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Abstract

Data envelopment analysis (DEA) and multiple objective linear programming (MOLP) are tools that can be used in management
control and planning. Whilst these two types of model are similar in structure, DEA is directed to assessing past performances as part
of management control function and MOLP to planning future performance targets. This paper is devoted to investigating equivalence
models and interactive tradeoff analysis procedures in MOLP, such that DEA-oriented performance assessment and target setting can be
integrated in a way that the decision makers’ preferences can be taken into account in an interactive fashion. Three equivalence models
are investigated between the output-oriented dual DEA model and the minimax reference point formulations, namely the super-ideal
point model, the ideal point model and the shortest distance model. These models can be used to support efficiency analysis in the same
way as the conventional DEA model does and also support tradeoff analysis for setting target values by individuals or groups. A case
study is conducted to illustrate how DEA-oriented efficiency analysis can be conducted using the MOLP methods and how such perfor-
mance assessment can be integrated into an interactive procedure for setting realistic target values.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

DEA and MOLP can be used as tools in management control and planning. The structures of these two types of model
have much in common but DEA is directed to assessing past performances as part of management control function and
MOLP to planning future performances (Cooper, 2004). DEA has evolved tremendously over the years and emerged as
a body of concepts and methodologies, which consist of a collection of models and extensions to the original work of Char-
nes et al. (1978). Its popularity is reflected by a large number of successful applications.

As a performance measurement and analysis technique, DEA is a non-parametric frontier estimation methodology
based on linear programming for evaluating the relative efficiency of a set of comparable decision making units (DMUs)
that share common functional goals. The usefulness of DEA extends to assessment and benchmarking against efficient
units, target setting and resource allocation between inputs and outputs. The concept of DEA was based on the general-
isation of the framework of Farrell’s (1957) single output over input measurement of productive efficiency to include
0377-2217/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
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multiple, incommensurate inputs and outputs that are considered at the same time to evaluate the efficiency of comparable
DMUs.

In a broader picture, there have been various studies highlighting the similarities between DEA and multiple criteria deci-

sion analysis (MCDA) generally and MOLP in particular, though it is said that they retain their own distinctive traits (Bel-
ton and Stewart, 2001; Agrell and Tind, 2001; Joro et al., 1998; Stewart, 1994, 1996). Taking a step further, Doyle and
Green (1993) suggested that DEA is an MCDA method itself. Belton and Vickers (1993) and Stewart (1996) described
the equivalence between the formulations of the basic DEA models and the classic linear multi-attribute value function
of MCDA. More specifically, Belton and Stewart (2001) pointed out that the mechanism of DEA involves comparison
of DMUs on the basis of multiple criteria of both inputs and outputs, but the emphasis of DEA is put on evaluating DMUs
against the best practice units and on setting targets to improve efficiency, whilst MCDA focuses on ranking and assessing
alternatives. Likewise, Stewart (1996) argued that the fundamental connection between the two schools of thought is the
objective function that is either for maximising outputs or for minimising inputs. While DEA permits determining the pro-
ductive efficiency frontier of a DMU by optimising weighted outputs over weighted inputs, MCDA models allow assessing
and ranking alternatives based on a set of criteria that may be conflicting and involve subjective judgments. Arguably, DEA
could be seen as a ‘lazy’ DMs methodology to MCDA and Sarkis (2000) termed it as a reactive approach to MCDA where
different alternatives are evaluated objectively.

The original DEA models do not include the DMs preference structures or value judgments in measuring relative effi-
ciency and setting target values, so there is minimal input from the DM. Allen et al. (1997) defined value judgments as
‘‘logical constructs, incorporated within an efficiency assessment study, reflecting the DMs’ preferences in the process of
assessing efficiency”. To incorporate the DMs preference information in DEA, various techniques have been proposed such
as the goal and target setting models of Golany (1988), Thanassoulis and Dyson (1992) and Athanassopoulis (1995, 1998),
and weight restriction models including imposing bounds on individual weights (Dyson and Thanassoulis, 1988), assurance
region (Thompson et al., 1990), restricting composite inputs and outputs, weight ratios and proportions (Wong and Beas-
ley, 1990), and the cone ratio concept by adjusting the observed input–output levels or weights to capture value judgments
to belong to a given closed cone (Charnes et al., 1990, 1994). Alternative approaches include Thanassoulis and Simpson’s
model (2000) which adopts unobserved DMUs, derived from observed Pareto-optimal DMUs. Zhu (1996) also integrated
preference information into a modified DEA formulation, while Golany (1995) used hypothetical DMUs to represent pref-
erence information. However, the above-mentioned techniques require prior preferences from the DM, which are often sub-
jective. Nevertheless, preferences required for setting future target values may not be provided a priori but need to be
generated on the basis of what are realistically achievable.

An appealing method to incorporate preference information into both efficiency analysis and target setting, without nec-
essarily requiring prior judgments, is the use of interactive MOLP techniques. Golany (1988) first proposed an interactive
model combining both DEA and MOLP approaches where the DM is assumed to be able to allocate a set of input levels as
resources and to select the most preferred set of output levels from a set of alternative points on the efficient frontier. Post
and Spronk (1999) also proposed combining the use of DEA and interactive multiple goal programming where preference
information is incorporated interactively by the DM by adjusting the upper and lower feasible boundaries of the input and
output levels. Joro et al. (1998) showed the synergies between DEA and MOLP and proved that the DEA formulations are
structurally similar to MOLP models based on the reference point approach. In summary, the effective integration of
assessing past performances and planning future targets with the DMs preferences taken into account is of increasing inter-
ests to support both management control and planning (Cooper, 2004). This has indeed motivated the research as reported
in this paper.

To facilitate performance assessment and target value setting in the domain of MOLP in an integrated way, three equiv-
alence models in MOLP are investigated in this paper, including the super-ideal point model, the ideal point model and the
shortest distance model. The super-ideal point model is proven identical to the output oriented DEA dual model and thus
can be used to generate, in the context of MOLP, the same efficiency scores and corresponding composite inputs and out-
puts just as the output-oriented DEA dual model does. In other words, an efficient solution generated using the DEA model
is in fact the one on the efficient frontier that is the closest to the super ideal point in the objective space expanded by the
composite outputs, as investigated in detail later in this paper. On the other hand, the generic MOLP formulation, in which
the super-ideal point model is built, provides a platform for exploring efficiency measures and efficient frontiers using the
concepts and techniques in MOLP and also for design of solution schemas in which to conduct interactive tradeoff analysis
for setting realistic target values for an DMU within its existing production possibility set expanded by the original DMUs
in question.

The second ideal point model is designed from the generic MOLP formulation, hence sharing the same decision and
objective spaces with the super-ideal point model. It is used to construct an interactive tradeoff analysis procedure based
on the gradient projection and local region search method (Li and Yang, 1996; Yang and Sen, 1996; Yang, 1999; Yang and
Li, 2002) to locate a most preferred solution (MPS) that can maximize the DMs implicit utility function using the DMs
local preference information. Such a MPS is then set as a target for the observed DMU to benchmark against. In this inter-



J.-B. Yang et al. / European Journal of Operational Research 195 (2009) 205–222 207
active process, the DM can explore what could be technically achieved and therefore gets in a better position to decide what
should be planned as future targets. The gradient projection is conducted through the identification of normal vectors on
the efficient frontier based on the ideal point model. A normal vector itself provides information about the optimal
indifference tradeoff that the MPS must satisfy, so it can also be used as a criterion to terminate the interactive process.
On the other hand, the projection of the gradient of an implicit utility function onto the tangent plane of the efficient fron-
tier using the normal vector provides a direction closest to the efficient frontier, along which a better efficient solution can
be sought.

The third shortest distance model is designed also from the generic MOLP formulation and can be used to facilitate
group negotiation and discussion in deciding overall and localised performance targets with both individual and group
preferences taken into account. It uses a group MPS (GMPS) as a reference point, which could be provided either by a
leading DM with overall responsibility for the performance management of an organisation or generated by aggregating
solutions locally preferred by individual DMUs. A case study for analysing the efficiencies of seven UK retail banks and
setting their business targets is conducted to illustrate and validate the proposed models and procedure.

The remainder of the paper is organised as follows. Section 2 provides a brief description of the typical DEA models and
basic multiple objective optimisation techniques, followed by an investigation into the incorporation of DMs preferences
into management planning. Section 3 reports the investigation into the integrated performance assessment and target value
setting. Section 4 shows a case study on bank performance analysis using the integrated approach. The paper is concluded
in Section 5.
2. DEA-oriented performance assessment and target setting

DEA was initially developed by Charnes et al. (1978) for measuring and analyzing the relative efficiencies of comparable
DMUs with incommensurate inputs and outputs. In DEA, an efficient frontier is formed, where efficient DMUs lie. An
efficient DMU means that no other DMU can either produce the same outputs by consuming fewer inputs, known as
the input-orientated approach, or produce more outputs by consuming the same inputs, known as output-orientated
approach. The mechanism behind the methodology of the conventional DEA models is that it works on maintaining
the appropriate input–output mix so as to project inefficient DMUs radially onto the efficient frontier. The DEA models
can provide efficiency scores scaled to a maximum value of 1 for efficient DMUs and can inform the DM of the amount of
percentage by which an inefficient DMU should decrease its inputs and/or increase its outputs in order to become efficient.
It also provides reference units known as composite or virtual units which lie on the efficient frontier and are used as target
units for inefficient DMUs to benchmark against.

2.1. Typical output-orientated DEA models for performance assessment

The original DEA model proposed by Charnes et al. (1978) is a fractional non-linear programming model, known as the
CCR model. The objective function in the model is to maximise the single ratio of the weighted outputs over weighted
inputs for a particular DMU, referred to as an observed DMU and denoted by DMUo.

Suppose an organisation has n DMUs (j = 1, . . . ,n), produces s outputs denoted by yrj (the rth output of DMU j for
r = 1, . . . , s) and consumes m inputs denoted by xij (the ith input of DMU j for i = 1, . . . ,m). The fractional formulation
of DEA is then defined as follows:
Max eo ¼
Xs

r¼1

uryrjo

,Xm

i¼1

vixijo

s:t:
Xs

r¼1

uryrj

,Xm

i¼1

vixij 6 1; 8 j ¼ 1; . . . ; n; ur; vi P 0 for r ¼ 1; . . . ; s; i ¼ 1; . . . ;m

ð1Þ
ur is the weight parameter for output r and vi the weight parameter for input i. eo denotes the optimal efficiency score with a
possible range of 0 6 eo 6 1. The score of eo = 1 represents full efficiency and 0 < eo < 1 reveals the presence of inefficiency.
Each DMU can be evaluated by setting itself as the observed DMUo and is allowed freedom in the DEA model to assign the
set of its own output weights ur and input weights vi, which will render the observed DMU as efficient as possible. In other
words, the efficiency measure eo is maximised within the production possibility set formulated by the n DMUs (Cooper
et al., 2000). It is noted that the fractional program model is a computationally complex non-linear and non-convex prob-
lem, making calculations extremely difficult for large scale problems (Charnes et al., 1978). As such, Charnes introduced
the transformation of the fractional programming problem into equivalent linear programming problems. In this paper, we
investigate the equivalence between the output-oriented DEA dual models and the minimax formulations in MOLP, so
only the typical output-oriented DEA models are briefly discussed in this section.
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The following LP models are the conventional CCR models for efficiency analysis

Output-orientated CCR primal model.
Min ho ¼
Xm

i¼1

vixijo

s:t:
Xm

i¼1

vixij �
Xs

r¼1

uryrj P 0 j ¼ 1; . . . :; n;

Xs

r¼1

uryrjo
¼ 1; ur; vi P 0 for all r; i:

ð2Þ
Output-Orientated CCR Dual Model
Max ho ¼ hjo

s:t: hjo
yrjo
�
Xn

j¼1

kjyrj 6 0 r ¼ 1; . . . ; s;

Xn

j¼1

kjxij 6 xijo
; i ¼ 1; . . . ;m; kj P 0 for all j:

ð3Þ
In the output-orientated CCR primal model (2), the weighted outputs are fixed to unity and the weighted inputs mini-
mised. The output weights ur and input weights vi are adjusted accordingly to generate an efficiency score which is given by
eo = 1/ho. In the output-orientated CCR dual model (3), for each observed DMUo an imaginary composite unit is con-
structed that outperforms DMUo. kj represents the proportion to which DMU j is used to construct the composite unit
for DMUo (j = 1, . . . ,n). The composite unit consumes at most the same levels of inputs as DMUo and produces outputs
that are at least equal to a proportion hjo

of the outputs of DMUo with hjo
P 1. The inverse of hjo

is the efficiency score of
DMUo. If hjo

> 1, DMUo is not efficient and the parameter hjo
indicates the extent by which DMUo has to increase its out-

puts to become efficient. The increase is employed concurrently to all outputs and results in a radial movement towards the
envelopment surface (Charnes et al., 1994). Note that such a radial improvement strategy is imbedded in the DEA mod-
elling mechanism a priori and does not necessarily take account of management preferences, so it is technical rather than
preferential. In the following sections, we will explore how DMs preferences can be incorporated into improvement strat-
egies using interactive multiple objective optimisation techniques. Note that the above models are based on constant
returns to scale (CRS). This, however, disregards economies of scale. Variable returns to scale in efficiency analysis were
taken into account in another version of DEA model developed by Banker et al.BCC (1984), called the BCC model which is
different from the CCR model in that the former has an additional convexity constraint of all kj restricted to sum to 1 in the
dual case.

2.2. Basic concepts and minimax formulations in multiple objective optimization

In a DEA model, an efficiency score is generated for a DMU by maximizing outputs with limited inputs, or minimizing
inputs with desired or fixed outputs, or simultaneously maximizing outputs and minimizing inputs. Either way, this can be
regarded as a kind of multiple objective optimization problem. In this section, we briefly describe basic concepts and mod-
els in multiple objective optimization, in particular the minimax formulations as a basis for the investigation to be reported
in the following sections.

Suppose an optimization problem has s objectives reflecting the different purposes and desires of the DM. Such a prob-
lem can be represented in a general form as follows:
Max f ðkÞ ¼ ½f1ðkÞ; . . . ; frðkÞ; . . . ; fsðkÞ�
s:t: k 2 X ¼ fk j gjðkÞ 6 0; hlðkÞ ¼ 0; j ¼ 1; . . . ; k1; l ¼ 1; . . . ; k2g;

ð4Þ
where X is the feasible decision space, fr(k)(r = 1, . . . , s) are continuously differentiable objective functions, and
gj (k)(j = 1, . . . ,k1) and hl(k) (l = 1, . . . ,k2) are continuously differentiable inequality and equality constraint functions,
respectively. In this paper, fr(k), gj(k) and hl(k) are all assumed to be linear functions of k, so formulation (4) is referred
to as multiple objective linear programming or MOLP in short.

Due to conflict among objectives in general, a MOLP problem does not normally have a single solution that could opti-
mize all objectives simultaneously. What can be generated are efficient or non-dominated solutions. Conceptually, a fea-
sible solution k* is said to be efficient or non-dominated if there exists no other feasible solution which is better than k* at
least on one objective and as good as k* on all other objectives. An efficient or non-dominated solution is also referred to as
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a Pareto-optimal solution, which can be formally defined as follows. For simplicity, we use the term ‘‘efficient solution” in
this paper.

Definition 1. In formulation (4), a feasible solution k* 2 X is an efficient solution if and only if there does not exist any
other feasible solution k 2 X such that fr(k) P fr(k*) for all r = 1, . . . , s and fs(k) > fs(k*) for at least one s 2 {1, . . . , s}.

Any efficient solutions of a MOLP problem can be generated using the weighted minimax formulation (Steuer and
Choo, 1983; Yang, 1999; Yang and Li, 2002). Suppose k is an efficient solution of (4) and f �r the maximum feasible value
of objective r. There exists a weighting vector w satisfying w1 = 1 and wr > 0 for r = 2, . . . , s such that k can be generated by
solving the following weighted minimax problem
Min
k

Max
16r6s

wr ðf �r � frðkÞÞ
�� ��� �

s:t: k 2 X:
ð5Þ
The weighted minimax formulation will be called the ideal point model, a special case of the reference point formulation,
if f � ¼ f �1 � � � f �r � � � f �s

� �T
is the ideal point and used as the reference point. In the minimax formulation, for a given weight

vector the DM is assumed to be satisfied with an efficient solution k 2 X at which f(k) has the shortest weighted distance
from f* measured in 1-norm in the objective space.

If f* is an ideal point, then the non-smooth weighted minimax formulation given in (5) can be equivalently transformed
into the following smooth form by introducing an auxiliary variable h (Lightner and Director, 1981; Yang and Li, 2002)
Min h

s:t: wrðf �r � frðkÞÞ 6 h r ¼ 1; . . . ; s; k 2 X:
ð6Þ
Note that the above minimax formulation (6) is still equivalent to formulation (5) if f* is replaced by a better reference
(super-ideal) point f+ with f+ P f*. It will be shown that the minimax formulation using a particular super-ideal point as
the reference point can be used to generate DEA scores and corresponding composite inputs and outputs in the same way
as the output-oriented dual DEA model does, and also to design an interactive procedure to support the DM to search for
the MPS on the efficient frontier by systematically changing the weighting parameters wr(r = 1, . . . , s).

2.3. Incorporation of DMs preferences into target setting

DEA models can be used to measure and assess how efficiently an organisation utilises its resources (inputs) to generate
desirable outcomes (outputs) in its business activities in comparison with its peers (DMUs). In this sense, DEA is a man-
agement control tool and can be used to identify whether a business is run efficiently and where it currently stands in the
market. If a DMU is found to be inefficient, DEA can provide suggestions as to where and by how much it should be
improved in order to achieve full efficiency in comparison to its peers. As such, DEA does provide certain degrees of sup-
port to both management control and planning. However, in supporting management planning, conventional DEA does
not take appropriate account of the DMs preferences. This is explained in some detail as follows.

In Fig. 1, there are five DMUs: A, B, C, D and E with the first four DMUs being fully efficient and E inefficient which is
the observed DMU. AB;BC and CD constitute the efficient frontier. In DEA, the efficiency score of the observed DMU E is
measured by OE=OE1 with E1 being the intersection point of the efficient segment AB and a line emitting from the origin O
through the point E. Since E is inefficient in comparison with A, B, C and D, DEA technically suggests the radial improve-
ment of DMU E from point E to point E1 along the line. Whilst this is a valid suggestion, there are many other alternatives.
C1

E1

B

f( Ω )

A

D

MPS

E

O

Output 2 

Output 1 

C

A1

Fig. 1. Illustration of efficiency analysis and tradeoffs.
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In fact, in Fig. 1 any efficient solution on the segments A1B and BC1 of the efficient frontier dominates DMU E and could
potentially be used as its target, or its MPS. In general, if tradeoffs between outputs are allowed in management planning,
other efficient solutions could also be candidates as the MPS for DMU E, depending on the DMs preferences. Even if a
DMU is already technically efficient, the DMs may prefer to achieve a better balance between outputs than its current out-
put levels without necessarily consuming more resources, in other words to find a new MPS along the efficient frontier as
future targets. Although there are existing DEA models that support target setting by allowing restrictions on input weights
and output weights or by imposing input and output targets, they require prior knowledge about what are achievable,
which, however, depends on the selection of reference DMUs and their performances. Thus, such knowledge in general
is not available a priori but needs to be explored.

The above discussions show that a few questions remain to be answered after the performance of each DMU is assessed
by generating a DEA score and a technical target such as E1 for DMU E in Fig. 1. The first question is how to find different
realistic targets from E1 that DMU E could benchmark against based on its current performances and within the existing
production possibility set. The second question is how to support the DMs to identify a new target that is not only tech-
nically achievable but also most preferred by the DMs.

Multiobjective optimization is a tool for management planning and can be used to support the search for efficient solu-
tions and the location of the MPS. To answer these questions, a super-ideal point model will be first investigated in next
section which is proven identical to the output-orientated CCR dual model. The super-ideal point model can thus be used
for conventional efficiency analysis. Furthermore, it leads to the identification of a generic MOLP formulation, which
defines the production possibility set of the observed DMU and in which solution schemas can be developed to explore
all efficient solutions of a DMU.

An interactive tradeoff analysis procedure based on the ideal point model and the gradient projection method will then
be investigated to support the search for the MPS with the DMs preferences taken into account. In this procedure, the
implicit utility function of the DM can be maximised by using local tradeoff information. A group procedure is also sug-
gested on the basis of the shortest distance model to support the negotiations and discussions in setting targets with both
organizational and individuals preferences taken into account.
3. Interactive MOLP methods for integrating efficiency analysis and target setting

In this section, we first investigate the equivalence between the output-oriented DEA dual model (3) and the minimax
reference point formulations. A super-ideal point model will first be investigated for conducting efficiency analysis in the
same way as the DEA output-oriented dual model does. An equivalent ideal point model will then be investigated to design
an interactive tradeoff analysis procedure for locating the MPS by systematically adjusting weights. Finally, a group deci-
sion making process is proposed to support the determination and mapping of group most preferred solution (GMPS),
which is used as a new reference point to construct the shortest distance model to identify locally most preferred solutions
(LMPSs) or to set or update target values for individual DMUs.
3.1. Conducting DEA-oriented performance assessment using a MOLP method

The output-orientated CCR dual model, as shown in formulation (3), can be equivalently re-written as follows:
Max hjo

s:t: hjo
yrjo
�
Xn

j¼1

kjyrj 6 0; r ¼ 1; . . . ; s;

k 2 Xjo
¼ k

Xn

j¼1

kjxij 6 xijo
; i ¼ 1; . . . ;m; kj P 0; j ¼ 1; . . . ; n

�����
( )

:

ð7Þ
In this subsection, we first show that formulation (7) is the same as formulation (6) under certain conditions. The pur-
pose for establishing this equivalence is to use formulation (6) to conduct efficiency analysis, so that interactive MOLP

techniques can be used to locate the MPS or set target values for the observed DMUo. Note that in formulation (6) the
weight wr is subject to change in an interactive process of locating the MPS.

Suppose in formulation (7) the rth composite output is denoted by fr(k) as follows:
frðkÞ ¼
Xn

j¼1

kjyrjðr ¼ 1; . . . ; sÞ and k ¼ ðk1; . . . ; knÞT: ð8Þ
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In this equivalence analysis, the rth composite output is defined as an objective for maximisation, so there are s objectives
in total. The maximum feasible value of the rth composite output for the observed DMUo is denoted by �f rjo

¼ frðk�Þ, where
k* can be found by solving the following single objective optimisation problem:
Max f rðkÞ ¼
Xn

j¼1

kjyrj

s:t: k 2 Xjo
:

ð9Þ
Note that �f jo
¼ ½�f 1jo

; . . . ; �f sjo
�T is the ideal point in the objective space spanned by (8) on Xjo

for the observed DMUo, as
shown in Fig. 2.

Suppose the feasible decision space X in formulation (6) is set to be the same as defined in formulation (7), or X ¼ Xjo
.

The equivalence relationship between the output-oriented CCR dual model (3) or (7) and the minimax formulation (6) can
be established as follows.

Suppose yrjo
> 0 for all r = 1, . . . , s and jo = 1, . . . ,n. The output-oriented CCR dual model (7) can be equivalently trans-

formed to the minimax formulation (6) using formulations (8) and (9) and the following equations:
wr ¼ 1=yrjo
; ð10Þ

f �r ¼
F max

wr
¼ yrjo

F max; ð11Þ

h ¼ F max � hjo
ð12Þ
with
F max ¼ max
16r6s
fwr

�f rjo
g ¼ max

16r6s

�f rjo

yrjo

( )
: ð13Þ
The above equivalence relation can be explained as follows. Using Eqs. (8) and (10), the output-orientated CCR dual
model can be equivalently rewritten as follows:
Max hjo

s:t: hjo

1

wr
� frðkÞ 6 0; r ¼ 1; . . . ; s; k 2 Xjo

:
ð14Þ
The first s objective constraints in (14) can be equivalently transformed as follows, where ‘‘,” means ‘‘is equivalent to”.
For any r = 1, . . . , s, we have
hjo

1

wr
� frðkÞ 6 0() � wrfrðkÞ 6 �hjo

() F max � wrfrðkÞ 6 F max � hjo
() wrðf �r � frðkÞÞ 6 h: ð15Þ
Moreover, the objective function of model (14) becomes
Max hjo
¼Minð�hjo

Þ ¼MinðF max � hjo
Þ ¼Min h: ð16Þ
E1

B

*f

A

D

E

O

f2

f1

C

jf

)( jf Ω

Fig. 2. Illustration of super-ideal point and ideal point.



212 J.-B. Yang et al. / European Journal of Operational Research 195 (2009) 205–222
Note that for any k 2 Xjo
h ¼ F max � hjo
P wr

�f rjo
� hjo

P wrfrðkÞ � hjo
P 0 for any r ¼ 1; . . . ; s; ð17Þ

f �r ¼
F max

wr
P

wr
�f rjo

wr
¼ �f rjo

¼ max
k2Xjo

frðkÞ for any r ¼ 1; . . . ; s: ð18Þ
The above analyses show that if the reference point in model (6) is set by f � ¼ ½f �1 ; . . . ; f �s �
T ¼ F max½y1jo

; . . . ; ysjo
�T and wr

by Eq. (10), then the output-oriented CCR dual model will be identical to the following minimax reference point
formulation:
Min h

s:t: wr f �r �
Xn

j¼1

kjyrj

 !
6 h r ¼ 1; . . . ; s;

Xn

j¼1

kjxij 6 xijo
; i ¼ 1; . . . ;m; kj P 0; j ¼ 1; . . . ; n:

ð19Þ
By identical we mean that they share the same decision and objective spaces and have the same optimal solution. Since
f � ¼ F max½y1jo

; . . . ; ysjo
�T P �f jo

¼ ½�f 1jo
; . . . ; �f sjo

�T, such a f* is called super-ideal point and the minimax reference point for-
mulation established using the super-ideal point is therefore referred to as the super-ideal point model in this paper. The
output-oriented BCC dual model can also be transformed to an identical minimax formulation similar to the above super-
ideal point model with an extra convexity constraint of

Pn
j¼1kj ¼ 1.

From equivalence Eqs. (10)–(13), the following three remarks can be drawn.

Remark 1. The super-ideal point model (19) can be used to generate the CCR efficiency score and the efficient composite
inputs and outputs of DMUo if in model (19) wr is calculated by using Eq. (10) and f �r by Eqs. (11) and (13).

The above analyses show that the CCR dual model is actually constructed to locate a specific efficient solution, termed
as DEA efficient solution on the efficient frontier of the following generic MOLP formulation for the observed DMUo
Max
Xn

j¼1

kjy1j; . . . ;
Xn

j¼1

kjyrj; . . . ;
Xn

j¼1

kjysj

" #

s:t:
Xn

j¼1

kjxij 6 xijo
; i ¼ 1; . . . ;m; kj P 0;

ð20Þ
from which the super-ideal point model was constructed. The generic MOLP problem (20) defines the production possi-
bility set for the observed DMUo, in which there may be more preferred efficient solutions than the DEA efficient solution.

Remark 2. In the minimax reference point formulation (19), if the reference point is set as the ideal point, or
f � ¼ �f jo

¼ ½�f 1jo
; . . . ; �f sjo

�T, and wr is allowed to change, then we get the conventional ideal point model equivalent to the
CCR dual model in the sense that they share the same decision and objective spaces. Changing wr in R+ leads to the
generation of any efficient solutions for the observed DMUo, as defined in formulation (20). For the purpose of initialising
an interactive procedure, an initial efficient solution can be generated by assigning normalised equal weights to the first s

constraints in formulation (19). Alternatively, let f t
r ¼ frðktÞ be the value of the rth composite output at the solution kt,

defined in problem (9). If f t ¼ ½f t
1; . . . ; f t

s �
T happens to be on the efficient frontier, then setting wr ¼ 1=ð�f rjo

� f t
r Þ for the rth

output and solving the ideal point model (19) will lead to the identification of kt ¼ ½kt
1; . . . ; kt

s� with f t
r ¼

Pn
j¼1k

t
jyrj

(Lightner and Director, 1981; Yang and Li, 2002).

Remark 3. If f t ¼ ½f t
1; . . . ; f t

s �
T is not on the efficient frontier, then setting wr ¼ 1=ð�f rjo

� f t
r Þ and solving problem (19) will

lead to the identification of kt with f t
r –
Pn

j¼1k
t
jyrj and

Pn
j¼1k

t
jy1j; . . . ;

Pn
j¼1k

t
jysj

h iT

lying at the crossing point on the efficient

frontier by a line from the ideal point �f jo
¼ ½�f 1jo

; . . . ; �f sjo
�T towards ½f t

1; . . . ; f t
s �

T. In this case,
Pn

j¼1k
t
jyrj might not be the

target value of the rth output preferred by the DM. To help the DM set realistic target values, a gradient projection based
interactive tradeoff procedure can be employed by calculating the normal vector of the efficient frontier atPn

j¼1k
t
jy1j; . . . ;

Pn
j¼1k

t
jysj

h iT

. This projection can be used to assist the DM to provide a realistic tradeoff for finding better

efficient solutions than kt. At each interaction, a new weighting vector generated from the tradeoff can be determined and
used to solve formulation (19), leading to a new efficient solution kt+1.
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Graphically, the super-ideal point f* and the ideal point �f jo
are shown in Fig. 2 in the objective space spanned by f1 and

f2 defined in Eq. (8). The observed DMU E is given by E ¼ ½y1jo
; y2jo
�T and assumed to be inefficient in Fig. 2. E1 is the

intersection of the efficient frontier and a line emitting from the origin O through the point E, given by
E1 ¼ hjo

½y1jo
; y2jo
�T. The efficiency score can be calculated by eo ¼ OE=OE1 ¼ 1=hjo

, irrespective of the number of inputs.
The ideal point is given by �f jo

¼ ½�f 1jo
; �f 2jo
�T. The super-ideal point is defined by f � ¼ F max½y1jo

; y2jo
�T, which is proportional

to point E. So, f*, E and E1 are all on the above same line. In Fig. 2, ðy2jo
=y1jo
Þ > ð�f 2jo

=�f 1jo
Þ, or ð�f 1jo

=y1jo
Þ > ð�f 2jo

=y2jo
Þ. So,

F max ¼ �f 1jo
=y1jo

and f � ¼ �f 1jo
½1; ðy2jo

=y1jo
Þ�T, which means that f* and �f jo

are on the same vertical line with f* above �f jo
.

From Remark 1, the solution of the super-ideal point model leads to f � � E1 ¼ h½y1jo
; y2jo
�T, or

F max½y1jo
; y2jo
�T � hjo

½y1jo
; y2jo
�T ¼ h½y1jo

; y2jo
�T, so h ¼ F max � hjo

. On the other hand, changing weights in R+ and solving
the ideal-point model can identify any efficient solutions from point A to point D.

3.2. An interactive tradeoff analysis procedure for setting target values

The gradient projection method can be used to identify a normal vector at a given efficient solution on the efficient fron-
tier and to design an interactive procedure for searching for the MPS that maximizes the DMs implicit utility function. We
first describe the method and then develop the tradeoff procedure.

Suppose for a given positive weight vector wt ¼ fwt
1 � � �wt

r � � �wt
sg the optimal solution of the minimax model (6) is given

by kt ¼ fkt
1 � � � k

t
r � � � k

t
sg, which must be an efficient solution. The optimal value of the dual variable (simplex multiplier in

linear case) of the rth objective constraint wrðf �r � frðkÞÞ 6 h is given by bt
r. Let f(kt) = [f1(kt) � � � fr(k

t) � � � fs(k
t)]T represent

the efficient solution in the corresponding objective space. It is proved that the normal vector Nt at f(kt) on the efficient
frontier is given by (Yang and Li, 2002):
Nt ¼ ½wt
1b

t
1;w

t
2b

t
2; . . . ;wt

rb
t
r; . . . ;wt

sb
t
s�

T
: ð21Þ
In linear programming, bt
r can be generated using many existing software packages at no extra cost. Suppose the implicit

utility function of the DM is denoted by u (f(k)). The gradient of u (f(k)) at the solution f(kt) is given by
rut ¼ ou
of ðktÞ ¼

ou
of t

1

� � � ou
of t

r

� � � ou
of t

s

� �T

: ð22Þ
Although u (f(k)) is unknown in general, the utility gradient $ut may be estimated using the local preference information of
the DM, for example marginal rates of substitution.

If f(kt) is the MPS, it is necessary as well as sufficient in a convex case (e.g. linear case) that the normal vector Nt is
proportional to the utility gradient $ut at f(kt), or
½wt
1b

t
1 � � �wt

rb
t
r � � �wt

sb
t
s�

T / ou
of t

1

� � � ou
of t

r

� � � ou
of t

s

� �T

: ð23Þ
If the optimal condition were met, then the gradient ~G, as shown in Fig. 3, would be proportional to the normal vector
~N ; consequently, the dashed line would overlap the dotted line in Fig. 3, or point E3 would overlap E2. If the optimal con-
dition is not met, as is the case in Fig. 3, then the gradient ~G can be projected onto the tangent plane (dotted line) of the
efficient frontier at f(kt). Such projection provides a direction on or closest to the efficient frontier, along which the DMs
utility can be improved. The projection, denoted by Dut as shown in Fig. 3, is given by
E2

E1

B

N
→

→

A

D

MPSE

O

f2

f1

E3

C

u(f)

G

tuΔ

Fig. 3. Projection of utility gradient onto tangent plane of efficient frontier.



214 J.-B. Yang et al. / European Journal of Operational Research 195 (2009) 205–222
Dut ¼ ½Df t
1 � � �Df t

r � � �Df t
s �

T ¼ �rut þ ½ðrutÞTNt�
½ðN tÞTNt�

N t: ð24Þ
However, since the utility function is not known explicitly, a utility gradient needs to be estimated by for example indif-
ference tradeoffs or marginal rates of substitution, M, which may be provided by the DM. Without loss of generality, set
the first objective f1 as the reference objective. Then the indifference tradeoff Mt

1r between the first and the rth objectives and
the marginal rate of substitution Mt at f(kt) are given by:
Mt
1r ¼ �

df t
1

df t
r

and Mt ¼ ½1;Mt
12 � � �Mt

1r � � �Mt
1s�

T
; ð25Þ
where df t
1 is a change in f1(k) that is assumed to be exactly offset by a change df t

r in fr(k) with the overall utility kept con-
stant, given that all other objectives remain unchanged. It can be shown that the gradient of the utility function $ut given in
(22) is proportional to the marginal rate of substitution Mt at f(kt), or
Mt ¼ rut

ou=of t
1

: ð26Þ
At the MPS, the following optimal indifference tradeoff between f1(k) and the rth objective can be calculated using the
following equation:
df t
r ¼ �df t

1

wt
1b

t
1

wt
rb

t
r

: ð27Þ
On the other hand, the optimal indifference tradeoff can be used to check whether the MPS is achieved.
If the MPS is not achieved, then the projection Dut can be calculated using Mt as follows and will not be zero, denoted

by D�ut, which provides a new tradeoff direction to improve the DMs utility:
D�ut ¼ ½D�f t
1 � � �D�f t

r � � �D�f t
s�

T ¼ �Mt þ ðM
tÞTN t

ðNtÞTN t
N t: ð28Þ
Suppose �a is a tradeoff step. Update the weighting parameters wr as follows:
wtþ1
r ¼ f1ðktÞ þ �aD�f t

1 � f1ðk�Þ
frðktÞ þ �aD�f t

r � frðk�Þ
r ¼ 1; . . . ; s: ð29Þ
Replacing wr by wtþ1
r in formulation (6) and solving it leads to a new solution kt+1 which should have a higher utility

than kt for a sufficiently small �a, or u (kt+1) > u(kt). In the following, we will design an interactive procedure to use the
above results to support the DM to search for the MPS, summarised as follows:

Step 1: Generate an output payoff table.
Optimise each of the composite outputs of the observed DMU using formulation (9) to generate �f rjo

ðr ¼ 1; . . . ; sÞ
and collect the results in a payoff table. For each composite output, elicit a target output value Y �rjo

from the DM

as a starting point.
Step 2: Generate initial efficient solution

Set the initial weighting parameters as w0
r ¼ 1=ð�f rjo

� Y �rjo
Þðr ¼ 1; . . . ; sÞ. For the observed DMU, solve model (19)

and obtain the initial solution of the decision variables k0 ¼ ½k0
1 � � � k

0
n�

T, the initial objective values
f(k0) = [f1(k0) � � � fs(k

0)]T, and the initial dual variable values bt ¼ ½bt
1 . . . bt

s�
T for the first s constraints on the out-

puts. Set t = 0.
Step 3: Compute the normal vector and check optimality condition

At interaction t, calculate the normal vector Nt using Eq. (21). Choose a reference composite output, for example
the first composite output f1(k). Then check whether a given small change df t

1 in f1(k) can be exactly offset by the
amount of change df t

r in the rth composite output fr(k) with df t
r generated using Eq. (27). If the DM agrees with

such optimal indifference tradeoffs between f1(k) and each of the other composite outputs, then the current solu-
tion f(kt) is already the MPS and the interactive process is terminated. Otherwise, the DM would provide new
indifference tradeoffs, or Mt ¼ ½1;Mt

12 � � �Mt
1r � � �Mt

1s�
T.

Step 4: Determine the tradeoff direction
Use Eq. (28) to calculate the projection of the DMs indifference tradeoffs Mt onto the tangent plane of the efficient
frontier, or D�ut ¼ ½D�f t

1 � � �D�f t
r � � �D�f t

s�
T, which determines the new tradeoff direction.
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Step 5: Determine the tradeoff step size and calculate the new weighting vector

The tradeoff step size �a can be estimated by �a ¼ at
maxa, where at

max is the largest permissible step size and a a reg-
ulating factor with 0 6 a 6 1. Suppose I1 is the set of the subscripts of objectives for increase. The maximum step
size can be determined as follows:
Table
Tradeo

a

0.1
0.2
..
.

1.0
at
max ¼ max

r2I1

�f rjo
� f t

r

D�f t
r

�� �� : ð30Þ
An explicit tradeoff table as illustrated below and detailed in the case study can be used to determine the tradeoff step
size �a using the following general formula:
frð�aÞ ¼ frðktÞ þ �aD�f t
r: ð31Þ
In Table 1, the DM may determine the step size by analysing the tradeoffs among the outputs along the tangent plane of
the efficient frontier. Some heuristics about the selection of the step size are discussed in the case study. Once the step size is
decided, the weighting parameters can be updated using Eq. (29).

The above interactive process continues until the optimal indifference tradeoffs are achieved and thus the MPS is found
maximising the implicit utility function of the DM. The decision variables at the MPS are represented by
k� ¼ ½k�1 � � � k

�
j � � � k

�
n�

T.

3.3. Taking group preferences into account in setting target values

The above MPS located for each DMU relative to its peers only represents the preferences of the DM of the DMU at a
divisional or local level. In order to set a performance benchmark with the organisational or group preferences taken into
account, a group most preferred solution (GMPS) would need to be determined first. It is possible that a GMPS is assigned
by a single leading DM having the overall responsibility for an organisation or group, by choosing a convex combination
of the individual MPSs generated in the last section, or by simply picking up an existing efficient DMU (Korhonen et al.,
2002) or a convex combination of certain existing efficient DMUs as a GMPS for the whole organisation. Alternatively,
group decision making techniques such as voting theory or the Delphi technique could be used, especially for the purpose
of negotiation and finding a compromised GMPS. Nevertheless, a group decision making process has to be participative
and flexible so as to reflect the opinions of group members, in particular the evolving discussions between the group
members.

A GMPS, as defined by m GMPS inputs xGMPS
i ði ¼ 1; . . . ;mÞ and s GMPS outputs yGMPS

r ði ¼ 1; . . . ;mÞ may lie within, on
or outside the efficient frontier of a specific DMU. Although a GMPS point may represent the preferences of a group as a
whole, it will not be practical to a DMU if it is not attainable by the DMU. In the rest of this section, a procedure will be
proposed where a GMPS is mapped back to the feasible space of each DMU to generate a locally most preferred solution
(LMPS) for each DMU. The new local input and output targets could then be used as benchmark to align towards the
organisation’s or group’s targets with both group and individual DMs preferences taken into account.

By constructing a minimax reference point model with the GMPS as the reference point, a LMPS for each DMU could
be generated as the one closest to the GMPS in the composite output space of the DMU. The following minimax reference
point model equivalent to the minimax formulation (5) is constructed for this purpose (Yang, 2001a).
Min d

s:t: wrðf GMPS
r � frðkÞÞ 6 d;

� wrðf GMPS
r � frðkÞÞ 6 d r ¼ 1; . . . ; s;

k 2 Xjo
¼ k

Xn

j¼1

kjxij 6 xijo

����� ; i ¼ 1; . . . ;m; kj P 0; j ¼ 1; . . . ; n

( )
;

ð32Þ
where f GMPS
r is given by f GMPS

r ¼ �kyGMPS
r with �k ¼ min

16i6m
fxijo

=xGMPS
i g.
1
ff step size table

f1ð�aÞ f2ð�aÞ . . . fsð�aÞ
f1ðktÞ þ 0:1amaxD�f t

1 f2ðktÞ þ 0:1amaxD�f t
2 . . . fsðktÞ þ 0:1amaxD�f t

s
f1ðktÞ þ 0:2amaxD�f t

1 f2ðktÞ þ 0:2amaxD�f t
2 . . . fsðktÞ þ 0:2amaxD�f t

s
..
. ..

. . .
. ..

.

f1ðktÞ þ 1:0amaxD�f t
1 f2ðktÞ þ 1:0amaxD�f t

2 . . . fsðktÞ þ 1:0amaxD�f t
s
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Note that it is not always the case that f GMPS
r P frðkÞ for all r in Xjo

. The above reference point model is referred to as the
shortest distance model to differentiate it from the previous super-ideal and ideal point models, though they are all derived
from formulation (20), so sharing the same decision and objective spaces. The main advantage of the above LMPS pro-
cedure is that the weight wr for an objective fr(k) in formulation (32) can be set individually for each DMU, which can thus
be used to represent local preferences. The rationale is that each DMU may be different from others, and based on the same
GMPS, each DMU may have different preferences and relative weights for the objectives or outputs. This is relevant since
different DMUs have different capabilities and specialities and may perform well in certain areas. On the other hand, there
is also flexibility where a compromised common set of weights could be decided by the group members through negotiation
and discussion. Alternatively, the same set of relative weights could be explicitly assigned by a group leader with an author-
itative role such as the chief executive of a company representing the views of the organisation. This happens when the
organisation wants to focus on improving only certain aspects of the business or output levels.

In the LMPS procedure, a GMPS is mapped back to the feasible space of each DMU to match its capabilities, size and
scale of operations. However, it is possible that a LMPS generated by the mapping procedure may lie within the efficient
frontier, thus an inefficient solution with d = 0. In order to alleviate this problem, the super-ideal point model (3) can be
constructed and solved with the LMPS of the observed DMU added as a new DMU in the reference set. The corresponding
composite outputs generated by the model for the LMPS are realistic and achievable and thus could be used as the per-
formance benchmark for the observed DMU, which will be referred to as the efficient LMPS that takes into account the
preferences of both individual DMs and group members.
4. A case study for performance analysis of UK retail banks

4.1. Problem description and efficiency analysis

A case study is carried out to demonstrate how performance assessment and target setting can be conducted in an inte-
grated way using the interactive MOLP methods investigated in the previous sections. The UK retail bank industry, spe-
cifically seven major retail banks, is examined to show the equivalence models, demonstrate the interactive procedure to
search for MPSs along the efficient frontier, and illustrate the group negotiation and discussion process. The data set is
obtained from Wong and Yang (2004) through a study on data envelopment analysis and multiple criteria decision making
based on the evidential reasoning approach – performance measurement of UK retail banks (Yang, 2001b; Yang and Xu,
2002), as shown in Table 2.

For the DEA formulation, the reference set consists of seven DMUs (retail banks), and four inputs and two outputs are
considered. The DMUs are comparable major banks in the UK including Abbey National, Barclays, Halifax, HSBC,
Lloyds TSB, NatWest and RBS (Royal Bank of Scotland). The four inputs are namely number of branches, number of
ATMs, number of staff and asset size. The two outputs are customer satisfaction and total revenue. It should be noted that
although both bank staff and customers were interviewed in person or through questionnaires at certain stages of this
research it is the researchers who acted as the DMs. Also note that this was not a full scale performance analysis and only
limited data were collected. As such, the conclusions of the paper are for the purpose of illustrating the new approach
rather than for providing an authentic performance assessment of these retail banks.

The output-oriented CCR dual model (3) is run to find the respective efficiency scores. As shown in Table 3, only Barc-
lays and NatWest are found to be inefficient within the reference set of the seven banks. For instance, NatWest has an
efficiency score of 74.7%, and its composite point on the efficient frontier can be represented as a linear combination of
Table 2
Original data set

DMU Bank Inputs Outputs

No. of branches
(’000)

No. of ATMs
(’000)

No. of Staff
(’0,000)

Asset size
(£’00 bn)

Customer
satisfaction*

Total revenue
(£ m)

1 Abbey
national

0.77 2.18 2.35 2.96 6.79 10.57

2 Barclays 1.95 3.19 8.43 3.53 2.55 13.35
3 Halifax 0.80 2.10 3.21 2.41 9.17 8.14
4 HSBC 1.75 4.00 13.30 4.85 5.82 23.67
5 Lloyds TSB 2.50 4.30 9.27 2.40 6.57 14.01
6 NatWest 1.73 3.30 7.70 3.09 4.86 12.04
7 RBS 0.65 1.73 2.67 1.34 7.28 7.36

* Customer satisfaction values are converted scores based on the average expected utilities of the survey respondents. Source: bank brochures, banks and
financial advice websites, interviews with bank staff and customers.



Table 3
DEA results and efficiency scores

DMU Bank DEA score Observed DMUs composite unit

1 2 3 4 5 6 7

1 Abbey national 1.000 1.000
2 Barclays 0.778 0.135 0.512 0.489
3 Halifax 1.000 1.000
4 HSBC 1.000 1.000
5 Lloyds TSB 1.000 1.000
6 NatWest 0.747 0.310 1.192
7 RBS 1.000 1.000

Table 4
Equivalence between CCR dual model and super-ideal point model

DMU DEA dual model Minimax model h ¼ F max � hjo

DEA Score hjo
Fmax h Composite inputs and outputs

x1 x2 x3 x4 y1 y2

1 1.000 1.000 1.000 0.000 0.77 2.18 2.35 2.96 6.79 10.57 0.000
2 0.778 1.285 5.449 4.164 1.32 3.19 8.43 3.53 7.45 17.15 4.164
3 1.000 1.000 1.238 0.238 0.80 2.10 3.21 2.41 9.17 8.14 0.238
4 1.000 1.000 3.001 2.001 1.75 4.00 13.30 4.85 5.82 23.67 2.001
5 1.000 1.000 1.989 0.989 2.50 4.30 9.27 2.40 6.57 14.01 0.989
6 0.747 1.338 2.905 1.567 1.32 3.30 7.30 3.09 10.48 16.11 1.567
7 1.000 1.000 1.000 0.000 0.65 1.73 2.67 1.34 7.28 7.36 0.000
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0.310 of HSBC and 1.192 of RBS. Note that the decision variables do not add up to 1 as the constant returns to scale is
assumed.

Before conducting interactive tradeoff analysis, let us first validate the equivalence between the CCR dual model and the
minimax formulations developed in the previous sections. Using Remark 1, the super-ideal point model shown in formu-
lation (19) is run for each DMU, with wr assigned by (10) and the reference point as the super-ideal point f � ¼
F max½y1jo

; . . . ; ysjo
�T. The results are shown in Table 4, which shows that the equivalence h ¼ F max � hjo

holds for each
DMU with h generated using the super-ideal point model, Fmax assigned using Eq. (13) and hjo

being the same as the
DEA score given in Table 3 for each DMU. The composite inputs and outputs for each DMU shown in Table 4 are also
the same as the results of Table 3 generated by the output-oriented CCR dual model.

4.2. Interactive tradeoff analysis to find MPSs for management planning

In the proposed interactive tradeoff analysis procedure, the first step is to solve model (9) for each composite output of
the observed DMU to generate a payoff table for the DMU, in which the feasible ranges of tradeoffs are defined. Table 5
shows the ranges of possible output values when each composite output of every DMU is maximized.

From Table 5, it is clear that without increasing the consumption of resources (inputs) there is no further improvement
or possible tradeoffs between the outputs of Abbey National and RBS as for each of them maximising y1 and y2 leads to the
same set of solutions. The other efficient DMUs such as Halifax, Lloyds TSB and HSBC can sacrifice one of the outputs to
increase the other output. For the inefficient DMUs of Barclays and NatWest, both their outputs can be further improved
without consuming extra inputs. For illustration purpose, the interactive tradeoff analysis procedure will be demonstrated
for the sixth DMU NatWest, which is an inefficient DMU. The maximum feasible value of the first composite output of
NatWest is generated as �f 1 ¼ 14:12, while the maximum feasible value of its second composite output is given by
�f 2 ¼ 16:11. The ideal point of the composite outputs is thus given by �f ¼ ½14:12; 16:11�T, which is then used in the next
step of the procedure.

The starting solution of the interactive procedure for NatWest is generated by solving model (19) with the initial weights
wr assigned as described in Remarks 2 and 3. In fact, the starting solution could be the same point on the efficient frontier
as that of the DEA composite solution for NatWest. In this way, the DM will be able to decide whether to accept or reject
the initial composite solution or the DEA composite input and output values as the MPS for NatWest. However, for Nat-
West, the maximum composite output 2 from the payoff table is the same as the DEA composite output 2, or
�f 2 ¼ f 0

2 ¼ 16:11. This means that the DEA composite unit is an extreme point on the efficient frontier. In this case, wr

can be assigned by w2 = 1 and w1 = 0 in formulation (19), and the starting solution is equal to the DEA composite unit.
At this extreme point, there may be multiple normal vectors. One of the normal vectors can be calculated as N0 = [0, 1]T.



Table 5
Payoff table for all DMUs

DMU Bank Max y1 Max y2 Maximum values

y1 y2 y1 y2 y1 y2

1 Abbey national 6.79 10.57 6.79 10.57 6.79 10.57
2 Barclays 13.87 12.47 7.45 17.15 13.87 17.15
3 Halifax 9.17 8.14 6.85 10.08 9.17 10.08
4 HSBC 17.47 15.50 5.82 23.67 17.47 23.67
5 Lloyds TSB 13.07 13.22 6.57 14.01 13.07 14.01
6 NatWest 14.12 13.49 10.48 16.11 14.12 16.11
7 RBS 7.28 7.36 7.28 7.36 7.28 7.36
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Alternatively, if f 0
2 is perturbed or decreased by a very small amount so that �f 2 > f 0

2 , for example f 0
2 ¼

16:10ð< �f 2 ¼ 16:11Þ, then a starting solution with the maximum objective values of f(k0) = [10.49, 16.10]T can be found
by solving formulation (19) that is very close to but not exactly the same as the DEA composite outputs of
f(kt) = [10.48, 16.11]T. This perturbation technique is used to start the interactive process, resulting in the initial decision
variables k0 = [0, 0, 0, 0.31, 0, 0, 1.20]T and the normal vectors N0 = [0.27, 0.45]T calculated using formulation (21). Thus,
the initial efficient solution of NatWest can be characterised as a linear combination of 0.31 of HSBC and 1.20 of RBS.

For the first interaction, suppose f2 is treated as the reference objective. The optimal indifference tradeoff vector at the
solution f(k0) for a unit change of f2 can be calculated using Eq. (27) as df0 = [1.66, 1.00]T, leading to the initial optimal
indifference tradeoff of (10.49, 16.10), (10.49 + 1.66, 16.10 � 1.00). If the DM does not agree with this initial optimal
indifference tradeoff, which means that the initial target values are not most preferred, then a new set of indifference trade-
offs may be proposed by the DM, for example (10.49, 16.10), (10.49 + 2.00, 16.10 � 1.00), resulting in the marginal rate
of substitution M0 = [0.50, 1.00]T. Note that the tradeoff of (10.49 + 2.00) for f1 is less than its maximum feasible value
of 14.12.

The gradient projection is calculated using Eq. (24) to find the tradeoff direction with D�f 0 ¼ ½0:076;�0:046�T, which
means that the DM prefers to improve f1 at the expense of f2. As for the tradeoff size, the maximum permissible step size
is calculated by Eq. (30), resulting in a0

max ¼ 48:00, which is used to construct the step size table. Table 6 shows that f1

increases and f2 decreases for every incremental step size when 10 equal incremental steps are used between the current
value of 10.49 for f1 and its maximum feasible value of 14.12. Suppose the DM sets the target level for f1 at 11.00. This
new target value of 11.00 is exceeded when a P 0.2, so the regulating parameter is set to a = 0.1.

For a more precise size-step assignment, 100 equal incremental steps could be used between the current value of 10.49
for f1 and its maximum feasible value of 14.12. Using the same maximum upper bound for f1 at 11.00, the target value of
11.00 is exceeded when a P 0.15 and hence the regulating parameter of the step size is set to a = 0.14.

The weighting vector can be updated using Eq. (29) with w1 = [1, 9.907]T. Solving formulation (19) again with the new
weight vector w1 in the second interaction, a new efficient solution is generated with f(k1) = [11.00, 15.79]T and k1 = [0, 0, 0,
0.26, 0, 0, 1.30]T. The new normal vectors at f(k1) is calculated as N1 = 0.32[0.27, 0.45]T. Note that the new normal vector
N1 is in parallel with the previously identified normal vector N0, which means that the interactive tradeoff analysis is done
in the same facet of the efficient frontier as in the last interaction. The optimal indifference tradeoff vector at f(k1) for a unit
change of f2 is given by df1 = [1.66, 1.00]T.

If DM still does not agree with the optimal indifference tradeoff of (11.00, 15.79), (11.00 + 1.66, 15.79 � 1.00), a new
set of indifference tradeoffs may be provided by the DM, say (11.00, 15.79), (11.00 + 1.80, 15.79 � 1.00), leading to the
Table 6
Determination of tradeoff step size

C@ = 10
@ y1 y2

0 10.491 16.100
0.1 10.853 15.881
0.2 11.216 15.663
0.3 11.579 15.444
0.4 11.941 15.225
0.5 12.304 15.007
0.6 12.667 14.788
0.7 13.029 14.569
0.8 13.392 14.351
0.9 13.755 14.132
1.0 14.117 13.913
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marginal rate of substitution M1 = [0.556, 1.000]T. The new gradient projection is given by D�f 1 ¼ ½0:035;�0:021�T and the
maximum step size by a1

max ¼ 89:60. Suppose the DM re-sets the target level of f1 as 11.50. The tradeoff step size a = 0.16
can then be calculated to provide a new weighting vector w2 = [1, 4.225]T to be used for the third interaction. Note that the
new ‘learnt’ target level of 11.50 for f1 is different from the previous target level of 11.00 for f1 set in the first interaction.
The change in the target level made by the DM represents part of the learning process about what could be achieved, which
is the main feature of the interactive tradeoff analysis procedure and can help the DM to set realistic target values.

In the third interaction, the new efficient solution is given by f(k2) = [11.50, 15.49]T and k2 = [0, 0, 0, 0.22, 0.0, 0, 1.41]T.
The normal vector at f(k2) is calculated as N2 = 2.63[0.27, 0.45]T. Again, the new normal vector N2 is still in parallel to N1,
which means that the interactive tradeoff process is searching for the MPS along the same facet of the efficient frontier as
the last interaction. If the DM agrees with the optimal indifference tradeoff of (11.50, 15.49),(11.50 + 1.66, 15.49�1.00),
then the interactive process will be terminated and f(k2) = [11.50, 15.49]T will be the MPS maximising the DMs implicit
utility function for NatWest. Otherwise, the interactive process continues.

The DEA composite outputs for NatWest are given by [10.48, 16.11]T for customer satisfaction and total revenue. Fur-
ther analysis on the areas of improvement that NatWest needs to focus upon and the amount of improvement needed for
each input and output are shown in Table 7 if the DEA composite DMU is benchmarked against. In fact, number of
branches should be reduced from 1730 to 1320, a decrease of 31%, and number of staff should be reduced from 7700 to
7300, a drop of 5% for NatWest to become efficient. Also, customer satisfaction and total revenue could be increased
by 116% and 34%, respectively. So, instead of the current total revenue of £12.04 m, the target total revenue that could
be achieved is £16.11 m.

On the other hand, the MPS maximising the DMs utility function for NatWest as determined by the interactive process
has target composite outputs of [11.50, 15.49]T for customer satisfaction and total revenue as shown in Table 7. The new
target values show that NatWest should in future achieve an increase of 137% for customer satisfaction and 29% for total
revenue from its current value. Likewise, inputs should be better allocated in comparison with the original data, and num-
ber of branches, number of staff and asset size should be reduced by about 34%, 16% and 6%, respectively.

The MPS target output values for NatWest are [11.50, 15.49]T when the DMs value judgements are taken into account.
In contrast, the DEA target output values are [10.48, 16.11]T. Hence, when MPS is compared to the target values generated
by DEA, NatWest should sacrifice total revenue by 3.8% from £16.11 to £15.49 m, and aim to increase the output level of
customer satisfaction by 9.8% from the score of 10.48 to 11.50. Subsequently, NatWest should better allocate or utilise its
resources by decreasing its number of branches, number of staff and asset size by about 1.8%, 9.9% and 5.6%, respectively.
It is evident that during the interactive tradeoff analysis process the DM placed more emphasis on generating high customer
satisfaction rating rather than high total revenue.

The individual MPS for all the banks could be found by solving model (19) for each DMU using the interactive pro-
cedure. For illustration purpose, the target output and input levels for all DMUs are shown in Table 8. It can be observed
that the inefficient DMUs: Barclays and NatWest have different MPS and DEA composite inputs and outputs. Likewise,
three of the efficient DMUs: Halifax, HSBC and Lloyds TSB also have different MPS from their DEA composite units. The
other two efficient DMUs of Abbey National and RBS have the composite inputs and outputs that are the same as the
original data values, as there are no tradeoffs between their outputs.

Table 9 shows the decision variables of the individual MPSs of the banks. One way to set group performance bench-
mark is to choose a bank whose decision variable occurs most frequently in construction of the imaginary composite units
for other banks. So, in this case, the efficient RBS could be set as the performance benchmark or the group MPS for all
banks to follow. However, such an approach lacks coherence and reliability, and the individual DMs of the DMUs may
Table 7
NatWest – target setting and resource allocation

Inputs Outputs

No. of branches
(’000)

No. of ATMs
(’000)

No. of staff
(’0,000)

Asset size
(£’00 bn)

Customer
satisfaction

Total revenue
(£ m)

Actual value 1.73 3.30 7.70 3.09 4.86 12.04
DEA composite unit 1.32 3.30 7.30 3.09 10.48 16.11
Improvement % 31.38 0.00 5.48 0.00 115.57 33.80

Actual value 1.73 3.30 7.70 3.09 4.86 12.04
MPS composite unit 1.29 3.30 6.64 2.93 11.50 15.49
Improvement % 33.69 0.00 15.97 5.55 136.57 28.69

DEA composite unit 1.32 3.30 7.30 3.09 10.48 16.11
MPS composite unit 1.29 3.30 6.64 2.93 11.50 15.49
Improvement % 1.76 0.00 9.94 5.55 9.75 �3.82



Table 9
MPS-decision variables of all DMUs

DMU Bank Decision variables

1 2 3 4 5 6 7

1 Abbey national 1.000
2 Barclays 0.355 1.021
3 Halifax 0.305 0.039 0.741
4 HSBC 0.741 0.599
5 Lloyds TSB 0.726 0.492
6 NatWest 0.217 1.407
7 RBS 1.000

Table 8
Individual MPS for all DMUs

DMU Bank Inputs Outputs

No. of branches
(’000)

No. of ATMs
(’000)

No. of staff
(’0,000)

Asset size
(£ bn)

Customer
satisfaction

Total revenue
(£ m)

x1 x2 x3 x4 y1 y2

1 Abbey national 0.77 2.18 2.35 2.96 6.79 10.57
2 Barclays 1.29 3.19 7.45 3.09 9.50 15.93

3 Halifax 0.78 2.10 3.21 2.08 7.69 9.60

4 HSBC 1.69 4.00 11.45 4.39 8.67 21.95

5 Lloyds TSB 2.13 3.97 8.04 2.40 8.35 13.80

6 NatWest 1.29 3.30 6.64 2.93 11.50 15.49

7 RBS 0.65 1.73 2.67 1.34 7.28 7.36

Note. Data in italics shows inefficient DMUs and data in bold shows different target values as compared to DEA calculations.
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disagree with such group target levels. An alternative approach is to aggregate all the individual MPSs to provide a group
MPS, as discussed in the next section, which in essence reflects the preferences of the group members or all the individual
DMs.

4.3. Target setting with group preferences taken into account

The GMPS reference point in terms of composite outputs for customer satisfaction and total revenue are given as a con-
vex combination of the generated MPSs shown in Table 8 by fGMPS = [8.62, 14.98]T, from which the LMPS can be deter-
mined. Suppose the relative weights for customer satisfaction and total revenue are assumed to be [0.6, 0.4]T for NatWest.
Solving formulation (32) and using fGMPS as the reference point, the LMPS in terms of outputs are generated for NatWest
as yLMPS

6 ¼ ½8:62; 14:98�T and the corresponding inputs are given by xLMPS
6 ¼ ½1:45; 3:30; 7:53; 3:09�T with d = 0 at the optimal

solution of formulation (32), which indicates that the LMPS may be an inefficient solution. To test whether the LMPS is
an efficient solution, the super-ideal model (19) is run where the observed DMU (or NatWest in this case) has its LMPS

added as an additional DMU in the reference set. The results are as shown in Table 10.
If the same set of relative weights of [0.6, 0.4]T is used to represent the preferences of the DMs for customer satisfaction

and total revenue, the LMPSs can be generated for all theDMUs using the minimax reference point model (32), as shown in
Table 10
Efficient LMPS for all DMUs

DMU Bank Test of efficiency
(%)

Composite inputs Composite outputs

No. of branches
(’000)

No. of ATMs
(’000)

No. of staff
(’0,000)

Asset size
(£ bn)

Customer
satisfaction

Total revenue
(£ m)

x1 x2 x3 x4 y1 y2

1 Abbey national 100.0 0.77 2.18 2.35 2.96 6.79 10.57
2 Barclays 95.2 1.26 3.12 7.44 3.06 9.05 15.73
3 Halifax 100.0 0.78 2.10 3.21 2.41 6.85 10.08
4 HSBC 98.0 1.23 3.03 7.24 2.97 8.80 15.29
5 Lloyds TSB 100.0 2.24 4.07 8.39 2.40 7.85 13.86
6 NatWest 93.0 1.32 3.30 7.30 3.09 10.48 16.11
7 RBS 100.0 0.65 1.73 2.67 1.34 7.28 7.36
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Table 10. For instance, NatWest’s LMPS has an efficiency score of 93.0%, the corresponding composite inputs are [1.32,
3.30, 7.30, 3.09]T and the corresponding composite outputs are [10.48,16.11]T.

The implications of the efficient LMPS for each DMU can be further analysed. For example, the efficient LMPS is dif-
ferent from the MPS composite unit for Halifax as shown in Tables 8 and 10. From the original DEA test, Halifax is an
efficient DMU. Based on the individual DMs preferences and tradeoff analysis process, Halifax should sacrifice the output
level of customer satisfaction by 16.2% from the score 9.17 to 7.69, and aim to increase its total revenue by 17.9% from
£8.14 to £9.60 m. Subsequently, Halifax should better allocate or utilise its resources by decreasing its number of branches
and reducing its asset size by 2.4% and 13.5%, respectively.

However, after taking account of the group preferences, it is evident that the DM has placed more emphasis on gener-
ating more revenue than a high customer satisfaction rating for Halifax. The LMPS shows that Halifax should preferably
increase its total revenue by 23.8% from £8.14 to £10.08 m, while its customer satisfaction should be reduced by 25.3% from
the score of 9.17 to 6.85. Only the number of branches should be reduced by 2.4% while the levels of the other inputs should
be maintained. This implies that although the DM for Halifax correctly targets the area of improvements to be total rev-
enue at the expense of customer satisfaction rating, based on the collective view of the group, generating more total revenue
is of greater importance for Halifax. Note that the above analysis for Hilfax is for illustration purpose. It is intended to
show that tradeoffs even for efficient DMUs are possible if the decision makers so wish. However, tradeoffs along the effi-
cient frontiers will not be possible if the decision makers are not prepared to sacrifice any output.

5. Conclusion

In this paper, interactive MOLP methods were investigated to conduct efficiency analysis and set realistic target values
in an integrated way with the DMs preferences taken into account and with the DM supported to explore what could be
technically achievable. The equivalence relationship established between the output-oriented DEA dual models and the
minimax formulations led to the construction of the three equivalence models: namely the super-ideal point model,
the ideal point model and the shortest distance model. These models share the same decision and objective spaces and
are different from each other in terms of reference points and weighting schemas. They provide a basis to apply interactive
tradeoff analysis methods and other techniques in MOLP to support integrated DEA-oriented performance assessment and
target setting.

In this paper, the use of the interactive gradient projection approach for target setting was explored. The features of such
a procedure include that the identification of normal vectors on the efficient frontier provides a vigorous measure to check
whether the MPS is achieved that maximises the DMs implicit utility function. On the other hand, the projection of the
utility gradient onto the tangent plane of the efficient frontier using the normal vector leads to a direction along which
the DMs utility can be further improved. The MPS generated using this procedure provides feasible target values that
can also maximise the DMs implicit utility function. The case study illustrated how the equivalence models and the inter-
active procedure can be implemented to support integrated efficiency analysis and target setting. This case study is rela-
tively small in terms of sample size, as only 7 DMUs were included. For large scale problems with many DMUs, the
equivalent minmax models will increase their size in terms of the number of decision variables. However, this would
not create a problem to apply the methods proposed in this paper, as the tradeoff analyses are conducted in the objective
space whose complexity is decided by the number of outputs.
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