworthiness of evidence to the powerset as a whole.

• Second, the retainment is rigorous since a piece of evidence profiled by Equation (15) with untrustworthiness assigned to the
powerset as a whole holds the same probability meanings (or relative frequency) as the original bpd of the evidence measured in
SOPS because

m̃Ali/m̃Bli = p(A|eli)/p(B|eli) ∀A, B ⊆ Θ (16)

• Third, it is logical to retain the untrustworthiness to the powerset as a whole because this gives due respect to the meaning of the
untrustworthiness of evidence that is incurred due to the inability of the evidence to provide 100% support for each of all states. As
such, the untrustworthiness should not be assigned to any specific state with others ignored. On the other hand, the untrustwor-
thiness of evidence in nature measures the inability of the evidence to decide on its own which state the untrustworthiness should
be assigned to. Retaining the untrustworthiness to the powerset makes it allocatable to any state during the process of combining
the evidence with other evidence, because the conjunction of the powerset with any of its constituent states is the constituent state.

• Finally, the retainment enables untrustworthiness to be constructed entirely on the basis of the evidence, independent of any other
evidence. Such independence is useful as this makes it convenient to combine the evidence with other evidence in the process of
probabilistic operations such as calculating joint probabilities.

The above discussions lead to the construction of the following ER probability function.

Definition 6. (ER probability function) An ER probability function P is an augmented basic probability function constructed over all
the states and the powerset of the system space by

0 ≤ P(θ) ≤ 1, ∀θ ⊆ Θ;
∑

θ⊆Θ
P(θ) ≤ 1; P(2Θ) = 1 −

∑

θ⊆Θ
P(θ); P(∅) = 0 (17)

P(θ) is the basic probability that state θ is supported and P(2Θ) is the remaining probability leftover after all the states are sup-
ported, which cannot be broken down into pieces to be assigned to any of the states but is kept intact and retained to the powerset as a
whole.

The above definition ensures that 0 ≤ P(2Θ) ≤ 1 and
∑

θ⊆Θ
P(θ) + P(2Θ) = 1 and allows evidence acquired from any input variable to

be profiled over all the states and the powerset of the system space, so that evidence from all input variables is profiled and compared
on the same basis, whatever values the input variables take. The pieces of evidence acquired when input variables take any values and
consistently measured by Definition 6 can then be combined to infer system outputs.

The basic probability P(θ|eli) that state θ is supported at xl = xli, or evidence eli supports state θ, is given by a joint probability, or
P(θ|eli) = p(sθl|eli) with p being a basic probability function defined in SOPS. Since eli is acquired in SIPS and cannot be directly used to
calculate p(sθl|eli), it needs to be projected to SOPS in a procedure discussed as follows. First, the joint probability is rewritten as
follows:

P(θ|eli) = p(sθl|eli) = p(θ ∩ eθl|eli) = p(θ|eθl)p(eθl|eli) (18)

In the above equation, p(θ|eθl) is the conditional probability that state θ is true given that input variable xl points to θ, defined as the
weight of xl in support for θ as follows.

Definition 7. (Variable weight) The weight of input variable xl in support for state θ is defined as the conditional probability that
state θ is true given that xl points to θ, given by

wθl = p(θ|eθl) (19)
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with 0 ≤ wθl ≤ 1. wθl = 1 means that xl is the most important when pointing to θ, and wθl = 0 means that xl is the least important when
pointing to θ.

Weight wθl measures the degree to which state θ is true if xl points to θ, without referring to any specific value that xl may take. In
another word, wθl describes the ability of xl to provide correct judgement or assertion about the truth of θ, Therefore, wθl should in
principle be estimated by analysing the ability of xl to provide correct judgement or assertion for θ, whatever specific values xl may
take. Under this principle, an optimisation model will be developed in Section 5.1 to estimate wθl from observation data.

In the previous section, xl is characterized by evidence probability function pl, with pθli = pl(eθl|xl = xli) being the basic probability
that input variable xl points to θ at xl = xli, which is acquired in the SIPS from the data source where xl takes its values. On the other
hand, p(eθl|eli) is the basic probability that state θ is true given evidence eli, with p being the basic probability function constructed in
SOPS. Therefore, pθli needs to be projected to p(eθl|eli) for all θ ⊆ Θ. In other words, evidence eli acquired in SIPS needs to be projected to
SOPS. This projection must follow the likelihood principle [5] in that after the projection p(eθl|eli) should hold the same evidential
meanings as what pθli holds for all θ ⊆ Θ. That is, p(eθl|eli) should be proportional to pθli for all θ ⊆ Θ as follows:

p(eθl|eli) = ωlipl(eθl|xl = xli) = ωlipθli∀θ ⊆ Θ (20)

ωli is the proportion that evidence eli is projected to SOPS, referred to as projection rate.
Projection rate ωli is a positive constant that does not change with θ ⊆ Θ, and is determined uniquely by the reliability of evidence

eli and the weights of input variable xl as follows, so that Equation (17) of Definition 6 is satisfied:

ωli = 1

/(
∑

θ⊆Θ
pθliwθl +1 − rli

)

(21)

In the above equation for determining the projection rate,
∑

θ⊆Θ
pθliwθl is the expected weight of evidence eli, and rli is the reliability of

eli defined as follows.

Definition 8. (Evidence reliability) Parameter rli given in Equation (21) measures the ability of evidence eli to provide correct
outcomes or how reliable eli is in its support for states, referred to as the reliability of eli with 0 ≤ rli ≤ 1. Evidence eli is the most reliable
or fully reliable if rli=1 and the least reliable or fully unreliable if rli=0, with the former meaning that whatever eli stands for is always
correct and the latter meaning exactly the opposite.

We can now calculate the basic probability that eli supports θ as follows:

m̃θli = P(θ|eli) = p(sθl|eli) = p(θ|eθl)p(eθl|eli)

= p(θ|eθl)ωlipl(eθl|xl = xli) = ωlimθli ∀θ ⊆ Θ (22)

mθli = p(θ|eθl)pl(eθl|xl = xli) = wθlpθli ∀θ ⊆ Θ (23)

mθli is the weighted likelihood that eli points to θ, referred to as probability mass. Note that there is always 0 ≤ mθli ≤ 1 because 0 ≤

wθl ≤ 1 and 0 ≤ pθli ≤ 1 for any θ ⊆ Θ. Also, there must be 0 ≤ m̃θli = ωlimθli ≤ 1 for any θ ⊆ Θ because p(sθl|eli) is probability, which
means that there must not be

∑

θ⊆Θ
wθlpθli = 0 when rli=1. In other words, if a piece of evidence is fully reliable, its expected weight must

not be zero. In general, reliability can be different from expected weight for any evidence. If the former is larger than (less than or equal
to) the latter, there is ωli > (< or= ) 1 and the support of evidence eli for each state is then amplified (shrunk or kept unchanged) from
its probability mass for the state.

The trustworthiness and untrustworthiness of evidence eli can then be rewritten as follows.

tli =
∑

θ⊆Θ
p(sθl|eli) =

∑

θ⊆Θ
ωlimθli = ωli

∑

θ⊆Θ
pθliwθl =

∑
θ⊆Θpθliwθl

∑
θ⊆Θpθliwθl + 1 − rli

(24)

1 − tli = 1 −

∑
θ⊆Θpθliwθl

∑
θ⊆Θpθliwθl + 1 − rli

=
1 − rli

∑
θ⊆Θpθliwθl + 1 − rli

= ωli(1 − rli) (25)

m̃2θ li = P(2Θ|eli) = 1 −
∑

θ⊆Θ
p(sθl|eli) = 1 − tli = ωli(1 − rli) (26)

Note from the above equations that the trustworthiness of evidence eli is positively related to its expected weight, and the
untrustworthiness of eli is positively related to its unreliability. Equation (25) shows that there is (1 − tli) = 0 when rli = 1. That is,
evidence eli is 100% or completely trusted if it is fully reliable. In general, if rli > (< or = )

∑

θ⊆Θ
pθliwθl, there is ωli > (< or= ) 1 and the

untrustworthiness of evidence eli is amplified from (shrunk from or is the same as) its unreliability (1 − rli).
Also note that ifwθl = wl for all θ ⊆ Θ, we will have

∑

θ⊆Θ
pθliwθl = wl, thus resulting in tli =

wl
wl+1− rli

and 1 − tli = 1− rli
wl+1− rli

, with tli = 1 if rli

= 1. This leads to another interpretation of tli as the hybrid weight of eli that takes into account a mix of weight and reliability and is
denoted by w̃li [71].
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Given the above discussions, we can now construct a bpd for evidence eli in ERPS, referred to as an ER probability distribution as
follows.

Definition 9. (ER probability distribution) An ER probability distribution for evidence eli is an augmented bpd defined over all the
states and the powerset of the system space, denoted by mli or ER(eli), to profile eli’s support for all states as well as the powerset as
follows:

mli = ER(eli) = {(θ, P(θ|eli)), ∀θ ⊆ Θ with θ ∕= ∅; (2Θ, P(2Θ|eli))}

= {(θ, ωlimθli), ∀θ ⊆ Θ with θ ∕= ∅; (2Θ, 1 − tli)}
(27)

In Definition 9, the augmented element (2Θ, 1 − tli) represents the residual support of evidence eli leftover after eli supports all
states, and is retained to the powerset, coined as the support for the powerset for short, with (1 − tli) being the probability of the residual
support or that eli is untrusted for any specific states. As such, (1 − tli) cannot be broken down into pieces to be redistributed to any
specific state but is retained to the powerset and kept intact, ready for combination with other evidence. Definition 9, Equation (24)
and Equation (25) show that reliability rli describes the ability of evidence eli to ensure the correctness or trustworthiness of an outcome
(conclusion or assessment) in the sense that eli is completely trusted if it is fully reliable and eli’s untrustworthiness is positively related
to its unreliability.

Definition 9 provides a unified framework, where the untrustworthiness of eli alongside its randomness and ambiguity are all
modelled by a single basic probability function defined on the same set of states and the powerset, thus enabling multiple pieces of
evidence to be consistently modelled and compared for subsequent combination.

If input variable xl is discrete, a piece of evidence is acquired when each of its discrete values is observed, which can be projected to
SOPS and modelled by Equation (27). This will lead to an ERM for xl, denoted by ERMl = {ml1, ml2, ⋯, mli, ⋯ }, representing the
probabilistic relationships between input variable xl and output y in ERPS.

In the example of Section 2, if the weight of the first input variable x1 (saliva test) is assumed to be 0.9 whether it points to the
disease being true, false or unknown, and the reliability of evidence e11 (positive saliva test result) is also assumed to be 0.9, that iswH11
= wH21=wΘ1 = 0.9 and r11 = 0.9, leading to ω11 = 1, then from Equation (22), Equation (23) and Equation (26) we get the following
joint probabilities for e11.

m̃H111 = ω11wH11pH111 = 1 × 0.9 × 0.627 = 0.5643

m̃H211 = ω11wH21pH211 = 1 × 0.9 × 0.0535 = 0.0481

m̃Θ11 = ω11wΘ1pΘ11 = 1 × 0.9 × 0.3195 = 0.2876

m̃2θ11 = ω11(1 − r11) = 1 × (1 − 0.9) = 0.1

The ER probability distribution for evidence e11 is then modelled by m11 as follows:

m11 =
{
(H1, m̃H111), (H2, m̃H211), (Θ, m̃Θ11);

(
2θ, m̃2θ11

)}

=
{
(H1, 0.5643), (H2, 0.0481), (Θ, 0.2876);

(
2θ, 0.1

)} (28)

Similarly, from Equation (11), the ER probability distribution for evidence e12, with r12 = 0.9 and thus ω12 = 1, is modelled by m12

as follows:

m12 =
{
(H1, m̃H112), (H2, m̃H212), (Θ, m̃Θ12);

(
2θ, m̃2θ12

)}

=
{
(H1, 0.0403), (H2, 0.5475), (Θ, 0.3122);

(
2θ, 0.1

)} (29)

The ERM for saliva test (x1) is given by ERM1 = {m11,m12 }, measuring the probabilistic relationships between saliva test and the
disease diagnosis in ERPS.

The ER probability distribution (ER-pd) of evidence eli can be visualised by a probability pie chart, where state θ is a sector of the pie
chart, and m̃θli is equal to the proportion of the sector area to the total area of the pie chart. A special circle around the edge of the pie

Fig. 3.1. ER-pd for evidence e11.
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chart is used to represent the residual support or untrustworthiness of eli, with its size determined by m̃2θ li that is equal to the area of the
circle divided by the total area of the pie chart. The pie charts for the ER probability distributions of evidence e11 and evidence e12 are
shown in Figs. 3.1 and 3.2, respectively. The circle for each piece of evidence is drawn in yellow, and this part cannot be distributed to
any state or any sector of the pie chart by the evidence alone.

An ERM can be constructed for each input variable in a similar way. For example, blood test (x2) is another input variable. If m21
and m22 are the ER probability distributions for the two pieces of evidence, acquired from the observation of a positive or negative
blood test result, an ERM for x2 can be constructed and represented by ERM2 = {m21,m22 } in the same way as for x1. If wH12 =

wH22=wΘ2 = 0.95 and r21 = r22 = 0.95, leading to ω21 = ω22 = 1, then ER probability distributions for evidence e21 and evidence e22
are modelled by m21 and m22:

m21 =
{
(H1, m̃H121), (H2, m̃H221), (Θ, m̃Θ21);

(
2θ, m̃2θ21

)}

=
{
(H1, 0.599), (H2, 0.0317), (Θ, 0.3193);

(
2θ, 0.05

)} (30)

m22 =
{
(H1, m̃H122), (H2, m̃H222), (Θ, m̃Θ22);

(
2θ, m̃2θ22

)}

=
{
(H1, 0.039), (H2, 0.5969), (Θ, 0.3141);

(
2θ, 0.05

)} (31)

3.4. Illustration of the MAKER Framework

The three models (SSM, EAM and ERM) discussed in Sections 3.1, 3.2 and 3.3 constitute the unique MAKER framework for
characterising probabilistic relationships between input and output variables to enable augmented probabilistic inference. The
following example shows how the three models can be constructed and applied in a decision situation under uncertainty.

Example 2. The jury trial is a longstanding part of the criminal justice system in England andWales, among other countries. The jury
consists of 9 to 12 members of the public, and a minimum of 9 jurors are required to deliver its verdict. While criminal trials require a
jury to be satisfied with a guilty verdict beyond a reasonable doubt, in civil trials the jury must be satisfied on the balance of prob-
abilities, that is, the defendant’s guilt is more probable than not.

In this example, we consider three hypothetical trial cases. In the first case, the jury with 9 jurors reaches the guilty verdict
unanimously. In the second case, the jury with 12 jurors considers its verdict with 10 of the 12 jurors pointing to guilty and the other 2
jurors to not guilty. The third case is more complicated, with 9 of the 12 jurors pointing to guilty, the 10th juror only 50% pointing to
guilty with the other 50% being unknown, and the 11th and 12th juror each 50% pointing to not guilty with the other 50% being
unknown. Suppose every juror is given a weight of 50% as a measure of their perceived ability to make correct judicial judgement and
every juror’s assessment or conclusion in each of the three cases is regarded 50% reliable. Suppose every juror provides her judgment
independent of other jurors in the sense that the juror’s judgment does not change whether other jurors’ judgments are known to the
juror or not. What are the probabilities of the jury’s verdict in each case?

The process of reaching a verdict in each of the three cases is regarded as a decision system, with each having two singleton system
states: guilty or not guilty, represented by H1 and H2, so each system space is defined by Θ = {H1,H2}. The verdict of the jury is the
system output, and each juror’s conclusion is a system input, so the system has one output for each of the three trial cases and nine
inputs for case 1 and twelve inputs for cases 2 and 3.

The three cases are analysed separately to show how to construct SSM, EAM and ERM and how to apply the ER rule to analyse these
cases, which is applicable in each case as the inputs are assumed to be independent of each other.

The analysis of the first trial case is summarised as follows. Since each of the 9 jurors points to H1 only, the conclusion of each juror
can be profiled as an ordinary probability distribution, so the SOPS of this case is Bayes’ probability space. An output can be repre-
sented as the following ordinary bpd in general:

y(e) = {(H1, p(H1|e)), (H2, p(H2|e))} (32)

where e is the combined evidence representing the verdict of the jury.
Let eH1 l (eH2 l) be the evidential element that the lth juror points to a guilty (not guilty) verdict. The lth juror’s guilty conclusion is

Fig. 3.2. ER-pd for evidence e12.
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acquired as a piece of evidence el and profiled as the following bpd over the evidential elements:

el = {(eH1 l, pl(eH1 l)=1)} l = 1,⋯, 9 (33)

where pl is the evidence probability function constructed in the lth juror’s SIPS.
Let rl be the reliability of the lth juror’s conclusion and wH1 l (wH2 l) the weights of the lth juror for guilty (not guilty) verdict for each

case, respectively. We have wHnl = 0.5 for n = 1, 2 and rl = 0.5, resulting in ωl = 1 for all l = 1,⋯, 9 from Equation (21). The lth juror’s
conclusion is then projected from SIPS to SOPS as the following bpd:

y(el) = {(H1, p(H1|el)=1)} with wH1 l = 0.5 and rl = 0.5 for l = 1,⋯,9 (34)

Note that p(H1|el) = ωlpl(eH1 l) from Equation (20).
To reach the jury’s verdict, the lth juror’s conclusion is modelled as the following augmented bpd in ERPS for all l = 1,⋯,9 from

Equation (22) and Equation (26), given ωl = 1 and 1 − tl = ωl(1 − rl) = 0.5 for all l=1, ⋯,9:

ml = ER(el) = {(H1, m̃H1 l =mH1 l =0.5); (2Θ, m̃2Θ l =m2Θ l =1 − tl =0.5)} (35)

The ER rule is then applied to combine the 9 jurors’ conclusions to reach the jury’s verdict. For example, the first two jurors’
conclusions are combined by applying the ER rule in ERPS as follows:

ER(e1 ∧ e2) = {(H1,mH112 =0.75); (2Θ, m2Θ12 =0.25)} (36)

ER(e1 ∧ e2) is then combined with ER(e3) to generate ER(e1 ∧ e2 ∧ e3). This recursive process is repeated until all 9 jurors’ conclusions
are combined, leading to the following augmented bpd, with e1∧ l = (e1 ∧ ⋯ ∧ el):

ER(e1∧9) = {(H1,mH1(1∧9) =0.998); (2Θ, m2Θ(1∧9) =0.002)} (37)

Use Equation (A.2.9) in [71] to calculate the joint conditional probabilities of the jury’s verdict and profile it as the following bpd in
SOPS.

y(e1∧9) =
{(

H1, pH1(1∧9) =
mH1(1∧9)

1 − m2Θ(1∧9)
=

0.998
1 − 0.002

=1
)}

with the trustworthiness of the bpd calculated by

t1∧9 = 1 − m2Θ(1∧9) = 0.998 (38)

The above analysis results for the first trial case assert that the jury’s verdict is 100% guilty with a trustworthiness of 99.8%. In
other words, if each of the 9 juror’s guilty conclusions is assumed to be 50% reliable and all of them are independent of each other, the
jury’s guilty verdict can be 99.8% trusted, or there is a 99.8% chance that the jury’s guilty verdict is correct.

In the second trail case, there are 12 jurors with 10 of them pointing to guilty but the other 2 jurors to not guilty. Each of the 10
jurors’ guilty conclusions is profiled as an augmented bpd in ERPS in the same way as in Equation (35), but the other 2 juror’s not guilty
conclusions are each profiled as the following augmented bpd in ERPS:

ER(el) = {(H2,0.5); (2Θ, 0.5)} for l = 11, 12 (39)

Applying the ER rule to combine the 10 jurors’ augmented bpd ER(el) for l = 1,⋯, 10 with each of them identical to Equation (35),
followed by ER(e11) and ER(e12) with each given in Equation (39), leads to the following augmented bpd in ERPS:

ER(e1∧12) = {(H1,0.9961), (H2,0.0029); (2Θ, 0.001)} (40)

The above augmented bpd is then used to generate the conditional probabilities of the jury’s verdict profiled as the following bpd in
SOPS:

y(e1∧12) = {((H1, 0.9971), (H2,0.0029))} with t1∧12 = 0.999 (41)

The above analysis results for the second trial case assert that the jury’s verdict is 99.71% guilty and 0.29% not guilty with a
trustworthiness of 99.9%.

The third trial case is more complicated and different from the second one in that there are three jurors who each have unknown in
their conclusions. Due to this, the SOPS of this case is Dempster’s probability space; an output is in general represented as the following
bpd:

y(e) = {(H1, p(H1|e)), (H2, p(H2|e)), (Θ, p(Θ|e))} (42)

The first 9 jurors’ conclusions are each profiled as augmented bpd with the focal elements identical to Equation (35). The 10th

juror’s conclusion is profiled as follows:

ER(e10) = {(H1, 0.25), (Θ,0.25); (2Θ, 0.5)} (43)

The 11th and 12th juror’s conclusions are profiled as the following augmented bpd:
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ER(el) = {(H2,0.25), (Θ,0.25); (2Θ, 0.5)} for l = 11, 12 (44)

Applying the ER rule to combine the first 9 jurors’ augmented bpd ER(el) for l = 1,⋯9 with each identical to Equation (35) and then
the 10th juror’s augmented bpd ER(e10) of Equation (43), followed by ER(e11) of Equation (44) and finally ER(e12) of Equation (44),
leads to the following augmented bpd:

ER(e1∧12) = {(H1,0.9974), (H2,0.0012), (Θ,0.001); (2Θ, 0.0004)} (45)

The above augmented bpd is then used to generate the conditional probabilities of the jury’s verdict profiled as the following bpd in
SOPS:

y(e1∧12) = {(H1, 0.9978), (H2,0.0012), (Θ,0.001)} with t1∧12 = 0.9996 (46)

The above analysis results for the third trial case assert that the jury’s verdict is 99.78% guilty, 0.12% not guilty and 0.1% unknown
with a trustworthiness of 99.96%.

If the jury can reach the guilty verdict in the second case, the jury should also consider reaching the guilty verdict in the third case.
This is because the jury’s verdict has a higher probability of guilty and a lower probability of not guilty with a higher trustworthiness in
the third case than in the second case.

In practice, the jury is allowed to reach a guilty verdict in cases 1 and 2 [40]. Although in these two cases each juror’s conclusion is
certain and the type of SOPS is Bayes’ probability space, it is still necessary to combine the jurors’ conclusions in ERPS to generate the
jury’s verdict because of the limited weight assigned to each juror and the inherent unreliability of each juror’s conclusion. In case 3,
some jurors’ ambiguous judgments make it necessary to measure the jury’s verdict in Dempster’s probability space. There is no
guideline in practice on whether the jury is allowed to reach the guilty verdict in case 3. However, the above analyses show that the
jury should be satisfied with the probabilities of the guilty verdict in case 3 if they are satisfied with the probabilities of the guilty
verdict in case 2.

4. Conjunctive MAKER rule and special cases

In the last sections, the ER rule was applied to combine multiple pieces of independent evidence. Evidence acquired from data,
however, is not independent of but dependent on each other in general. The question is how to combine dependent evidence to enable
probabilistic inference from system inputs to output. In this section, we attempt to address this question.

4.1. Interrelationships among input variables

Whenmultiple input variables are not independent of each other, their interrelations, as well as evidence acquired from them, need
to be described explicitly. If there is a common data source where input variables jointly take values, their interrelationships can be
captured by calculating their joint probabilities, as discussed below.

First, the following symbols originally defined in the previous sections are now restated to facilitate the descriptions of in-
terrelationships between input variables xl and xm. For xl, eli is the evidence acquired at xl = xli, eAl the evidential element that points
to state A from the lth SIPS of a data source where xl takes values, pl the evidence probability function defined in the lth SIPS, and pAli
= pl(eAl|xl = xli) the probability that state A is pointed to given xl = xli or that eli points to state A. For xm, emj is the evidence acquired at
xm = xmj, eBm the evidential element that points to state B from the mth SIPS of a data source where xm takes values, pm the evidence
probability function defined in themth SIPS, and pBmj = pm

(
eBm
⃒
⃒xm = xmj

)
the probability that state B is pointed to given xm = xmj or that

emj points to state B.
To describe the interrelationship between xl and xm and between eli and emj, let eθlm be the evidential element that points to state θ

from the SIPS of a common data source where both variables xl and xm take their values, plm the evidence probability function con-
structed in the common SIPS, and

pAli,Bmj = plm
(
(eAlm|xl = xli) ∩

(
eBlm
⃒
⃒xm = xmj

))
∀A,B ⊆ Θ (47)

the probability that state A is pointed to given xl = xli and state B is pointed to given xm = xmj. If cAli,Bmj is the likelihood that xli is
observed given eAlm and xmj is observed given eBlm with A ∩ B = θ, the normalised likelihood that state A is pointed to given xl = xli and
state B is pointed to given xm = xmj can be calculated using the likelihood analysis method [72] as follows:

pAli,Bmj = cAli,Bmj

/
∑

C∩D=θ⊆Θ
cCli,Dmj ∀A,B ⊆ Θ (48)

For instance, in the example of Section 2, the probability that a combination of positive saliva test result (x1 = x11) and positive
blood test result (x2 = x21) points to the disease being true is given by the joint normalised likelihood pH111,H121 = pH1(11,21) = 0.6728
from Table 10.

Given the above discussions, we are now able to measure the interrelationships between two pieces of evidence by defining the
following interdependence index.

Definition 10. (Interdependence index) The interrelationship between evidence eli and emj for any A,B ⊆ Θ with A ∩ B = θ is
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described by the following interdependence index:

αAli,Bmj =

{ 0 if pAli = 0 or pBmj = 0
pAli,Bmj

/(
pAlipBmj

)
otherwise (49)

The interdependence index is non-negative and describes how two pieces of evidence are interrelated to each other. If pAli,Bmj=0, we
have αAli,Bmj = 0. If this is the case for any A, B ⊆ Θwith A ∩ B = θ, it is said that eli and emj are evidentially exclusive of each other (see
also Definition 13). If pAli,Bmj= pAlipBmj, we have αAli,Bmj = 1. If this is the case for any A, B ⊆ Θ with A ∩ B = θ, it is said that eli and emj

are evidentially independent of each other.

If two input variables jointly point to a state, their joint weight should be taken into account as well and is measured by the joint
conditional probability that state θ is true given that the variables both point to it. Let wθlm denote the weight for both variables xl and
xm that is defined as the following conditional probability that state θ is true given that state A is pointed to given eli and state B is
pointed to given emj with A ∩ B = θ:

wθlm = p
(
θ
⃒
⃒(eAlm|eli) ∩

(
eBlm
⃒
⃒emj
))

with A ∩ B = θ (50)

We can now define a weight index for characterising the interrelationships between the weights of two input variables.

Definition 11. (Weight index) The weight index of two input variables xl and xm for any A,B ⊆ Θ with A ∩ B = θ is defined as
follows:

wAl,Bm = p
(
θ
⃒
⃒(eAlm|eli) ∩

(
eBlm
⃒
⃒emj
))
/

p((A|eAl)p(B|eBm)) =
wθlm

wAlwBm
(51)

As discussed before, plm is an evidence probability function constructed in the common SIPS of the data source where variables xl
and xm take values, whilst p is a basic probability function constructed in SOPS. Any evidence acquired in the common SIPS needs to be
projected to SOPS. This projection should follow the likelihood principle [5], so that the evidential meaning of plm is kept intact during
the projection. In other words, the probability that eli points to A and emj points to B measured in SOPS, or p

(
(eAlm|eli) ∩

(
eBlm

⃒
⃒emj
))
,

should be proportional to the probability that state A is pointed to given xl = xli and state B is pointed to given xm = xmj measured in the
common SIPS as defined in Equation (47), that is

p
(
(eAlm|eli) ∩

(
eBlm
⃒
⃒emj
))

= ωli,mjplm
(
(eAlm|xl = xli) ∩

(
eBlm
⃒
⃒xm = xmj

))
(52)

ωli,mj is a non-negative constant projection rate that does not change with any ∀θ ⊆ Θ, and is uniquely determined as follows, so that
Equation (17) of Definition 6 is satisfised:

ωli,mj =
1

∑
A∩B=θ, θ⊆ΘpAli,Bmjwθlm + 1 − rli,mj

(53)

In Equation (53),
∑

A∩B=θ, θ⊆Θ
pAli,Bmjwθlm is the expected weight of the evidence acquired in the common SIPS at xl = xli and xm = xmj,

and rli,mj the reliability of the evidence.

Definition 12. (Projection index) A projection index of two pieces of evidence eli and emj acquired from two interrelated input
variables xl and xm at xl = xli and xm = xmj is defined by

ωli,mj =
ωli,mj

ωliωmj
(54)

In establishment of the ER rule, multiple pieces of evidence are assumed to be mutually independent. This is a special case in
probabilistic inference. Another special case is when multiple pieces of evidence are mutually exclusive. These two special cases are
defined both evidentially and cognitively as follows, where sθlm = θ ∩ eθlm for any θ ⊆ Θ, for development of special rules and algo-
rithms in the next section to facilitate inference in these special cases.

Definition 13. (Evidential exclusiveness) If it never occurs simultaneously that evidence eli supportsA and evidence emj supports B for
any A,B, θ ⊆ Θ with A ∩ B = θ, or

p
(
(sAlm|eli) ∩

(
sBlm
⃒
⃒emj
))

= 0, ∀A,B, θ ⊆ Θ with A ∩ B = θ (55)

it is then said that eli and emj are evidentially exclusive of each other.

Definition 14. (Cognitive exclusiveness) Suppose state θ consists of multiple distinct parts. Suppose evidence eli is not causally
related to evidence emj and vice versa. If when eli supports some parts of θ, emj always supports other parts of θ with the former never
overlapping the latter, that is, sAlm ∩ sBlm ≡ ∅ for any A,B ⊆ Θ with A ∩ B = θ, so that
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p
(
(sAlm|eli) ∩

(
sBlm
⃒
⃒emj
))

= p
(
sAlm ∩ sBlm

⃒
⃒eli, emj

)
= p
(
∅
⃒
⃒eli, emj

)
= 0 (56)

it is then said that eli and emj are cognitively exclusive of each other.

Definition 13 states that two pieces of evidentially exclusive evidence do not support the same state simultaneously, or they are in
complete conflict. On the other hand, Definition 14 means that they do support the same state having different constituent parts but
each support different parts of the same state with no overlap; that is, they each provide their distinctive support for the same state
without double counting. These definitions provide a basis to interpret interrelationships between two pieces of mutually exclusive
evidence.

Definition 15. (Evidential independence) If the joint probability that evidence eli supports state A and evidence emj supports state B is
equal to the product of the probability that eli supports A and the probability that emj supports B for any A,B ⊆ Θ with A ∩ B = θ, or

p
(
(sAlm|eli) ∩

(
sBlm
⃒
⃒emj
))

= p(sAl|eli)p
(
sBm
⃒
⃒emj
)

(57)

it is said that eli and emj are evidentially independent of each other.

Definition 16. (Cognitive independence) If the probability that evidence eli supports state A does not depend upon whether evidence
emj supports state B or not, and vice versa for any A,B ⊆ Θ with A ∩ B = θ, or

p
(
sAlm
⃒
⃒eli|
(

sBlm|emj
))

= p(sAl|eli) & p
(
sBlm
⃒
⃒emj
⃒
⃒( sAlm|eli)

)
= p
(
sBl
⃒
⃒emj
)

(58)

it is said that eli and emj are cognitively independent of each other.

Definition 15 states that two pieces of evidentially independent evidence each play their own parts in support for a state, pro-
portional to the probability that each of them supports the state. Definition 16 means that two pieces of evidence are related to each
other but the probability that one supports a state does not depend on whether the other’s support is known or not.

The above-defined evidential exclusiveness (independence) is mathematically equivalent to cognitive exclusiveness (indepen-
dence), but they can be interpreted differently and thus have distinctive advantages in different applications. The former may be best
applied in pure data-driven inference, while the latter is better used to support knowledge-based inference.

4.2. General MAKER rule

The sort of inference investigated in this section is conjunctive in the sense that a system output is generated by combining all pieces
of evidence that collectively support the states of a system space. This in essence is a process for generating the conditional probability
that a state is true given that all pieces of evidence are acquired and combined. In principle, this conditional probability for any state
should be proportional to the joint probability that the state is true while all pieces of evidence support it. This is one of the principles
governing probabilistic inference in ERPS, coined as ER principle and explored in this paper. This principle is the ERPS counterpart of
the widely recognised Bayesian principle governing probabilistic inference in SOPS. In fact, the ER principle in essence is the same as
Bayesian principle, yet with the latter stated in SOPS and the former equivalently stated in ERPS. The ER principle will be strictly
followed to establish probabilistic inference rules for combination of multiple pieces of evidence that are dependent on each other.

Given the above discussions, we can now establish a general conjunctiveMAKER rule to combine two pieces of dependent evidence
that jointly support a state as follows.

Theorem 1. (MAKER rule) The basic probability that state θ is true given both evidence eli and evidence emj is the following
conditional probability:

p
(
θ
⃒
⃒eli ∧ emj

)
=

{ 0 θ = ∅

m̂θ(li,mj)

/
∑

C⊆Θ
m̂C(li,mj) θ ⊆ Θ (59)

where m̂θ(li,mj) is the joint probability mass that both eli and emj support θ, given by

m̂θ(li,mj) =
[(
1 − rmj

)
mθli + (1 − rli)mθmj

]
+ ωli,mj

∑

A,B⊆Θ,A∩B=θ
wAl,BmαAli,BmjmAlimBmj (60)

The trustworthiness of the combined results is given by tli,mj =
(
1 − m̃2Θ(li,mj)

)
as follows:

m̃2Θ(li,mj) = (1 − rli)
(
1 − rmj

)
/(

∑

C⊆Θ
m̂C(li,mj) + (1 − rli)

(
1 − rmj

)
)

(61)

Proof. See Appendix A1.

The proof of Theorem 1 creates a three-step process to generate p
(
θ
⃒
⃒eli ∧ emj

)
. The first step is to calculate the joint probability that

both eli and emj support state θ for any θ ⊆ Θ and the joint probability of the support for the powerset, or the residual support of both eli
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and emj for any specific state. The second step is to calculate the joint conditional probability P
(
θ
⃒
⃒eli ∧ emj

)
in ERPS that θ is supported

for any θ ⊆ Θ and the joint conditional probability of the support for the powerset, given both eli and emj. These first two steps
constitute the ER process and are conducted in ERPS. The third step is to generate p

(
θ
⃒
⃒eli ∧ emj

)
in SOPS, which is the joint conditional

probability that state θ is true given both eli and emj. While p
(
θ
⃒
⃒eli ∧ emj

)
is measured in SOPS, it should hold the same evidential

meanings just as what P
(
θ
⃒
⃒eli ∧ emj

)
holds in ERPS. In other words, there should always be p

(
θ
⃒
⃒eli ∧ emj

)
= k1P

(
θ
⃒
⃒eli ∧ emj

)
with k1 being

a positive constant that does not change for any θ ⊆ Θ. Theorem 1 therefore ensures that the ER process of conjunctively combining
two pieces of evidence constitutes an augmented probabilistic inference process.

From a system point of view, if two system input variables xl and xm take specific values, e.g. xl = xli and xm = xmj with each
represented by a probability distribution as defined in Equation (8), the system output generated, e.g. y

(
xl = xli, xm = xmj

)
=

y
(
eli ∧ emj

)
, is also a probability distribution, as defined in Equation (2) with p(θ|e) = p

(
θ
⃒
⃒eli ∧ emj

)
that is given by Equation (59) and

Equation (60). That is, Theorem 1 in essence establishes a probabilistic relationship between output y and inputs xl and xm. In the rest
of this section, we explore the main features of Theorem 1 for probabilistic inference in several special cases.

4.3. Exclusive MAKER rule

One special case of the general MAKER rule is how it can be used to generate the basic probability that a state is true given two
pieces of evidence that are exclusive of each other. The following corollary is the result for this special case.

Corollary 1.1. (Exclusive MAKER rule) If evidence eli and evidence emj are exclusive of each other, Theorem 1 reduces to the
following additive operation:

p
(
θ
⃒
⃒eli ∧ emj

)
=

⎧
⎪⎨

⎪⎩

0 θ = ∅
(
1 − rmj

)
wθlpθli + (1 − rli)wθmpθmj

(
1 − rmj

)∑
C⊆ΘmCli + (1 − rli)

∑
D⊆ΘmDmj

θ ⊆ Θ
(62)

Proof. See Appendix A2.

Equation (62) shows that p
(
θ
⃒
⃒eli ∧ emj

)
is the mix-weighted sum of pθli and pθmj if eli and emj are exclusive of each other, with the

weighting factor for each piece of evidence being positively related to its own weight times the unreliability of the other evidence and
normalised by a mix of the expected weight of one piece of evidence times the other’s unreliability. This proves why the conjunctive
combination of two pieces of exclusive evidence should also be additive. Note that a special case of Corollary 1.1 is when the weights
for both pieces of evidence remain constant for any state, leading to the following conjunctive exclusive ER rule.

Corollary 1.2. (Exclusive ER rule) In Corollary 1.1, if the weights remain constant for all states, or wθl = wl and wθm = wm for any
θ ⊆ Θ, as originally assumed in the ER rule, Theorem 1 reduces to the following linear operation:

p
(
θ
⃒
⃒eli ∧ emj

)
=

⎧
⎪⎨

⎪⎩

0 θ = ∅
(
1 − rmj

)
wl

(
1 − rmj

)
wl + (1 − rli)wm

pθli +
(1 − rli)wm(

1 − rmj
)
wl + (1 − rli)wm

pθmj θ ⊆ Θ
(63)

Proof. See Appendix A3.

Corollary 1.2 can be simplified to the following two special yet well-known operations. First, if it is further assumed that the two
pieces of evidence are equally reliable, or rli = rmj, Theorem 1 reduces to the following weighted sum operation:

p
(
θ
⃒
⃒eli ∧ emj

)
=

wl

wl + wm
pθli +

wm

wl + wm
pθmj ∀θ ⊆ Θ (64)

If it is further assumed that the weights for both pieces of evidence are equal as well, or wl = wm, Theorem 1 reduces to the
following average operation:

p
(
θ
⃒
⃒eli ∧ emj

)
=
1
2

(
pθli + pθmj

)
∀θ ⊆ Θ (65)

Corollary 1.1 holds for conjunctive inference when at least one piece of evidence is not fully reliable. Otherwise, both the nominator
and denominator of Equation (62) will be zero, so that p

(
θ
⃒
⃒eli ∧ emj

)
will be undefined. The question is how to calculate conditional

probability p
(
θ
⃒
⃒eli ∧ emj

)
in this special case. The following corollary provides the answer.

Corollary 1.3. (Differential MAKER rule) If evidence eli and evidence emj are exclusive of each other and each fully reliable, or rli =

rmj = 1, Theorem 1 reduces to

p
(
θ
⃒
⃒eli ∧ emj

)
=

⎧
⎪⎨

⎪⎩

0 θ = ∅

rʹmjwθlpθli + rʹliwθmpθmj

rʹmj
∑

C⊆ΘmCli + rʹli
∑

D⊆ΘmDmj
θ ⊆ Θ

(66)
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ŕli and ŕmj are the derivatives of the reliabilities of eli and emj at rli = 1 and rmj = 1.

Proof. See Appendix A4.

4.4. Independent MAKER rule

Another special case of the general MAKER rule is when it is used to generate the joint conditional probability that a state is true
given two pieces of independent evidence. We have the following results to describe this special case.

Corollary 1.4. (Independent MAKER rule) If evidence eli and evidence emj are mutually independent, Equation (60) of Theorem 1
reduces to

m̂θ(li,mj) =
[(
1 − rmj

)
mθli +(1 − rli)mθmj

]
+

∑

A,B⊆Θ,A∩B=θ
mAlimBmj (67)

Proof. See Appendix A5.

In Equation (67), the first square bracket term is the sum of the probability mass that evidence eli supports state θ, bounded by the
unreliability of evidence emj, and the probability mass that emj supports state θ, bounded by the unreliability of eli. This term is therefore
referred to as the bounded sum of the probability masses of the individual support for θ from eli and emj. The second term of Equation
(67) is the orthogonal sum of the probability masses of the joint support for θ from eli and emj. Corollary 1.4 thus asserts that the
conditional probability that a state is true given two pieces of independent evidence is proportional to the addition of the bounded sum
of the probability masses of their individual support and the orthogonal sum of the probability masses of their joint support for the
state.

The above result is consistent with what is revealed by the ER rule [71]. In fact, the ER rule is a special case of Corollary 1.4 as
follows.

Corollary 1.5. (ER rule) In Corollary 1.4, if it is further assumed that the weight of each input variable remains equal for all states,
that is wθl = wl and wθm = wm for any θ ⊆ Θ, the independent MAKER rule given by Equation (67) reduces to the ER rule.

Proof. See Appendix A6.

It is in the ER rule that weight and reliability were originally suggested as distinctive means to model the limited importance of
input variables and the inherent unreliability of evidence on the basis of rational thinking and practical experiences gained from
applications in many areas for reasoning and decision making. Corollary 1.5 shows that this suggestion is deduced from the original
thinking and theoretical analysis of imperfect data on the basis of both the principle of likelihood and the principle of Bayesian
inference. It might seem coincidental at a first look but is in essence inevitable that these two schools of thinking give rise to the same
suggestion.

Corollary 1.5 clarifies the conditions under which the ER rule can be applied. That is, if the support for any state from one piece of
evidence is independent of the support from the other piece of evidence, then the ER rule can be applied to combine the two pieces of
evidence, given that the weight for each piece of evidence remains equal for all states.

Dempster’s rule is proven to be a special case of the ER rule and a reliability perturbation analysis was used to address the concerns
that Dempster’s rule and Bayes’ rule may lead to a so-called counterintuitive problem when they are used to combine evidence in high
conflict and cannot be applied to combine evidence in complete conflict [71]. The following corollary provides a theoretical and most
robust answer to clarify the concerns.

Corollary 1.6. (Augmented Dempster’s rule) In Corollary 1.5, if it is further assumed that two pieces of evidence are each fully
reliable, that is rli = rmj = 1, then the ER rule reduces to Dempster’s rule, which is given as follows.

p
(
θ
⃒
⃒eli ∧ emj

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 θ = ∅
∑

A∩B=θpAlipBmj

1 −
∑

A∩B=ϕpAlipBmj
θ ⊆ Θ, σ > τ

mθ(σ)
∑

D⊆ΘmD(σ)
θ ⊆ Θ, τ ≥ σ > 0

δmjwl

δmjwl + δliwm
pθli +

δliwm

δmjwl + δliwm
pθmj θ ⊆ Θ, σ = 0

(68)

where σ =
∑

A∩B=D,D⊆Θ
pAlipBmj is the orthogonal sum of the probabilities of both eli and emj supporting all states, τ is a sufficiently small

probability that a state is deemed to be unlikely to occur (e.g. τ = 0.0001 or smaller), andmθ(σ) is the joint probability mass for θ, given
by
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mθ(σ) =
[
1 − rmj(σ)

wm
pθli +

1 − rli(σ)
wl

pθmj

]

+
∑

A,B⊆Θ,A∩B=θ
pAlipBmj (69)

rli(σ) and rmj(σ) are the reliability perturbation functions for eli and emj, which are valid in τ ≥ σ ≥ 0. If they are required to meet the
following conditions, rli(σ) = rmj(σ) = 1 at σ=τ and σ=0, and 1 ≥ rli ≥ 1 − δli and 1 ≥ rmj ≥ 1 − δmj with δli, δmj ≪ τ, then rli(σ) and
rmj(σ) can in general be constructed as the following quadratic functions:

rli(σ) = 1 − (4δli / τ)σ +
(
4δli

/
τ2
)
σ2 and rmj(σ) = 1 −

(
4δmj

/
τ
)
σ +

(
4δmj

/
τ2
)
σ2

Proof. See Appendix A7.

Note that the third and fourth rows in Equation (68) of Corollary 1.6 are presented by a general quadratic reliability perturbation
function constructed for each piece of evidence. If there is no reason to believe that reliability should be perturbed differently from one
piece of evidence to another, or δli = δmj, the fourth equation of Corollary 1.6 becomes a weighted sum operation. In this context, it can
be asserted that Corollary 1.6 augments Dempster’s rule and underpins the process of conjunctive combination of two pieces of in-
dependent and fully reliable evidence.

4.5. MAKER algorithms

Theorem 1 establishes the probabilistic process for conjunctive combination of two pieces of evidence. If there are more than two
pieces of evidence, the process for their conjunctive combination is governed by the following Lemma 2.1 and Theorem 2.

Lemma 2.1. (Recursive MAKER algorithm) Suppose there are L pieces of evidence, with e1∧ l = (e1 ∧ ⋯ ∧ el) standing for the
conjunction of the first l pieces of evidence. Let l1 = l − 1. The basic probability that evidence e1∧ l supports θ, measured in ERPS, is
given as follows.

m̃θ(1∧ l) = P(θ|e1∧ l) =

⎧
⎨

⎩

0 θ = ∅

m̂θ(1∧ l)
∑

C⊆Θ m̂C(1∧ l) + m̂2Θ(1∧ l)
θ ∕= ∅

(70)

where m̂θ(1∧ l) and m̂2Θ(1∧ l) are given by

m̂θ(1∧l) = [m̃θ(1∧l1)(1 − rl) + m̃2Θ(1∧l1)mθl] + ω1∧l1 ,l

∑

A,B⊆Θ,A∩B=θ
wA(1∧l1),BlαA(1∧l1),Blm̃A(1∧l1)mBl, ∀θ ⊆ Θ (71)

m̂2Θ(1∧ l) = m̃2Θ(1∧ l1)(1 − rl) (72)

with m̃θ1 = mθ1, m̃2Θ1 = (1 − r1). αA(1∧ l1),Bl,wA(1∧ l1),Bl andω1∧ l1 ,l are defined in the same way as in Equations (49), (51) and (54) with eli

and emj replaced by e1∧ l1 and el, respectively.

Proof. See Appendix A8.

Lemma 2.1 describes a general recursive algorithm to combine multiple pieces of evidence in ERPS. In the algorithm, each piece of
evidence is combined accumulatively with the previously combined evidence at each recursive step that is decomposed into two sub-
steps. The first sub-step is to find the joint probability that both pieces of evidence support a state; the second sub-step is to find the
conditional probability that a state is supported given both pieces of evidence. The combined evidence is then treated as a new piece of
evidence that is in turn combined with another piece of evidence. This recursive process continues until all evidence is combined. All
parameters for each piece of evidence are weight and reliability assigned by using domain knowledge and experiences, or trained from
data, or a mix of both.

After the conditional probabilities of all states and the power set are generated by combining all pieces of evidence in ERPS, they are
projected to SOPS as follows.

Theorem 2. (Recursive MAKER rule) The basic probability that state θ is true, given the acquisition of all L pieces of evidence e1∧ L =

(e1 ∧ ⋯ ∧ eL), are generated as the following conditional probability p(θ|e1∧ L):

p(θ|e1∧ L) =

⎧
⎨

⎩

0 θ = ∅

m̂θ(1∧ L)
∑

C⊆Θ m̂C(1∧ L)
θ ⊆ Θ

(73)

where m̂θ(1∧ L) is given by Equation (71) at l=L. The trustworthiness of the above combined results is calculated by t1∧ L = (1 − m̃2Θ(1∧ L))

with m̃2Θ(1∧ L) given by Equation (70) for θ = 2Θ and Equation (72) at l=L.

Proof. See Appendix A9.
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Lemma 2.1 and Theorem 2 together establish the general recursiveMAKER algorithm, to generate system output from all L inputs in
a probabilistic manner in two steps. First, all pieces of evidence are represented by Definition 9 and combined recursively by applying
Lemma 2.1 in ERPS. In the second step, the finally combined probability is projected to SOPS by Theorem 2, to generate system output
y(e) as represented by Definition 2, with p(θ|e) replaced by p(θ|e1∧ L) and the trustworthiness of the system output given by t1∧ L = 1 −

m̃2Θ(1∧ L).
If multiple pieces of evidence are mutually exclusive, they can be combined by using the following analytical algorithm.

Corollary 2.1. (Additive MAKER algorithm) If all pieces of evidence are exclusive of each other, Lemma 2.1 and Theorem 2 reduce to
the following additive algorithm.

p(θ|e1∧ L) =

⎧
⎪⎪⎨

⎪⎪⎩

0 θ = ∅

ka

∑L

i=1

(
∏L

j=1,j∕=i

(
1 − rj

)
)

mθi θ ⊆ Θ
ka =

1
∑

C⊆Θ
∑L

i=1

(∏L
j=1,j∕=i

(
1 − rj

))
mCi

(74)

The trustworthiness of the combined results is given by t1∧ L = (1 − m̃2Θ(1∧ L)) as follows:

m̃2Θ(1∧ L) =

∏L
j=1
(
1 − rj

)

∑
C∈Θ
∑L

i=1

(∏L
j=1,j∕=i

(
1 − rj

))
mCi +

∏L
j=1
(
1 − rj

) (75)

Proof. See Appendix A10.

Corollary 2.1 shows that the analytical algorithm for conjunctive combination of multiple pieces of mutually exclusive evidence is a
simple additive operation. Note that mθi = wθipθi. The weighting factor for the ith piece of evidence in the additive algorithm is thus
proportional to the product of its own weight wθi and the un-reliabilities

(
1 − rj

)
of all other evidence except for its own unreliability.

One special feature of this algorithm is its dictatorial behaviour in that a piece of evidence will dominate the combination if it is fully
reliable, or its unreliability is zero because in this case the weighting factors for all other evidence are zero.

If multiple pieces of evidence are independent of each other, they can be combined by using the following recursive algorithm.

Corollary 2.2. (Recursive Independent MAKER algorithm) If all pieces of evidence are independent of each other, Equation (70) and
Equation (72) in Lemma 2.1 remain unchanged but Equation (71) reduces to the following equation,

m̂θ(1∧ l) = [m̃θ(1∧ l1)(1 − rl)+ m̃2Θ(1∧ l1)mθl] +
∑

A∩B=θ,A, B⊆Θ
m̃A(1∧ l1)mBl (76)

Proof. See Appendix A11.

In Corollary 2.2, since all pieces of evidence are mutually independent, no interdependence index needs to be calculated and only
their individual weights and reliabilities need to be taken into account in inference. This makes the algorithm easy to apply in situ-
ations where subjective human judgments are needed for probabilistic inference, such as multiple criteria decision analysis under
uncertainty.

The recursive ER rule presented by Corollary 4 in [71] is a special case of Corollary 2.2 when weight for each piece of evidence
remains unchanged, or wθl = wl for any θ ⊆ Θ and all l = 1,⋯,L. Another special case of Corollary 2.2 is that basic probabilities are
assigned to singleton states and the system space only but not to any other subset of singleton states. In this case, we get the following
multiplicative MAKER algorithm.

Corollary 2.3. (Multiplicative MAKER algorithm) If L pieces of evidence are independent of each other and basic probabilities are
assigned to singleton states and the system space only, Lemma 2.1 and Theorem 2 reduce to the following multiplicative algorithm.

p(θ|e1∧ L) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

km

(
∏L

i=1
(mθi + mΘi + (1 − ri)) −

∏L

i=1
(mΘi + (1 − ri))

)

θ ∈ Θ

km

(
∏L

i=1
(mΘi + (1 − ri)) −

∏L

i=1
(1 − ri)

)

θ = Θ

0 otherwise

km

=
1

∑
c∈Θ
∏L

i=1(mci + mΘi + (1 − ri)) − (N − 1)
∏L

i=1(mΘi + (1 − ri)) −
∏L

i=1(1 − ri)
(77)

The trustworthiness of the combined results is given by t1∧ L = (1 − m̃2Θ(1∧ L)) as follows:

m̃2Θ(1∧ L) =

∏L
i=1(1 − ri)

∑
C∈Θ
∏L

i=1(mCi + mΘi + (1 − ri)) − (N − 1)
∏L

i=1(mΘi + (1 − ri))
(78)
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Proof. See Appendix A12.

The analytical ER algorithm [56] is a special case of the above multiplicative MAKER algorithm in that the former assumes that
weight for evidence remains unchanged for all states and is equal to its reliability, or wθl = wl = rl for any θ ⊆ Θ and all l = 1,⋯,L. The
multiplicative MAKER algorithm can be used to power interpretable machine learning where probabilistic inference needs to be
applied.

4.6. MAKER rule and Bayesian inference

While the previous subsections focused on establishing the MAKER rule, its special cases and recursive and analytical algorithms, a
question of particular interest is what the relationship is between theMAKER rule and Bayes’ rule. The following corollary answers this
question.

Corollary 2.4. (Bayesian inference) Suppose evidence eli and evidence emj are the most important and fully reliable, individually or
jointly, that is wθli = wθmj = wθ(li,mj) = 1 for any θ ⊆ Θ and rli = rmj = rli,mj = 1; basic probabilities for eli or emj are assigned to singleton
states only but not to any of their subsets, or pθli = pθmj = 0 for any θ ⊆ Θ but θ ∕∈ Θ. Let cθli (cθmj) be the likelihood that given state θ
evidence eli (emj) is acquired, cθ(li,mj) the joint likelihood that given state θ evidence eli,mj is acquired, and e0 the prior distribution
acquired independently of eli and emj, which has no ambiguity either and is the most important and fully reliable as well, with pθ0 being
the prior probability that state θ is true. Then, the inference governed by Theorem 1 reduces to Bayesian inference as follows:

p
(
θ
⃒
⃒
(
eli ∧ emj

)
∧ e0

)
=

⎧
⎪⎨

⎪⎩

cθ(li,mj)pθ0
∑

A∈ΘcA(li,mj)pA0
θ ∈ Θ

0 otherwise
(79)

If eli and emj are also independent of each other, Equation (79) reduces further to

p
(
θ
⃒
⃒
(
eli ∧ emj

)
∧ e0

)
=

⎧
⎪⎨

⎪⎩

cθlicθmjpθ0
∑

A∈ΘcAlicAmjpA0
θ ∈ Θ

0 otherwise
∀θ ∈ Θ (80)

Proof. See Appendix A13.

Corollary 2.4 serves for three purposes. First, it shows that the MAKER rule as given by Theorem 1 forms a likelihood inference
process. Second, it asserts that Bayesian inference is a special case of the MAKER rule where data is deemed perfect in the sense that (i)
any variable from which evidence is acquired is the most important, (ii) any evidence acquired when any variable takes any specific
value is fully reliable, and (iii) there is no ambiguity. Finally, it helps to set default initial values to estimate evidence weights and
reliabilities for general inference with imperfect data by means of optimal learning, which will be explored in the next section.

5. Maximum likelihood optimal learning model

In this section, an optimisation model is constructed to learn from data the parameters that include weights for input variables and
reliabilities for evidence acquired when individual or groups of input variables take specific values. It is aimed to facilitate the
application of the conjunctiveMAKER rules and algorithms in situations where available data is imperfect. It is a bi-objective nonlinear
pre-emptive minimax optimisation problem, as described below.

5.1. Parameters

In Equation (60) of Theorem 1 or Equation (71) and Equation (72) of Lemma 2.1, weights wθl (wθ(1∧ l)) defined in Equation (19) for
input variables and reliabilities rli (r(1∧ l)k) defined in Definition 8 and Equation (21) for evidence are the parameters that need to be
learnt from data, or assigned using expert knowledge, or a mix of both.

The total number of weights for L input variables (wθl and wθ(1∧ l)) is denoted by Nw,

Nw = (|2Θ| − 1)L + (|2Θ| − 1)(L − 1) = (|2Θ| − 1)(2L − 1) (81)

Let Il be the number of values that input variable xl takes individually and I1∧ l =
∏l

j=1
Ij the number of values that a group of input

variables {x1,⋯, xl} take collectively. The total number of reliabilities to be learnt for all pieces of evidence acquired from individual
and groups of input variables (rli and r(1∧ l)k) is denoted by Nr,

Nr =
∑L

l=1

Il +
∑L

l=2

I1∧ l =
∑L

l=1

(

Il +
∏l

j=1
Ij

)

− I1 (82)
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A vector of all parameters to be learnt is denoted by λl and defined as follows:

λl =

[wθl, rli ∀θ ⊆ Θ, i ∈ {1,⋯, Il}, l = 1,⋯, L;

wθ(1∧ l), r(1∧ l)k ∀θ ⊆ Θ, k ∈ {1,⋯, I1∧ l}, l = 2,⋯, L
]T (83)

5.2. Objectives

The optimal learning model aims to estimate all the parameters, so as to make the predicted system outputs as close to the observed
ones as possible as the top priority and then the value of each parameter as close to its reference value as possible for best interpre-
tation. The learning model therefore has two objectives of different priorities. The top priority is to minimise the deviation between
predicted likelihoods of system states and the observed ones for given inputs, so that the predicted likelihood of the true state is
maximised. The second priority is to estimate the value of each parameter to be as close to its reference value as possible, so that the
estimated parameter value can be best interpreted. The estimated parameters are used in the ER process to infer the maximum
likelihoods of system states for given inputs. This inference process is thus referred to as maximum likelihood evidential reasoning, or
MAKER for short.

The general formulation of the optimal learning model is constructed as the following bi-objective nonlinear pre-emptive minimax
optimisation problem:

min {f1(λ), f2(λ)} (84)

s.t. λ ∈ Ω (85)

λ is the parameter vector, including all weights and reliabilities to be learnt as defined in Equation (83), or initially λ = λl.Ω is the set of
constraints that all parameters should meet. f1(λ) is the first objective function that counts the maximum deviation between the
observed likelihood and the predicted one on any state for every observation and is of top priority. f1(λ) is constructed as follows.

f1(λ) = max{f11(λ), f12(λ)} (86)

f11(λ) = max
l∈{1,⋯,L}

{
Sl

S
max

i∈{1,⋯,Il}

{
Sli

Sl
max
A⊆Θ

{
SAli

Sli
SDAli

}}}

(87)

SDAli =
1
2
∑

θ⊆Θ
(p̂θ(A)li − p(θ|eli))

2 (88)

f12(λ) = max
l∈{2,⋯,L}

{
S1∧ l

S
max

k∈{1,⋯,I1∧ l}

{S(1∧ l)k

S1∧ l
max
A⊆Θ

{SA(1∧ l)k

S(1∧ l)k
SDA(1∧ l)k

}}}

(89)

SDA(1∧ l)k =
1
2
∑

θ⊆Θ
(p̂θ(A)(1∧ l)k − p(θ|e(1∧ l)k))

2 (90)

In f11(λ), p̂θ(A)li and p(θ|eli) are the recorded and predicted likelihoods of state θ for a data record generated by input variable l taking
its ith value, where state A is observed. SDAli is the sum of squared deviations between the recorded and predicted likelihoods of all
states for the data record and is normalised to 0 ≤ SDAli ≤ 1. Sli is the number of the data records that are generated by input variable l
taking its ith value, and SAli the number of these data records where state A is observed. Sl is the number of all data records generated by
input variable l. S is the total number of data records used to learn weights and reliabilities. f11(λ) thus measures the maximum squared
deviation between recorded and predicted likelihoods for all data records generated by all single input variables individually, and is
normalised to 0 ≤ f11(λ) ≤ 1.

In f12(λ), p̂θ(A)(1∧ l)k and p(θ|e(1∧ l)k) are the recorded and predicted likelihoods of state θ for a data record generated by input
variables 1 to l taking their kth combination of values, with state A observed. SDA(1∧ l)k is the sum of squared deviations between the
recorded and predicted likelihoods of all states for the data record and is normalised to 0 ≤ SDA(1∧ l)k ≤ 1. S(1∧ l)k is the number of the
data records, generated by input variables 1 to l taking their kth combination of values and SA(1∧ l)k the number of these data records
with state A observed. S1∧ l is the number of the data records generated by input variables 1 to l. f12(λ) thus measures the maximum
squared deviation between recorded and predicted likelihoods for the data records generated by all groups of input variables
collectively, and is normalised to 0 ≤ f12(λ) ≤ 1.

The first objective is therefore to minimise f1(λ), which measures the maximum deviation between the observed and predicted
likelihoods on any state for all data records, with 0 ≤ f1(λ) ≤ 1. As such, the first objective aims to minimise the maximum deviation
between the recorded and predicted likelihoods of all states for each data record, in another word to maximise the predicted likelihood
of the true state for each observation.

f2(λ) is the second objective function, which counts the maximum deviation between the reference values and the learnt values for
the weights of any individual (groups of) input variables and for the reliabilities of evidence acquired from the variables. f2(λ) is of
lower priority than the first objective and is constructed as follows.
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f2(λ) = max{f21(λ), f22(λ)} (91)

f21(λ) = max
l∈{1,⋯,L}

{
Sl

S
max

i∈{1,⋯,Il}

{
Sli

Sl
max

{
ESDli, (r̂ li − rli)

2}
}}

(92)

ESDli =
∑

θ⊆Θ

Sθli

Sli
(ŵθl − wθl)

2 (93)

f22(λ) = max
l∈{2,⋯,L}

{
S1∧ l

S
max

k∈{1,⋯,I1∧ l}

{S(1∧ l)k

S1∧ l
max

{
ESD(1∧ l)k, (r̂(1∧ l)k − r(1∧ l)k)

2}
}}

(94)

ESD(1∧ l)k =
∑

θ⊆Θ

Sθ(1∧ l)k

S(1∧ l)k
(ŵθ(1∧ l) − wθ(1∧ l))

2 (95)

In f21(λ), ŵθl andwθl are the reference and learnt weights that state θ is true given that input variable xl points to the state, as defined
in Equation (19); r̂ li and rli are the reference and learnt reliabilities of evidence eli acquired at xl = xli, as defined in Equation (21) and
Definition 8. ESDli is the expected squared deviation between the reference and learnt weights for evidence eli, with 0 ≤ ESDli ≤ 1.
f21(λ) thus measures the maximum of the expected squared deviation between the reference and learnt weights and the squared de-
viation between the reference and learnt reliabilities for any evidence acquired from each input variable individually. The reference
weights of a variable can be assigned by examining the ability of the variable to provide correct judgments; the reference reliability of a
piece of evidence can be assigned by examining the ability of the evidence to provide a correct outcome. Such assignments are
problem-specific and can be data-driven or knowledge-based or a mix of both.

In f22(λ), ŵθ(1∧ l) and wθ(1∧ l) are the reference and learnt weights that state θ is true given that a group of input variables {x1,⋯, xl}

collectively point to the state. r̂(1∧ l)k and r(1∧ l)k are the reference and learnt reliabilities of evidence e(1∧ l)k acquired at xj = xji for j =
1,⋯, l and i ∈

{
1,⋯, Ij

}
, with Ij being the number of values that variable j takes. ESD(1∧ l)k is the expected squared deviation between

the reference and learnt weights for evidence e(1∧ l)k, with 0 ≤ ESD(1∧ l)k ≤ 1. f22(λ) thus measures the maximum of the expected
squared deviation between the reference and learnt weights and the squared deviation between the reference and learnt reliabilities for
any evidence acquired from each group of input variables collectively.

Therefore, the second objective is to minimise f2(λ), which measures the maximum deviation between the reference and learnt
values for the weight of each input variable or group of input variables and for the reliability of evidence acquired from the input
variable or the group of input variables, with 0 ≤ f2(λ) ≤ 1. The learnt weight of a variable is therefore the closest to its reference
weight and the learnt reliability of evidence is the closest to its reference reliability, given that the first objective is optimised and
relevant constraints are met as discussed below.

5.3. Constraints

As discussed by Yang et al. [72], statistical analysis and domain knowledge can be used to set lower and upper bounds for weights
and reliabilities. From the definitions of weights and reliabilities, the following general constraints should be met to construct an initial
constraint set Ωl for the optimal learning problem.

Ωl =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

0 ≤ wθl ≤ wθl ≤ wθl ≤ 1 ∀θ ⊆ Θ, l = 1,⋯, L

0 ≤ rli ≤ rli ≤ rli ≤ 1 l = 1,⋯, L, i = 1,⋯, Il

0 ≤ wθ(1∧ l) ≤ wθ(1∧ l) ≤ wθ(1∧ l) ≤ 1 ∀θ ⊆ Θ, l = 2,⋯, L

0 ≤ r(1∧ l)k ≤ r(1∧ l)k ≤ r(1∧ l)k ≤ 1 l = 2,⋯, L, k = 1,⋯, I1∧ l

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(96)

where wθl, rli, wθ(1∧ l) and r(1∧ l)k are the upper bounds and wθl, rli, wθ(1∧ l) and r(1∧ l)k are the lower bounds for wθl, rli, wθ(1∧ l) and r(1∧ l)k,

respectively. If there is no prior knowledge or data to set these bounds, an upper bound is set to 1 and a lower bound to 0 by default.
Apart from the above general constraints, problem specific constraints may be added to Ω. For example, weights for some input

variables may be required to be larger or smaller than others; reliabilities for some evidence may be required to be larger or smaller
than others; problem specific interrelationships among weights or reliabilities may also need to be followed.

5.4. Solution methods

The optimal learning model has two objectives with different priorities. A pre-emptive solution method is adopted to solve it. First,
a top priority optimisation model is constructed to minimise the first objective function f1(λ) as follows.

min f1(λ) (97)

s.t. λ ∈ Ω = Ωl (98)
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Suppose the optimal solution and objective value of the top priority model are given by λ∗ and f ∗1 = f1(λ∗). The second priority
optimisation model is then constructed by

min f2(λ) (99)

s.t. λ ∈ Ω = Ωl; f1(λ) ≤ f∗1 + δ (100)

where δ is such a sufficiently small positive real number that should make the search space of the second priority model nonempty, so
as to take into account any rounding-up error incurred in the nonlinear optimisation process of solving the first priority problem.

The top priority and second priority models are each a single objective optimisation model that each has a nonlinear non-smooth
objective function and an initial set of constraints, mostly in the form of upper and lower bounds. They can be solved in sequence by
random search algorithms, such as the Evolutionary engine of Microsoft Excel Solver.

If it is time consuming or rather difficult to find optimal solutions for problem (97)-(98) or problem (99)-(100) using random search
algorithms, conventional optimisation algorithms can be used to solve them by transforming the non-smooth problems into equivalent
smooth ones as follows. First, the following additional deviation variables are defined.

σ11li = max
A⊆Θ

{
SAli

Sli
SDAli

}

l = 1,⋯, L; i = 1,⋯, Il (101)

σ11l = max
i∈{1,⋯,Il}

{
Sli

Sl
σ11li

}

l = 1,⋯, L (102)

σ11 = max
l∈{1,⋯,L}

{
Sl

S
σ11l

}

(103)

σ12(1∧ l)k = max
A⊆Θ

{SA(1∧ l)k

S(1∧ l)k
SDA(1∧ l)k

}

l = 2,⋯, L; k = 1,⋯, I1∧ l (104)

σ12(1∧ l) = max
k∈{1,⋯,I1∧ l}

{S(1∧ l)k

S1∧ l
σ12(1∧ l)k

}

l = 2,⋯, L (105)

σ12 = max
l∈{2,⋯,L}

{
S1∧ l

S
σ12(1∧ l)

}

(106)

σ1 = max{σ11, σ12} (107)

σ21li = max
{

ESDli, (r̂ li − rli)
2} l = 1,⋯, L; i = 1,⋯, Il (108)

σ21l = max
i∈{1,⋯,Il}

{
Sli

Sl
σ21li

}

l = 1,⋯, L (109)

σ21 = max
l∈{1,⋯,L}

{
Sl

S
σ21l

}

(110)

σ22(1∧ l)k = max
{

ESD(1∧ l)k, (r̂(1∧ l)k − r(1∧ l)k)
2} l = 2,⋯, L; k = 1,⋯, I1∧ l (111)

σ22(1∧ l) = max
k∈{1,⋯,I1∧ l}

{S(1∧ l)k

S1∧ l
σ22(1∧ l)k

}

l = 2,⋯, L (112)

σ22 = max
l∈{2,⋯,L}

{
S1∧ l

S
σ22(1∧ l)

}

(113)

σ2 = max{σ21, σ22} (114)

λd =

[ σ1, σ11, σ11l, σ11li, σ21, σ21l, σ21li, l = 2,⋯, L, i = 1,⋯, Il;

σ2, σ12, σ12(1∧ l), σ12(1∧ l)k, σ22, σ22(1∧ l), σ22(1∧ l)k, l = 2,⋯, L, k = 1,⋯, I1∧ l

]T (115)

λ =
[
λT

l , λ
T
d
]T (116)

The top priority model (97)-(98) can then be transformed into the following equivalent smooth problem [65].

min f1(λ) = σ1 (117)
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s.t. λ ∈ Ω = Ωl ∪ Ω1 (118)

Ω1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

σ11 ≤ σ1, Slσ11l ≤ Sσ11, Sliσ11li ≤ Slσ11l, SAliSDAli ≤ Sliσ11li ∀A ⊆ Θ

σ1, σ11, σ11l, σ11li ≥ 0 l = 1,⋯, L, i = 1,⋯, Il;

σ12 ≤ σ1, S1∧ lσ12(1∧ l) ≤ Sσ12, S(1∧ l)kσ12(1∧ l)k ≤ S1∧ lσ12(1∧ l),

SA(1∧ l)kSDA(1∧ l)k ≤ S(1∧ l)kσ12(1∧ l)k ∀A ⊆ Θ

σ12, σ12(1∧ l), σ12(1∧ l)k ≥ 0 l = 2,⋯, L; k = 1,⋯, I1∧ l

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(119)

Similarly, the lower priority model (99)-(100) can also be transformed into the following equivalent smooth problem [65].

min f2(λ) = σ2 (120)

s.t. λ ∈ Ω = Ωl ∪ Ω1 ∪ Ω2 (121)

Ω2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

f1(λ) = σ1 ≤ f ∗1 + δ
σ21 ≤ σ2, Slσ21l ≤ Sσ21, Sliσ21li ≤ Slσ21l,

ESDli ≤ σ21li, (r̂ li − rli)
2
≤ σ21li,

σ2, σ21, σ21l, σ21li ≥ 0 l = 1,⋯, L, i = 1,⋯, Il;

σ22 ≤ σ2, S1∧ lσ22(1∧ l) ≤ Sσ22, S(1∧ l)kσ22(1∧ l)k ≤ S1∧ lσ22(1∧ l),

ESD(1∧ l)k ≤ σ22(1∧ l)k, (r̂(1∧ l)k − r(1∧ l)k)
2
≤ σ22(1∧ l)k,

σ22, σ22(1∧ l), σ22(1∧ l)k ≥ 0 l = 2,⋯, L; k = 1,⋯, I1∧ l

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(122)

Problems (117)-(119) and (120)-(122) can be solved using conventional optimisation software packages, such as the GRG engine of
Microsoft Excel Solver.

5.5. Properties and interpretation of the model and solution

In the above subsections, the basic components of the optimal leaningmodel were described at the elementary level in detail. In this
subsection, the principles and properties of the learning model are explicitly and formally stated to explain how the problem is
formulated and why its solutions are adequate. The following proposition states the first principle that is followed with top priority for
designing the learning model.

Proposition 5.1 – Maximum likelihood inference. In formulating the learning objectives, the observed and labelled data records
are taken as a gold standard. The top priority of the learning model is to identify a set of weights and reliabilities that minimise the
maximum squared deviation between the observed and predicted likelihoods for all training data records, that is, to maximise the
predicted likelihood of the true state for each data record, thereby empowering maximum likelihood inference.

Proposition 5.1 assures that the predicted likelihoods of system output are optimal in the sense that the weights and reliabilities
used for the prediction are learnt to maximise the predicted likelihood of the true state for each data record. Proposition 5.1 also
implies that the learning model should be used to generate the optimal weights and reliabilities in order to legitimise MAKER as an
optimal probabilistic inference framework.

Apart from using observed data as a gold standard, human knowledge may also be available and should be taken into account for
learning weights and reliabilities, which is the second principle for designing the model as formally stated in the following proposition.

Proposition 5.2 – Referentially interpretable learning. Human knowledge is important for inference and if available should be
used to set up reference weights and reliabilities. When formulating the learning objectives, the second priority is to identify a set of
optimally learnt weights and reliabilities generated by satisfying the top priority objective so that the maximum deviation between the
reference and learnt weights and reliabilities is minimised for all weights and reliabilities that need to be learnt.

Proposition 5.2 assures that the optimal weights and reliabilities generated by the learning model are as interpretable as their
reference values in the sense that they are optimised to be as close to their reference values as possible, coined as referentially
interpretable. In the current model, human knowledge is not yet treated as gold standard. Whenever they can also be regarded as a gold
standard, the learning model can be easily modified by removing the priority and instead allowing trade-offs between the two
objectives.

Given the decision variables discussed in Subsection 5.1 and the initial constraints discussed in Subsection 5.3, the following
proposition states the features and interpretability of solutions generated by the model as well as strategies to generate the best so-
lution among local optima.

Proposition 5.3 – Intuitively interpretable solution. The model proposed in this section empowers maximum likelihood inference
and referentially interpretable learning as stated in Propositions 5.1 and 5.2 and guarantees to generate an optimal solution that could
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be a local optimum. Since this model is nonlinear and nonconvex and may have multiple local optima, selecting a different starting
point may result in a different local optimal solution. An optimistic or a pessimistic starting point is to select the upper or lower bound,
respectively, for each weight and reliability. If different starting points converge to different local optima, the one with the best overall
objective value should be taken as the final solution. It is thus important to carefully set the lower and upper bounds and other
constraints for training parameters, preferably based on statistical analysis or human knowledge or a mix to ensure that any local
optima found within the boundaries are not unexpected and are intuitively interpretable.

While Proposition 5.3 assures the interpretability of solutions generated by the model, it also leads to questions on the model’s
computational complexity and feasibility. The complexity of the model depends on the amount of training data and the in-
terrelationships or nonlinearity among multiple pieces of evidence to be combined. The more data used for training and the more
complicated the interrelationships, the more complex the computation will be. If there is a huge amount of data for training, different
training strategies should be considered, such as dividing the data into appropriate groups for parallel or sequential training. On the
other hand, if training data is not sufficient to construct all joint likelihood functions required, joint likelihoods can also be taken as
training parameters alongside weights and reliabilities. Finally, if more constraints need to be added than those initial ones shown in
Equation (96), care should be taken to identify any conflicting constraints to ensure the feasibility of the model.

6. Maximum likelihood inference for disease diagnosis

In this section, the example presented in Section 2 is used to show how the conjunctive MAKER rule can be implemented to enable
maximum likelihood inference for more trustworthy diagnosis of disease with imperfect data than the straightforward joint likelihood
analysis of the data as shown in Table 10. The process of predicting the disease from saliva test and blood test is first described in the
MAKER framework, and an optimal learning model is then constructed to estimate the model parameters to enable maximum like-
lihood prediction. All the calculations are in the form of Excel sheets with the Solver model provided in the Supplementary Materials.

6.1. System modelling and interdependence analysis

In the example of Section 2, if a patient has the results of both saliva test (x1) and blood test (x2), the question of concern is how to
predict whether the patient has the disease (H1) or not (H2). System output (y) for this example is disease prediction and system inputs
are saliva test and blood test. The system space of this example therefore has two singleton states, denoted by Θ = {H1,H2}. Since the
prediction can be ambiguous, the type of SOPS for this example is Dempster’s probability space.

The discussions of Sections 3 and 4 show that the normalised likelihoods of Table 8 acquired from saliva test results and those of
Table 9 from blood test results can be used for predicting the disease. For example, from a positive saliva test result, or x1 = x11,
evidence e11 is acquired, as given by the second column of Table 8 as follows:

e11 = {(eH11, 0.627), (eH21, 0.0535), (eΘ1, 0.3195)} (123)

as also described by Equation (10), with eH11 = HStT, eH21 = HStF and eΘ1 = HStU, showing the likelihoods that a positive saliva test
result points to the disease being true, false or unknown, respectively, where eH11, eH21 and eΘ1 are evidential elements for saliva test.

Similarly, from a positive blood test result, or x2 = x21, evidence e21 is acquired, as given by the second column of Table 9 as
follows:

e21 = {(eH12, 0.6305), (eH22, 0.0333), (eΘ2, 0.3362)} (124)

with eH12 = HBtT , eH22 = HBtF and eΘ2 = HBtU, showing the likelihoods that a positive blood test result points to the disease being true,
false or unknown, respectively, where eH12, eH22 and eΘ2 are evidential elements for blood test.

If a patient takes both saliva and blood tests that each turn out to be positive, evidence e11 of Equation (123) and evidence e21 of
Equation (124) can be combined to infer the likelihoods that it is true, false or unknown that the patient has the disease. However,
before the two test results can be combined, their interrelationships need to be analysed as they are not independent. Table 1.1
provides complete records for 1100 patients, with each having a combination of both saliva test and blood test. For each pair of tests,
Table 10 shows joint likelihood distributions about how each pair of test results points to disease being true, false or unknown. This
table can also be used to predict the disease. For example, from a combination of positive saliva test result and positive blood test result,
or both x1 = x11 and x2 = x21, evidence e11,21 is acquired in the second column of Table 10, which can also be denoted by e(1∧2)1 in line
with the symbols used in the optimal learning model as discussed in the previous section:

e11,21 = e(1∧2)1 = {(eH112, 0.6728), (eH212, 0.0161), (eΘ12, 0.3111)} (125)

with eH112 = HSBtT , eH212 = HSBtF and eΘ12 = HSBtU, which depicts the likelihoods that the combination of positive saliva test result and
positive blood test result points to the disease being true, false or unknown, respectively, where eH112, eH212 and eΘ12 are evidential
elements for both saliva test and blood test.

However, such prediction based on Table 10 alone may not be completely trusted without any concerns. For example, the 1100
patient records are imbalanced, leading to concerns on the quality of the data for inference, as analysed in Table 7, and possibly other
concerns on whether it is appropriate to use the relatively small sample size of Table 1.1 to represent the whole population and that
errors may be incurred during the process of generating, collecting and processing the 1100 patient records. Nevertheless, the 1100
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complete patient records provide useful information on the interrelationship between the two tests, as shown in Table 10 together with
Table 8 and Table 9. The information of the tables can be used to calculate interdependence indices between the results of the two tests
using Equation (49) as follows:

αθ1i,θ2j =
pθ1i,θ2j

pθ1ipθ2j
=

pθ(1i,2j)

pθ1ipθ2j
θ ⊆ Θ, i, j = 1,2 (126)

The interdependence indices are shown in Table 11. For example, the interdependence index between positive saliva test result and
positive blood test result is calculated as follows. The normalised likelihood over evidential element eH11 for positive saliva test result is
pθ11 = 0.627 in Table 8; that over evidential element eH12 for positive blood test result is pθ21 = 0.6305 in Table 9; that over evidential
element eH112 from a combination of positive saliva result and blood test result is pθ(11,21) = 0.6728 in Table 10. From Equation (126),
we then have αθ11,θ21 =

pθ(11,21)
pθ11pθ21

= 1.7018, showing that positive saliva test result and positive blood test result are more highly inter-
related than being independent of each other when they jointly point to the disease being true. The other combinations of joint saliva
test results and blood test results have similar features as all interdependence indices in Table 11 are larger than 1.

The likelihoods of Table 8 to Table 10 make full use of the original data given in Table 1.1 and Table 1.2 without deletion or
resampling and should all be used for prediction of the disease. However, singleton saliva test, singleton blood test, or both tests each
can only play a limited role in the prediction because of their limited weights and reliabilities, which need to be assigned or learnt. The
weights of singleton saliva test (wθ1), singleton blood test (wθ2), and both tests (wθ12), which can also be denoted by wθ(1∧2) in line with
the symbols used in the optimal learning model, or wθ12 = wθ(1∧2) for θ ⊆ Θ, are defined by Equation (19) as the following conditional
probabilities:

wθ1 = p(θ|eθ1), wθ2 = p(θ|eθ2), wθ12 = wθ(1∧2) = p(θ|eθ12) ∀θ ⊆ Θ (127)

The weight indices of the two tests are then calculated by Equation (51) as follows:

wθ1,θ2 =
wθ12

wθ1wθ2
∀θ ⊆ Θ (128)

Similarly, there is a need to assign or learn the reliabilities of evidence given in Table 8 and illustrated in Equation (123) for saliva
test results (r1i), in Table 9 and Equation (124) for blood test results (r2j), and in Table 10 and Equation (125) for both test results (r1i,2j),
which can also be denoted by r(1∧2)k in line with the symbols used in the optimal learning model, or r1i,2j = r(1∧2)k with k = j +2(i − 1)
and i, j = 1,2, so k = 1,⋯,4. The projection rate is defined in Equation (21) and Equation (53), i.e. ω1i for saliva test results, ω2j for
blood test results, and ω1i,2j for both test results. The projection indices of the tests are then calculated as follows:

ω1i,2j = ω1i,2j
/(

ω1iω2j
)

for i, j = 1,2 (129)

6.2. Construction of optimal learning model

As discussed in the previous subsection, we need to estimate the following parameters: weights wθ1, wθ2, and wθ(1∧2) for all θ ⊆ Θ;
reliabilities r1i, r2j, and r(1∧2)k for i, j = 1, 2 and k = 1,⋯,4. In addition, since all the data in Table 1.1 and Table 1.2 is used to estimate
these parameters, the prior of all the data need to be combined to reduce the effect of data imbalance on parameter estimation. The
prior distribution of all the data is calculated as follows:

In Table 12, eθ0 for θ ⊆ Θ is the evidential element that the prior points to the disease being true (θ = H1), false (θ = H2) and
unknown (θ = Θ), respectively. The weights and reliability of the prior are denoted by wθ0 for θ ⊆ Θ and r0.

A vector of all 21 parameters to be learnt in this example is represented by λl as follows:

λl = [wθl,wθ(1∧2),∀θ ⊆ Θ, l = 0, ⋯,2; r0, rli, r(1∧2)k, l, i = 1, 2, k = 1,⋯, 4]T (130)

In the first objective function f1(λ) of the optimal learning model, p(θ|eli) in Equation (88) is the conditional probability of state θ
that is generated by applying Theorem 1 to combine evidence eli acquired from the ith result of the lth test with prior e0 as a piece of
independent evidence; p̂θ(A)li in Equation (88) is the probability of state θ given in a patient record where state A is observed when the
lth test takes its ith result for l, i = 1,2. From the data of Table 1.2, there are p̂θ(A)li = 1 at θ = A and p̂θ(A)li = 0 at θ ∕= A for any θ,A ⊆ Θ
and l, i = 1,2; the frequency data defined in sub-objective functions f11(λ) are given in Table 13 and Table 14, with S1 = S11 +S12 =
2100 and S2 = S21 + S22 = 3100.

p(θ|e(1∧2)k) in Equation (90) is the probability generated by applying Theorem 1 to combine evidence e1i acquired from the ith saliva

Table 11
Interdependence Index between Saliva and Blood Tests.

Interdependence index Positive Saliva Negative Saliva

Positive Blood Negative Blood Positive Blood Negative Blood

H1 1.7018 9.1909 15.3551 3.7689
H2 9.0204 15.6675 11.8828 1.6542
Θ 2.8966 2.2425 2.7895 3.1465
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test result with evidence e2j acquired from the jth blood test result with their interdependency taken into account, which is in turn
combined with prior e0 as a piece of independent evidence for all i, j = 1, 2 and k = 1,⋯,4. Accordingly, p̂θ(A)(1∧2)k in Equation (90) is
the probability of state θ given in a patient record generated for the kth combination of the ith saliva test result and the jth blood test
result for k = 1,⋯,4, where state A is observed. From the data of Table 1.1, there are p̂θ(A)(1∧2)k = 1 at θ = A and p̂θ(A)(1∧2)k = 0 at θ ∕= A
for any θ,A ⊆ Θ and k = 1,⋯,4; the frequency data defined in sub-objective function f12(λ) are given in Table 15, with S1∧2 = S(1∧2)1

+⋯ + S(1∧2)4 = 1100 and S = S1 + S2 + S1∧2 = 6300.
In the second objective function f2(λ), ŵθl in Equation (93) is the reference weight of the lth test for state θ, and is assumed to be the

upper bound of wθl in this example, or ŵθl = wθl for any θ ⊆ Θ and l = 1,2, under the notion that saliva or blood test should play its
most important role in inference. ŵθ(1∧2) in Equation (95) is the reference weight of both saliva and blood tests for state θ and is also
assumed to be the upper bound, or ŵθ(1∧2) = wθ(1∧2) for any θ ⊆ Θ. r̂ li in Equation (92) is the reference reliability of evidence eli, and is
assumed to be the upper bound of rli, or r̂ li = rli for any l, i = 1, 2 under the notion that any evidence should be as reliable as possible in
inference. r̂(1∧2)k in Equation (94) is the reference reliability of evidence e(1∧2)k and is assumed to be the upper bound of r(1∧2)k, or
r̂(1∧2)k = r(1∧2)k for k = 1,⋯,4.

In the optimal learning model, constraints include only upper and lower bounds for the 21 parameters to be learnt. In this study, the
data used to acquire evidence is given in Table 4 for e(1∧2)k (k = 1,⋯,4), in Table 5 for e1i (i = 1,2), and in Table 6 for e2j (j = 1,2).
These three tables all originate from the same data source of Table 1.1 and Table 1.2. The quality of the data is assumed to be at least as
good as completely random, so the lower bounds of all weights and reliabilities are assumed to be 0.5, that is, wθl = 0.5, rli = 0.5,
wθ(1∧2) = 0.5 and r(1∧2)k = 0.5 for l,i = 1,2, k = 1,⋯,4 and all θ ⊆ Θ. Since the original data of Table 1.1 and Table 1.2 is imperfect, no
variable should be assumed to be as important as 100% and any evidence acquired from the variables should not be assumed to be fully
reliable either. Instead, the weights of each variable and the reliability of any acquired evidence should have upper bounds less than 1
in general. For illustration purpose, to reflect the difference of sample sizes in these tables, the upper bounds wθ2 and r2j are assumed to
be 0.95 as Table 6 has the largest sample size of 4200 patient records, followed by wθ1 and r1i to 0.9, and wθ(1∧2) and r(1∧2)k to 0.85 for i,
j = 1,2, k = 1,⋯,4 and all θ ⊆ Θ.

The optimal learning model is therefore formulated as a bi-objective nonlinear non-smooth mathematical programming problem,
having 2 prioritised objectives and 21 variables with their lower and upper bounds as constraints. In this study, the Evolutionary
engine of Excel Solver is selected to solve the problem.

6.3. Results and analysis

A pre-emptive solution method is used to solve the above problem. The first objective f1(λ) is of the top priority and is minimised
first by setting the starting values of all the parameters to the upper bounds. The optimal solution is given by f∗1 = f1(λ∗) = 0.0075. The
second objective f2(λ) is thenminimised by adding the priority constraint: f1(λ) ≤ f∗1 + δwith δ = 0.00001. The optimal solution for the
second objective is given by f∗2 = 0.0247. The detailed calculations can be found in the provided Supplementary Materials in the form
of Excel sheets with the Solver model attached. The optimal results are analysed as follows.

The optimal values of the weights and reliabilities for saliva test, blood test and the prior are given in Table 16, where w∗
θl is the

optimal weight of saliva test (l=1), blood test (l=2) or the prior (l=0) for state θ. r∗li is the optimal reliability of evidence eli acquired
from the positive (i=1) or negative result (i=2) of saliva test (l=1) or blood test (l=2). r∗0 is the optimal reliability of evidence e0.

The optimal values of the weights and reliabilities for both saliva test and blood test are given in Table 17, where wθ(1∧2)∗ is the
optimal weight of both saliva test and blood test for state θ. r(1∧2)k∗ is the optimal reliability of evidence e(1∧2)k acquired from the kth

combination of saliva test result and blood test result for k = 1,⋯,4.
One observation from the results of Table 16 and Table 17 is that the reliability of any evidence acquired from a saliva result, a

blood test result or from the prior is higher than that from any combination of both saliva test result and blood test result. This is likely
due to the fact that there are only 1100 patient records that have both saliva test results and blood test results, whilst 3200, 4200 and

Table 12
Prior frequency and distribution.

eH10 eH20 eΘ0 Total

Frequency 565 5435 300 6300
e0 0.0897 0.8627 0.0476 

Table 13
Frequency for Saliva Test.

Frequency Positive Negative

SH11i 180 15
SH21i 155 1650
SΘ1i 50 50
S1i 385 1715
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6300 patient records are used to acquire evidence from saliva test, blood test and the prior, respectively.
The maximum likelihoods p

(
θ
⃒
⃒e1i ∧ e2j

)
for i, j = 1,2 and all θ ⊆ Θ are shown in Table 18, which are generated by using the optimal

values of weights and reliabilities to combine every pair of saliva and blood test results without the prior taken into account.
Comparing the maximum likelihoods of Table 18 with the ordinary likelihoods of Table 10 for all k = 1,⋯, 4 and θ ⊆ Θ, one can tell

that they are quite similar but also different from each other. They are similar as the former are generated from all the available 6300
patient records of both Table 1.1 and Table 1.2 and the latter from a small yet still respectable size of 1100 complete patient records of
Table 1.1. They are different because of their different sample sizes and also because the data is imperfect, e.g. ambiguous, incomplete
and imbalanced.

For example, if the saliva test result of a patient is positive but his blood test result is negative, Table 10 shows that it is more likely
that the patient has no disease with pHBStF ,(1∧2)2 = 0.5263, but in Table 18 the corresponding maximum likelihood is p(H2|e11 ∧ e22) =

0.4909, showing a more uncertain diagnosis for the disease. A more detailed analysis of the original data reveals why such difference
occurs. In Table 8, for a positive saliva test result we have pHStT ,11 = 0.6270, mostly pointing to state H1, but in Table 9 for a negative
blood test result pHBtF ,22 = 0.6283, mostly pointing to state H2, so the two results are in conflict for predicting the disease. While pHStT ,11

is almost the same as pHBtF ,22, the trustworthiness of the former is 0.8861 but that of the latter is a bit lower at 0.8602. This explains why
we get p(H2|e11 ∧ e22) = 0.4909 in Table 18, the trustworthiness of which is 0.9834, much higher than that for e(1∧2)2 that is 0.7223 in
Table 17. The above analysis reveals the main difference between the results of Table 18 and the results of Table 10 generated from the
straightforward likelihood analysis of the original data of Table 1.1. That is, the former can be more highly trusted than the latter. In
fact, the prediction of Table 18 has much higher trustworthiness than that of Table 10 for every combination of saliva test results and
blood test results.

Similar observations can be made between the results of Table 18 and those of Table 8 (Table 9) generated from the straightforward
likelihood analysis of the original data of Table 5 (Table 6). In fact, comparing the trustworthiness of Table 16 with that of Table 18, we
can see that the prediction of Table 18 also has higher trustworthiness than that of Table 8 (Table 9) whether saliva (blood) test result is
positive or negative. For example, the trustworthiness of Table 18 for positive saliva test result is 0.9882 (0.9834) if blood test result is
positive (negative), each higher than that of Table 8 for positive saliva test result (evidence e11), which is 0.8861 as shown in the t∗li row
and the e11 column of Table 16.

The above observations are made not by chance but reveal one of the prominent features of MAKER in that in general the com-
bination of multiple pieces of evidence, which are each trusted to some degrees, leads to better trusted conclusions than any individual
evidence.

Table 14
Frequency for Blood Test.

Frequency Positive Negative

 SH12j 250 20
 SH22j 140 2590
 SΘ2j 54 46
 S2j 444 2656

Table 15
Frequency for Both Saliva and Blood Tests.

Frequency Saliva Positive Saliva Negative

Blood Positive Blood Negative Blood Positive Blood Negative

SH1(1∧ 2)k 93 2 4 1
SH2(1∧ 2)k 20 40 20 820
SΘ(1∧ 2)k 43 2 3 52
S(1∧2)k 156 44 27 873

Table 16
Parameter Values for Saliva, Blood and the Prior.

Optimal parameters Saliva test Blood test Prior

e11 e12 e21 e22 e0

r∗li 0.8948 0.8419 0.9167 0.8728 0.8817
w∗

H1 l 0.8503 0.9437 0.9952
w∗

H2 l 0.7479 0.9196 0.9162
w∗

Θl 0.7693 0.5027 0.5000
t∗li 0.8861 0.8278 0.9052 0.8602 0.8842
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7. Discussions, conclusions and directions for future research

7.1. Discussions

The MAKER framework established in this paper takes a system view and is underpinned by the widely recognised scientific
principles governing probabilistic inference, that is, the likelihood principle and Bayesian principle as stated in SOPS or the ER
principle as equivalently stated in ERPS. It provides a unified framework to model randomness, ambiguity and untrustworthiness for
probabilistic inference and evidence-based decision making in a principled, thus intrinsically transparent and interpretable manner.

In the MAKER framework, randomness of a singleton state in a system space associated with a piece of evidence is described by
assigning a basic probability to the singleton state, which is entirely consistent with how it is modelled in Bayesian inference. Am-
biguity among a subset of singleton states associated with the evidence is depicted by assigning a basic probability to the subset as a
whole, which represents the degree of unknown or ignorance about these singleton states and cannot be split into pieces to be assigned
to any singleton state of the subset. This is completely in line with Dempster’s principle, which ought to be followed to handle am-
biguity for probabilistic inference. Untrustworthiness of the evidence is explicitly measured by retaining it uniquely to the powerset of
the system space as a whole. It is originally calculated from the reliability and expected weight of the evidence, which is acquired from
a data source when a specific value is taken by an input variable for which the weights are assigned.

The weight of an input variable provides an appropriate measure of its perceived ability to provide correct values or judgments. It is
unambiguously defined as the conditional probability that a state is true given that the variable points to the state. The trustworthiness
of evidence is defined to be positively related to the expected weight of the evidence. That is, more highly weighted evidence is more
highly trusted, and vice versa. The reliability of evidence provides a clear measure of its ability to provide correct outcome in terms of
probability distribution on all states. It is so defined that the unreliability of the evidence is positively related to the probability that the
evidence is untrusted to support any state, which is thus referred to as residual support, kept intact and retained to the power set of the
system space, ready for combination with other evidence. The untrustworthiness of evidence is positively related to the unreliability of
the evidence. That is, more unreliable evidence is more untrusted, and vice versa.

The general MAKER rule and algorithm are established by strictly following the widely recognised scientific principles and provide
a general means to enable probabilistic inference with multiple pieces of evidence that (i) can be acquired from imperfect data or
human knowledge, (ii) are each associated with weight and reliability and (iii) are dependent on each other in general. In the MAKER
framework, interdependency among multiple pieces of evidence is accurately depicted and explicitly taken into account, so that
complex system behaviours can be precisely captured in inference. The special rules and algorithms deduced from the general MAKER
rule and algorithm can be used to facilitate probabilistic inference in situations where evidence is exclusive or independent of each
other. The identified and proven conditions where the MAKER rule reduces to the ER rule, Dempster’s rule and Bayes’ rule reinforce
the robustness and flexibility of the MAKER rule and algorithm for probabilistic reasoning and decision making.

The bi-objective nonlinear minimax optimisation model provides a general and robust means to learn variable weights and evi-
dence reliabilities from observation data, where imperfection in data and human knowledge as well as human preferences can be taken
into account as model constraints or through adjustment of the objectives according to different scenarios where the model is applied.

Table 17
Parameter Values for Both Saliva and Blood.

Optimal parameters Saliva

Positive Negative

Blood Blood

Positive Negative Positive Negative
e(1∧ 2)1 e(1∧ 2)2 e(1∧ 2)3 e(1∧ 2)4

r(1∧ 2)k∗ 0.7297 0.7253 0.7001 0.7638
wH1 (1∧2)

∗ 0.6867
wH2 (1∧2)

∗ 0.7237
wΘ(1∧ 2)∗ 0.7217
t(1∧ 2)k∗ 0.7209 0.7223 0.7022 0.7537

Table 18
Maximum Likelihood Generated by Combining Saliva and Blood Tests.

Maximum Likelihood Saliva Positive Saliva Negative

Blood Positive
p(θ|e11 ∧ e21)

Blood Negative
p(θ|e11 ∧ e22)

Blood Positive
p(θ|e12 ∧ e21)

Blood Negative
p(θ|e12 ∧ e22)

H1 0.6706 0.2647 0.4447 0.0178
H2 0.0221 0.4909 0.2415 0.6445
Θ 0.3072 0.2444 0.3138 0.3377
t1i,2j 0.9882 0.9834 0.9829 0.9769
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The model is constructed in both non-smooth format and equivalent smooth format, so that it can be implemented in different
optimisation platforms. The experiences of building and solving the model for the two illustrative examples and the case study show
that it is easy and fast to implement the model in Microsoft Excel Solver. It should also be easy to implement the model in other similar
or more powerful platforms.

The examination of the two examples and the case study given in Appendix B provides further insights of the MAKER framework
and how it could be applied in many other fields than what are implied by these cases, e.g. the first example for healthcare, the second
example for legal services and the case study for human well-being. Although the data for the first example is simulated from the
authors’ experiences gained from conducting many research projects in healthcare, it shows how typical features common to imperfect
data can be modelled and handled within the MAKER framework without making unnecessary and unjustifiable assumptions in the
modelling and inference process. The examination of the second example provides insights into how and why the MAKER framework
can be used to help deal with complex yet serious issues in decision making in legal services and other professional services in general.
The case study shows that even though the BHPS data is carefully collected and of high quality, it is still imperfect due to missing and
imbalanced data, whilst the MAKER framework is equipped with the ability to handle imperfect data as it is, whether it is of high
quality or not.

7.2. Conclusions

This paper presented the findings generated from the dedicated research on generalising the ER rule. Its main contributions to
knowledge are summarised as follows.

• The most significant contribution of the paper is the establishment of the unique MAKER framework, which consists of three
constituent models: SSM, EAM and ERM innovatively constructed in three interconnected probability spaces: SOPS, SIPS and ERPS,
respectively, to facilitate probabilistic inference under three typical types of uncertainty: randomness, ambiguity and untrust-
worthiness. While SSM was introduced to implement Dempster’s principle for probabilistic inference with ambiguity, EAM and
ERM stem from the authors’ original thinking of creating SIPS and ERPS, leading to a paradigm shift in research on probabilistic
inference with the three types of uncertainty under the same umbrella.

• The establishment of EAM in SIPS and ERM in ERPS in turn leads to the paper’s second most significant contribution of identifying
the precise definitions of variable weight and evidence reliability, vital to enable the informed assignment of weight and reliability
using human knowledge and by interpretable and optimal learning from imperfect data. The explicit definition of trustworthiness
in terms of the reliability and expected weight of individual pieces of evidence and the calculation of trustworthiness for the
combined evidence provide transparent and robust means to measure the degree to which an evidence-based decision or conclusion
can be trusted.

• The derivation and proofs of the MAKER rules and algorithms are the unique contributions of the paper that not only lay the solid
theoretical foundation but also provide powerful technical means for developing novel models, tools and platforms for probabilistic
inference by combining multiple pieces of evidence that can be dependent in general. In particular, the additive or multiplicative
MAKER algorithm provides a simple and powerful formula for probabilistic inference by combiningmultiple pieces of evidence that
are exclusive or independent of each other, respectively.

• The differential MAKER rule lays the theoretical foundation for how Bayes’ and Dempster’s rules should be applied when used to
combine multiple pieces of fully reliable evidence that are completely or highly conflicting. This leads to the paper’s contributions
of creating the theoretical and most robust resolution to the so-called counterintuitive problem associated with Dempster’s rule and
Bayes’ rule, a long-term hassle to the community of probabilistic inference, augmenting and completing Dempster’s rule, and
identifying and proving the conditions where the MAKER rule reduces to the ER rule, Dempster’s rule and Bayes’ rule.

• The constructed bi-objective optimal learning model is another contribution that provides a transparent framework and opera-
tional means to learn optimal weights and reliabilities as well as joint probabilities, which are essential to power maximum
likelihood inference when data is imperfect or insufficient to construct valid likelihood functions.

• The examined two numerical examples and the case study contribute to helping understand how the MAKER framework can be
applied in different domains, in particular healthcare, professional services and human wellbeing analysis. It is shown in the paper
how real or hypothetical data can be used to construct the bi-objective optimal learning model for generating optimal weights and
reliability, how to use the learnt weights and reliabilities to assign trustworthiness for individual pieces of evidence and how to
generate overall trustworthiness for a conclusion or decision as a result of combining multiple pieces of evidence each with its
individual trustworthiness.

While the above main contributions are characteristic of the paper and seem natural and straightforward to summarise, the po-
tential contributions of the paper are plenty and could be even more significant. For instance, the MAKER framework and constituent
rules and algorithms could underpin a paradigm shift in future research on AI-powered decision theories and systems; they together
with the optimal learning model would also help boost a step change in advancing interpretable machine learning and reinforcement
learning with human interaction such as in the domains of interactive multi-objective optimisation and multi-criteria decision making.

While the MAKER framework provides a new perspective for modelling any linear or nonlinear relationships between system
outputs and inputs under different types of uncertainty characterised by imperfect data, there are challenges that can be encountered
when applying the framework. The first challenge is to identify whether a system analysis problem is a prediction or decision problem
or a hybrid one. A different problem can imply different relationships between system outputs and inputs, which can be causal,
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correlational or mixed.
For instance, the first numerical example of disease diagnosis given medical tests is a prediction problem where the relationship

between the disease and the tests is correlational rather than causal. The second numerical example of jury conviction is a decision
problem where a juror’s conclusion contributes to or causes the decision of the jury. The case study of human wellbeing analysis is also
a decision problem where a person’s health and income influence or cause her life satisfaction. Many real-world system analysis
problems can be more complicated and require the construction of multiple interconnected models where the outputs of some models
can be the inputs of others and their relationships can be hybrid. While MAKER provides a general modelling framework, domain
specific knowledge and system analysis skills are needed to develop appropriate models for complex system analysis, modelling,
prediction and decision making.

The second challenge is how to construct likelihood functions from imperfect data. In the first numerical example, the imperfection
of data was explained and the process of applying the likelihood analysis method to construct likelihood functions was demonstrated,
However, that is a rather simple example with only two input variables and each having only two categorical values. With the increase
of variables and categorical or referential values, it will become more challenging to generate meaningful likelihood functions using
the likelihood analysis method.

For high-dimensional problems with many input variables and limited data available, there will be a need to learn likelihood
functions from limited imperfect data. The MAKER framework provides a transparent structure to enable interpretable machine
learning of variable weights and evidence reliabilities. However, it will be another challenge to develop interconnected models of
hierarchical or network structures for dealing with high-dimensional systemmodelling and analysis. While domain specific knowledge
is useful for developing model hierarchies or networks, it poses a significant challenge to develop adaptive machine learning models
that can learn optimal weights, reliabilities and probably joint likelihoods from imperfect data.

When system analysis needs to be based on human judgments, such as in the second example of jury conviction, educated as-
sumptions need to be made in order to apply the MAKER framework. For instance, to apply the ER rule to combine multiple jurors’
conclusions in the second example, every effort needs to be made to keep a juror’s judgment independent of others; no juror’s indi-
vidual judgment should be assumed to be fully reliable; no juror should be allowed to dominate the jury’s decision-making process.

It is also worth noting that the bi-objective optimisation model devised in Section 5 to learn variable weights and evidence re-
liabilities relies on not only observation data between inputs and outputs but also how the data is generated, collected and processed in
specific problem domains such as fault diagnosis [72]. It is therefore important to use domain knowledge for estimating the upper and
lower bounds of weights and reliabilities and add them as constraints to the optimal learning model so that the optimally learnt weights
and reliabilities can be adequately interpreted.

7.3. Possible directions for future research

This paper aimed to report the theoretical development and advancement of the ER rule, More and wider theoretical and applied
research is undoubtedly needed to make AI theories, methodologies, tools and systems as transparent, interpretable, trustworthy and
thereby acceptable as possible. Possible directions for future research in probabilistic inference are briefly discussed as follows.

The two numerical examples and the case study reported in this paper were intended for illustration purpose by using real and
hypothetical data and the Excel Solver platform to demonstrate how the new MAKER framework, rules, algorithms and optimal
learning model are operated step by step. The authors have led or been involved in several research and development projects, such as
those mentioned in the Acknowledgement section, where some of the MAKER framework and algorithms have been applied and the
specially designed software platforms have been developed in the domain of professional services, in particular insurance and legal
services [15]. These platforms have been developed for commercial purposes but not for supporting academic research or general
applications of the MAKER framework.

Therefore, the immediate future research is to develop new open-source software platforms for automatically conducting the
likelihood analysis of imperfect data and implementing the multiplicative and additive MAKER algorithms and the optimal learning
model. Without such open-source platforms, it is difficult to implement the MAKER framework for supporting further research and
wider applications in different domains, such as healthcare, professional services, sustainability, transportation systems,
manufacturing and supply chain systems.

Further theoretical and methodological research is needed on how to learn variable weights and evidence reliabilities based on
both the optimal learning model and domain specific knowledge and how to apply the MAKER framework to develop novel methods
and systems for multiple objective optimisation (MOO) and multiple criteria decision making (MCDM) under uncertainty, which are
among the main motivations for establishing the ER rule. While the ER rule is restricted to probabilistic inference with independent
evidence, the MAKER framework opens plenty of new opportunities to develop new MOO and MCDM methods and systems to support
evidence-based decision making in much wider ranges of domains where evidence can be either independent or exclusive or dependent
in general.

The new bi-objective optimal learning model and the likelihood analysis method, together with the belief rule base methodology
[68], opens a new avenue for advancing research in interpretable machine learning with both imperfect data and human knowledge.
Also, future research needs to be conducted on advancing interpretable reinforcement learning with human interaction powered by the
MAKER framework and algorithms in combination with new MOO and MCDM methods, where decision makers preferences can be
learnt in an interactive fashion and used to construct utility functions to guide the search for most preferred solutions.

Last but not least, dedicated research is needed to enable disjunctive probabilistic inference with imperfect data under different
types of uncertainty, in particular randomness, ambiguity and untrustworthiness. While the research may be conducted within the
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MAKER framework, the derivation and proofs of disjunctive rules and algorithms will pose significant challenges given that disjunctive
probabilistic inference needs to be established on top of conjunctive probabilistic inference that is the focus of this paper. Nevertheless,
disjunctive probabilistic inference is widespread and essential for developing AI systems in many fields, such as decision making under
risk, system safety analysis, fault diagnosis and medical prognosis.
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Appendix A. – Proofs of Theorems, Lemmas and Corollaries

A1. Proof of Theorem 1 (MAKER rule)

p
(
θ
⃒
⃒eli ∧ emj

)
in the Theorem is the conditional probability that is calculated in SOPS andmeasures the degree to which state θ is true

given both evidence eli and evidence emj. On the other hand, P
(
θ
⃒
⃒eli ∧ emj

)
is the conditional probability that is calculated in ERPS and

measures the degree to which state θ is supported given both evidence eli and evidence emj. From Equation (13), Equation (17) and
Equation (18), probability p

(
θ
⃒
⃒eli ∧ emj

)
should be proportional to probability P

(
θ
⃒
⃒eli ∧ emj

)
, or

p
(
θ
⃒
⃒eli ∧ emj

)
= k1P

(
θ
⃒
⃒eli ∧ emj

)
∀θ ⊆ Θ (A1-1)

where k1 is a positive constant that does not change for any θ ⊆ Θ.
P
(
θ
⃒
⃒eli ∧ emj

)
is generated in the ER process of combining evidence eli and evidence emj in ERPS, the first step of which is to calculate

the joint probabilities that both evidence eli and evidence emj support state θ in any legitimate way in ERPS. Let (A|eli) stand for the
event that evidence eli supports state A and

(
B
⃒
⃒emj
)
for the event that evidence emj supports state B. If A ∩ B = θ, joint event (A|eli) ∩

(
B
⃒
⃒emj
)
constitutes a piece of joint support for state θ from both eli and emj. The total joint support for θ from eli and emj is then the union

of all exclusive joint events (A|eli) ∩
(
B
⃒
⃒emj
)
for any A ∩ B = θ in ERPS. Probability P

(
θ
⃒
⃒eli ∧ emj

)
is thus proportional to the joint

probability of this union.
This union includes three distinctive parts in ERPS: joint support for θ : (A|eli) ∩

(
B
⃒
⃒emj
)
for anyA,B ⊆ ΘwithA ∩ B = θ, eli’s support

for θ : (θ|eli) ∩
(
2Θ
⃒
⃒emj
)
that is gained from the residual support left over by emj, and emj’s support for θ : (2Θ|eli) ∩

(
θ
⃒
⃒emj
)
that is gained

from the residual support left over by eli, where (2Θ|eli) and
(
2Θ
⃒
⃒emj
)
are the residual support left over by eli and emj, respectively. Note

that the residual support of eli is independent of emj’s support for θ for any θ ⊆ Θ, and vice versa. In other words, we have
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P
(
(θ|eli) ∩

(
2Θ
⃒
⃒emj
))

= P(θ|eli)P
(
2Θ
⃒
⃒emj
)
and P

(
(2Θ|eli) ∩

(
θ
⃒
⃒emj
))

= P(2Θ|eli)P
(
θ
⃒
⃒emj
)

(A1-2)

Let the joint probability of this union be denoted by mθ. We then have

P
(
θ
⃒
⃒eli ∧ emj

)
= k2mθ ∀θ ⊆ Θ and θ = 2Θ (A1-3)

where k2 is a non-negative constant that does not change for any θ ⊆ Θ and power set 2Θ. k2 needs to be determined from the
requirement that the probabilities of joint support for all states and the power set be summed up to one.

Joint probability mθ for any θ ⊆ Θ is calculated as follows:

mθ = P
(

∪
A∩B=θ

(
(A|eli) ∩

(
B
⃒
⃒emj
))
)

= P

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∪
A,B⊆Θ

A∩B=θ

(
(A|eli) ∩

(
B
⃒
⃒emj
))

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∪
(
(θ|eli) ∩

(
2Θ
⃒
⃒emj
))

∪
(
(2Θ|eli) ∩

(
θ
⃒
⃒emj
))

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= P
(
(θ|eli) ∩

(
2Θ
⃒
⃒emj
))

+ P
(
(2Θ|eli) ∩

(
θ
⃒
⃒emj
))

+
∑

A,B⊆Θ

A∩B=θ

P
(
(A|eli) ∩

(
B
⃒
⃒emj
))

(A1-4)

From Equation (A1-2), Equation (A1-4), Equation (18), Equation (22), Equation (23), Equation (24), Equation (25) and Equation
(26), we get

mθ = P(θ|eli)P
(
2Θ
⃒
⃒emj
)
+ P(2Θ|eli)P

(
θ
⃒
⃒emj
)
+

∑

A,B⊆Θ,A∩B=θ
P
(
(A|eli) ∩

(
B
⃒
⃒emj
))

= ωliωmj
(
1 − rmj

)
mθli + ωliωmj(1 − rli)mθmj +

∑

A,B⊆Θ,A∩B=θ
p
(
(sAlm|eli) ∩

(
sBlm
⃒
⃒emj
)) (A1-5)

From Equation (8), Equation (18), Equation (19), Equation (20), Equation (22), Equation (23), Equation (47), Equation (49),
Equation (51) and Equation (52), we can rewrite the probability of the last term in Equation (A1-5) as follows:

p
(
(sAlm|eli) ∩

(
sBlm
⃒
⃒emj
))

= p
(
((A ∩ eAlm)|eli) ∩

(
(B ∩ eBlm)

⃒
⃒emj
))

= p
(
(A ∩ B) ∩ (eAlm|eli) ∩

(
eBlm
⃒
⃒emj
))

= p
(
θ ∩ (eAlm|eli) ∩

(
eBlm
⃒
⃒emj
))

= p
(
θ
⃒
⃒(eAlm|eli) ∩

(
eBlm
⃒
⃒emj
))

p
(
(eAlm|eli) ∩

(
eBlm
⃒
⃒emj
))

=
p
(
θ
⃒
⃒(eAlm|eli) ∩

(
eBlm
⃒
⃒emj
))

p(A|eAl)p(B|eBm)
×

ωli,mjplm
(
(eAlm|xl = xli) ∩

(
eBlm
⃒
⃒xm = xmj

))

pl(eAl|xl = xli)pm
(
eBm
⃒
⃒xm = xmj

)

× p(A|eAl)pl(eAl|xl = xli)p(B|eBm)pm
(
eBm
⃒
⃒xm = xmj

)

= ωli,mjwAl,BmαAli,BmjmAlimBmj

(A1-6)

From Equation (A1-6) and Equation (54), Equation (A1-5) can be re-written as follows:

mθ = ωliωmj
[(
1 − rmj

)
mθli + (1 − rli)mθmj

]
+ ωli,mj

∑

A,B⊆Θ

A∩B=θ

wAl,BmαAli,BmjmAlimBmj

= ωliωmj m̂θ(li,mj) ∀θ ⊆ Θ

(A1-7)

m̂θ(li,mj) =
[(
1 − rmj

)
mθli + (1 − rli)mθmj

]
+ ωli,mj

∑

A,B⊆Θ,A∩B=θ
wAl,BmαAli,BmjmAlimBmj (A1-8)

Similarly, joint probability m2Θ for powerset 2Θ is calculated from Equation (26) as follows by noting that the residual support of eli

is independent of that of emj, and vice versa,

m2Θ = P
(
(2Θ|eli) ∩

(
2Θ
⃒
⃒emj
))

= P(2Θ|eli)P
(
2Θ
⃒
⃒emj
)
= ωliωmj(1 − rli)

(
1 − rmj

)
= ωliωmj m̂2Θ(li,mj) (A1-9)

m̂2Θ(li,mj) = (1 − rli)
(
1 − rmj

)
(A1-10)

Since conditional probability P
(
θ
⃒
⃒eli ∧ emj

)
is basic probability defined in Equation (17), according to Equation (A1-3), the following

equation must hold:
∑

D⊆Θ
P
(
D
⃒
⃒eli ∧ emj

)
+ P
(
2Θ
⃒
⃒eli ∧ emj

)
=
∑

D⊆Θ
k2mD + k2m2Θ = 1 (A1-11)
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Putting Equation (A1-7) and Equation (A1-9) into Equation (A1-11) leads to

k2 = 1

/(
∑

D⊆Θ
mD +m2Θ

)

= 1

/(

ωliωmj

(
∑

D⊆Θ
m̂D(li,mj) + m̂2Θ(li,mj)

))

(A1-12)

From Equation (A1-3), we can use the constant k2 generated by Equation (A1-12) to fulfil the second step of the ER process of
calculating P

(
θ
⃒
⃒eli ∧ emj

)
as conditional probability by

P
(
θ
⃒
⃒eli ∧ emj

)
= k2mθ = mθ

/(
∑

D⊆Θ
mD + m2Θ

)

= ωliωmj m̂θ(li,mj)

/(
∑

D⊆Θ
ωliωmj m̂D(li,mj) + ωliωmjm̂2Θ(li,mj)

)

= m̂θ(li,mj)

/(
∑

D⊆Θ
m̂D(li,mj) + m̂2Θ(li,mj)

)

∀θ ⊆ Θ

(A1-13)

P
(
2Θ
⃒
⃒eli ∧ emj

)
= k2m2Θ = m2Θ

/(
∑

D⊆Θ
mD + m2Θ

)

= ωliωmj m̂2Θ(li,mj)

/(
∑

D⊆Θ
ωliωmj m̂D(li,mj) + ωliωmjm̂2Θ(li,mj)

)

= m̂2Θ(li,mj)

/(
∑

D⊆Θ
m̂D(li,mj) + m̂2Θ(li,mj)

)

(A1-14)

Since p
(
θ
⃒
⃒eli ∧ emj

)
is basic probability defined in Equation (1), according to Equation (A1-1) and Equation (A1-13), the following

equation must hold:

∑

C⊆Θ
p
(
C
⃒
⃒eli ∧ emj

)
=
∑

C⊆Θ
k1P
(
C
⃒
⃒eli ∧ emj

)
= k1

∑

C⊆Θ

(

m̂C(li,mj)

/(
∑

D⊆Θ
m̂D(li,mj) + m̂2Θ(li,mj)

))

= 1 (A1-15)

leading to

k1 =
∑

D⊆Θ m̂D(li,mj) + m̂2Θ(li,mj)
∑

C⊆Θ m̂C(li,mj)
(A1-16)

From Equation (A1-1), we then have

p
(
θ
⃒
⃒eli ∧ emj

)
= k1 P

(
θ
⃒
⃒eli ∧ emj

)

=

∑
D⊆Θ m̂D(li,mj) + m̂2Θ(li,mj)
∑

C⊆Θ m̂C(li,mj)

(

m̂θ(li,mj)

/(
∑

D⊆Θ
m̂D(li,mj) + m̂2Θ(li,mj)

))

= m̂θ(li,mj)

/
∑

C⊆Θ
m̂C(li,mj)∀θ ⊆ Θ

(A1-17)

From Equation (A1-10) and Equation (A1-14), the untrustworthiness of the results is given by

m̃2Θ(li,mj) = P
(
2Θ
⃒
⃒eli ∧ emj

)
= m̂2Θ(li,mj)

/(
∑

D⊆Θ
m̂D(li,mj) + m̂2Θ(li,mj)

)

= (1 − rli)
(
1 − rmj

)
/(

∑

D⊆Θ
m̂D(li,mj) + (1 − rli)

(
1 − rmj

)
) (A1-18)

Finally, if θ = ∅, there must be p
(
∅
⃒
⃒eli ∧ emj

)
= 0 by Definition 1.

A2. Proof of Corollary 1.1 (Exclusive MAKER rule)

From Definition 13 or Definition 14 and Equation (23), by putting Equation (55) or Equation (56) into Equation (A1-5), Equation
(A1-8) reduces to

m̂θ(li,mj) =
[(
1 − rmj

)
mθli + (1 − rli)mθmj

]
=
[(
1 − rmj

)
wθlpθli + (1 − rli)wθmpθmj

]
(A2-1)

Putting the above equation into Equation (59) leads to
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p
(
θ
⃒
⃒eli ∧ emj

)
=

(
1 − rmj

)
wθlpθli + (1 − rli)wθmpθmj

(
1 − rmj

)∑
C⊆ΘmCli + (1 − rli)

∑
C⊆ΘmCmj

∀θ ⊆ Θ

A3. Proof of Corollary 1.2 (Exclusive ER rule)

In Corollary 1.1, if the weights of variables remain constant for all state, or wθl = wl and wθm = wm for any θ ⊆ Θ, from Equation (8)
and Equation (23), we have

∑

C⊆Θ
mCli =

∑

C⊆Θ
wClpCli = wl

∑

C⊆Θ
pCli = wl (A3-1)

∑

C⊆Θ
mCmj =

∑

C⊆Θ
wCmpCmj = wm

∑

C⊆Θ
pCmj = wm (A3-2)

Putting Equation (A3-1) and Equation (A3-2) into Equation (62) leads to

p
(
θ
⃒
⃒eli ∧ emj

)
=

(
1 − rmj

)
wl

(
1 − rmj

)
wl + (1 − rli)wm

pθli +
(1 − rli)wm

(
1 − rmj

)
wl + (1 − rli)wm

pθmj ∀θ ⊆ Θ

A4. Proof of Corollary 1.3 (Differential MAKER rule)

Since evidence eli and evidence emj are exclusive of each other and each fully reliable, we have rli = rmj = 1 but cannot put them into
Equation (62) to calculate the combined likelihood because both the numerator and denominator of Equation (62) are zero so it is not
defined in this case. However, we conjecture that rli (rmj) are the functions of parameter t in a small area around rli = 1 (rmj = 1), and
define rli and rmj as some kind of differentiable functions of t:

rli = rli(t) and rmj = rmj(t) with rli(t =0) = 1 and rmj(t =0) = 1 (A4-1)

Putting rli(t) and rmj(t) into Equation (60), we get

m̂C(li,mj)(t) =
(
1 − rmj(t)

)
mCli + (1 − rli(t))mCmj (A4-2)

We can then calculate p
(
θ
⃒
⃒eli ∧ emj

)
by finding the following limit (Taylor, 1952)

p
(
θ
⃒
⃒eli ∧ emj

)
= lim

t→0

m̂θ(li,mj)(t)
∑

C⊆Θ m̂C(li,mj)(t)
= lim

t→0

m̂θ(li,mj)(t)
/

t
∑

C⊆Θ m̂C(li,mj)(t)
/

t
=

d
(
m̂θ(li,mj)(t)

)/
dt

∑
C⊆Θd

(
m̂C(li,mj)(t)

)/
dt

⃒
⃒
⃒
⃒
t=0

(A4-3)

Derivative d
(
m̂C(li,mj)(t)

)
/dt is calculated as follows:

d
(
m̂C(li,mj)(t)

)/
dt = d

( (
1 − rmj(t)

)
mCli + (1 − rli(t))mCmj

)/
dt = − rʹmj(t)mCli − rʹli(t)mCmj (A4-4)

Putting Equation (A4-4) into Equation (A4-3) leads to

p
(
θ
⃒
⃒eli ∧ emj

)
=

− rʹmj(t)mθli − ŕli(t)mθmj
∑

C⊆Θ

(
− rʹmj(t)mCli − rʹli(t)mCmj

)

⃒
⃒
⃒
⃒
⃒
t=0

=
rʹmj(0)mθli + rʹli(0)mθmj

∑
C⊆Θ

(
ŕmj(0)mCli + rʹli(0)mCmj

) (A4-5)

where ŕli(0) is the derivative of the reliability of eli at rli(t = 0) = 1. Let ŕli = ŕli(0) and ŕmj = ŕmj(0). Since ŕli and ŕmj are constant for any
θ ⊆ Θ, from Equation (23) we then have

p
(
θ
⃒
⃒eli ∧ emj

)
=

rʹmjwθlpθli + rʹliwθmpθmj

rʹmj
∑

C⊆ΘmCli + rʹli
∑

C⊆ΘmCmj
(A4-6)

For θ = ∅, there must be p
(
θ
⃒
⃒eli ∧ emj

)
= 0

A5. Proof of Corollary 1.4 (Independent MAKER rule)

If evidence eli and evidence emj are mutually independent, from Equation (20), Equation (23) and Equation (57), Equation (A1-6) of
Appendix A1 becomes

p
(
(sAlm|eli) ∩

(
sBlm
⃒
⃒emj
))

= p(sAl|eli)p
(
sBm
⃒
⃒emj
)
= p(A ∩ eAl|eli)p

(
B ∩ eBm

⃒
⃒emj
)

= p(A|eAl)p(eAl|eli)p(B|eBm)p
(
eBm
⃒
⃒emj
)
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= p(A|eAl)ωlipl(eAl|xl = xli)p(B|eBm)ωmjpm
(
eBm
⃒
⃒xm = xmj

)

= ωliωmjmAlimBmj

Putting the above equation into Equation (A1-5) of Appendix A1 and following the same proof process from Equation (A1-6) in
Appendix A1 lead to the conclusion of Corollary 1.4.

A6. Proof of Corollary 1.5 (ER rule)

If wθl = wl and wθm = wm for any θ ⊆ Θ, Equation (67) reduces to Equation (40) of reference [71], which confirms that the inde-
pendent MAKER rule reduces to the ER rule in this case.

A7. Proof of Corollary 1.6 (Augmented Dempster’s rule)

For θ = ∅, from Equation (1) there must be p
(
θ
⃒
⃒eli ∧ emj

)
= 0.

For any σ > τ, the orthogonal sum of joint probabilities is regarded to be appropriate and meaningful in that Dempster’s rule is
adequately defined in this case and it is legitimate to apply it. In Corollary 1.5, if each piece of evidence is fully reliable, there are rli =

rmj = 1. By putting them into Equation (67) that is in turn put into Equation (59) and noting Equation (23) and wθl = wl and wθm = wm

for any θ ⊆ Θ, Theorem 1 reduces to

p
(
θ
⃒
⃒eli ∧ emj

)
=

∑
A∩B=θmAlimBmj

∑
C⊆Θ
∑

A∩B=CmAlimBmj
=

∑
A∩B=θwAlpAliwBmpBmj

∑
C⊆Θ
∑

A∩B=CwAlpAliwBmpBmj

=

∑
A∩B=θwlpAliwmpBmj

∑
C⊆Θ
∑

A∩B=CwlpAliwmpBmj
=

∑
A∩B=θpAlipBmj

∑
C⊆Θ
∑

A∩B=CpAlipBmj
θ ⊆ Θ, σ > τ

(A7-1)

From Definition 1 and Definition 4, there is
∑

C⊆Θ

∑

A∩B=C
pAlipBmj +

∑

A∩B=∅
pAlipBmj = 1. We therefore have

∑

C⊆Θ

∑

A∩B=C
pAlipBmj = 1 −

∑

A∩B=∅
pAlipBmj (A7-2)

Putting Equation (A7-2) into Equation (A7-1) leads to

p
(
θ
⃒
⃒eli ∧ emj

)
=

∑
A∩B=θpAlipBmj

1 −
∑

A∩B=∅pAlipBmj
θ ⊆ Θ, σ > τ (A7-3)

For τ ≥ σ > 0, the orthogonal sum of joint probability is deemed to be too small to mean likely. It is therefore not appropriate to
apply Dempster’s rule given by Equation (A7-1) or Equation (A7-3) to calculate p

(
θ
⃒
⃒eli ∧ emj

)
as in this case Equation (A7-1) is no longer

defined in a meaningful way. As such, we attempt to perturb the 100% reliability for evidence in order to identify how evidence should
be combined in a small neighbourhood of the 100% reliability. Such perturbation is to reduce the reliability of evidence by a very small
amount, e.g. δli and δmj for eli and emj, or 1 ≥ rli ≥ 1 − δli and 1 ≥ rmj ≥ 1 − δmj with δli, δmj ≪ τ, so that individual support for states can
be counted for in the very small neighbourhood. To perturb evidence reliability, a reliability perturbation function rli(σ) for evidence eli

needs to be constructed for each piece of evidence, which should satisfy certain conditions.
rli(σ) should meet at least four conditions: i) differentiable, ii) rli(τ) = 1, iii) rli(0) = 1 and iv) 1 ≥ rli(σ) ≥ 1 − δli for any τ ≥ σ > 0.

Condition i) is required to ensure that Dempster’s rule can be defined when evidence is in complete conflict as analysed below;
Conditions ii) and iii) are needed to ensure the continuity of reliability at σ = τ and σ = 0. Condition iv) is required to ensure that
perturbation is controlled to be no more than δli so that any reduction of rli(σ) from the 100% reliability can be regarded negligible.

A general quadratic reliability perturbation function rli(σ) = a + bσ + cσ2 is constructed to meet the conditions precisely. The
fourth condition requires that the minimum reliability for evidence eli be equal to 1 − δli, which occurs at σ = − b /(2c). This fourth
condition plus Conditions ii) and iii) leads to the following three equations to determine parameters a, b and c:

rli(τ) = a + bτ + cτ2 = 1 (A7-4)

rli(0) = a = 1 (A7-5)

rli(− b / (2c)) = a + b(− b / (2c)) + c(− b/(2c))2 = 1 − δli (A7-6)

Solving the above equations leads to a = 1, b = − 4δli/τ and c = 4δli/τ2, so we get

rli(σ) = 1 − (4δli / τ)σ +
(
4δli

/
τ2
)
σ2 (A7-7)

Similarly, we can construct a quadratic reliability perturbation function rmj(σ) for evidence emj

rmj(σ) = 1 −
(
4δmj

/
τ
)
σ +

(
4δmj

/
τ2
)
σ2 (A7-8)
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If more conditions need to be met, higher order polynomial reliability perturbation functions can be constructed in a similar way.
Equation (67) then becomes

m̂θ(li,mj) =
[(
1 − rmj(σ)

)
wθlpθli + (1 − rli(σ))wθmpθmj

]
+
∑

A,B⊆Θ

A∩B=θ

wAlpAliwBmpBmj

=
[(
1 − rmj(σ)

)
wlpθli + (1 − rli(σ))wmpθmj

]
+ wlwm

∑

A,B⊆Θ

A∩B=θ

pAlipBmj

= wlwmmθ ∀θ ⊆ Θ

(A7-9)

mθ =

[
1 − rmj(σ)

wm
pθli +

1 − rli(σ)
wl

pθmj

]

+
∑

A,B⊆Θ
A∩B=θ

pAlipBmj (A7-10)

Putting Equation (A7-9) into Equation (59) leads to

p
(
θ
⃒
⃒eli ∧ emj

)
=

m̂θ(li,mj)
∑

C⊆Θ m̂C(li,mj)
=

wlwmmθ
∑

C⊆Θ(wlwmmC)
=

mθ
∑

C⊆ΘmC
(A7-11)

For σ = 0, we have the same situation as analysed in Corollary 1.3. From Equation (A7-7), we get rʹli(σ) = − (4δli /τ) + 2(4δli /τ2)σ,
so ŕli(0)= − (4δli /τ). Similar, we get rʹmj(0) = −

(
4δmj /τ

)
. Putting them into Equation (66) leads to

p
(
θ
⃒
⃒eli ∧ emj

)
=

−
(
4δmj

/
τ
)
wθlpθli − (4δli/τ)wθmpθmj

−
(
4δmj

/
τ
)∑

C⊆ΘwClpCli − (4δli/τ)
∑

D⊆ΘwDmpDmj

=
δmjwlpθli + δliwmpθmj

δmjwl
∑

C⊆ΘpCli + δliwm
∑

D⊆ΘpDmj

(A7-12)

From Definition (3),
∑

C⊆Θ
pCli = 1 and

∑

D⊆Θ
pDmj = 1. Equation (A7-12) finally becomes

p
(
θ
⃒
⃒eli ∧ emj

)
=

δmjwl

δmjwl + δliwm
pθli +

δliwm

δmjwl + δliwm
pθmj

A8. Proof of Lemma 2.1 (Recursive MAKER algorithm)

Let i1 = i − 1 and e1∧ i1 = (e1 ∧ ⋯ ∧ ei− 1) be the conjunction of the first i-1 pieces of evidence, and eθ(1∧ i1) be the evidential element
that evidence e1∧ i1 points to state θ.

For θ = ∅, from Definition (6), there must be P(∅|e1∧ l) = 0 for any l.
For θ ∕= ∅, at l=2, given the above notations, using Equation (A1-8), Equation (A1-10), Equation (A1-13) and Equation (A1-14) in

the proof of Theorem 1 to combine two pieces of evidence e1 and e2 leads to,

m̃θ(1∧2) = P(θ|e1∧2) =
m̂θ(1∧2)

∑
C⊆Θ m̂C(1∧2) + m̂2Θ(1∧2)

∀θ ∕= ∅ (A8-1)

with m̂θ(1∧2) for any θ ⊆ Θ and m̂2Θ(1∧2) given as follows

m̂θ(1∧2) = [m̃θ(1∧1)(1 − r2) + m̃2Θ(1∧1)mθ2] + ω1,2

∑

A,B⊆Θ

A∩B=θ

wA1,B2αA1,B2m̃A(1∧1)mB2 ∀θ ⊆ Θ
(A8-2)

m̂2Θ(1∧2) = (1 − r2)m̃2Θ(1∧1) (A8-3)

where m̃θ(1∧1) = ω1mθ1 and m̃2Θ(1∧1) = ω1(1 − r1) as given by Equation (22) and Equation (26), respectively. Since there is ω1 in every
term in Equation (A8-2) and (A8-3), ω1 will be cancelled out in Equation (A8-1). To simplify calculation, we set

m̃θ(1∧1) = mθ1 and m̃2Θ(1∧1) = (1 − r1) (A8-4)

without changing the result of Equation (A8-1). In Equation (A8-2), ω1,2 = ω1,2/(ω1ω2), wA1,B2 = wθ12/(wA1wB2), αA1,B2 = pA1,B2

/(pA1pB2) with A ∩ B = θ. So, Equation (70) to Equation (72) hold at l=2.
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Assume that Equation (70) to Equation (72) hold at l=i1. Let sθ(1∧ i1) = (θ ∩ eθ(1∧ i1)) and (θ|e1∧ i1 ) stand for evidence e1∧ i1 supporting
state θ in SOPS and ERPS, respectively, with m̃θ(1∧ i1) = P(θ|e1∧ i1 ) = p(sθ(1∧ i1)) as given in Equation (17) and Equation (22). From the
above assumption and notations, we then have

m̃2Θ(1∧ i1) = P(2Θ|e1∧ i1 ) =
m̂2Θ(1∧ i1)∑

C⊆Θ m̂C(1∧ i1) + m̂2Θ(1∧ i1)
(A8-5)

m̃θ(1∧ i1) = P(θ|e1∧ i1 ) = p(sθ(1∧ i1)) = p(θ ∩ eθ(1∧ i1)) = p(θ|eθ(1∧ i1))p(eθ(1∧ i1)) =
m̂θ(1∧ i1)∑

C⊆Θ m̂C(1∧ i1) + m̂2Θ(1∧ i1)
∀θ ⊆ Θ (A8-6)

At l=i, we need to generate basic probability m̃θ(1∧ i) = P(θ|e1∧ i) for any θ ∕= ∅, which should be proportional to the joint probability
of the union of the exclusive events that both evidence e1∧ i1 supports state A and evidence ei supports state B, that is, (A|e1∧ i1 ) ∩ (B|ei)

for any A ∩ B = θ. In other words, the following equation should hold:

m̃θ(1∧ i) = P(θ|e1∧ i) = k3P
(

∪
A∩B=θ

((A|e1∧ i1 ) ∩ (B|ei))

)

(A8-7)

where k3 is a non-negative constant that does not change for any θ ⊆ Θ and power set 2Θ.
Note that the residual support (2Θ|e1∧ i1 ) of evidence e1∧ i1 is formed independently of evidence ei, and the residual support (2Θ|ei) of

evidence ei is formed independently of any evidence in e1∧ i1 . For θ = 2Θ, joint probability P
(

∪
A∩B=θ

((A|e1∧ i1 ) ∩ (B|ei))

)

is therefore

calculated by Equation (26) and Equation (A8-5) as follows:

P
(

∪
A∩B=2Θ

((A|e1∧i1 ) ∩ (B|ei))

)

= P((2Θ|e1∧i1 ) ∩ (2Θ|ei))

= P(2Θ|e1∧i1 )P(2
Θ|ei) = m̃2Θ(1∧i1)ωi(1 − ri) = ωi m̂2Θ(1∧i)

(A8-8)

m̂2Θ(1∧ i) = m̃2Θ(1∧ i1)(1 − ri) (A8-9)

For any θ ⊆ Θ, joint probability P
(

∪
A∩B=θ,θ⊆Θ

((A|e1∧ i1 ) ∩ (B|ei))

)

is calculated by Equation (22), Equation (26), Equation (A8-5) and

Equation (A8-6) as follows:

P

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⋃

A∩B=θ

θ⊆Θ

((A|e1∧ i1 ) ∩ (B|ei))

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= P

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⋃

A∩B=θ

A, B⊆Θ

((A|e1∧ i1 ) ∩ (B|ei)) ∪ ((θ|e1∧ i1 ) ∩ (2Θ|ei)) ∪ ((2Θ|e1∧ i1 ) ∩ (θ|ei))

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=
∑

A∩B=θ
A, B⊆Θ

P((A|e1∧ i1 ) ∩ (B|ei)) + P((θ|e1∧ i1 ) ∩ (2Θ|ei)) + P((2Θ|e1∧ i1 ) ∩ (θ|ei)) = P(θ|e1∧ i1 )P(2
Θ|ei) + P(2Θ|e1∧ i1 )P(θ|ei)

+
∑

A∩B=θ
A, B⊆Θ

P((A|e1∧ i1 ) ∩ (B|ei)) = m̃θ(1∧ i1)ωi(1 − ri) + m̃2Θ(1∧ i1)ωimθi +
∑

A∩B=θ
A, B⊆Θ

P((A|e1∧ i1 ) ∩ (B|ei)) (A8-10)

The probability in the summation of the above equation can be rewritten as follows:
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P((A|e1∧ i1 ) ∩ (B|ei)) = p(sA(1∧ i1) ∩ sBi) = p((A ∩ eA(1∧ i1)) ∩ (B ∩ eBi))

= p((A ∩ B) ∩ (eA(1∧ i1) ∩ eBi)) = p(θ ∩ (eA(1∧ i1) ∩ eBi))

= p(θ|eA(1∧ i1) ∩ eBi)p(eA(1∧ i1) ∩ eBi)

=
p(θ|eA(1∧ i1) ∩ eBi)

p(A|eA(1∧ i1))p(B|eBi)
×

p(eA(1∧ i1) ∩ eBi)

p(eA(1∧ i1))pi(eBi)

×p(A|eA(1∧ i1))p(B|eBi) × p(eA(1∧ i1))pi(eBi)

= wA(1∧ i1),Bi ×
ω1∧ ip1∧ i(eA(1∧ i1) ∩ eBi)

ω1∧ i1p1∧ i1 (eA(1∧ i1))pi(eBi)

×p(A|eA(1∧ i1))p(eA(1∧ i1)) × p(B|eBi)pi(eBi)

=
ω1∧ i

ω1∧ i1
wA(1∧ i1),BiαA(1∧ i1),Bim̃A(1∧ i1)mBi

(A8-11)

where

p(eA(1∧ i1) ∩ eBi) = ω1∧ ip1∧ i(eA(1∧ i1) ∩ eBi) (A8-12)

p(eA(1∧ i1)) = ω1∧ i1p1∧ i1 (eA(1∧ i1)) (A8-13)

αA(1∧ i1),Bi =
p1∧ i(eA(1∧ i1) ∩ eBi)

p1∧ i1 (eA(1∧ i1))pi(eBi)
(A8-14)

wA(1∧ i1),Bi = p(θ|eA(1∧ i1) ∩ eBi)
/
(p(A|eA(1∧ i1))p(B|eBi)) (A8-15)

m̃A(1∧ i1) = p(A|eA(1∧ i1))p(eA(1∧ i1)) (A8-16)

mBi = p(B|eBi)pi(eBi) (A8-17)

with p1∧ i, p1∧ i1 and pi being the basic probability functions generated from the data sources where evidence e1∧ i, evidence e1∧ i1 and
evidence ei are acquired, respectively.

Putting Equation (A8-11) into Equation (A8-10) leads to

P

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⋃

A∩B=θ

θ⊆Θ

((A|e1∧ i1 ) ∩ (B|ei))

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= ωi[m̃θ(1∧ i1)(1 − ri) + m̃2Θ(1∧ i1)mθi] +
ω1∧ i

ω1∧ i1

∑

A∩B=θ

A, B⊆Θ

wA(1∧ i1),BiαA(1∧ i1),Bim̃A(1∧ i1)mBi = ωi m̂θ(1∧ i),∀θ ⊆ Θ

(A8-18)

m̂θ(1∧i) = [m̃θ(1∧i1)(1 − ri) + m̃2Θ(1∧i1)mθi] + ω1∧i1 ,i

∑

A∩B=θ

A, B⊆Θ

wA(1∧i1),BiαA(1∧i1),Bim̃A(1∧i1)mBi

(A8-19)

ω1∧ i1 ,i =
ω1∧ i

ω1∧ i1ωi
(A8-20)

Putting Equation (A8-8) and Equation (A8-18) into Equation (A8-7) and satisfying the condition
∑

C⊆Θ
P(C|e1∧ i) + P(2Θ|e1∧ i) = 1 as

required in Equation (17) lead to

k3
∑

C⊆Θ
ωi m̂C(1∧ i) + k3ωi m̂2Θ(1∧ i) = 1k3 =

1
ωi
( ∑

C⊆Θ m̂C(1∧ i) + m̂2Θ(1∧ i)
) (A8-21)

Finally, putting Equation (A8-8), Equation (A8-18) and Equation (A8-21) into Equation (A8-7) leads to

m̃2Θ(1∧ i) = P(2Θ|e1∧ i) = k3ωi m̂2Θ(1∧ i) =
m̂2Θ(1∧ i)

∑
C⊆Θ m̂C(1∧ i) + m̂2Θ(1∧ i)

(A8-22)

m̃θ(1∧ i) = P(θ|e1∧ i) = k3ωi m̂θ(1∧ i) =
m̂θ(1∧ i)

∑
C⊆Θ m̂C(1∧ i) + m̂2Θ(1∧ i)

∀θ ⊆ Θ (A8-23)

So, Equation (70) to Equation (72) also hold at l=i. Therefore, they hold for any l.
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A9. Proof of Theorem 2 (Recursive MAKER rule)

Based on the likelihood principle, conditional probability p(θ|e1∧ L) measured in SOPS should be proportional to conditional
probability P(θ|e1∧ L)measured in ERPS and generated from Lemma 2.1 at l=L-1, so that they hold the same evidential meanings. That
is, the following equation should hold

p(θ|e1∧ L) = k4P(θ|e1∧ L) ∀θ ⊆ Θ (A9-1)

where k4 is a positive constant that does not change for any θ ⊆ Θ.
According to Definition 1, there should be

∑

D⊆Θ
p(D|e1∧ L) = 1. From Equation (70) and Equation (A9-1), we then have

∑

D⊆Θ
p(D|e1∧ L) =

∑

D⊆Θ
k4P(D|e1∧ L) = k4

∑

D⊆Θ

m̂D(1∧ L)
∑

C⊆Θ m̂C(1∧ L) + m̂2Θ(1∧ L)
= 1 (A9-2)

So, we get

k4 =
∑

C⊆Θ

m̂C(1∧ L) + m̂2Θ(1∧ L)
∑

D⊆Θ m̂D(1∧ L)
(A9-3)

From Equation (70), putting Equation (A9-3) into Equation (A9-1) leads to

p(θ|e1∧ L) =

∑
C⊆Θ m̂C(1∧ L) + m̂2Θ(1∧ L)
∑

D⊆Θ m̂D(1∧ L)
P(θ|e1∧ L)

=
∑

C⊆Θ

m̂C(1∧ L) + m̂2Θ(1∧ L)
∑

D⊆Θ m̂D(1∧ L)

m̂θ(1∧ L)
∑

C⊆Θ m̂C(1∧ L) + m̂2Θ(1∧ L)
=

m̂θ(1∧ L)
∑

D⊆Θ m̂D(1∧ L)
∀θ ⊆ Θ

(A9-4)

The probability of the residual support leftover after all pieces of evidence are combined is given by m̃2Θ(1∧ L) that is calculated by
Equation (A8-22) at i = L. The trustworthiness of the above combined results is then given by 1 − m̃2Θ(1∧ L).

For θ = ∅, there must be p(θ|e1∧ L) = 0 according to Definition 1.

A10. Proof of Corollary 2.1 (Additive MAKER algorithm)

Let l1 = l − 1 and e1∧ l1 = (e1 ∧ ⋯ ∧ el− 1) be the conjunction of the first l-1 pieces of evidence, and eθ(1∧ l1) be the evidential element
that evidence e1∧ l1 points to state θ. If all pieces of evidence are exclusive of each other, from Equation (55) or Equation (56), by

replacing eli and emj with e1∧ l1 and el, respectively, we get P
( (

A|e1∧ l1
)
∩ (B|el)

)
= p
((

sA(1∧ l1)

⃒
⃒
⃒ee1∧ l1

)
∩ (sBl|el)

)
= 0 for any l and A ∩ B =

θ. Equation (A8-18) and Equation (A8-19) then reduces to

P

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∪
A∩B=θ

θ⊆Θ

((A|e1∧l1 ) ∩ (B|el))

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= ωl[m̃θ(1∧l1)(1 − rl) + m̃2Θ(1∧l1)mθl] = ωl m̂θ(1∧l) ∀θ ⊆ Θ (A10-1)

m̂θ(1∧ l) = [m̃θ(1∧ l1)(1 − rl)+ m̃2Θ(1∧ l1)mθl] (A10-2)

The proof of Lemma 2.1 shows that Equation (71) reduces to Equation (A10-2). At L=2, from the proof of Lemma 2.1 and Theorem
2, we have for any θ ⊆ Θ

m̂θ(1∧2) = m̃θ1(1 − r2) + m̃2Θ1mθ2 = mθ1(1 − r2) + m2Θ1mθ2

= (1 − r2)mθ1 + (1 − r1)mθ2 =
∑2

i=1

∏2

j=1,j∕=i

(
1 − rj

)
mθi

(A10-3)

m̂2Θ(1∧2) = (1 − r2)m̃2Θ1 = (1 − r2)(1 − r1) =
∏2

j=1

(
1 − rj

)
(A10-4)

From Lemma 2.1 and Theorem 2, we then have

m̃θ(1∧2) =
m̂θ(1∧2)

∑
C⊆Θ m̂C(1∧2) + m̂2Θ(1∧2)

=

∑2
i=1
∏2

j=1,j∕=i
(
1 − rj

)
mθi

∑
C⊆Θ
∑2

i=1
∏2

j=1,j∕=i
(
1 − rj

)
mCi +

∏2
j=1
(
1 − rj

) (A10-5)
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m̃2Θ(1∧2) =
m̂2Θ(1∧2)

∑
C⊆Θ m̂C(1∧2) + m̂2Θ(1∧2)

=

∏2
j=1
(
1 − rj

)

∑
C⊆Θ
∑2

i=1
∏2

j=1,j∕=i
(
1 − rj

)
mCi +

∏2
j=1
(
1 − rj

) (A10-6)

p(θ|e1∧2) =
m̂θ(1∧2)

∑
C⊆Θ m̂C(1∧2)

=

∑2
i=1
∏2

j=1,j∕=i
(
1 − rj

)
mθi

∑
C⊆Θ
∑2

i=1
∏2

j=1,j∕=i
(
1 − rj

)
mCi

(A10-7)

So, Equation (74) holds at L=2.
At L=3, from Equation (A10-2), Equation (A10-5) and Equation (A10-6), we have

m̂θ(1∧3) = m̃θ(1∧2)(1 − r3) + m̃2Θ(1∧2)mθ3

=

(∑2
i=1
∏2

j=1,j∕=i
(
1 − rj

)
mθi

)
(1 − r3)

∑
C⊆Θ
∑2

i=1
∏2

j=1,j∕=i
(
1 − rj

)
mCi +

∏2
j=1
(
1 − rj

)+

(∏2
j=1
(
1 − rj

))
mθ3

∑
C⊆Θ
∑2

i=1
∏2

j=1,j∕=i
(
1 − rj

)
mCi +

∏2
j=1
(
1 − rj

)

=

(∑2
i=1
∏2

j=1,j∕=i
(
1 − rj

)
mθi

)
(1 − r3) +

∏2
j=1
(
1 − rj

)
mθ3

∑
C⊆Θ
∑2

i=1
∏2

j=1,j∕=i
(
1 − rj

)
mCi +

∏2
j=1
(
1 − rj

)

=

∑2
i=1
∏3

j=1,j∕=i
(
1 − rj

)
mθi +

∏3
j=1,j∕=3

(
1 − rj

)
mθ3

∑
C⊆Θ
∑2

i=1
∏2

j=1,j∕=i
(
1 − rj

)
mCi +

∏2
j=1
(
1 − rj

)

=

∑3
i=1

(∏3
j=1,j∕=i

(
1 − rj

))
mθi

∑
C⊆Θ
∑2

i=1
∏2

j=1,j∕=i
(
1 − rj

)
mCi +

∏2
j=1
(
1 − rj

)

(A10-8)

m̂2Θ(1∧3) = (1 − r3)m̃2Θ(1∧2) =
(1 − r3)

∏2
j=1
(
1 − rj

)

∑
C⊆Θ
∑2

i=1
∏2

j=1,j∕=i
(
1 − rj

)
mCi +

∏2
j=1
(
1 − rj

)

=

∏3
j=1
(
1 − rj

)

∑
C⊆Θ
∑2

i=1
∏2

j=1,j∕=i
(
1 − rj

)
mCi +

∏2
j=1
(
1 − rj

)

(A10-9)

m̃θ(1∧3) =
m̂θ(1∧3)

∑
D⊆Θ m̂D(1∧3) + m̂2Θ(1∧3)

=

∑3
i=1

(∏3
j=1,j∕=i

(
1 − rj

))
mθi

∑
C⊆Θ
∑2

i=1
∏2

j=1,j∕=i
(
1 − rj

)
mCi +

∏2
j=1
(
1 − rj

)

∑
D⊆Θ

∑3
i=1

(∏3
j=1,j∕=i

(
1 − rj

))
mDi

∑
C⊆Θ
∑2

i=1
∏2

j=1,j∕=i

(
1 − rj

)
mCi +

∏2
j=1

(
1 − rj

)+

∏3
j=1
(
1 − rj

)

∑
C⊆Θ
∑2

i=1
∏2

j=1,j∕=i

(
1 − rj

)
mCi +

∏2
j=1

(
1 − rj

)

=

∑3
i=1

(∏3
j=1,j∕=i

(
1 − rj

))
mθi

∑
D⊆Θ
∑3

i=1

(∏3
j=1,j∕=i

(
1 − rj

))
mDi +

∏3
j=1
(
1 − rj

)

(A10-10)

m̃2Θ(1∧3) =
m̂2Θ(1∧3)

∑
D⊆Θ m̂D(1∧3) + m̂2Θ(1∧3)

=

∏3
j=1
(
1 − rj

)

∑
C⊆Θ
∑2

i=1
∏2

j=1,j∕=i
(
1 − rj

)
mCi +

∏2
j=1
(
1 − rj

)

∑
D⊆Θ

∑3
i=1

(∏3
j=1,j∕=i

(
1 − rj

))
mDi

∑
C⊆Θ
∑2

i=1
∏2

j=1,j∕=i
(
1 − rj

)
mCi +

∏2
j=1
(
1 − rj

)+

∏3
j=1
(
1 − rj

)

∑
C⊆Θ
∑2

i=1
∏2

j=1,j∕=i
(
1 − rj

)
mCi +

∏2
j=1
(
1 − rj

)

=

∏3
j=1
(
1 − rj

)

∑
D⊆Θ
∑3

i=1

(∏3
j=1,j∕=i

(
1 − rj

))
mDi +

∏3
j=1
(
1 − rj

)

(A10-11)
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p(θ|e1∧3) =
m̂θ(1∧3)

∑
D⊆Θ m̂D(1∧3)

=

∑3
i=1

(∏3
j=1,j∕=i

(
1 − rj

))
mθi

∑
C⊆Θ
∑2

i=1

(∏2
j=1,j∕=i

(
1 − rj

))
mCi +

∏2
j=1
(
1 − rj

)

∑
D⊆Θ

∑3
i=1

(∏3
j=1,j∕=i

(
1 − rj

))
mDi

∑
C⊆Θ
∑2

i=1

(∏2
j=1,j∕=i

(
1 − rj

))
mCi +

∏2
j=1
(
1 − rj

)

=

∑3
i=1

(∏3
j=1,j∕=i

(
1 − rj

))
mθi

∑
D⊆Θ
∑3

i=1

(∏3
j=1,j∕=i

(
1 − rj

))
mDi

(A10-12)

So, Equation (74) holds at L=3.
From the formats of Equation (A10-8) and Equation (A10-9), we assume that the following Equations hold at L = l1 = l − 1.

m̂θ(1∧ l1) =

∑l1
i=1

(∏l1
j=1,j∕=i

(
1 − rj

))
mθi

∑
C⊆Θ
∑l1 − 1

i=1
∏l1 − 1

j=1,j∕=i
(
1 − rj

)
mCi +

∏l1 − 1
j=1
(
1 − rj

) (A10-13)

m̂2Θ(1∧ l1) =

∏l1
j=1
(
1 − rj

)

∑
C⊆Θ
∑l1 − 1

i=1
∏l1 − 1

j=1,j∕=i
(
1 − rj

)
mCi +

∏l1 − 1
j=1
(
1 − rj

) (A10-14)

The above assumption leads to the following equations assumed to hold at L = l1 as well:

m̃θ(1∧ l1) =
m̂θ(1∧ l1)∑

D⊆Θ m̂D(1∧ l1) + m̂2Θ(1∧ l1)
=

∑l1
i=1

(∏l1
j=1,j∕=i

(
1 − rj

))
mθi

∑
D⊆Θ
∑l1

i=1

(∏l1
j=1,j∕=i

(
1 − rj

))
mDi +

∏l1
j=1
(
1 − rj

) (A10-15)

m̃2Θ(1∧ l1) =
m̂2Θ(1∧ l1)∑

D⊆Θ m̂D(1∧ l1) + m̂2Θ(1∧ l1)
=

∏l1
j=1
(
1 − rj

)

∑
D⊆Θ
∑l1

i=1

(∏l1
j=1,j∕=i

(
1 − rj

))
mDi +

∏l1
j=1
(
1 − rj

)

p(θ|e1∧ l1 ) =
m̂θ(1∧ l1)∑

C⊆Θ m̂C(1∧ l1)
=

∑l1
i=1

(∏l1
j=1,j∕=i

(
1 − rj

))
mθi

∑
C⊆Θ
∑l1

i=1

(∏l1
j=1,j∕=i

(
1 − rj

))
mCi

(A10-16)

At L=l, from Lemma 2.1 and Theorem 2 with Equation (71) replaced by Equation (A10-2), we have

m̂θ(1∧ l) = m̃θ(1∧ l1)(1 − rl) + m̃2Θ(1∧ l1)mθl

=

(∑l1
i=1

(∏l1
j=1,j∕=i

(
1 − rj

))
mθi

)
(1 − rl)

∑
D⊆Θ

(∑l1
i=1

(∏l1
j=1,j∕=i

(
1 − rj

))
mDi

)
+
∏l1

j=1

(
1 − rj

)+

(∏l1
j=1

(
1 − rj

))
mθl

∑
D⊆Θ

(∑l1
i=1

(∏l1
j=1,j∕=i

(
1 − rj

))
mDi

)
+
∏l1

j=1

(
1 − rj

)

=

∑l1
i=1

(∏l
j=1,j∕=i

(
1 − rj

))
mθi +

(∏l
j=1,j∕=l

(
1 − rj

))
mθl

∑
D⊆Θ

(∑l1
i=1

(∏l1
j=1,j∕=i

(
1 − rj

))
mDi

)
+
∏l1

j=1
(
1 − rj

)

=

∑l
i=1

(∏l
j=1,j∕=i

(
1 − rj

))
mθi

∑
D⊆Θ

(∑l1
i=1

(∏l1
j=1,j∕=i

(
1 − rj

))
mDi

)
+
∏l1

j=1
(
1 − rj

)

(A10-17)

m̂2Θ(1∧ l) = (1 − rl)m̃2Θ(1∧ l1)

=
(1 − rl)

∏l1
j=1
(
1 − rj

)

∑
D⊆Θ
∑l1

i=1

(∏l1
j=1,j∕=i

(
1 − rj

))
mDi +

∏l1
j=1
(
1 − rj

)

=

∏l
j=1
(
1 − rj

)

∑
D⊆Θ
∑l1

i=1

(∏l1
j=1,j∕=i

(
1 − rj

))
mDi +

∏l1
j=1
(
1 − rj

)

(A10-18)

From Equation (A10-17), Theorem 2 can then be re-written as follows:
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p(θ|e1∧ l) =
m̂θ(1∧ l)

∑
C⊆Θ m̂C(1∧ l)

=

∑l
i=1

(∏l
j=1,j∕=i

(
1 − rj

))
mθi

∑
D⊆Θ

(∑l1
i=1

(∏l1
j=1,j∕=i

(
1 − rj

))
mDi

)
+
∏l1

j=1
(
1 − rj

)

∑
C⊆Θ

∑l
i=1

(∏l
j=1,j∕=i

(
1 − rj

))
mCi

∑
D⊆Θ

(∑l1
i=1

(∏l1
j=1,j∕=i

(
1 − rj

))
mDi

)
+
∏l1

j=1
(
1 − rj

)

=

∑l
i=1

(∏l
j=1,j∕=i

(
1 − rj

))
mθi

∑
C⊆Θ
∑l

i=1

(∏l
j=1,j∕=i

(
1 − rj

))
mCi

(A10-19)

So, Equation (74) holds at L=l as well. It therefore holds for any L.
Finally, we get the following equation for calculating the untrustworthiness of the combined results:

m̃2Θ(1∧ l) =
m̂2Θ(1∧ l)

∑
C⊆Θ m̂C(1∧ l) + m̂2Θ(1∧ l)

=

∏l
j=1
(
1 − rj

)

∑
D⊆Θ
∑l1

i=1

(∏l1
j=1,j∕=i

(
1 − rj

))
mDi +

∏l1
j=1
(
1 − rj

)

∑
C∈Θ

( ∑l
i=1

(∏l
j=1,j∕=i

(
1 − rj

))
mCi

∑
D⊆Θ

(∑l1
i=1

(∏l1
j=1,j∕=i

(
1 − rj

))
mDi

)
+
∏l1

j=1
(
1 − rj

)

)

+

∏l
j=1
(
1 − rj

)

∑
D⊆Θ
∑l1

i=1

(∏l1
j=1,j∕=i

(
1 − rj

))
mDi +

∏l1
j=1
(
1 − rj

)

=

∏l
j=1
(
1 − rj

)

∑
C∈Θ
∑l

i=1

(∏l
j=1,j∕=i

(
1 − rj

))
mCi +

∏l
j=1
(
1 − rj

)

(A10-20)

So, Equation (75) also holds at L=l. It therefore holds for any L.

A11. Proof of Corollary 2.2 (Recursive Independent MAKER algorithm)

Let l1 = l − 1 and e1∧ l1 = (e1 ∧ ⋯ ∧ el− 1) be the conjunction of the first l-1 pieces of evidence, and eθ(1∧ l1) be the evidential element
that evidence e1∧ l1 points to state θ. Since all pieces of evidence are mutually independent, from Equation (20), Equation (22), Equation
(23) and Equation (57), the joint probability in Equation (A8-10) of Appendix A8 becomes

P((A|e1∧l1 ) ∩ (B|el)) = p((sA(1∧l1)|e1∧l1 ) ∩ (sBl|el)) = p(sA(1∧l1)|e1∧l1 )p(sBl|el) = m̃A(1∧l1)ωlmBl (A11-1)

Putting Equation (A11-1) into Equation (A8-10) leads to

P

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⋃

A∩B=θ

θ⊆Θ

((A|e1∧ l1 ) ∩ (B|el))

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= ωl[m̃θ(1∧ l1)(1 − rl) + m̃2Θ(1∧ l1)mθl] + ωl

∑

A∩B=θ

A, B⊆Θ

m̃A(1∧ l1)mBl = ωl m̂θ(1∧ l) (A11-2)

m̂θ(1∧ l) = [m̃θ(1∧ l1)(1 − rl)+ m̃2Θ(1∧ l1)mθl] +
∑

A∩B=θ
A, B⊆Θ

m̃A(1∧ l1)mBl (A11-3)

Replacing Equation (A8-18) and Equation (A8-19) by Equation (A11-2) and Equation (A11-3), we can prove Corollary 2.2 in the
same way as for proving Lemma 2.1.

A12. Proof of Corollary 2.3 (Multiplicative MAKER algorithm)

Let l1 = l − 1 and e1∧ l1 = (e1 ∧ ⋯ ∧ el− 1) be the conjunction of the first l-1 pieces of evidence, and eθ(1∧ l1) be the evidential element
that evidence e1∧ l1 points to state θ. If all L pieces of evidence are independent of each other and basic probabilities are assigned to
singleton system states and the system space only, Equation (A11-3) reduces to
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m̂θ(1∧l) = [m̃θ(1∧l1)(1 − rl) + m̃2Θ(1∧l1)mθl] + m̃θ(1∧l1)mθl + m̃θ(1∧l1)mΘl + m̃Θ(1∧l1)mθl

= m̃θ(1∧l1)mθl + m̃θ(1∧l1)(mΘl + (1 − rl)) + (m̃Θ(1∧l1) + m̃2Θ(1∧l1))mθl
= m̃θ(1∧l1)(mθl + mΘl + (1 − rl)) + (m̃Θ(1∧l1) + m̃2Θ(1∧l1))mθl
= m̃θ(1∧l1)(mθl + mΘl + (1 − rl)) + (m̃Θ(1∧l1) + m̃2Θ(1∧l1))(mθl + mΘl + (1 − rl))

− (m̃Θ(1∧l1) + m̃2Θ(1∧l1))(mΘl + (1 − rl))

= (m̃θ(1∧l1) + m̃Θ(1∧l1) + m̃2Θ(1∧l1))(mθl + mΘl + (1 − rl)) − (m̃Θ(1∧l1) + m̃2Θ(1∧l1))(mΘl + (1 − rl))

(A12-1)

m̂Θ(1∧ l) = [m̃Θ(1∧ l1)(1 − rl) + m̃2Θ(1∧ l1)mΘl] + m̃Θ(1∧ l1)mΘl
= (m̃Θ(1∧ l1) + m̃2Θ(1∧ l1))mΘl + m̃Θ(1∧ l1)(1 − rl)

= (m̃Θ(1∧ l1) + m̃2Θ(1∧ l1))mΘl + (m̃Θ(1∧ l1) + m̃2Θ(1∧ l1))(1 − rl)

− m̃2Θ(1∧ l1)(1 − rl)

= (m̃Θ(1∧ l1) + m̃2Θ(1∧ l1))(mΘl + (1 − rl)) − m̃2Θ(1∧ l1)(1 − rl)

(A12-2)

m̂2Θ(1∧ l) = m̃2Θ(1∧ l1)(1 − rl) (A12-3)

At L = 2, from Equation (A12-1) to Equation (A12-3) we get

m̂θ(1∧2) = (m̃θ1 + m̃Θ1 + m̃2Θ1)(mθ2 + mΘ2 + (1 − r2))
− (m̃Θ1 + m̃2Θ1)(mΘ2 + (1 − r2))
= (mθ1 + mΘ1 + (1 − r1))(mθ2 + mΘ2 + (1 − r2))
− (mΘ1 + (1 − r1))(mΘ2 + (1 − r2))

=
∏2

i=1
(mθi + mΘi + (1 − ri)) −

∏2

i=1
(mΘi + (1 − ri))

(A12-4)

m̂Θ(1∧2) = (m̃Θ1 + m̃2Θ1)(mΘ2 + (1 − r2)) − m̃2Θ1(1 − r2)
= (mΘ1 + m2Θ1)(mΘ2 + (1 − r2)) − m2Θ1(1 − r2)
= (mΘ1 + (1 − r1))(mΘ2 + (1 − r2)) − (1 − r1)(1 − r2)

=
∏2

i=1
(mΘi + (1 − ri)) −

∏2

i=1
(1 − ri)

(A12-5)

m̂2Θ(1∧2) = (1 − r2)m̃2Θ1 = (1 − r2)m2Θ1 = (1 − r2)(1 − r1) =
∏2

i=1
(1 − ri) (A12-6)

From Lemma 2.1, Theorem 2 and Equation (A12-4) to Equation (A12-6), we therefore get

k1∧2 =
∑

C⊆Θ
m̂C(1∧2) + m̂2Θ(1∧2) =

∑

C∈Θ
m̂C(1∧2) + m̂Θ(1∧2) + m̂2Θ(1∧2)

=
∑

C∈Θ

(
∏2

i=1
(mCi + mΘi + (1 − ri)) −

∏2

i=1
(mΘi + (1 − ri))

)

+

(
∏2

i=1
(mΘi + (1 − ri)) −

∏2

i=1
(1 − ri)

)

+
∏2

i=1
(1 − ri)

=
∑

C∈Θ

∏2

i=1
(mCi + mΘi + (1 − ri)) − N

∏2

i=1
(mΘi + (1 − ri))

+
∏2

i=1
(mΘi + (1 − ri))

=
∑

C∈Θ

∏2

i=1
(mCi + mΘi + (1 − ri)) − (N − 1)

∏2

i=1
(mΘi + (1 − ri))

(A12-7)

m̃θ(1∧2) =
m̂θ(1∧2)

∑
C⊆Θ m̂C(1∧2) + m̂2Θ(1∧2)

=

∏2
i=1(mθi + mΘi + (1 − ri)) −

∏2
i=1(mΘi + (1 − ri))

k1∧2
(A12-8)

m̃Θ(1∧2) =
m̂Θ(1∧2)

∑
C⊆Θ m̂C(1∧2) + m̂2Θ(1∧2)

=

∏2
i=1(mΘi + (1 − ri)) −

∏2
i=1(1 − ri)

k1∧2
(A12-9)

m̃2Θ(1∧2) =
m̂2Θ(1∧2)

∑
C⊆Θ m̂C(1∧2) + m̂2Θ(1∧2)

=

∏2
i=1(1 − ri)

k1∧2
(A12-10)
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p(θ|e1∧2) =
m̂θ(1∧2)

∑
C⊆Θ m̂C(1∧2)

=
m̂θ(1∧2)

∑
C∈Θ m̂C(1∧2) + m̂Θ(1∧2)

=

∏2
i=1(mθi + mΘi + (1 − ri)) −

∏2
i=1(mΘi + (1 − ri))

∑
C∈Θ

(∏2
i=1(mCi + mΘi + (1 − ri)) −

∏2
i=1(mΘi + (1 − ri))

)
+
(∏2

i=1(mΘi + (1 − ri)) −
∏2

i=1(1 − ri)
)

=

∏2
i=1(mθi + mΘi + (1 − ri)) −

∏2
i=1(mΘi + (1 − ri))

∑
C∈Θ
∏2

i=1(mCi + mΘi + (1 − ri)) − N
∏2

i=1(mΘi + (1 − ri)) +
(∏2

i=1(mΘi + (1 − ri)) −
∏2

i=1(1 − ri)
)

=

∏2
i=1(mθi + mΘi + (1 − ri)) −

∏2
i=1(mΘi + (1 − ri))

∑
C∈Θ
∏2

i=1(mCi + mΘi + (1 − ri)) − (N − 1)
∏2

i=1(mΘi + (1 − ri)) −
∏2

i=1(1 − ri)

(A12-11)

p(Θ|e1∧2) =
m̂Θ(1∧2)

∑
C⊆Θ m̂C(1∧2)

=
m̂Θ(1∧2)

∑
C∈Θ m̂C(1∧2) + m̂Θ(1∧2)

=

∏2
i=1(mΘi + (1 − ri)) −

∏2
i=1(1 − ri)

∑
C∈Θ

(∏2
i=1(mCi + mΘi + (1 − ri)) −

∏2
i=1(mΘi + (1 − ri))

)
+
(∏2

i=1(mΘi + (1 − ri)) −
∏2

i=1(1 − ri)
)

=

∏2
i=1(mΘi + (1 − ri)) −

∏2
i=1(1 − ri)

∑
C∈Θ
∏2

i=1(mCi + mΘi + (1 − ri)) − (N − 1)
∏2

i=1(mΘi + (1 − ri)) −
∏2

i=1(1 − ri)

(A12-12)

So, Equation (77) holds at L=2.
At L = 3, from Equation (A12-7) to Equation (A12-10) we have

(m̃θ(1∧2) + m̃Θ(1∧2) + m̃2Θ(1∧2))

=

∏2
i=1(mθi + mΘi + (1 − ri)) −

∏2
i=1(mΘi + (1 − ri))

k1∧2
+

∏2
i=1(mΘi + (1 − ri)) −

∏2
i=1(1 − ri)

k1∧2

+

∏2
i=1(1 − ri)

k1∧2

=

∏2
i=1(mθi + mΘi + (1 − ri))

k1∧2

(A12-13)

(m̃Θ(1∧2) + m̃2Θ(1∧2)) =

∏2
i=1(mΘi + (1 − ri)) −

∏2
i=1(1 − ri)

k1∧2
+

∏2
i=1(1 − ri)

k1∧2
=

∏2
i=1(mΘi + (1 − ri))

k1∧2
(A12-14)

From Equation (A12-1) to Equation (A12-3) and the above two equations, we then get

m̂θ(1∧3) = (m̃θ(1∧2) + m̃Θ(1∧2) + m̃2Θ(1∧2))(mθ3 + mΘ3 + (1 − r3))

− (m̃Θ(1∧2) + m̃2Θ(1∧2))(mΘ3 + (1 − r3))

=

∏2
i=1(mθi + mΘi + (1 − ri))

k1∧2
(mθ3 + mΘ3 + (1 − r3)) −

∏2
i=1(mΘi + (1 − ri))

k1∧2
(mΘ3 + (1 − r3))

=

∏3
i=1(mθi + mΘi + (1 − ri))

k1∧2
−

∏3
i=1(mΘi + (1 − ri))

k1∧2

(A12-15)

m̂Θ(1∧3) = (m̃Θ(1∧2) + m̃2Θ(1∧2))(mΘ3 + (1 − r3)) − m̃2Θ(1∧2)(1 − r3)

=

∏2
i=1(mΘi + (1 − ri))

k1∧2
(mΘ3 + (1 − r3)) −

∏2
i=1(1 − ri)

k1∧2
(1 − r3)

=

∏3
i=1(mΘi + (1 − ri))

k1∧2
−

∏3
i=1(1 − ri)

k1∧2

(A12-16)

m̂2Θ(1∧3) = m̃2Θ(1∧ 2)(1 − r3) =
∏2

i=1(1 − ri)

k1∧2
(1 − r3) =

∏3
i=1(1 − ri)

k1∧2
(A12-17)

Following the formats of Equation (A12-7) and Equation (A12-15) to Equation (A12-17), we assume that the following equations
hold at L=l1.

k1∧(l1 − 1) =
∑

C∈Θ

∏l1 − 1

i=1
(mCi + mΘi + (1 − ri)) − (N − 1)

∏l1 − 1

i=1
(mΘi + (1 − ri)) (A12-18)
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m̂θ(1∧ l1) =

∏l1
i=1(mθi + mΘi + (1 − ri))

k1∧ (l1 − 1)
−

∏l1
i=1(mΘi + (1 − ri))

k1∧ (l1 − 1)
(A12-19)

m̂Θ(1∧ l1) =

∏l1
i=1(mΘi + (1 − ri))

k1∧ (l1 − 1)
−

∏l1
i=1(1 − ri)

k1∧ (l1 − 1)
(A12-20)

m̂2Θ(1∧ l1) =

∏l1
i=1(1 − ri)

k1∧ (l1 − 1)
(A12-21)

From Lemma 2.1, Theorem 2 and Equation (A12-18) to Equation (A12-21), we then get

m̃θ(1∧ l1) =
m̂θ(1∧ l1)∑

C⊆Θ m̂C(1∧ l1) + m̂2Θ(1∧ l1)
=

m̂θ(1∧ l1)∑
C∈Θ m̂C(1∧ l1) + m̂Θ(1∧ l1) + m̂2Θ(1∧ l1)

=

∏l1
i=1(mθi + mΘi + (1 − ri))

k1∧ (l1 − 1)
−

∏l1
i=1(mΘi + (1 − ri))

k1∧ (l1 − 1)

∑
C∈Θ

(∏l1
i=1(mCi + mΘi + (1 − ri))

k1∧ (l1 − 1)
−

∏l1
i=1(mΘi + (1 − ri))

k1∧ (l1 − 1)

)

+

(∏l1
i=1(mΘi + (1 − ri))

k1∧ (l1 − 1)
−

∏l1
i=1(1 − ri)

k1∧ (l1 − 1)

)

+

∏l1
i=1(1 − ri)

k1∧ (l1 − 1)

=

∏l1
i=1(mθi + mΘi + (1 − ri)) −

∏l1
i=1(mΘi + (1 − ri))

∑
C∈Θ

(∏l1
i=1(mCi + mΘi + (1 − ri)) −

∏l1
i=1(mΘi + (1 − ri))

)
+
(∏l1

i=1(mΘi + (1 − ri)) −
∏l1

i=1(1 − ri)
)
+
∏l1

i=1(1 − ri)

=

∏l1
i=1(mθi + mΘi + (1 − ri)) −

∏l1
i=1(mΘi + (1 − ri))

∑
C∈Θ
∏l1

i=1(mCi + mΘi + (1 − ri)) − N
∏l1

i=1(mΘi + (1 − ri)) +
∏l1

i=1(mΘi + (1 − ri))

=

∏l1
i=1(mθi + mΘi + (1 − ri)) −

∏l1
i=1(mΘi + (1 − ri))

∑
C∈Θ
∏l1

i=1(mCi + mΘi + (1 − ri)) − (N − 1)
∏l1

i=1(mΘi + (1 − ri))

=

∏l1
i=1(mθi + mΘi + (1 − ri)) −

∏l1
i=1(mΘi + (1 − ri))

k1∧ l1

(A12-22)

k1∧ l1 =
∑

C∈Θ

∏l1

i=1
(mCi +mΘi +(1 − ri)) − (N − 1)

∏l1

i=1
(mΘi +(1 − ri)) (A12-23)

Similarly, we get

m̃Θ(1∧ l1) =
m̂Θ(1∧ l1)∑

C⊆Θ m̂C(1∧ l1) + m̂2Θ(1∧ l1)
=

∏l1
i=1(mΘi + (1 − ri)) −

∏l1
i=1(1 − ri)

k1∧ l1
(A12-24)

m̃2Θ(1∧ l1) =
m̂2Θ(1∧ l1)∑

C⊆Θ m̂C(1∧ l1) + m̂2Θ(1∧ l1)
=

∏l1
i=1(1 − ri)

k1∧ l1
(A12-25)

From Equation (A12-18) to Equation (A12-21), we also get

p(θ|e1∧ l1 ) =
m̂θ(1∧ l1)∑

C⊆Θ m̂C(1∧ l1)
=

m̂θ(1∧ l1)∑
C∈Θ m̂C(1∧ l1) + m̂Θ(1∧ l1)

=

∏l1
i=1(mθi + mΘi + (1 − ri))

k1∧ (l1 − 1)
−

∏l1
i=1(mΘi + (1 − ri))

k1∧ (l1 − 1)

∑
C∈Θ

(∏l1
i=1(mCi + mΘi + (1 − ri))

k1∧ (l1 − 1)
−

∏l1
i=1(mΘi + (1 − ri))

k1∧ (l1 − 1)

)

+

(∏l1
i=1(mΘi + (1 − ri))

k1∧ (l1 − 1)
−

∏l1
i=1(1 − ri)

k1∧ (l1 − 1)

)

=

∏l1
i=1(mθi + mΘi + (1 − ri)) −

∏l1
i=1(mΘi + (1 − ri))

∑
C∈Θ

(∏l1
i=1(mCi + mΘi + (1 − ri)) −

∏l1
i=1(mΘi + (1 − ri))

)
+
(∏l1

i=1(mΘi + (1 − ri)) −
∏l1

i=1(1 − ri)
)

=

∏l1
i=1(mθi + mΘi + (1 − ri)) −

∏l1
i=1(mΘi + (1 − ri))

∑
C∈Θ
∏l1

i=1(mCi + mΘi + (1 − ri)) − N
∏l1

i=1(mΘi + (1 − ri)) +
∏l1

i=1(mΘi + (1 − ri)) −
∏l1

i=1(1 − ri)

=

∏l1
i=1(mθi + mΘi + (1 − ri)) −

∏l1
i=1(mΘi + (1 − ri))

∑
C∈Θ
∏l1

i=1(mCi + mΘi + (1 − ri)) − (N − 1)
∏l1

i=1(mΘi + (1 − ri)) −
∏l1

i=1(1 − ri)

(A12-26)
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p(Θ|e1∧ l1 ) =
m̂Θ(1∧ l1)∑

C⊆Θ m̂C(1∧ l1)
=

m̂Θ(1∧ l1)∑
C∈Θ m̂C(1∧ l1) + m̂Θ(1∧ l1)

=

∏l1
i=1(mΘi + (1 − ri))

k1∧ (l1 − 1)
−

∏l1
i=1(1 − ri)

k1∧ (l1 − 1)

∑
C∈Θ

(∏l1
i=1(mCi + mΘi + (1 − ri))

k1∧ (l1 − 1)
−

∏l1
i=1(mΘi + (1 − ri))

k1∧ (l1 − 1)

)

+

(∏l1
i=1(mΘi + (1 − ri))

k1∧ (l1 − 1)
−

∏l1
i=1(1 − ri)

k1∧ (l1 − 1)

)

=

∏l1
i=1(mΘi + (1 − ri)) −

∏l1
i=1(1 − ri)

∑
C∈Θ
∏l1

i=1(mCi + mΘi + (1 − ri)) − (N − 1)
∏l1

i=1(mΘi + (1 − ri)) −
∏l1

i=1(1 − ri)

(A12-27)

The above results show that the assumption of Equation (A12-18) to Equation (A12-21) leads to Equation (77) holding at L=l1 as
well.

At L=l, from Equation (A12-22) to Equation (A12 -25), we have

(m̃θ(1∧ l1) + m̃Θ(1∧ l1) + m̃2Θ(1∧ l1))

=

∏l1
i=1(mθi + mΘi + (1 − ri)) −

∏l1
i=1(mΘi + (1 − ri))

k1∧ l1
+

∏l1
i=1(mΘi + (1 − ri)) −

∏l1
i=1(1 − ri)

k1∧ l1
+

∏l1
i=1(1 − ri)

k1∧ l1

=

∏l1
i=1(mθi + mΘi + (1 − ri))

k1∧ l1

(A12-28)

(m̃Θ(1∧ l1) + m̃2Θ(1∧ l1))

=

∏l1
i=1(mΘi + (1 − ri)) −

∏l1
i=1(1 − ri)

k1∧ l1
+

∏l1
i=1(1 − ri)

k1∧ l1
=

∏l1
i=1(mΘi + (1 − ri))

k1∧ l1

(A12-29)

From Equation (A12-1) to Equation (A12 -3) and the above two equations, we then have

m̂θ(1∧ l) = (m̃θ(1∧ l1) + m̃Θ(1∧ l1) + m̃2Θ(1∧ l1))(mθl + mΘl + (1 − rl))

− (m̃Θ(1∧ l1) + m̃2Θ(1∧ l1))(mΘl + (1 − rl))

=

∏l1
i=1(mθi + mΘi + (1 − ri))

k1∧ l1
(mθl + mΘl + (1 − rl)) −

∏l1
i=1(mΘi + (1 − ri))

k1∧ l1
(mΘl + (1 − rl))

=

∏l
i=1(mθi + mΘi + (1 − ri))

k1∧ l1
−

∏l
i=1(mΘi + (1 − ri))

k1∧ l1

(A12-30)

m̂Θ(1∧ l) = (m̃Θ(1∧ l1) + m̃2Θ(1∧ l1))(mΘl + (1 − rl)) − m̃2Θ(1∧ l1)(1 − rl)

=

∏l1
i=1(mΘi + (1 − ri))

k1∧ l1
(mΘl + (1 − rl)) −

∏l1
i=1(1 − ri)

k1∧ l1
(1 − rl)

=

∏l
i=1(mΘi + (1 − ri))

k1∧ l1
−

∏l
i=1(1 − ri)

k1∧ l1

(A12-31)

m̂2Θ(1∧ l) = m̃2Θ(1∧ l1)(1 − rl) =

∏l1
i=1(1 − ri)

k1∧ l1
(1 − rl) =

∏l
i=1(1 − ri)

k1∧ l1
(A12-32)

Equation (A12-30) to Equation (A12-32) hence hold for any L, from which we then have
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p(θ|e1∧ l) =
m̂θ(1∧ l)

∑
C⊆Θ m̂C(1∧ l)

=
m̂θ(1∧ l)

∑
C∈Θ m̂C(1∧ l) + m̂Θ(1∧ l)

=

∏l
i=1(mθi + mΘi + (1 − ri))

k1∧ l1
−

∏l
i=1(mΘi + (1 − ri))

k1∧ l1

∑
C∈Θ

(∏l
i=1(mCi + mΘi + (1 − ri))

k1∧ l1
−

∏l
i=1(mΘi + (1 − ri))

k1∧ l1

)

+

∏l
i=1(mΘi + (1 − ri))

k1∧ l1
−

∏l
i=1(1 − ri)

k1∧ l1

=

∏l
i=1(mθi + mΘi + (1 − ri)) −

∏l
i=1(mΘi + (1 − ri))

∑
C∈Θ

(∏l
i=1(mCi + mΘi + (1 − ri)) −

∏l
i=1(mΘi + (1 − ri))

)
+
∏l

i=1(mΘi + (1 − ri)) −
∏l

i=1(1 − ri)

=

∏l
i=1(mθi + mΘi + (1 − ri)) −

∏l
i=1(mΘi + (1 − ri))

∑
C∈Θ
∏l

i=1(mCi + mΘi + (1 − ri)) − N
∏l

i=1(mΘi + (1 − ri)) +
∏l

i=1(mΘi + (1 − ri)) −
∏l

i=1(1 − ri)

=

∏l
i=1(mθi + mΘi + (1 − ri)) −

∏l
i=1(mΘi + (1 − ri))

∑
C∈Θ
∏l

i=1(mCi + mΘi + (1 − ri)) − (N − 1)
∏l

i=1(mΘi + (1 − ri)) −
∏l

i=1(1 − ri)

(A12-33)

p(Θ|e1∧ l) =
m̂Θ(1∧ l)

∑
C⊆Θ m̂C(1∧ l)

=
m̂Θ(1∧ l)

∑
C∈Θ m̂C(1∧ l) + m̂Θ(1∧ l)

=

∏l
i=1(mΘi + (1 − ri))

k1∧ l1
−

∏l
i=1(1 − ri)

k1∧ l1

∑
C∈Θ

(∏l
i=1(mCi + mΘi + (1 − ri))

k1∧ l1
−

∏l
i=1(mΘi + (1 − ri))

k1∧ l1

)

+

∏l
i=1(mΘi + (1 − ri))

k1∧ l1
−

∏l
i=1(1 − ri)

k1∧ l1

=

∏l
i=1(mΘi + (1 − ri)) −

∏l
i=1(1 − ri)

∑
C∈Θ
∏l

i=1(mCi + mΘi + (1 − ri)) − (N − 1)
∏l

i=1(mΘi + (1 − ri)) −
∏l

i=1(1 − ri)

(A12-34)

So, Equation (77) also holds at L=l. It therefore holds for any L.
The untrustworthiness for the above results is calculated by the following equation:

m̃2Θ(1∧l) =
m̂2Θ(1∧ l)

∑
C⊆Θ m̂C(1∧l) + m̂2Θ(1∧ l)

=
m̂2Θ(1∧l)

∑
C∈Θ m̂C(1∧l) + m̂Θ(1∧ l) + m̂2Θ(1∧l)

=

∏l
i=1(1 − ri)

k1∧l1

∑
C∈Θ

(∏l
i=1(mCi +mΘi +(1 − ri))

k1∧l1
−

∏l
i=1(mΘi +(1 − ri))

k1∧l1

)

+

∏l
i=1(mΘi +(1 − ri))

k1∧l1
−

∏l
i=1(1 − ri)

k1∧ l1
+

∏l
i=1(1 − ri)

k1∧l1

=

∏l
i=1(1 − ri)

∑
C∈Θ
∏l

i=1(mCi +mΘi +(1 − ri)) − (N − 1)
∏l

i=1(mΘi +(1 − ri))

(A12-35)

So, Equation (78) also holds at L=l. It therefore holds for any L.

A13. Proof of Corollary 2.4 (Bayesian inference)

Given that there is no ambiguity in data and both pieces of evidence are fully reliable, either individually or jointly, and the
variables from which the two pieces of evidence are acquired are each the most important, then Equation (59) and Equation (60)
reduce to

p
(
θ
⃒
⃒eli ∧ emj

)
=

⎧
⎪⎨

⎪⎩

m̂θ(li,mj)
∑

B∈Θ m̂B(li,mj)
θ ∈ Θ

0 otherwise

(A13-1)

m̂θ(li,mj) = ωli,mjwθ(l,m)αθ(li,mj)mθlimθmj ∀θ ∈ Θ (A13-2)

From Equation (19), Equation (21), Equation (23), Equation (49), Equation (51), Equation (53) and Equation (54), we have
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ωli,mj =
ωli,mj

ωliωmj
=

1
∑

θ∈Θwθlmpθ(li,mj) + 1 − rli,mj

1
∑

θ∈Θwθlpθli + 1 − rli
×

1
∑

θ∈Θwθmpθmj + 1 − rmj

=

( ∑
θ∈Θwθlpθli + 1 − rli

)
×
(∑

θ∈Θwθmpθmj + 1 − rmj

)

∑
θ∈Θwθlmpθ(li,mj) + 1 − rli,mj

=

( ∑
θ∈Θ1 × pθli + 1 − 1

)
×
(∑

θ∈Θ1× pθmj + 1 − 1
)

∑
θ∈Θ1 × pθ(li,mj) + 1 − 1

=

( ∑
θ∈Θpθli

)
×
(∑

θ∈Θpθmj

)

∑
θ∈Θpθ(li,mj)

=
1 × 1
1

= 1

(A13-3)

wθ(l,m) = wθlm
/
(wθlwθm) = 1

/
(1 × 1) = 1 (A13-4)

αθ(li,mj) =
pθ(li,mj)

pθlipθmj
(A13-5)

mθli = wθlpθli = pθli and mθmj = wθmpθmj = pθmj (A13-6)

From Equation (48), putting Equation (A13-3) to Equation (A13-6) into Equation (A13-2) gets

m̂θ(li,mj) = 1 × 1 ×
pθ(li,mj)

pθlipθmj
× pθlipθmj = pθ(li,mj) =

cθ(li,mj)
∑

A∈ΘcA(li,mj)
∀θ ∈ Θ (A13-7)

Putting Equation (A13-7) into Equation (A13-1) for any θ ∈ Θ leads to

p
(
θ
⃒
⃒eli ∧ emj

)
=

m̂θ(li,mj)
∑

B∈Θ m̂B(li,mj)
=

cθ(li,mj)∑
A∈Θ

cA(li,mj)
∑

B∈Θ
cB(li,mj)∑
A∈Θ

cA(li,mj)

=
cθ(li,mj)

∑
B∈ΘcB(li,mj)

∀θ ∈ Θ (A13-8)

If prior e0 is acquired independently of both eli and emj, its combination with both eli and emj, whose joint basic probability is given by
Equation (A13-8), is calculated by Corollary 1.6

p
(
θ
⃒
⃒
(
eli ∧ emj

)
∧ e0

)
=

∑
A∩B=θp

(
A
⃒
⃒eli ∧ emj

)
pB0

1 −
∑

A∩B=ϕp
(
A
⃒
⃒eli ∧ emj

)
pB0

=
p
(
θ
⃒
⃒eli ∧ emj

)
pθ0

∑
A∈Θp

(
A
⃒
⃒eli ∧ emj

)
pA0

=

cθ(li,mj)
∑

B∈ΘcB(li,mj)
× pθ0

∑
A∈Θ

cA(li,mj)
∑

B∈ΘcB(li,mj)
× pA0

=
cθ(li,mj)pθ0

∑
A∈ΘcA(li,mj)pA0

∀θ ∈ Θ

(A13-9)

If eli and emj are also independent of each other, their combination is then calculated by Corollary 1.6 as follows:

p
(
θ
⃒
⃒eli ∧ emj

)
=

∑
A∩B=θpAlipBmj

1 −
∑

A∩B=ϕpAlipBmj
=

pθlipθmj
∑

B∈ΘpBlipBmj
∀θ ∈ Θ (A13-10)

If prior e0 is acquired independently of eli or emj, its combination with both eli and emj, whose joint basic probability is given by
Equation (A13-10), is calculated by Corollary 1.6

p
(
θ
⃒
⃒
(
eli ∧ emj

)
∧ e0

)
=

∑
A∩B=θp

(
A
⃒
⃒eli ∧ emj

)
pB0

1 −
∑

A∩B=ϕp
(
A
⃒
⃒eli ∧ emj

)
pB0

=
p
(
θ
⃒
⃒eli ∧ emj

)
pθ0

∑
A∈Θp

(
A
⃒
⃒eli ∧ emj

)
pA0

=

pθlipθmj
∑

B∈ΘpBlipBmj
× pθ0

∑
A∈Θ

pAlipAmj
∑

B∈ΘpBlipBmj
× pA0

=
pθlipθmjpθ0

∑
A∈ΘpAlipAmjpA0

∀θ ∈ Θ

(A13-11)

From Equation (9), we can finally re-write Equation (A13-11) as follows:

p
(
θ
⃒
⃒
(
eli ∧ emj

)
∧ e0

)
=

cθli∑
D∈Θ

cDli
×

cθmj∑
D∈Θ

cDmj
× pθ0

∑
A∈Θ

cAli∑
D⊆Θ

cDli
×

cAmj∑
D∈Θ

cDmj
× pA0

=
cθli cθmjpθ0

∑
A∈ΘcAli cAmjpA0

∀θ ∈ Θ
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Appendix B. – Application of the MAKER framework to human wellbeing analysis

B1. Problem description and descriptive data analysis

In this section, the MAKER framework is applied to human wellbeing analysis based on the British Household Panel Survey (BHPS)
data [23]. The BHPS data collected for this study involves over 10,000 people for a period of 12 years and has 163,043 data records in
total [73,75]. The BHPS data is used to develop a systemmodel within the MAKER framework to analyse the probabilistic relationship
between life satisfaction (y) as system output variable and health (x1) and income (x2) as system input variables.

In the BHPS data, life satisfaction y is categorised into 7 levels, labelled as system statesHn (n = 1,⋯,7) from the lowest satisfaction
(H1) to the highest (H7), with the system state space defined byΘ = {H1,⋯,H7}. In this paper, health x1 is categorised into 3 grades: G1
(<0.6), G2 (0.6-0.8) and G3 (>0.8). Although more grades are used to categorise health scores from 0 to 1 in the original BHPS data
[73], the use of 3 grades is appropriate for demonstrating the application of the MAKER framework. For the same reason, income x2 is
categorised into 3 bands: B1 (£0-£19,999), B2 (£20,000-£39,999) and B3 (£40,000+).

To demonstrate the application of theMAKER rule, we choose to analyse the data from one of the 12 years, named as wave 8, which
includes 10,548 data records. Table B-1 and Table B-2 show the one-dimensional contingency tables of the BHPS data to represent the
recorded frequencies in 7 levels of life satisfaction for 3 health grades and 3 income bands. In Table B-1 and Table B-2, eθ1 and (eθ2) is
the evidential element that health (income) points to level θ of life satisfaction for θ ⊆ Θ.

The BHPS data is imperfect in that it is ambiguous and imbalanced. In fact, there are 184 cases where there is no answer to the level
of life satisfaction, meaning that they could be at any level from H1 to H7, or their level of satisfaction is unknown, so these 184 cases
are allocated to system space Θ in Table B-1 and Table B-2. The data is imbalanced as understandably people’s life satisfaction is not
evenly distributed across the spectrum of 7 life satisfaction levels and the number of people is rather different in different health grades
and income bands. For example, there are 3403 people highly satisficed at level H6, compared with only 137 people least satisfied at
level H1, with an imbalance ratio of 25:1; there are 8222 people in the low income band but only 244 people in the high income band,
with an imbalance ratio of 34:1.

Table B-1
Contingency Table of Life Satisfaction for Health

Frequency eH11 eH21 eH31 eH41 eH51 eH61 eH71 eΘ1 Total

Health grade x1 G1 56 59 124 147 164 79 73 35 737
G2 48 57 162 344 586 495 351 55 2098
G3 33 73 277 814 2352 2829 1241 94 7713

Total 137 189 563 1305 3102 3403 1665 184 10548

Table B-2
Contingency Table of Life Satisfaction for Income

Frequency eH12 eH22 eH32 eH42 eH52 eH62 eH72 eΘ2 Total

Income band x2 B1 124 156 467 1091 2355 2470 1399 160 8222
B2 11 29 89 193 675 832 230 23 2082
B3 2 4 7 21 72 101 36 1 244

Total 137 189 563 1305 3102 3403 1665 184 10548

To analyse the interdependence between health and income in relation to life satisfaction, joint contingency Table B-3 is con-
structed from the same BHPS data, where eθ12 is the evidential element that both health and income point to level θ of life satisfaction
for θ ⊆ Θ, Sθ(1∧2)k is the number of people having level θ of life satisfaction and at the kth combination of health grade i and income
band j with k = j+ 3(i − 1), and S(1∧2)k is the number of people at the kth combination of health grade i and income band j.

Table B-3
Contingency Table of Life Satisfaction for Both Health and Income

Frequency eH112

(SH1(1∧ 2)k)
eH212

(SH2(1∧ 2)k)
eH312

(SH3(1∧ 2)k)
eH412

(SH4(1∧ 2)k)
eH512

(SH5(1∧2)k)
eH612

(SH6 (1∧2)k)
eH712

(SH7 (1∧ 2)k)
eΘ12

(SΘ(1∧2)k)
Total
(S(1∧2)k)

G1 B1 51 54 115 132 147 71 67 35 672
B2 3 3 9 12 14 8 5 0 54
B3 2 2 0 3 3 0 1 0 11

G2 B1 43 46 135 306 481 381 329 51 1772
B2 5 11 25 36 102 106 19 4 308
B3 0 0 2 2 3 8 3 0 18

G3 B1 30 56 217 653 1727 2018 1003 74 5778
B2 3 15 55 145 559 718 206 19 1720
B3 0 2 5 16 66 93 32 1 215

Total 137 189 563 1305 3102 3403 1665 184 10548
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It can be observed from Table B-3 that the majority of surveyed people are in the lower income bands B1 and B2, regardless of their
health grades, and among high income band B3 most people have high health grade G3, with a rather small group of only 11 people
having low health grade G1. Although this small group of 11 people probably is not sufficient to generate statistically significant
conclusions for a combination of high income band and low health grade, the following likelihood analysis and the maximum like-
lihood inference using the BHPS data can still reveal statistically significant patterns for other combinations.

B2. Likelihood analysis of BHPS data

By applying the likelihood method for data analysis [72] as summarised in Section 2.3, normalized likelihoods for health (income)
are generated, as shown in Table B-4 (Table B-5), where e1i (e2j) is the evidence acquired from the ith grade of health (the jth band of
income) for i, j = 1,⋯,3. Interesting patterns can be observed from these two tables. Suppose middle level H4 is regarded as neutral,
above H4 as satisfied with life and below H4 as unsatisfied with life. From Table B-4, people with low health grade G1 are 7.85 times
more likely to be unsatisfied with life than satisfied, with 7.85 equal to 0.69 (0.2997+0.2289+0.1615) divided by 0.0879 (0.0388+
0.017+0.0321). People with middle health grade G2 are also 1.72 times more likely to be unsatisfied with life than satisfied. In
contrast, people with high health grade G3 is 2.09 times more likely to be satisfied with life than not.

Similarly, from Table B-5, people in the low income band B1 are 1.1 times more likely to be unsatisfied than satisfied; however,
people in the middle income band B2 are 1.53 times more likely to be satisfied than not, and people with high income B3 are 1.55 times
more likely to be satisfied than not. Another observation is that people in the lower income band are more likely to be unsure about life
satisfaction, i.e. with higher likelihood left forΘ, than other groups of people. Note that these observations are only limited to wave 8 of
the BHPS data.

Table B-4
Normalized Likelihood of Life Satisfaction for Health

Likelihood eH11 eH21 eH31 eH41 eH51 eH61 eH71 eΘ1

x1 G1(e11) 0.2997 0.2289 0.1615 0.0826 0.0388 0.0170 0.0321 0.1395
G2(e12) 0.1711 0.1473 0.1405 0.1287 0.0923 0.0710 0.1030 0.1460
G3(e13) 0.0525 0.0842 0.1072 0.1359 0.1652 0.1812 0.1624 0.1113

Table B-5
Normalized Likelihood of Life Satisfaction for Income

Likelihood eH12 eH22 eH32 eH42 eH52 eH62 eH72 eΘ2

x2 B1(e21) 0.1373 0.1252 0.1259 0.1268 0.1152 0.1101 0.1275 0.1319
B2(e22) 0.0635 0.1213 0.1250 0.1169 0.1720 0.1933 0.1092 0.0988
B3(e23) 0.1012 0.1467 0.0862 0.1116 0.1609 0.2058 0.1499 0.0377

A two-dimensional likelihood table for both health and income is given in Table B-6, where e(1∧2)k is the evidence acquired from the
kth combination of health grade and income band for k = 1,⋯,9. From Table B-6, interesting patterns can also be observed. One of most
noticeable patterns is that people in the high income band with low health grade are 16.06 times more likely to be unsatisfied than
satisfied, being the most unsatisfied people among all groups, although the sample size of this group is the smallest, with only 11
people. In contrast, people in the high income band with high health grade are 3.48 times more likely to be satisfied than not, being the
most satisfised people among all groups. Other patterns can also be observed from Tale B-6.

Table B-6
Normalized Likelihood of Life Satisfaction for Both Health and Income

Likelihood eH1 (1∧ 2) eH2 (1∧2) eH3 (1∧2) eH4 (1∧2) eH5 (1∧2) eH6 (1∧2) eH7 (1∧2) eΘ(1∧ 2)

G1 B1(e(1∧ 2)1) 0.2950 0.2264 0.1618 0.0801 0.0375 0.0165 0.0319 0.1507
B2(e(1∧ 2)2) 0.3007 0.2180 0.2195 0.1263 0.0620 0.0323 0.0412 0.0000
B3(e(1∧ 2)3) 0.5026 0.3643 0.0000 0.0791 0.0333 0.0000 0.0207 0.0000

G2 B1(e(1∧ 2)4) 0.1770 0.1372 0.1352 0.1322 0.0874 0.0631 0.1114 0.1563
B2(e(1∧ 2)5) 0.1383 0.2206 0.1683 0.1045 0.1246 0.1180 0.0432 0.0824
B3(e(1∧ 2)6) 0.0000 0.0000 0.3481 0.1502 0.0948 0.2304 0.1766 0.0000

G3 B1(e(1∧ 2)7) 0.0616 0.0833 0.1084 0.1407 0.1566 0.1668 0.1694 0.1131
B2(e(1∧ 2)8) 0.0236 0.0855 0.1052 0.1197 0.1941 0.2273 0.1333 0.1112
B3(e(1∧ 2)9) 0.0000 0.1008 0.0846 0.1168 0.2027 0.2603 0.1831 0.0518

The above observation of interesting patterns may not be 100% reliable as the BHPS data is ambiguous and imbalanced. A question
is then how trustworthy these patterns can be. To answer this question, we need to investigate how reliable the likelihoods of Table B-4
to Table B-6 may be, which depends on the quality of the BHPS data. BHPS data collection is a carefully designed and well managed
process. It is beyond the scope of this paper to investigate if there are concerns on the data collection process or sample size. However,
since the above BHPS data is imbalanced, e.g. with a rather small number of people in the high income band, there is a need to
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investigate whether the BHPS data is of appropriate quality for generating the likelihoods of Table B-4 to Table B-6, or how trustworthy
it is to use the likelihoods of Table B-6 for inference. To facilitate the investigation, an optimal learning model is built and solved in the
next subsection.

B3. Construction of optimal learning model

Theorem 1 can be applied to enhance the above likelihood analysis of the BHPS data on the relationships between life satisfaction
and two input variables. In this section, we first build an optimal learning model using the data and the above likelihood analysis
results, and then use the optimally learnt results to reanalyse the relationships in the next section.

In Equation (59) and Equation (60), interdependence index αAli,Bmj for any A, B ⊆ Θ can be calculated using Equation (49) and the
likelihoods of Table B-4 to Table B-6, as shown in Table B-7. The values of αAli,Bmj for A, B ⊆ Θ in Table B-7 are all larger than 1, except
for some zero values mostly for the high income band, apparently caused by imbalance and lack of data, indicating that health grades
and income bands are highly dependent in people’s assessment of life satisfaction. For example, αθ13,θ23 = 7.6217, 6.9827 and 7.5184
for θ = H5,H6,H7 for the group of people with high health gradeG3 and in high income band B3. This means that health and income are
very highly dependent on each other for this group of people’s assessments of life satisfaction, which is consistent with the patterns
observed in the previous section.

Table B-7
Interdependence Indices for Every Pair of Health and Income

Interdependence Indices H1 H2 H3 H4 H5 H6 H7 Θ

G1 B1 7.1669 7.8982 7.9638 7.6505 8.4096 8.8195 7.7803 8.1912
B2 15.8084 7.8516 10.8784 13.0781 9.2950 9.8136 11.7479 0.0000
B3 16.5693 10.8480 0.0000 8.5895 5.3377 0.0000 4.2910 0.0000

G2 B1 7.5315 7.4400 7.6448 8.0966 8.2272 8.0694 8.4887 8.1145
B2 12.7331 12.3441 9.5813 6.9451 7.8509 8.5964 3.8460 5.7104
B3 0.0000 0.0000 28.7339 10.4552 6.3827 15.7577 11.4392 0.0000

G3 B1 8.5436 7.9056 8.0335 8.1622 8.2270 8.3596 8.1820 7.7008
B2 7.0799 8.3738 7.8540 7.5316 6.8297 6.4911 7.5140 10.1113
B3 0.0000 8.1610 9.1524 7.7006 7.6217 6.9827 7.5184 12.3403

There is no data to calculate αAli,Bmj for A ∕= B. In Equation (60), joint likelihoods could in theory be taken into account for any level
(1-7) of satisfaction in each income band with unknown satisfaction in each health grade, as well as for any level (1-7) of satisfaction in
each health grade with unknown satisfaction in each income band. However, the data of Table B-3 is complete in the sense that in any
case both health and income values are recorded. This means that any missing value for life satisfaction is associated with both health
and income rather than one of them. As such, in the BHPS data there is no cross-dependency between any level (1-7) of satisfaction in
each income band with unknown satisfaction in each health grade, and vice versa. We then set αAli,Bmj = 0 for A ∕= B because unknown
life satisfaction was not recorded for health or income separately but for both of them jointly.

To infer the level of a person’s life satisfaction from her health grade and income band using Equation (59) and Equation (60),
weights and reliabilities in the equations need to be given, either assessed subjectively or learnt from data or both. In this section, we
show how to use the BHPS data to learn these parameters using the optimal learning model of Equation (84) to Equation (96). In this
learning model, there are 48 variables in total, including 24 weightswθ1,wθ2, andwθ(1∧2) for all θ ⊆ Θ; 15 reliabilities r1i, r2j, and r(1∧2)k
for i, j = 1,⋯, 3 and k = 1,⋯,9. In addition, since all 10548 observed data records are used for learning, the prior of all the data are also
combined to reduce the effect of data imbalance on parameter estimation. The prior distribution of all the data is calculated as follows:

Table B-8
Prior frequency and distribution

eH10 eH20 eH30 eH40 eH50 eH60 eH70 eΘ0

Frequency 137 189 563 1305 3102 3403 1665 184
e0 0.0130 0.0179 0.0534 0.1237 0.2941 0.3226 0.1578 0.0174

In Table B-8, eθ0 is the evidential element that the prior points to life satisfaction level θ for θ ⊆ Θ. Reliability and weights for the
prior are denoted by r0 and wθ0 for θ ⊆ Θ.

A vector of all 48 parameters to be learnt in this case is represented by λl as follows:

λl = [wθ0, r0,wθl, rli,wθ(1∧2), r(1∧2)k, ∀θ ⊆ Θ, l = 1,2, i = 1,⋯, 3, k = 1,⋯, 9]T (B-1)

The first objective function f1(λ) of the optimal learning model only includes f12(λ) as all the 10548 records are complete in that
each has both health and income recorded. p(θ|e(1∧2)k) in Equation (90) is the probability generated by applying Theorem 1 to combine
evidence e1i acquired from the ith health grade with evidence e2j acquired from the jth income band with their interdependency taken
into account, which is in turn combined with prior e0 as a piece of independent evidence for all i, j = 1, ⋯,3 and k = 1, ⋯, 9.
Accordingly, p̂θ(A)(1∧2)k in Equation (90) is the probability of state θ given in a data record for the kth combination of health grade Gi and
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income band Bj for k = 1,⋯,9 where state A is observed. From the data of Table B-3, there are p̂θ(A)(1∧2)k = 1 at θ = A and p̂θ(A)(1∧2)k = 0
at θ ∕= A for any θ,A ⊆ Θ and k = 1,⋯,9; the frequency figures defined in sub-objective function f12(λ) are given in Table B-3, with S1∧2
= S(1∧2)1 + ⋯+ S(1∧2)9 = 10548.

In the second objective function f2(λ), ŵθl in Equation (93) is the reference weight of health (l = 1) or income (l = 2) for state θ, and
is assumed to be the upper bound of wθl in this case, or ŵθl = wθl for θ ⊆ Θ under the notion that health and income should play their
most important roles in inference for life satisfaction. ŵθ(1∧2) in Equation (95) is the reference weight of both health and income for
state θ and is also taken as the upper bound of wθ(1∧2), or ŵθ(1∧2) = wθ(1∧2) for any θ ⊆ Θ. In principle, the reference weights of health
and income reflect their perceived importance in assessment of life satisfaction at different health grades or income bands and should
be estimated in the data collection processes. r̂ li in Equation (92) is the reference reliability of evidence eli, and is assumed to be the
upper bound of rli for any l = 1, 2, i = 1,⋯,3 under the notion that any evidence should be as reliable as possible in inference for life
satisfaction. r̂(1∧2)k in Equation (94) is the reference reliability of evidence e(1∧2)k and is assumed as the upper bound of r(1∧2)k for k = 1,
⋯,9. In principle, the reference reliability of evidence reflects the perceived correctness of the evidence acquired from the collected
data and should be estimated in the processes of the data collection and evidence acquisition.

In the optimal learning model, constraints include only upper and lower bounds for the 48 parameters to be learnt. In this study, the
data used to acquire evidence is given in Table B-4 for e1i (i = 1,⋯,3), in Table B-5 for e2j (j = 1,⋯,3), and in Table B-6 for e(1∧2)k (k =

1,⋯,9). These three tables all originate from the same source of the BHPS data given in Table B-1 to Table B-3. The BHPS data shown in
Table B-1 to Table B-3 is complete. Although there is missing data in the BHPS data recorded to the state space Θ as unknown, it is
recorded separately so that the missing data does not incur cross-interdependency between health grades and unknown for income,
and vice versa. However, the BHPS data is still imperfect in that it is severely imbalanced, causing concerns on how trustworthy it may
be to use the likelihoods of Table B-6 alone for inference.

In fact, such concerns are genuine and can be revealed by applying the rules of thumb, as discussed in Section 2.3. The expected
counts for all cells in Table B-3 can be calculated using the simple approach of Row Total times Column Total divided by Total. For
instance, the expected count for the cell at the G1 − B1 row and the eH1(1∧2) column is given by 8.7 = 672 × 137

10548 . Table B-9 shows the
expected counts for all the cells.

Table B-9
Expected Counts in Each Cell for Joint Health and Income

It is apparent from Table B-9 that the data of Table B-3 does not satisfy the general rule of thumb as there are 22 cells where
expected count is < 5 as marked by red and purple ellipses. The data does not satisfy Yates’ rule of thumb either as more than 20% of
cells with the expected counts being 5 or less have the expected counts of less than 1, as marked by purple ellipses. If these rules are to
be followed for statistical inference, questions arise regarding to what extents the joint likelihoods of Table B-6 can be trusted for
reasoning and decision making.

The above discussions lead to questioning whether the likelihoods of Table B-4 and Table B-5 should be used to enhance reasoning
and decision making. To answer this question, we first calculate the expected counts for all cells for the data of Table B-1 and Table B-2,
as given in Table B-10 and Table B-11. The results of Table B-10 show that the data of Table B-1 fully satisfy the general rule of thumb,
which means that the evidence acquired for health from Table B-4 should be of good quality for inference. While there are 3 expected
counts < 5 in Table B-11, so the general rule of thumb is violated, Yates’ rule is satisfied. As such, the evidence acquired for income
from Table B-5 should also be of good quality for inference. Although the data of Table B-3 does not satisfy the rules of thumb, it can be
used to calculate the interdependence indices in Table B-7. In this context, it is conjectured that combining evidence e1i with evidence
e2j for inference should lead to better trusted conclusions.

Table B-10
Expected Counts of Each Cell for Health

Expected count eH11 eH21 eH31 eH41 eH51 eH61 eH71 eΘ1

x1 G1 9.6 13.2 39.3 91.2 216.7 237.8 116.3 12.9
G2 27.2 37.6 112.0 259.6 617.0 676.9 331.2 36.6
G3 100.2 138.2 411.7 954.3 2268.3 2488.4 1217.5 134.5
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Table B-11
Expected Counts of Each Cell for Income

Expected count eH12 eH22 eH32 eH42 eH52 eH62 eH72 eΘ2

x2 B1 106.8 147.3 438.8 1017.2 2418.0 2652.6 1297.8 143.4
B2 27.0 37.3 111.1 257.6 612.3 671.7 328.6 36.3
B3 3.2 4.4 13.0 30.2 71.8 78.7 38.5 4.3

Following the above analysis, without loss of generality and considering the robust process of collecting the BHPS data yet with its
observed imbalance, a high confidence of 95% with an error of±5 in the BHPS data is assumed to measure the ability of using the data
to generate correct judgements or conclusions. Under this assumption, all lower bounds for weight and reliability are assigned to 0.9,
or wθl = rli = wθ(1∧2) = r(1∧2)k = 0.9, and all upper bounds to 1, or wθl = rli = wθ(1∧2) = r(1∧2)k = 1 for all l = 0,1,2, i = 1,⋯,3, θ ⊆ Θ
and k = 1,⋯,9.

The optimal learning model is therefore formulated as a bi-objective nonlinear non-smooth mathematical programming problem,
having 2 prioritised nonlinear non-smooth objective functions and 48 variables with their lower and upper bounds as constraints. In
this study, Excel Solver is used to solve the problem by selecting the Evolutionary engine.

B4. Results, analysis and discussions

The first objective f1(λ) is of the top priority and is minimised first by setting the starting values of all the parameters to the upper
bounds. The optimal solution is given by f∗1 = f1(λ∗) = 0.0514. The second objective f2(λ) is then minimised by adding the priority
constraint: f1(λ) ≤ f∗1 + δ with δ = 0.00002. The optimal solution for the second objective is given by f∗2 = 0.01. The detailed solution
process using Excel Solver can be found in the provided Supplementary Materials. The optimal results are analysed as follows.

The optimal values of the weights and reliabilities for health, income and the prior are shown in Table B-12, wherew∗
θl is the optimal

weight of health (l=1), income (l=2) and the prior (l=0) for state θ. r∗li and t∗li are the optimal reliability and trustworthiness of evidence
eli acquired from the ith health grade (l=1) or the ith income band (l=2). r∗0 and t∗0 (li = 0) are the optimal reliability and trustworthiness
of the prior e0.

The optimal values of the weights and reliabilities for both health and income are given in Table B-13, where wθ(1∧2)∗ is the optimal
weight of both health and income for state θ. r(1∧2)k∗ and t(1∧2)k∗ are the optimal reliability and trustworthiness of evidence e(1∧2)k
acquired from the kth combination of health grade i and income band j for i, j = 1,⋯, 3 and k = 1,⋯,9.

Table B-12
Parameter Values for Health, Income and Prior

Optimal parameter Health Income Prior

e11 e12 e13 e21 e22 e23 e0

w∗
H1 l 0.9255 0.9067 0.9063

w∗
H2 l 0.9432 0.9256 0.9027

w∗
H3 l 0.9050 0.9673 0.9005

w∗
H4 l 0.9016 0.9212 0.9001

w∗
H5 l 0.9976 0.9587 0.9924

w∗
H6 l 0.9646 0.9285 0.9961

w∗
H7 l 0.9002 0.9190 0.9002

w∗
Θl 0.9081 0.9287 0.9011

r∗li 0.9377 0.9588 0.9996 0.9001 0.9509 0.9627 1.0000
t∗li 0.9368 0.9574 0.9995 0.9031 0.9501 0.9615 1.0000

Table B-13
Parameter Values for Both Health and Income

Optimal parameter G1 G2 G3

B1 B2 B3 B1 B2 B3 B1 B2 B3
e(1∧ 2)1 e(1∧ 2)2 e(1∧ 2)3 e(1∧ 2)4 e(1∧ 2)5 e(1∧2)6 e(1∧ 2)7 e(1∧ 2)8 e(1∧ 2)9

wθ(1∧ 2)∗ wH1 (1∧ 2)
∗
= 0.9161, wH2(1∧ 2)

∗
= 0.9040, wH3 (1∧ 2)

∗
= 0.9002,

wH4 (1∧ 2)
∗
= 0.9002, wH5(1∧ 2)

∗
= 0.9996, wH6 (1∧ 2)

∗
= 0.9692,

wH7 (1∧ 2)
∗
= 0.9001, wΘ(1∧ 2)∗ = 0.9021

r(1∧ 2)k∗ 0.9579 0.9568 0.9761 0.9729 0.9796 0.9281 0.9071 0.9714 0.9311
t(1∧ 2)k∗ 0.9558 0.9549 0.9745 0.9713 0.9784 0.9279 0.9091 0.9703 0.9317

One observation from the results of Table B-12 and Table B-13 is that the prior is fully reliable and trustworthy with r∗0 = 1 and t∗0
= 1 but none of the other evidence is fully reliable or trustworthy, i.e. e1i for health, e2j for income and e(1∧2)k for both health and
income for i, j = 1,⋯, 3 and k = 1, ⋯, 9. This means that the maximum likelihood evidential reasoning is not the same as the
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straightforward likelihood inference given in Table B-6 for this case, even though e1i, e2j and e(1∧2)k are all acquired from the same
BHPS data that is complete and is deemed of high quality. Another observation is that wH5(1∧2)

∗ and wH6(1∧2)
∗ are among the largest of

wθ(1∧2)∗ for all θ ⊆ Θ as shown in Table B-13, so arew∗
H5 l andw∗

H6 l amongw∗
θl for all θ ⊆ Θ and l = 1,2 as shown in Table B-12. This is due

to many more people satisfied at levels H5 and H6 than at other levels. The maximum likelihoods p
(
θ
⃒
⃒e1i ∧ e2j

)
for i, j = 1,⋯, 3 and all

θ ⊆ Θ are given in Table B-14, which are generated using the optimal weights and reliabilities to combine every pair of health grades
and income bands without the prior taken into account.

Comparing the maximum likelihoods of Table B-14 with the ordinary likelihoods of Table B-6, one can find that the formers are
larger than the latter for every combination of health grades and income bands for state H5 and state H6. This is because optimal
weightswH5(1∧2)

∗ andwH6(1∧2)
∗ are among the largest ofwθ(1∧2)∗ , andw∗

H5 l andw∗
H6 l amongw∗

θl for all θ ⊆ Θ and l = 1,2. This is one of the
prominent features of MAKER in the sense that more important and more reliable evidence is reinforced in the inference process.

Table B-14
Maximum Likelihoods of Life Satisfaction for Joint Health and Income

p
(
θ
⃒
⃒e1i ∧ e2j

)
H1 H2 H3 H4 H5 H6 H7 Θ t∗1i,2j

G1 B1(e(1∧ 2)1) 0.2885 0.2202 0.1583 0.0817 0.0453 0.0224 0.0364 0.1473 0.9559
B2(e(1∧ 2)2) 0.2877 0.2109 0.2087 0.1219 0.0728 0.0424 0.0440 0.0116 0.9549
B3(e(1∧ 2)3) 0.4745 0.3443 0.0104 0.0800 0.0440 0.0122 0.0280 0.0067 0.9746

G2 B1(e(1∧ 2)4) 0.1749 0.1362 0.1331 0.1293 0.0965 0.0689 0.1092 0.1521 0.9714
B2(e(1∧ 2)5) 0.1358 0.2092 0.1614 0.1034 0.1348 0.1242 0.0472 0.0839 0.9784
B3(e(1∧ 2)6) 0.0103 0.0114 0.3211 0.1439 0.1048 0.2336 0.1681 0.0068 0.9280

G3 B1(e(1∧ 2)7) 0.0599 0.0815 0.1050 0.1359 0.1693 0.1753 0.1634 0.1097 0.9093
B2(e(1∧ 2)8) 0.0245 0.0827 0.1013 0.1159 0.2058 0.2330 0.1295 0.1072 0.9704
B3(e(1∧ 2)9) 0.0021 0.0966 0.0820 0.1127 0.2142 0.2655 0.1748 0.0521 0.9318

Another feature ofMAKER is that it generates optimal values for parameters to measure the extents to which each piece of evidence
and their interdependencies should be used as much as possible for more trustworthy inference, whether or not the collected data is of
high quality or not. In fact, the maximum likelihoods of Table B-14 are at least as trustworthy as the ordinary likelihoods of Table B-6
because every trustworthiness t∗1i,2j in Table B-14 is no less than the corresponding trustworthiness t(1∧2)k∗ in Table B-13, or t∗1i,2j ≥

t(1∧2)k∗ for any i, j = 1,⋯, 3 and k = 1,⋯,9.
In this case study, the differences between the maximum likelihoods of Table B-14 and the ordinary likelihoods of Table B-6 are not

significant. This is due to the data imbalance problem in Table B-3 not being that severe. However, if more health grades or income
bands are used for human wellbeing analysis [73,74], the data imbalance problem will become more severe. Also, if more variables
than health and income are used for multiple factor analysis of human wellbeing [73,75], the data imbalance problem will become
even more pronounced as the number of cells in a joint contingency table increases exponentially with the increase of variables or their
discrete referential values or categories. One way to deal with such complex inference problems with limited data is to develop hi-
erarchical models using the belief rule base methodology [68], although this topic is beyond the scope of this paper.

Data availability

Data will be made available on request.
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