Swarm and Evolutionary Computation 96 (2025) 101973

FI. SEVIER

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

Contents lists available at ScienceDirect

Check for

Deep reinforcement learning algorithm incorporating problem | e
characteristics for dynamic multi-objective permutation flow-shop

scheduling problem

Yuan-Yuan Yang *", Bin Qian*"", Rong Hu ™", Zuocheng Li*", Zi-Qi Zhang ", Huai-Ping Jin?,

Jian-Bo Yang “

@ School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
® Higher Educational Key Laboratory for Industrial Intelligence and Systems of Yunnan Province, Kunming University of Science and Technology, Kunming 650500,

China

¢ Alliance Manchester Business School, University of Manchester, Manchester M15 6PB, United Kingdom

ARTICLE INFO

Keywords:

Deep reinforcement learning

Dynamic permutation flow shop scheduling
problem

Real-time scheduling

Multi-objective optimization

ABSTRACT

Dynamic permutation flow shop scheduling problem (DPFSP) plays a critical role in real-world production
systems, characterized by complex uncertainties including machine breakdowns, variable processing times, and
the unpredictable job arrivals. Developing real-time solution approaches for such complex dynamic environ-
ments represents both a significant industrial need and a substantial computational challenge. Deep reinforce-
ment learning (DRL) has demonstrated excellent capability for rapid and adaptive decision-making in complex
dynamic environments, making it particularly suitable for DPFSP applications. This paper proposes a novel DRL
algorithm incorporating problem characteristics (NDRLA_IPC) that specifically addresses the dynamic multi-
objective PFSP (DMPFSP), with the objectives of minimizing the weighted maximum completion time and the
total tardiness. NDRLA_IPC leverages a key insight that DMPFSP can be decomposed into a series of static PFSPs
requiring real-time solutions, and implements a double deep Q-network (DDQN) architecture with components
specifically engineered for DMPFSP characteristics. The algorithm introduces three key innovations: (1) a state
feature vector design with high discrimination and generalization capabilities; (2) an action space designed to
minimize temporal gaps between operations on the Gantt chart by leveraging processing constraints dynamically
derived from the evolving problem state; and (3) a theoretically-validated reward function that effectively
evaluates the online execution impact of each action. Comprehensive experiments demonstrate that NDRLA_IPC,
after training on small-scale instances, transfers effectively to larger-scale DMPFSPs, delivering high-quality real-
time solutions that outperform existing approaches across multiple performance metrics.

1. Introduction

issues [6]. This makes predefined plans less ideal or even unfeasible.
Therefore, dynamic PFSP (DPSP) has become an important research

Permutation flow shop scheduling problem (PFSP) is one of the most
extensively studied combinatorial optimization problems (COPs), which
is typically NP-hard [1,2]. Existing literature on PFSP mainly focus on
static and deterministic environments [3,4]. However, with the inten-
sification of market competition and manufacturing complexity [5],
unpredictable factors are increasingly prevalent, such as the arrival of
new orders, machine breakdowns, and variations in job processing times
due to process and workflow improvements, or component availability

* Corresponding author.

topic in the field of intelligent manufacturing systems [7].

The practical significance of DMPFSP is well illustrated through its
application in electronics manufacturing, particularly in printed circuit
board assembly lines. This complex manufacturing process typically
comprises several sequential stages:

e Solder paste printing, applying solder paste to the board pads.

E-mail addresses: yangyuanyuan0730@163.com (Y.-Y. Yang), bin.qian@vip.163.com (B. Qian), ronghu@vip.163.com (R. Hu), zuocheng li@163.com (Z. Li),
Albert.zigi@hotmail.com (Z.-Q. Zhang), jinhuaiping@126.com (H.-P. Jin), jian-bo.yang@umist.ac.uk (J.-B. Yang).

https://doi.org/10.1016/j.swevo.2025.101973

Received 4 September 2024; Received in revised form 27 March 2025; Accepted 27 April 2025

Available online 14 May 2025

2210-6502/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

mailto:yangyuanyuan0730@163.com
mailto:bin.qian@vip.163.com
mailto:ronghu@vip.163.com
mailto:zuocheng_li@163.com
mailto:Albert.ziqi@hotmail.com
mailto:jinhuaiping@126.com
mailto:jian-bo.yang@umist.ac.uk
www.sciencedirect.com/science/journal/22106502
https://www.elsevier.com/locate/swevo
https://doi.org/10.1016/j.swevo.2025.101973
https://doi.org/10.1016/j.swevo.2025.101973
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2025.101973&domain=pdf

Y.-Y. Yang et al.

e Component placement using surface mount technology (SMT)
machines.

e Reflow soldering, melting the solder paste to form permanent joints.

e Inspection (e.g., automated optical inspection) to detect assembly
defects.

e Testing (e.g., in-circuit test or functional test) to ensure electrical
functionality.

The dynamic nature of this system is evident in multiple aspects. At
any given time, numerous boards, often belonging to different product
batches (jobs), are simultaneously processed across these stages. New
production orders arrive frequently, with an average interval of perhaps
every few hours in high-mix environments. Equipment reliability in-
troduces additional dynamics, with machine stoppages for maintenance
or unexpected failures (e.g., component feeder issues on SMT machines,
inspection system adjustments) occurring potentially multiple times per
shift. Furthermore, job processing times can vary due to factors like
component loading/unloading, minor setup adjustments between
batches, or temporary component shortages requiring alternative ac-
tions. This operational environment requires the simultaneous optimi-
zation of multiple performance indicators, particularly production
efficiency, on-time delivery performance, minimizing work-in-process,
and maintaining high product yield/quality. Unlike the traditional
static PFSP, DMPFSP more accurately captures these real-world
manufacturing complexities [7]. Successful scheduling solutions in
this context should possess three critical capabilities:

e Rapid responsiveness to both planned changes (e.g., new orders) and
unplanned events (e.g., equipment failures).

e Real-time optimization capability to minimize idle time between
operations and increase production efficiency.

o Effective management of multiple, often conflicting objectives,
particularly balancing makespan minimization with due date
adherence.

Existing research on DPFSP primarily involve two strategies: event-
driven rescheduling algorithms and classical scheduling rules. Event-
driven rescheduling algorithms decompose DPFSP into a series of
static problems triggered by dynamic events, and then apply heuristic or
intelligent optimization algorithms to solve these static problems. While
this approach can achieve high-quality solutions, it is often computa-
tionally intensive and time-consuming, as discussed in Section 2,
limiting their applicability in real-time production environments. Clas-
sical scheduling rules, on the other hand, operate by assigning priorities
to jobs based on predetermined criteria (such as first-come-first-served
(FIFO), shortest processing time (SPT) priority, longest processing
time (LPT) priority) and processing them accordingly. These rules offer
significant advantages in terms of computational efficiency, typically
with a time complexity of O(nlogn) or less, enabling rapid response times
and effective “online” scheduling capabilities. However, their simple
dependence on job priorities can lead to lower resource utilization and
certain limitations [8]. For instance, in diverse production environ-
ments, the SPT rule may result in early-completing machines remaining
idle while slow-completing machines cause jobs to queue, creating in-
efficiencies in the overall manufacturing process. Given these limita-
tions, there is a critical need for a method that combines solution quality
computational efficiency—providing both outstanding performance and
fast responsiveness in the complex dynamic environment of DPFSP. This
approach aims to adapt to the complex dynamic environment of DPFSP
and further enhance productivity.

Deep reinforcement learning (DRL) has recently emerged as a
powerful approach for solving various production scheduling problems
(PSPs) [9]. A key advantage over deep learning is its learning paradigm:
DRL agents interact with the environment to accumulate experience and
develop optimal strategies, rather than relying on extensive labeled data
or predefined knowledge [10]. This interaction-based learning

Swarm and Evolutionary Computation 96 (2025) 101973

inherently equips DRL with the ability to dynamically adapt to changing
conditions without significant reconfiguration. Therefore, when faced
with dynamic events inherent in dynamic PSP (DPSP), including DPFSP,
DRL offers a distinct advantage over traditional rescheduling methods
that typically require problem decomposition and algorithm restarts. A
pre-trained DRL agent can instantly utilize its learned policy to evaluate
the current system state and select effective actions, enabling efficient
real-time scheduling decisions. This responsiveness and adaptive capa-
bility derived from learned experience are central to DRL’s effectiveness
and speed in tackling DPSP. Section 2 will provide a detailed review
exploring how DRL are specifically designed in existing literature
components to address DPSP.

Recent studies have identified significant challenges in applying DRL
to DMPFSP. These challenges primarily focus on the following three
aspects.

e State design: Current state design approaches face the issue of highly
correlated state sequences [11] that attempt to capture extensive
machine, job, and buffer information, as discussed in Section 2.
However, these information-dense vectors not only increase
computational load but, more critically, often obscure the key fea-
tures needed for effective scheduling [12]. This issue becomes
particularly critical during dynamic events like machine break-
downs. Existing state representations struggle to capture how dis-
ruptions propagate through subsequent operations. For instance, the
downstream effects of machine idle time and maintenance on job
queuing times and operation dependencies are poorly represented.
Consequently, the extracted state features may lack relevance or
consistency, severely degrading the decision quality of the DRL
agent.

Action space: Most existing methods define the action space using a
limited set of generic scheduling rules (e.g., heuristics like SPT,
FIFO). However, the effectiveness of these rules varies significantly
under different processing constraints and optimization objectives
[13]. This simplistic approach often lacks the adaptability needed for
specific PFSP constraints and operational dependencies, leading to
suboptimal schedules with unnecessary idle time. This problem is
intensified during dynamic events such as new job arrivals, pro-
cessing time variations, or machine unavailability. In such scenarios,
the cumulative effect of repeatedly applying these generic rules be-
comes unpredictable, potentially reducing the stability of the
scheduling process. For example, while prioritizing a long-waiting
job might address a local concern, this localized decision rarely op-
timizes the overall production process or minimizes makespan
effectively.

State-action correlation: As highlighted by fundamental RL theory
[14], the interaction between state and action is critical. Yet, existing
DRL approaches for PFSP typically design state representations and
action spaces independently, often overlooking their inherent
connection and potential synergies. This disconnect hinders the
agent’s stable decisions, especially when responding to dynamic
events like new jobs arrivals or machine breakdowns. In these en-
vironments, a coherent and integrated state-action design is essential
for achieving robust scheduling performance.

These three interconnected challenges—inefficient state represen-
tations, simplistic action definitions, and the disconnect between state
and action—create significant barriers to effective DRL implementation
in dynamic manufacturing scheduling environments. To address these
fundamental challenges, we propose a novel DRL algorithm incorpo-
rating problem characteristics (NDRLA_IPC) for solving DMPFSP with
the objectives of minimizing the weighted maximum completion time
and the total tardiness. The key contributions of this work are summa-
rized as follows.

First, NDRLA IPC leverages DMPFSP production constraints to
extract processing completion times, generating a compact yet

Y.-Y. Yang et al. Swarm and Evolutionary Computation 96 (2025) 101973
Table 1
Summary of DRL methods in DPSPs.
Reference Year Problem Dynamic situation Methodology State Action
Luo [23] 2020 Dynamic flexible JSP New job insertions Deep Q network (DQN) 7 6
(DFJSP)
Luo [24] 2021 DFJSP New job insertions and machine breakdowns PPO 20 11
Zhao [25] 2021 DJSP Urgent orders, machine failures DQN 5 10
Zhang [26] 2023 DFJSP Machine processing time uncertainty PPO 6 8
Wang [27] 2023 DJSP Random job arrivals PPO 9 11
Wang [28] 2022 DFJSP Job insertion, job cancellation, job operation modification, Double DQN (DDQN) 6 9
machine addition, machine tool replacement and machine
breakdown
Gui [29] 2023 DFJSP Changes in due date, order size, and arrival interval of new jobs Deep deterministic policy 20 7
gradient
Xu [30] 2024 DFJSP New jobs arrive Niching genetic 15 Heuristic rules
programming (GP) +RL selection by Niching
GP
Hu [31] 2020 Dynamic AGV Real-time task DDQN 5 5
scheduling
Yang [32] 2021 DFSP New jobs arrive Advantage actor-critic 17 5
(A20)
Yang [33] 2022 Dynamic distributed New jobs arrive SA-NET 8 8
FSP
Liu [7] 2023 Dynamic hybrid FSP Urgent demands and unexpected interruptions Multi-agent DRL 14 8
(DHFSP)
Wang [34] 2022 DHFSP New jobs arrive Multi-agent DRL 27 23
Grumbach 2024 Robust-stable Uncertain processing times, stochastic machine failures and PPO and A2C 12 3
[35] scheduling for DFSP uncertain repair times
Kim [36] 2023 Robotic FSP - DQN 6 Unloading and loading
actions
Ren [37] 2021 FSP - State and action network 9 10
Gil [38] 2022 FSP - DON m/2 m/2
Wang [39] 2022 Non-permutation FSP - LSTM-based approach 15 14

comprehensive feature vector that represents the processing environ-
ment state. Crucially, we design five novel actions specifically tailored to
address different scheduling scenarios identified through this state
representation, establishing an effective and targeted action space.
Using DDQN as the agent, we develop a weighted composite reward
function to handle multi-objective optimization, guiding the agent to
discover superior scheduling policies through iterative environmental
interaction.

Second, we address the significant computational challenge of
continuous state feature extraction in highly dynamic scheduling envi-
ronments. While traditional approaches rely on high-dimensional state
representations that impede training efficiency and convergence,
NDRLA_IPC prioritizes schedule compactness—visualized as minimizing
idle times between operations on the Gantt chart. Our approach captures
essential inter-operation dependencies through a significantly lower-
dimensional state representation derived directly from DMPFSP timing
constraints. This strategic simplification substantially reduces learning
complexity, reducing training difficulty and improving model accuracy
robustness in different scheduling scenarios.

Third, NDRLA IPC establishes a highly generalizable framework for
real-time DPFSP scheduling through a direct and interpretable mapping
between environmental states and appropriate scheduling actions. The
framework triggers specific actions based on precisely assessed system
states, explicitly targeting the elimination between processing time gaps
on the Gantt chart. This targeted approach facilitates more compact job
arrangements with minimal idle time, substantially improving solution
quality across diverse problem scales. A crucial advantage emerges from
the dimensional efficiency of our state-action design: agents trained on
small-scale problems demonstrate exceptional generalization capabil-
ities when applied to larger-scale instances during online scheduling.
This framework provides both theoretical foundations and practical
implementation guidelines for developing efficient real-time DRL algo-
rithms across diverse FSP environments.

2. Literature review

Rescheduling algorithms serve as a core methodology in addressing
DPSPs, with extensive research dedicated to their development. These
traditional approaches address dynamic events by iteratively revising
existing schedules, primarily through reactive strategies that require
complete re-executing of algorithms when dynamic events occur. For
instance, Adibi [15] proposed a greedy iterative rescheduling algorithm
for dynamic job shop scheduling problems (DJSP), with reported run-
times ranging from 76.41 to 437.4 seconds for small-scale problems.
Similarly, Long [16] developed a hybrid rescheduling algorithm for
dynamic steelmaking continuous casting, where comparative experi-
ments were subject to a 250-second termination criterion. The appli-
cation of metaheuristics is evident in Kundaker’s [17] hybrid genetic
algorithm (HGA) for DJSP, achieving completion times between 0.22
and 114 seconds. Li [18]’s GSH algorithm for FSP with new job arrivals
outperformed Nawaz-Enscore-Ham (NEH) algorithm, but exhibited
execution times between 0.12 and 664.91 seconds for problem scales of
10 to 100 jobs. Similarly, Rahman [19] explored a hybrid approach
combining a genetic algorithm and particle swarm optimization for
dynamic FSP (DFSP), reporting runtimes between 11.57 and 183.21
seconds for problem scales of 20 to 200 jobs. A critical limitation of these
algorithms is their dependence on restarting the entire optimization
process when dynamic events occur, resulting in computationally
expensive operations that become prohibitive as problem complexity
increases. Specifically, Valledor [20]’s rescheduling method for DFSP,
where new schedules are generated upon dynamic changes, and the
runtime was experimentally determined as: runtime=number of
machinesx (number of jobs)2><100 milliseconds.

As previously discussed, rescheduling algorithms have proven
effective for static scheduling problems. However, they encounter sub-
stantial computational barriers when scaled to medium and large-scale
industrial problems, limiting their practical applicability in real-time
environments. Each time a dynamic event occurs, the algorithm must
be restarted to generate a new strategy. In our study of DPFSP, we
simulate real-world production scenarios by incorporating three types of

Y.-Y. Yang et al.

dynamic events: new job arrivals following a Poisson process, stochastic
machine breakdowns, and probabilistic variations in processing times.
This high degree of dynamism makes it particularly challenges. There-
fore, current rescheduling approaches face a fundamental trade-off be-
tween solution quality and computational efficiency, making real-time
response to frequent dynamic events virtually unattainable for complex
industrial scenarios.

DRL has emerged as a promising alternative paradigm for dynamic
scheduling problems, drawing substantial research attention for its
effectiveness in uncertain environments. This strength stems from its
ability to learn directly from environmental interaction and adapt
rapidly to dynamic changes [21,22]. However, despite the promising
potential of DRL, a key research challenge remains: designing state
representations and action spaces that capture the complexity of dy-
namic scheduling environments while ensuring computational effi-
ciency and scalability. The ongoing evolution of these design
approaches, as summarized in Table 1, highlights systematic progress in
addressing these fundamental challenges across different DPSPs.

Recent applications of DRL in dynamic scheduling problems reveal a
persistent limitation in state space design and action representation that
constrains their full potential. In the domain of DJSP, Luo [23] designed
a deep Q network (DQN) algorithm for the dynamic flexible JSP
(DFJSP), which uses seven features and six heuristic rules as actions.
Building on this work, the authors [24] advanced to a hierarchical
multi-agent proximal policy optimization (PPO) method for the dynamic
partial-no-wait multi-objective FJSP. This method employs 20 state
features to comprehensively capture production states, along with 5 job
selection rules and 6 machine assignment rules as actions. The evolution
of DRL applications in this domain reveals a consistent pattern of
increasing complexity in state representation while maintaining reliance
on heuristic rules for action spaces. Notable implementations include
Zhao[25]’s DQN method with five state features and ten heuristic rules.
Zhang [26] and Wang[27]’s PPO framework for DJSP. Wang [28] im-
proves solution quality using double DQN (DDQN) for DFJSP. Gui’s deep
deterministic policy gradient (DDPG) algorithm [29] that utilizes 20
production environment features and seven rules as actions. To select
higher-quality scheduling rules as actions, Xu proposed a novel method
[30] that integrates Niching genetic programming (GP) with RL. Instead
of relying on directly selecting heuristic rules, this approach leverages
the evolutionary capabilities of GP to automatically select scheduling
heuristics as actions for the RL agent. Besides, DRL is also used to solve
dynamic intelligent vehicle scheduling problem. Hu [31] designed a
DDQN algorithm with a variable state dimension of 5 features to address
the dynamic AGV scheduling problem.

In the domain of DFSP, recent DRL applications exhibit similar pat-
terns in state-action design. Yang [32] implemented an advantage
actor-critic algorithm with the 17 state features and five heuristic rules
as actions. In their subsequent work [33], they introduced the
state-action network (SA-NET) algorithm for dynamic distributed PFSP
with eight state features and eight heuristic rules. Liu [7] addressed
dynamic hybrid FSP (DHFSP) through multi-agent DRL approach.
Similarly, Wang [34] proposed a MADRL algorithm for DHFSP with 27
state features and 23 heuristic rules. Addressing the need for robust
solutions in dynamic environments, Grumbach [35] developed a DRL
approach for DFSP specifically focusing on robust-stable scheduling.
They designed 12 state features and 3 actions to handle operation time
to achieve stable and robust schedules against disruptions. In static FSP
applications, which can be viewed as a special case of dynamic sched-
uling, Kim [36] developed a DQN algorithm with six state features and
feasible operations as actions. Similar approaches were adopted by Ren
[37] (nine features, ten heuristic rules) and Gil [38] (m/2 features, m/2
heuristic rules) for various FSP variants. Notably, Wang [39] proposed a
more sophisticated approach for non-permutation FSP (NPFSP), incor-
porating 15 state features and 14 heuristic rules as actions, while uti-
lizing long short-term memory networks to capture temporal
dependencies in state sequences.

Swarm and Evolutionary Computation 96 (2025) 101973

A systematic review of existing literature reveals that current
research focuses on two directions: designing complex state represen-
tations to comprehensively capture machine status, job dependencies,
and environmental variations, while still limiting action spaces to pre-
defined simple heuristic rules. There exists a fundamental mismatch
between these complex state representations and constrained action
spaces, making it difficult for agents to effectively utilize excessive
environmental information and overcome the limitations of simplified
action mechanisms. Inspired by these insights, there is a compelling
need to explore novel architectural designs, including more effective
state extraction methods, flexible action space definitions, and tighter
state-action integration mechanisms, to achieve significant performance
improvements in highly dynamic scheduling environments

3. Problem description and analysis

This section provides a detailed introduction to the DMPFSP process.
A set of jobs J = {Ji,...,Jn} is to be processed sequentially on a set of
machines M = {M,...,My}. At time 0, jobs are waiting in the buffer for
processing, and new jobs will arrive dynamically. During processing,
there exists a probability that the processing time of jobs in the buffer
may change, and machines may encounter breakdowns. The notations
used in the DMPFSP model are summarized in Table 2.

For the static component of DMPFSP, we formulate a mixed integer
linear programming (MILP) model as the basis for further analysis. The
objective function of DMPFSP, consistent with [40], is to minimize the
weighted total tardiness and maximum completion time, as follows:

Minimize @ * Cax () + (1 - @)Y T 1)

5l

Where Crax (1) =max{Cp;}j € {1,2,..n},Tj =max{0,Cn; —d;}j € {1,
2,..n}.

Subject to:

Zke{l,l‘..n}xjk = 17vj6 {1,27...,71}, 2)
Zje{l‘z‘...n}xjk =1vke {1.2,..n}, &)
Table 2
Notations applied in the model of the DMPFSP.

Parameters Description

r The total sequence of jobs, i.e., # = [r1, 72, ..., Tn).

b7 The j-th job of z.

Cnax The maximum completion time (makespan).

a The weighting factors between objectives (0<a<1)

Jj The index for jobs wherej =1,2,...,n.

M; The index for machines wherei =1,2,...,m.

(o] The set of operations, i.e., 0 = {Oi1,Oj2, ..., Oin }.

Dij The processing time of operation O; on M;.

Sij The start time of J; on M; wherej = 1,2,...,n,i =1,2,....m.

Cij The completion time of J; on M; wherej =1,2,...,n,i =1,2,...,m.

G The completion time of J; on the last machine wherej =1,2,....,n.

d; The due date of J; wherej = 1,2,...,n.

Tj The release time of J;

T; The tardiness of job J;

A The average arrival rate of new jobs follows a Poisson process

Aiy The availability status of M; at time t

Decision

Variables
Xjk Binary variable, x; = 1 if job J; is processed at the k-th position
and x = 0 otherwise.
Yijt Binary variable, y;;; = 1 if job J; starts processing on M; at the time
t and y;; = 0 otherwise.

Ay Binary variable, equals 1 if M; is available at the time t.

Sets

J Set of jobs

M Set of machines

T Set of discrete time periods

Y.-Y. Yang et al.

> Y <1Vie{l,2,..m}teT, (4)
Sij = Z[GTbyij[,Vi €{1,2,..,m},je{1,2,..n}, (5)
Sy >r,vie{1,2,.m},je {1,2,..n}, (6)
Sip1y > Sij+pij, Vi€ {1,2,...,m},j € {1,2,..n},)
Cij = Sij +Dpij (8)

Si+1.j > Si_j +Ppij — G(2 — Xijk _x:i/(k+1))7vi € {].,27 ...7m},)
1} ’

j7j’ € {1/ 27 ...Tl}7j ;éjlvk € {1727 =
Coax = 3 g (9) Py ¥/ € 11,2, .}, Coe > 0, Cox = Gy (10)

1= Y o (6¥mi) +Pnj — 4.V € {1,2,..0),T; > 0. an

Egs. (2) and (3) ensure that each job is assigned to exactly one po-
sition and each position is filled by exactly one job. Eq. (4) is a machine
capacity constraint. It ensures that on each machine, at most one job can
be processed at any given time t. Eq. (5) defines the constraint that the
start time for J; on M;. Eq. (6) indicates the constraint that the start time
of a job on each machine must be after its release time. Eq. (7) imposes
the constraint that a job’s start time on the next machine must be after
the completion time on the previous machine. Eq. (8) defines that the
completion time of a job on M; is the sum of its start time and processing
time on M;. Eq. (9) represents the job order constraint. On each machine,
if J; is in position k and J; is in position k+1 in the processing sequence,
this constraint ensures J; begins processing only after J; completes on
M;. G is a sufficiently large positive number. Eq. (10) defines the
makespan, which is the maximum completion time among all jobs on the
last machine. Eq. (11) defines the tardiness. It is the positive difference
between the job’s completion time and due date.

It should be pointed out that DMPFSP studied in this paper in-
corporates three types of dynamic events: new job arrivals, machine
breakdowns, and processing time variations. These dynamic character-
istics can be mathematically expressed as follows:

1) New job arrivals: For each new job, it has

1 = AT;,VJ; € Jnew (12)

where ATj is the arrival time of new job Jj, and Jpey is the set of newly
arrived jobs. Then we can get the start time constraint of the Jj:

Sy; > max(r;, C1j1), (Cro=0). 13

In Eq. (13), the arrival time AT; follows a Poisson process with rate 4,
where the probability of s new jobs arriving in a time interval At is given
by

(AAE) et

P(s; AAL) = .

5=0,1,2,.... 14

Here, 1 is the average arrival rate (jobs per unit time), and At is the
time interval.

2) Machine breakdowns: For each machine M; € M:
P(breakdown;(t)) = 6;,Vt € T (15)

RepairTime; ~ R(u;, 67), (16)

Swarm and Evolutionary Computation 96 (2025) 101973

where 6; is the breakdown probability of M; and R(y;, 6;) represents the
repair time distribution.

L Oa Vl S {1 27 (23] m}a te [tbreakdon tbreakdown + RepairTimei]

Ay = : . an
1, otherwise

Yie <Ai,Vie{1,2,..,m}je{1,2, . .n}teT, 18)

Egs. (17) and (18) describe the update mechanism for machine
availability status and enforce constraints to prevent jobs from being
scheduled during periods when machines are under breakdown or
repair.

3) Processing time variations: The actual processing time p’ij can be
expressed as:

P 2 pij(1£6,),YMi e M, J; € J. 19

where §;; represents the variation factor.

Obviously, DMPFSP consists of a series of scheduling decision
problems (i.e., a series of static PFSPs with gradually increasing scale)
triggered by dynamic events. The above MILP formulation can be used
to describe each PFSP in DMPFSP. The main characteristic of DMPFSP
lies in its dynamics.

In many rapid production scenarios of DMPFSP in the modern
manufacturing industry, high-performance algorithm needs to be uti-
lized to solve each DMPFSP’s inherent scheduling decision problem (i.e.,
each PFSP) in real time to ensure stable and effective production
execution. Unfortunately, the following Theorem 1 proves the NP-
hardness of DMPFSP.

Theorem 1. DMPFSP incorporating dynamic job arrivals, machine
breakdowns, and job processing time variations is strongly NP-hard.

Proof. Obviously, when no new jobs arrive (i.e., 4=0), no machine
breakdowns (i.e., 6;=0, VM; € M), and no processing time variations (i.
e., §;=0, YM; € M, J; € J), DMPFESP is transformed into the static PFSP.
That is, PFSP is a special case of DMPFSP.

Based on the reduction concept of complexity theory, it can be
concluded that PFSP reduces to DMPFSP. Since the static PFSP is known
to be NP-hard in the strong sense, DMPFSP is also strongly NP-hard.

Theorem 1 indicates that mathematical programming methods,
approximate methods and commercial solvers (e.g., Gurobi, Cplex)
cannot ensure to obtain high-quality solution of each PFSP in DMPFSP
within a real-time computing time [2]. Thus, it is a challenge to devise
an efficient algorithm to address DMPFSP, i.e., a series of PFSPs with
different scales. Inspired by the good performance of DRL-based algo-
rithm in solving some DPSPs in recent years (see Table 1), a novel
DRL-based algorithm, namely NDRLA_IPC (see Section 4), is designed to
efficiently solve the considered DMPFSP.

In addition, to better illustrate the DMPFSP mathematical formula-
tion, we present an example with five initial jobs (J1-Js) on four ma-
chines (M:-Ma4), where two additional jobs (Js, Jr) arrive during
production. Table 3 presents the corresponding processing times.

Table 3
An example of processing information for each job.
Job M M Ms M. Arrival time Due date
Ja 3 4 2 5 0 20
J2 4 3 5 2 0 22
Ja 2 5 3 4 0 25
Ja 5 2 4 3 0 23
Js 3 4 2 5 0 21
Js 4 3 5 2 5 30
Jz 2 5 3 4 8 35

Y.-Y. Yang et al.

Fig. 1(a) shows the Gantt chart of a static FSP with the processing
sequence {J1, J2, Js, Ja, Js} when no new jobs arrive. It can be seen that
after each job is processed, it is removed from the buffer while the next
job continues to be processed. This process continues until all jobs are
processed the buffer is empty. Subsequently, Fig. 1(b) demonstrates how
the DMPFSP handles the arrival of new jobs. Specifically, when Je arrives
at time t=5, it is added to the buffer to wait for processing. According to
the constraint relationship between job release time and its processing
start time defined in Eq. (13), the job being processed will not be
interrupted by the arrival of new jobs. Instead, after M; completes
processing the current job, the next job to be processed is selected from
the buffer. Similarly, J- arrives at t=8 to wait for processing. The final
Gantt chart incorporating all 7 jobs is shown in Fig. 1(b).

4. Novel deep reinforcement learning algorithm incorporating
problem characteristics

This section introduces the key components of NDRLA_IPC in detail,
including the state feature, the action space, the weighted composite
reward function and its feasibility proof, the update process of DDQN in
NDRLA_IPC, the proposed framework of the NDRLA_IPC, and the
implementation example of NDRLA_IPC.

4.1. State feature

The state features in NDRLA_IPC are extracted based on the relative
completion time interval of the current job across all machines. In other
words, it describes the “completion time shape” of the current job on the
Gantt chart. This is done to better match the processing time of the next
job with the current state (the completion time shape of the current job)

Swarm and Evolutionary Computation 96 (2025) 101973

when selecting the next job through action.

Based on the DMPFSP model characteristics, the jobs are arranged in
the same order on each machine, and the new operation starts after the
current operation is completed. Therefore, once the next job to be pro-
cessed is determined, its completion time on each machine can be
calculated. Assuming that the j-th job z; has been selected at the current
time, let (Cij, Caj, ..., Cmj) denote the vector consisting of its
completion time on each machine. The completion time interval on the i-
th machine is defined as follows.

AIi,j = Ci+1.j _CU’J: 1,2,...,n;i: 1,2,...,771— 1. (20)

Then the completion time interval vector (aly;j, AL, ..., Aly;) of z;
is normalized to reduce the complexity of the state space by constraining
the size of each element to the range [0, 1], as follows:

Al
Al = . 1)
Zi:l AIi-J'
Thus, the state feature s; can be obtained when 7z; is determined as
follows:

5= (ATIJ.7

For example, consider job J;’s with completion times: M;: C;1=5,
Mp: Cq1,2=9, M3: C;1,3=14. The completion time intervals are calculated
as follows: Al ;=C7,1=5 (first machine uses absolute completion time),
Al 1=C1,2-C1,1=9-5=4 (interval between M, and M), Al3;=Cj3-
C1,2=14-9=5 (interval between M3 and My). These intervals reflect the
distribution of processing times across machines. Next, Eq. (21) nor-
malizes all values to the range [0,1] to make the state representation
scale-invariant, which is beneficial for DRL network training. In our

(22)

2j

ALy estl).

—— 1
/=3 J,
My Ji J J3 Ja Js iy
— — A
| m— A
M Ji I J3 Jo | Js = s
£ . Il Breakdown
S
§M2_ J1 Jr . J3 Ja| Js
my S| L [T | T
0 5 0 I 20 \\\215\ 30 Time
buffer buffer buffer || buffer Machine breakdown

(a) Gantt chart of a static FSP without considering the arrival of new jobs

My Ji EI E| Jz B[Ja| s g j'
— — %
M L|| & Jo |7 | Ja |Js -
L = 5
£ =
S Mr Ji | 2 . Jo | Sz J3 | Ja| Js =
§ I Brcakdown
m4 N | L Jo |J7|Jzl Ja Js
R e L S A
buffer

buffer H

buffer

New jobs arrive

New jobs arrive

S —F

(b) Gantt chart of the processing process of the DMPFSP with new jobs arriving

Fig. 1. An example explanation of DMPFSP.

Y.-Y. Yang et al.

example: Al ,=5/14~0.357, Al,,=4/14~0.286, Al,,;=5/14~0.357.
The state vector s = [0.357, 0.286, 0.357], obtained using Eq. (22),
captures the normalized time distribution pattern, machine completion
information, and serves as the basis for action selection.

In DMPFSP, machine breakdowns are considered. Jobs can only
resume processing after the broken machine is repaired. Therefore, the
repair time of the machine can be regarded as additional processing
time, which may result in C;; > Ci11,. In this case, al; = 0.

4.2. Action space

This section introduces the proposed action space, including an ac-
tion to select the first job and four actions to select non-first jobs.

1) Action for selecting the first job

When the first job 7 is to be selected, the weights wpr and wy,._j are
assigned to the jobs in the buffer (BF) according to Eqs. (23) and (24),
and the job with the largest vj1 is as the 7.

1 _ _ Bl-minBTiy
maxBTjcpr—minBTjcpr

Wgr = . 23)
E 1— BTjepr—minBTjcpp
jEBF maxBTjcpr—minBTjcpr
11— dj—mindjccr
maxdjecg —mindjecr
Wdue,j = N (24)
Z 1_ dj—mindjecr
jeCR maxdjecg —mindjecr
1 .
v = axwgr + (1 —a) * Waue_j,j € CR. (25)

Here, BT| represents the total accumulated waiting time of J; on each
machine throughout the entire processing period, starting from the time
J; begins processing.

The selection of the first job is crucial, as it establishes the foundation
for subsequent scheduling decisions. Eq. (23) normalizes the BT; of all
jobs. The lower the wgr for a job, the shorter the waiting time on each
machine when the job is processed first. Eq. (24) normalizes the d; of all
job, where d; is the due date of J; (as defined in Table 2). The lower the
Waue_j for a job, the higher its due date priority. Then the Eq. (25)
combines the two factors from Egs. (23) and (24) to calculate the
composite priority of the jobs, balancing processing time and due date
considerations.

2) Actions for selecting non-first jobs

In NDRLA_IPC, four scheduling rules (a; to a4) as actions are pro-
posed for selecting non-first jobs. Assuming the first j-1 jobs have been
identified, select the job from the BF as the z;.

a;: @ Determine the key machine M;, based on the biggest AL ; in

(Al

158h5,- AL 4 J) @ Sort the jobs in non-decreasing order based on

their dii*j: where dii*J =

Divj — AL

.j|, JEBF. Add the first
max{z, [log‘ZB i 71] } jobs with the smallest di;. ; and the earliest d; job in

the BF into the candidate region (CR). @ Assign the weights wy; and wy;
for the jobs in the CR as follows, and the job with the biggest v; is
selected as r;.

_ dij, j—mindi;,
maxdiy, —mindi;,

wyj = (26)

1— dij, j—mindi;,
maxdi;, —mindi;,

ZjeCR

Swarm and Evolutionary Computation 96 (2025) 101973

(1 - D;w"")

Wy = ———F— (27)
ZjGCR (1 - D;wml)
norm _ |Ci*—1.j = Suj| — minlci*—lj — Sisj jccr 28)
! max}ci*—l.j — Sisj jecr — min‘ci*—l.j — Sy jecr
1 .
Vi =50a% (W1j +W2j) + (1 — (l) * Wane_j,] € CR. (29)

2

The action a; is designed to consider both the current machine load
distribution and job processing characteristics. We provide a detailed
explanation of its components and working mechanism using Fig. 2.

Step 1: Key machine identification. As shown in Fig. 2(a), action a;
first identifies the key machine M;. based on the maximum
completion time interval (AL,;) among all machines. This step aims
to identify the potential bottleneck in the current schedule. For
example, in Fig. 2(a), M3 is identified as the key machine (i*=2) due
to its largest interval AL, ;.

Step 2: Job evaluation and candidate region formation. The action
then evaluates jobs in the BF using the difference measure di;, ;. Here,
di;, j represents the absolute difference between the job’s processing
time (p;;) and the current interval (AIi*;j). Smaller di;.; values indi-
cate better matching between job processing time and machine in-

terval. The CR is formed by selecting max{z, [log‘ZB d —1] } jobs with
smallest di;, ;. As illustrated in Fig. 2(a), four jobs (J1-J4) are evalu-
ated with their processing times and due dates. Jobs with smaller
differences are prioritized for the CR.

Step 3: Weight assignment and final selection. Fig. 2(b) illustrates
final selection process through weight assignment:

wyj: Eq. (26) considers the normalized processing time difference.

wy;: Eq. (27) accounts for the normalized completion time difference.

Di°m™: Eq. (28) normalizes the completion time differences across
machines.

vj: Eq. (29) combines all factors using the importance coefficient a.

az: @ Determine the key machine M;. based on the smallest AL, j in
(AL AL, AL j).The remaining steps are the same as those for a;.

az: @ Let I = (Mli’ ALy, ..., AIm—l_j)’ and the average value of I; is
denoted as Avgr. @ Sort the jobs in non-decreasing order based on the
variance Var; of their processing time across all machines, where j € BF.

Add the first max{z, [log‘ZB F —l]} jobs with the smallest Var; and the

earliest d; job in the BF into the CR. @ Assign the weights w); and w), for
the jobs in the CR as follows, and the job with the biggest vjf is selected as

Tj.
1 Van-minVareee
, maxVarjecr —minVarjecr
wy = (30)
S cr|1 — o minVecr
jeCR maxVarjecr —minVarjecr
Avgy. —minAvgy,
s Mt T S
, maxAvg,]_jeCR —minAvg,j,_jeCR
sz = > - . (31)
Avg. —minAvgy,
DY s Mt T S
maxAvg,j.jEcR —mmAngJ_J_ECR
;1 , , .
vj=gax wy; + Wy) + (1 —a) * Wae_j,j € CR. (32)

The purpose of action a3 is as follows: when the completion time
intervals across machines are similar, select the jobs with relatively
uniform processing time on each machine and whose processing time is

Y.-Y. Yang et al.
4 Machine
M. 0;; i*=2
_
M_ Ol: N:} —— AI:‘//
M, O1; Al -
N\ | - L >Time
CR) P21 (di=2)
@ Processing di
time on M- D22 (d2=7) .
<] anddof
@ the jobs in P23 (d5=5) / /l
BF
@ P24 (di=4)

(@@ and @ in a,

Swarm and Evolutionary Computation 96 (2025) 101973

A Machine
M 0s;
M, Oyt~ e MT—> 01, |
Mi A% | Oy Oy »Time
MT=0
A
G
M;) \ O
h Oy 4—
M_v 021 |
M, A | 0\ — O Ci >Time

(b) Influence of @ in a,

Fig. 2. Explanation of the legend for a;.

close to the current interval vector I,. This approach aims to better align
new jobs with the current completion time intervals. Fig. 3 demonstrates
the implementation process and effects of this action using a detailed
example.

Step 1: Time interval vector construction. For each job J; in the BF, an
interval vector I = (AL ALj,..,AL, ;) is constructed. The
average value Avgr, of these intervals provides a reference for eval-
uating schedule consistency. As shown in Fig. 3(a), the intervals AL j
and AL represent the completion time intervals that need to be
considered in scheduling.

Step 2: Job evaluation based on variance. The action calculates and
sorts jobs based on their processing time variance (Var;). Processing
times are represented as columns for each job (p1,1, p1,2, p1,3 for J,
etc.). More uniform the processing time across machines lead to
smaller variance values. The CR is formed by selecting

max{z7 [loglzBF ‘ 71]} jobs with the smallest Var; value and the

earliest due dates.
Step 3: Weight assignment and final selection. The final selection
process, illustrated in Fig. 3(b), involves three weighted calculations.

wy;t Eq. (30) normalizes the variance of candidate jobs® processing
time across all machines, where jobs with smaller variance have higher
weights.

w’zj: Eq. (31) evaluates the difference between the average interval of
jobs in the CR and the average completion time interval across all ma-
chines. This difference is normalized for all jobs to enable comparison.

¥;: Eq. (32) integrates variance and interval considerations using a
coefficient a to incorporate the due date priority wg,_j. This achieving a
balance between the selecting jobs with appropriate processing time and
the prioritizing jobs based on their due date, optimizing both efficiency

Machine

O] Al

BF
%1‘7[%;L ﬁs——5
172173 1 2373 13723733| 71472

(@) @ and @ in ay

»T ime

©06 8

(minimizing idle time) and timeliness (meeting due dates) in the
scheduling process.
a4: @ Determine the key machine M;, based on the smallest AL ; in

(AL;,ALy, .. AL, J) @ Sort the jobs in non-decreasing order based on

15 g

their diz;, where dii; = first

Pi*.j — AII*} s je BF. Add the
max{Z7 [loglzB d 71] } jobs with the smallest di;. ; and the earliest d; job in
the BF into the CR. ® Assign the weight ng for the jobs in the CR as

follows, and the job with the biggest v} is selected as ;.

1 — _ Pentj—minpiinjecr
y Maxp. 41 jeck ~MiNPs 11 jecr
W = (33)
S|l — __ Picy1jMiMPiciijeck
jeCR MAaXPj. 11 jecR —MiNPis+1 jeCR
, 1 P .
Vi =k (Wit wy) + (1 —a) * Waye_j,j € CR. (34)

The action a4 focuses on selecting jobs whose processing times
closely match the time interval on the key machine, incorporating them
into the CR. Subsequently, the job with the shortest processing time on
the next process of the key machine is selected to minimize the machine
idle time. Fig. 4 illustrates the implementation process and effects of this
action using a detailed example.

Step 1: Key machine identification. As shown in Fig. 4 (a), a4 first
identifies the key machine M;. by selecting the machine with the
minimum interval AL; in the interval vector (AL ALy, AL J) In
the example, M; is identified as the key machine (i*=1).

Step 2: Job evaluation based on variance. This step evaluates the
difference between the processing time of the jobs in the BF and the
completion time interval of the key machine using the dij. ;. A lower
di;, j value indicates a closer alignment between the job’s processing

AMachine /\

" iy [oy oY

MJ 03' e 02j

M, A~ l 0, O Time
A MT=0

M: ()_:f; 03j

MJ 03} 011

Mo | on [0y Time

(b) Influence of ® in aj

Fig. 3. Explanation of the legend for as.

Y.-Y. Yang et al.
A Machine
M,
M; Oy, —T
M 0, —
M; /\/\ I O;

CR
Processing
@ time on
M; and d;
of the jobs
in BI°

(@)D and @ in a,

Swarm and Evolutionary Computation 96 (2025) 101973

A Machine

M; 0s) 0 |

M 0y —— @),

M, O\ @]
A% | t & »T ime
A

M, MT Oy

M; Os; —XT O3 |

M, O0y; — [| +—o0,,

M, | 0, 0,
4% - / »Time

(b) Influence of @ in a,

Fig. 4. Explanation of the legend for as.

time and the current processing state. As shown in Fig. 4(a), four jobs
are evaluated: J1(d1=2), J2(d2=7), J3(d3=5), J4(d4=4). The differ-
ence diy; is computed for comparison, and select the

max{z, [log‘zBF‘ -1

} } jobs with the smallest di;, ; to enter the CR.
Step 3: Weight assignment and final selection process. Fig. 4(b)
demonstrates the effect of weight assignment process using Eqs. (33)

and (34):

ng: Eq. (33) normalizes the processing times of jobs in the CR on the
subsequent machine (i*+1) of jobs in the CR, accounting for the impact
of a continuous short time interval on the job selection.

VJ’.’: Eq. (34) integrates the alignment between the job processing
times and the current completion state with the due date factor to
determine the final job priority.

4.3. Weighted composite reward function and its feasibility proof

In this section, a weighted composite reward function is designed to
evaluate the performance of the agent in executing actions, and its
feasibility in optimizing the objective function of the problem is
demonstrated.

Assuming the 7; has been selected for processing, then the reward r;
is as follows:

m i Cj
r=- {az /: Si(t)ydt+(1 —a)/s w;(t)dt|. (35)
i=1 1j 1

Where 6;(t) and w;(t) are indicator functions for M; and J; at time ¢,

respectively, as follows.

main Q network

[0,M; is busy at time t

ai(t) = { —1,M; is idle at time t~ (36)
o O,Slj <t< Il’llIl{C],dJ}

0k { ~1,min{C;,d}} <t< G’ (87)

The composite reward function Eq. (35) serves two primary purposes
through its weighted components:

The first term, weighted by a, evaluates machine utilization effi-
ciency. It measures idle time across all machines (i=1 to m) during the
job processing interval [Sy;, C;]. The indicator function §;(t) captures the
binary state of each machine, assuming a value of -1 during idle time and
0 when the machine is operational.

The second term, weighted by (1-a), quantifies job completion per-
formance based on due dates. Using the indicator function w;(t), it
measures the cumulative tardiness effect. The function transitions from
0 to -1 when the processing time exceeds the minimum of the comple-
tion time (C;) and the due date (d)).

The weighting coefficient a enables a balanced consideration of
operational efficiency and timely completion objectives. It allows flex-
ible prioritization between these competing performance metrics.

Theorem 1. Minimizing the objective function is equivalent to maxi-
mizing the total reward R obtained by running a single experiment.

Proof:
Given that the total reward R obtained by running a single experi-
ment is the sum of the reward from k decisions, that is

Update weightes & of main Q network

Y

Sample a
Store the random
transition batch
(81, a, 11, transitions)
) Replace weights
si11) of 1 sy, av, 0 "—0 every c steps
DPFSP to L Svi))
replay from
buffer replay
buffer
N

Calculate Q'(s, a,)
according to Eq.(35)

Ofs,, a; 0)

Loss=||Q'(s,, ai 6')-O(s,, a;; 0)||

O'(s, a; 0)

Fig. 5. Update process of DDQN in NDRLA_IPC.

Y.-Y. Yang et al.

/ 7 s(tdt+ (1 — a) 7 v (t)dt

1j $1j

R:irj
j=1

n Cj
s(tdt+(1—a)> / w;(t)dt| (38)
j=1 /5y

The total reward R is expressed as the sum of rewards from individual
decisions (Eq. (38)), combining both machine utilization and tardiness
components. The first term, weighted by a, accounts for machine idle
time. The second term, weighted by 1-a, captures job tardiness.

Letg, = {j|G > d;,1 <j<n},p, = {j|Ci< d;,1 <j<n}. Where ¢,
represents jobs completed after their due dates, ¢, represents jobs
completed before their due dates. We have

{{xzm:Idi +(1-a)

i=1

{=

Jj€gr

{aZId+ 1-a)> [0+ /jq

jem 7

_{aildi+(1—a Z/ w;(t)dt

JEP 4

{.nl/:""()dw/d. y(0de| +°

i =2

)

v, (H)dt

i=1 Jj€gr

Through Eq. (39), the reward function is decomposed into the ma-
chine idle time component a Y ;" Id; and the tardiness component (1 —
@)Y e, (G — dj), where Id; is the total idle time of M;.

Given Id; = C 31, Pyjpyq, and

TDT(x) =Y (G—d) => (G-d)+> (G-d) =) (G—d).
Jj=1 j€p1 IS2 Jjem
(40)
Therefore
R = 7[(12 (Cmax(”) - Zpl}> + (1 — (l)TDT(I'[)
- g (41)
= {ozmcmax —aZZpU (1 - a)TDT(x)|.
i=1 j=1

Due to 7", > ', pj is a constant, maximizing the total reward R is

equivalent to minimizing both Cne and TDT(x), which corresponds to
the objective function.

4.4. Update process of DDQN in NDRLA_IPC

This section details of the update process of DDQN in NDRLA_IPC, as
shown in Fig. 5. Its network structure is shown in Table 4.

DDQN addresses the overestimation issue common in DQN by
employing two Q-networks. One Q-network, the main network, selects
actions and estimates their values. The other, the target Q-network, is a
copy of the main network and provides fixed Q-values for updating the
main network. By decoupling action selection and target calculation,
DDON reduces the risk of overestimating action values during updates.
During the weight update process, the DDQN algorithm first stores the
transition (s, a;,7¢,S+1) by interacting with the environment. It then
updates the weights of the main Q network by sampling a random batch
of transitions from the replay buffer. The target Q-value Q (s, a;; ¢) is

Swarm and Evolutionary Computation 96 (2025) 101973

Table 4
Structure parameters of two Q-networks.
Layer Node number Activation Description
function
Input layer Machine number- None Complete states
1 information s,
Hidden layer 32 Tanh None
1
Hidden layer 32 Tanh None
2
Hidden layer 32 Tanh None
3
Output layer Action number None Q value of each action

calculated using Eq. (42). The loss function is derived from the temporal
difference error between the main Q-value and the target Q-value,

1//} t)dt
Sy

10

(39)

{aildi +(1-a)) (G- dj)} ;

guiding the network towards more accurate value estimation. Specif-
ically, the loss function L(0) = ||(Q
Q' (st,a;; 0) is computed as follows:

 (s¢,a,6) — Q(st,at;H))zH, where

r:, S; is terminal
r: + yQ (sts1,argmax,Q(st + 1,a;6); §), otherwise
(42)

Q(st,at;6) =

The weights of the target Q network are replaced with the weights of
the main Q network every c steps.

4.5. Proposed framework of the NDRLA_IPC

This section details the main framework of the NDRLA_IPC, as shown
in Algorithm 1, and its flowchart is illustrated in Fig. 6.

As shown in Algorithm 1, the NDRLA_IPC schedules all jobs and
generates a processing sequence x that optimizes the objective function.
Specifically, the NDRLA_IPC extracts the relative interval vector of job
completion time across all machines to construct state features. It then
selects and executes actions using an ¢ -greedy exploration strategy
(Lines 3 to 12), balancing exploration of new actions and exploitation of
known high-reward actions. The reward for the executed action is
computed using the weighted composite reward function, and the
transition (S, a;, 7, S¢4+1) is stored for training. Thereafter, the DDQN is
trained by sampling transitions from the replay buffer (Lines 13 and 15),
which breaks temporal correlations and stabilizes training.

4.6. Implementation example of NDRLA_IPC

To better illustrate how NDRLA_IPC solves DMPFSP, we provide an
example of solving a small-scale DMPFSP instance. This example dem-
onstrates the process of state extraction, action execution, operation
selection, reward calculation, and Q-table updates. For simplicity, we
use Q-learning instead of the original DDQN in NDRLA _IPC. Consider a
DMPFSP with three machines and five jobs. In the initial system state
(0,0), representing all machines being idle and the BF in its initial
configuration, the Q-table is empty, with no Q-values assigned. The

Y.-Y. Yang et al.

Algorithm 1
Main framework of the NDRLA_IPC.

Swarm and Evolutionary Computation 96 (2025) 101973

Initialize: weights of DDQN, empty replay buffer D, and the state is s,

Input: all the jobs that need to be processed

Output: sorted job processing sequence T

1. For episode=1 to MAX EPISODE do

2. | While termination condition is not satisfied do

3. If the current state is s,
4. Select the first job m; according to the action settings;
// Subsection 4.2 (1)
5. End If
6. Obtain the current state s; at time ¢; // Section 4.1
7. If the rand€ [0, 1] and rand< ¢
8. | Select a random action a;
9. Else
10. | Select a; = argmax, Q (s¢, a; 6);
11. End If
12. Execute action a; and add the selected job m; to 7; // Subsection 4.2 (2)
13. Calculate the reward 73; and transition to the new state s;,; // Section 4.3
14. Store the transition (Sg, a¢, 1%, S¢4+1) 1nto the replay buffer D and update the
weights of DDQN; // Section 4.4
15. St = St41
16. End If
17. | End While
18. End For

19. Return

scheduling environment begins with three jobs in the BF, and one
additional job arrives at a scheduled time.

Initial BF configuration: The system starts with three jobs in the BF,
each characterized by their processing times across three operations,
due dates, and total processing times:

Jp: Processing time [5,4,8], due date 20, total processing time 17.
Jo: Processing time [3,6,4], due date 16, total processing time 13.
Js: Processing time [8,3,6], due date 23, total processing time 17.

Future job arrivals: One additional job is scheduled to arrive during
the processing period: J4: Processing time [4,7,5], arrival time 8, due
date 31, total processing time 16.

Processing time changes: During the scheduling process, the pro-
cessing time of J3 changes from [8,3,6] to [8,5,7] at time 7, and its total
processing time increases from 17 to 19.

Machine breakdowns: Machine M5 breaks down after processing two
consecutive operations. A repair period of 1 time unit is required, after
which M, resumes normal operation and can process subsequent
operations.

11

Initially, the first job is selected based on the method described in
Subsection 4.2 (1). The BT values of each job are [14,12,19]. Using Eq.
(23), the corresponding weight wpgr is calculated to be [0.417,0.583,0].
Next, the due dates of each job in the BF are considered, which are
[20,16,23]. According to Eq. (24), the corresponding final weight wgy._j
is computed to be [0.3,0.7,0]. The final weight vj1 for each job is then
determined by combining weights wgr and wgyy._; using the Eq. (25).
Applying Eq. (26), the final weights for each job are calculated as fol-
lows: vi=0.8%0.417+0.2%0.3=0.394, v}=0.8*0.583+0.2*0.7=0.606,
v1=0.8*0+0.2*0=0. According to the calculated weights v}, J is
selected as the first job to be processed.

Following the initial job selection, the system state evolved as fol-
lows. The current completion times of the three machines are [3,9,13],
and the machine completion time interval vector is [6,4], calculated
using Eq. (20). This vector is then normalized using Eq. (21) to obtain
the current state [0.6, 0.4] as described in Eq. (22). At this stage, J; and
J3 are retained in the BF.

To select the next job, an action is randomly executed (a;) due to the
empty Q-table, as detailed in Subsection 4.2(2). The first machine has

Y.-Y. Yang et al.

Swarm and Evolutionary Computation 96 (2025) 101973

I . T .
1Machine Obtain current state §;
I
! ¥
I
I .
| [e-greedy policy
I
I
I
| v
I
L [Random action
Buffer a;
’ DDQN
@. ..@.. @ 0'—0cvery
¢ steps
————————————— y \unain Q network target Q network
l
I
| -
7;.'_,_ I Obtain new state s,:; and ' Tnml;]-c ‘?1 |
4 calculate the reward r; random batch of
| transitions to
Al ! p v L | train DDQN
ol Store the transition
L |
. S, a, 1y, 8;.1) toD
______________________ I”_“El L ((L L Rk)
l.\'/:.\‘/ I/
¢ Yes Whether s, is the terminal No
End
state
. J

Fig. 6. Flow chart of NDRLA _IPC.

the largest completion time interval, and jobs whose processing time are
most similar to this interval, J; and J3, are added to the CR. Here i x=1,
di;.1=1, di;.2=2. Based on Egs. (26), (27), and (24), the weights are
calculated as wy1=1, wy3=0, wa1 =1, wy3=0, g, 1=0.5, and wg,, 3=0.5.
Finally, the v; for each job in the CR is obtained using Eq. (29), resulting
in v1=0.9 and v3=0.1. Therefore, Ji, which has the largest v, is selected
for processing.

After completing the processing of Ji, the completion time intervals
across all machines are updated to [5,8], and the corresponding state
vector becomes [0.385, 0.615]. However, after accounting for a break-
down of machine M5 following the completion of two operations and its
subsequent one-time-unit repair period, the completion time interval is
adjusted to [6,7]. Consequently, the state vector is updated to [0.462,
0.538]. For the purpose of demonstration, the proposed algorithm re-
places DDQN in the NDRLA IPC framework with Q-learning. The
Q-value update follows the standard Q-learning procedure. At this stage,
the Q-value for the current state is initially 0.0, and the maximum
Q-value in next state is also 0.0. The reward is calculated based on the
weighted sum of machine idle time and tardiness following the Eq. (35).
Specifically, the idle time between the current job J; and last job J, is
0 (a is 0.8), and the tardiness increases by 4 (1-a is 0.2). Thus, the reward
is computed as r=—(0x0.8+4x0.2)=—0.8. Assuming a learning rate (Ir)
of 0.001 and a discount factor (y) of 0.99, Eq. (42) is modified to update
the Q value according to the following formula: Q(s,a)=Q(s,a)+Ir*
[r4+yxmax(Q(s’,a’))-Q(s,a)]=0+0.001[-0.8+0.99x0-0]=-0.0008. Thus,
the current Q-table is updated as shown in Table 5.

When M; completes processing J; at time 8, the BF contains the

Table 5

Q table in a concrete example demonstrating the algorithm flow.
Current state a as as as
[0.6, 0.4] -0.0008 0 0 0
[0.462, 0.538] 0 0 0 0

12

remaining jobs Js and J4, as J4’s arrival time coincides with this
completion time. The subsequent action is selected based on the Q-table
values, which will determine the next job to be processed. Since the
processing time of J3 has changed, Eqgs. (26) and (34) are used to
calculate the job weight based on the updated processing time of Js.
Once the next job is selected and processed, the reward is calculated, and
the Q-table is updated accordingly. This process is repeated until all jobs
have been successfully scheduled.

5. Computational tests

This section evaluates the effectiveness of NDRLA_IPC in solving
DMPFSP. It includes details on the experimental setup and parameter
settings, the reward convergence process, the comparative evaluation of
action variants, the comparisons of NDRLA_IPC and classical scheduling
rules, the comparisons of NDRLA_IPC and state-of-the-art methods, and
the comparison with Gurobi and state-of-the-art methods on small-scale
instances.

5.1. Experimental setup and parameter settings

The test instances used in this study are sourced from well-known
benchmark datasets commonly used in scheduling research, as refer-
enced in [41]. The machine scale considered are {3, 5, 10}, and the job
scale are {10, 20, 30, 40, 50}. All training processes and comparative
experiments are conducted on a personal computer running the Win-
dows 10 operating system and using Python 3.7. The computer is
configured with an Intel(R) Core(TM) i7-12700K 3.6-GHz CPU, a
GeForce RTX 3080Ti GPU, and 32-GB RAM. Carefully selected execution
tool ensures the accuracy and reliability of the experiments.

In all test results, the average relative percentage deviation (ARPD)
and standard deviation (SD) obtained from repeated experiments with
L=10 runs are used as response variables to evaluate algorithm perfor-
mance, as shown below.

Y.-Y. Yang et al.
1 L Cl _ Cbest
ARPD =7 > (W) x 100%, (43)
=1
L —\2
/ cl-C
SD = ZZ:I(L) : (44)

Here C! represents the makespan achieved by the algorithm in the I-th
experiment, and C*" represents the best makespan achieved by all al-
gorithms in a given test instance. ARPD measures the relative deviation
between the algorithm’s results and the best results. It is a widely used
indicator for evaluating algorithm performance. A smaller ARPD value
indicates better performance of the algorithm across all test results. SD
measures the stability of the algorithm’s results in repeated experiments.
Similarly, a smaller SD value indicates a stronger stability of the algo-
rithm’s results.

In DMPFSP, three constraints are considered, namely, machine
breakdowns, variations in processing time of jobs, and the arrival of new
jobs. For machine failures, we propose a simplified discrete-time model
based on the exponential failure distribution model in [42]. While the
original model uses failure rate 1 to determine the mean time to failure
(MTTF=1/4), our study adopts a simplified discrete-time model to
maintain the random failure characteristics. Specifically, we set the
machine failure probability to 0.1 per time unit (equivalent to expecting
one failure every 10 time units) with a random breakdown duration
within [0, 20] time units. This simplification preserves the essential
stochastic characteristics while facilitating implementation. For pro-
cessing time variations of jobs, reference [43] defines four dynamic
levels that adjust processing times by adding varying percentages to the
estimated duration, requiring recalculations and rescheduling for each
dynamic level. To simplify the computation, this study adopts a unified
probability and change range approach, preserving the dynamic char-
acteristics while reducing experimental complexity. We assume that job
processing times on each machine change randomly within the interval
[0, 50] with a probability of 0.1. Following the guidelines specified in
reference [33], the parameters TF and RDD, which affect the job due
date d;, are set to 0.5. For each test instance, half of the jobs are
randomly selected into the buffer, while the other half arrive at the BF
during processing as new jobs following a Poisson process with arrival
rate parameters 4=0.05, 0.08, and 0.1, as described in [29]. For
example, for 20 jobs, their arrival times under these rate parameters are
as follows. Note that NDRLA _IPC and the comparison methods run in the
same environment, ensuring consistent variations in job processing
time, machine breakdown times, and the arrival time and sequence of
new jobs. Besides, y is usually set to 0.99.

Fig. 7

5.2. Reward convergence process

Due to the ability of NDRLA_IPC to extract the shape features of job
completion times across all machines for decision making, it exhibits

Different rate A Corresponding Poisson process

— =
A
> W o
1

N
n

=
[

b
o
|
1

Cumulative arrival times of new jobs
=)
(=]

N
[

o
o

100 150 200

Time

250 300 350

Fig. 7. Arrival times of 20 jobs following Poisson processes at different 1.

13

Swarm and Evolutionary Computation 96 (2025) 101973

-1000

—2000

Reward

=3000

-4000

—5000

0 2000 4000

Episode

6000 8000 10000

Fig. 8. Reward-Episode curve.

strong generalization capability. By learning from the decisions based on
different completion time shapes generated in moderate-sized instances
(e.g., instances with 30 jobs), NDRLA_IPC can effectively solve problems
of varying job scales. For different numbers of machines, we train DDQN
using instances with 30 jobs for 10,000 episodes. For example, for m=3,
we train DDQN with instance m=3 and n=30 to solve problems with
m=3 and n={10, 20, 30, 40, 50}. Similarly, for m=5 and m=10, the
training and solving approaches remain consistent.

The curve of reward variation across episodes is shown below. It can
be observed that the reward gradually increases from episode O to
episode 4000 and converges within the range of [-2000, -1000] after
5000 episodes. This demonstrates that the weighted composite reward
function effectively evaluates actions to minimize the objective
function.

Fig. 8

5.3. Comparative evaluation of action variants

To evaluate the ability of NDRLA_IPC to generate suitable strategies,
we designed five variants: NDRLA IPC.a; to NDRLA_IPC.as and
NDRLA_IPC_Rand. (1) The NDRLA_IPC_a; to NDRLA_IPC a4 are four
variants where NDRLA _IPC_ay is restricted to a single action ayx in each
state. (2) NDRLA_IPC_Rand randomly selects an action from a; to a4 in
each state. The comparison of NDRLA _IPC and its variants verifies that
the effectiveness of NDRLA_IPC stems from its ability to generate
appropriate strategies, rather than relying solely on the superior per-
formance of individual actions. To further verify the statistical signifi-
cance of the performance advantage of NDRLA_IPC, we performed
Friedman and Wilcoxon signed-rank tests according to the statistical
analysis framework described in [44], as shown in Tables 9 and 10.
Additionally, the comparative results of five variants and NDRLA_IPC
regarding ARPD at 1=0.05, 0.08, and 0.1 are provided in Tables 6 to 8.
We summarize the results of all comparative algorithms for 1 values of
0.05, 0.08, 0.1, as well as for all instances at different 1. The corre-
sponding box plots are shown in Fig. 9.

The Friedman test results show that NDRLA_IPC achieves the best
ranking of 1.0067 among all variants, followed by NDRLA_IPC a4
(3.7200) and NDRLA _IPC_a, (3.7767), while NDRLA_IPC_rand performs
the worst with a ranking of 4.4133. Additionally, the Wilcoxon signed-
rank test results demonstrate that NDRLA_IPC significantly outperforms
all its variants at both a=0.1 and @=0.05 significance levels, with
extremely small p-values (ranging from 1.0427E-25 to 3.3539E-26). The
consistent R+ values around 11320 and R- values of 0 across all pairwise
comparisons provide strong statistical evidence that NDRLA _IPC’s su-
perior performance is not due to chance but rather stems from its
effective integration of state representation and action selection
mechanisms.

As shown in Tables 6-8, NDRLA_IPC demonstrates superior perfor-
mance compared to the other five algorithm variants in almost all in-
stances in terms of ARPD and SD. Additionally, Fig. 9 shows that
NDRLA _IPC exhibits a more competitive statistical distribution than five

Y.-Y. Yang et al.

Swarm and Evolutionary Computation 96 (2025) 101973

Table 6
Comparisons between five variants and NDRLA_IPC (New jobs arrival rate 1=0.05).
(|M |, \J |) NDRLA_IPC_a; NDRLA_IPC_a, NDRLA_IPC_az NDRLA_IPC_a4 NDRLA_IPC_Rand NDRLA_IPC
ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD
3.10 10.65 56.38 13.46 32.91 10.74 37.19 7.23 40.30 19.17 46.31 4.21 23.41
3.20 8.79 58.56 11.20 40.33 11.69 46.16 5.61 15.88 10.18 53.29 3.12 17.55
3.30 13.83 36.12 10.01 69.02 7.47 21.73 10.55 77.50 12.84 78.08 3.55 32.77
3.40 9.02 83.20 9.46 71.79 8.38 77.51 6.85 59.92 7.87 47.47 3.42 38.35
3.50 13.56 43.48 12.07 103.75 9.75 142.11 8.95 38.96 8.38 94.21 3.98 58.52
510 15.10 34.94 12.12 48.08 13.98 36.10 16.79 50.67 18.21 41.31 5.31 31.27
520 7.95 33.13 7.80 40.64 9.88 57.84 11.75 80.32 12.19 66.99 2.89 19.29
530 12.05 73.13 11.43 75.77 14.37 49.76 10.26 50.75 16.11 79.41 6.35 63.85
540 12.99 100.07 11.39 47.69 10.48 25.43 9.33 137.85 12.62 51.10 2.41 46.41
5.50 13.79 100.37 15.52 80.93 11.82 53.87 10.95 132.44 13.83 114.19 5.23 93.21
10_10 14.82 96.19 19.97 68.50 19.95 71.96 21.26 48.36 17.04 51.59 5.93 35.97
1020 15.39 31.64 15.11 50.30 16.84 53.63 17.34 73.46 18.52 65.21 9.68 57.71
10_30 9.05 64.32 9.87 74.52 10.92 60.63 12.52 96.53 15.26 107.47 4.02 53.02
1040 8.64 50.83 8.23 65.23 8.38 46.42 7.80 82.28 10.12 65.99 4.17 59.58
1050 8.65 122.93 9.15 89.46 9.82 52.20 9.77 93.72 11.93 69.65 4.05 80.97
Table 7
Comparisons between five variants and NDRLA_IPC (New jobs arrival rate 1=0.08).
(|M |, \J |) NDRLA_IPC_a; NDRLA_IPC_ay NDRLA _IPC_as NDRLA_IPC_a4 NDRLA_IPC_Rand NDRLA_IPC
ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD
3.10 13.52 44.24 16.21 41.36 13.19 36.66 14.63 51.08 24.58 40.81 8.24 37.60
3.20 8.65 35.04 11.95 55.11 11.17 43.29 5.87 38.02 10.81 49.85 2.80 23.99
3.30 20.97 32.04 19.81 60.50 17.57 14.38 17.92 102.99 20.09 59.39 11.08 60.76
3.40 29.85 53.24 30.29 56.19 26.40 91.98 26.70 38.43 33.32 116.67 20.50 122.95
3.50 6.95 38.64 6.64 53.77 6.49 100.9 4.00 50.01 5.73 91.22 1.32 20.00
510 22.08 44.13 16.43 50.28 22.93 37.80 20.29 33.47 23.79 33.24 11.07 46.89
520 8.94 64.51 9.04 39.37 10.82 40.56 12.64 59.29 15.91 102.77 3.76 23.27
530 10.85 62.44 9.32 70.21 12.11 67.92 10.87 82.78 15.99 77.64 3.45 44.72
540 11.33 66.06 8.53 69.25 8.39 46.24 6.04 73.04 13.50 118.04 2.68 44.90
5.50 13.74 110.38 12.40 104.04 8.18 54.14 10.39 150.47 10.67 142.05 2.53 55.98
1010 19.84 78.58 24.00 55.33 19.39 96.34 26.94 72.26 22.94 61.70 6.73 42.06
10_20 9.27 76.55 12.06 70.91 11.46 35.54 10.57 55.03 12.64 85.56 4.76 46.52
10_30 13.11 98.49 10.74 51.15 13.95 82.18 15.50 112.58 15.58 119.73 6.15 63.32
10_40 8.40 70.71 8.08 58.40 7.84 61.05 7.95 65.60 24.58 40.81 8.24 37.60
1050 6.29 65.71 8.72 116.87 7.87 51.88 14.63 51.08 10.81 49.85 2.80 23.99
Table 8
Comparisons between five variants and NDRLA_IPC (New jobs arrival rate 2=0.1).
(|M |, \J |) NDRLA_IPC a; NDRLA_IPC ay NDRLA_IPC a3 NDRLA _IPC a4 NDRLA_IPC_Rand NDRLA_IPC
ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD
3.10 17.80 35.37 21.88 47.67 20.67 39.68 18.93 42.40 25.71 39.41 12.77 36.46
3.20 11.42 42.37 11.74 43.15 9.48 33.28 5.84 31.56 9.31 46.31 2.08 22.26
3.30 23.57 72.57 22.96 62.12 18.59 30.84 23.90 129.97 27.89 90.90 13.22 68.71
3.40 13.79 37.67 15.86 58.69 14.03 90.39 16.46 99.73 13.93 49.01 8.38 78.36
3.50 22.33 38.38 22.46 61.92 22.57 178.07 18.98 54.59 18.95 50.56 11.84 124.93
510 17.96 68.43 16.84 48.37 19.01 66.62 18.63 60.11 16.11 61.22 7.36 50.00
520 12.73 51.88 12.01 62.63 13.11 40.01 17.50 55.80 18.16 58.85 6.03 39.52
530 14.20 85.42 12.71 71.09 15.41 44.26 13.80 47.21 17.05 98.18 7.56 63.24
540 15.00 82.16 17.31 94.95 14.79 69.11 11.99 130.73 17.54 109.55 7.03 77.29
5.50 12.26 65.51 10.40 83.81 9.51 91.52 7.84 99.09 10.59 101.40 3.94 74.35
10_10 16.87 101.86 21.77 53.60 22.13 94.41 20.65 85.99 16.26 61.90 4.77 30.80
1020 15.36 47.44 18.41 99.37 15.90 61.75 18.71 96.08 16.99 72.11 10.56 84.10
10_30 7.73 72.45 9.66 92.17 10.66 51.64 9.98 82.87 10.65 71.07 3.44 50.31
10_40 6.36 76.04 6.20 88.88 5.46 59.81 5.99 68.07 6.54 83.13 1.79 39.04
10_50 7.14 80.08 8.87 95.98 7.93 35.55 7.87 139.21 10.60 103.91 3.64 56.32

algorithm variants. This is due to NDRLA_IPC’s consideration of multiple
states when designing actions, and establishes correlations between
states and actions. Furthermore, the proposed actions are designed to
optimize the temporal alignment of jobs from different perspectives.
This shared objective contributes to a synergistic effect among the ac-
tions, enhancing their collective impact on scheduling performance.
Therefore, NDRLA_IPC can select appropriate actions based on the cur-
rent state, producing stable and efficient scheduling strategies in

14

dynamic environments across various test instances.

In contrast, the other five algorithm variants either perform a single
action fixedly or select actions randomly. They not only ignore the job
completion time “shape” across all machines but also lead to poor results
due to the accumulation of suboptimal actions. Besides, Fig. 9 (d) pro-
vides the box plots for the summary of the comparison between the five
algorithm variants and NDRLA _IPC on all machines, using different
values of 4 (0.05, 0.08 and 0.1, respectively). This further confirms the

Y.-Y. Yang et al. Swarm and Evolutionary Computation 96 (2025) 101973
m=3 m=5 m=10 m=3 m=5 m=10
T T 20 4 il T T i 25 =
i sl T o171 i 15 141 D
15 i E ! T i i W91
A + o 15 4 a 20 P! =+ D + 15 4 I !
& E_I E-I 5 i 1041
o + 10 4 ; i
< 101 EE] 104 I < El ! E I
I;l i) 1041111 T E 101 I I
I 5 1 1 54 L ﬁj
51 5
= [j 51 U . o T
E‘Q]%}“é‘gg El‘é‘%‘ﬁlgg E‘ﬁl%}“é‘gg Elﬁ‘%‘ﬁlgg E‘ﬁl%}“’m‘gg ?.%‘?ﬁ.ééﬁ
DOV O & [SHECHES RSN Myl DOV O (SIS SR SN Myl DOV O [SHCICI SNy
EEEE < EELEE < EEEE < EEEE < EEEE < EEEE <
L LER L E = dLLLER L E = JdLLLER < EE
._lé—l»_l‘ﬂ qqqé\m 4 dd4d 8 —I.J._lé\ﬁ 4 dd4d 18 quqéwa
I~ ¥ 2 < Z X ¥ x < Z x2S Z ¥ X < Z x2S Z) < Z
[S=y=lyagy gggogg gegaog ggoggg gg8gogyg gogagsg
Z:ZZZZQ :ZZ:ZZD Z:ZZZZQ ZZ:Z:ZD Z:ZZZZQ ZZZ:ZD
Z Z Z Z 4 Z
(a) 2=0.05 (b) 1=0.08
m=3 m=5 m=10 20 2=0.05 2=0.08 A=0.1
+ t - T T T T
251 17517 & 204+ b1 s 30 1 ! 25 il
+ | i | 54 74! o7l T
20 1 150 ﬂ 15 P ST 201 .
o O a 20 4T djd
2 1sqLT 12.5 4 % 10 ! 154
< T 11 I o 10 T < Tl H
10 1 1 10.0 4 ! T i L 1LT o 04 + 10411 T
! i ITre- i 1 i PijTid
51 i 7.5 + 51 + q 54 - é - - i= E P 1 i
i £ T . T
;I%\%\g\gg E\%llg\glwc%g EI%\Q\E\EE E\Nﬂ\(g\glgg EI%\?\E\EE E\%]I(QIE\FC%E
[SHCHSHON-" g [SHCHCHON-" I [SHCHSHON-" Il [SHCHCHSN-" I [SHCHCHON-" Il DO UU T
EEEE < EEEE < EEEE < EEEE < EEEE < EEEE <
<< Bz << <d<EZ << Bz << <d<EZ << Bz << Bz
4 dd4d 12 44 4d4d 12 4 d4d4d 12 4 d4d4d 12 J4d4d4d 12 J4d4d4d 12
rrrex<Z ez <Z rrrz<Z 2z <Z rrEz<Z ZEee < Z
doogdg doggag doogdg dogag doogdg cgogg
ZZZZQ ZZZZQ ZZZZQ ZZZZQ ZZZZQ ZZZZQ
z z z Z)) z) z
(c) 4=0.1 (d) Comparisons of all instances at different 1
Fig. 9. Box plots for the comparisons of five variants and NDRLA_IPC.
competitiveness of NDRLA_IPC.
Table 10
. . . Wilcoxon signed-rank test results for NDRLA_IPC and variants.
5.4. Comparisons of NDRLA_IPC and classical scheduling rules g i
NDRLA_IPC VS R+ R- p-value a=0.1 a=0.05
To evaluate the effectiveness of NDRLA_IPC, we compare it with NDRLA_IPC_a; 11324.0 0.0 3.3539E-26 YES YES
classical scheduling rules, including FIFO, LPT, SPT [45], EDD, CR rule NDRLA IPC a, 11322.0 0.0 4.8958E-26 YES YES
[46], and GUPTA [47]. These six scheduling rules are well-known in the NDRLA IPC_a; 11324.0 0.0 3.3543E-26 YES YES
field of ducti heduli h terized by fast flexibl NDRLA _IPC_a4 11315.0 0.0 1.0427E-25 YES YES
eld of production scheduling, characterized by fast response, flexible NDRLA IPC Rand 11325.0 0.0 2.2975E-26 YES VES

application, and excellent performance. Thus, they have been widely
used to provide satisfactory solutions for various production environ-
ments and serve as common benchmarks for evaluating the performance
of DRL methods. To rigorously verify the statistical significance of per-
formance differences between NDRLA_IPC and classical scheduling
rules, Friedman and Wilcoxon signed-rank tests were conducted, with
results presented in Tables 14 and 15. The comparative results of the six
scheduling rules and NDRLA_IPC regarding ARPD at A=0.05, 0.08, and
0.1 are provided inTables 11 to 13. Additionally, the corresponding box
plots for all comparative algorithms with regard to A = 0.05, 0.08, 0.1,
and all instances at different 1 values are shown in Fig. 10. The heat
maps in terms of ARPD for NDRLA_IPC and the six scheduling rules over
all instances are shown in Fig. 11. Furthermore, the heat maps in terms
of the weighted sum of ARPD and SD are shown in Fig. 12, with darker
red colors indicating better performance.

The Friedman test rankings reveal NDRLA _IPC’s clear superiority
with a ranking of 1.0000, substantially outperforming all traditional

Table 9
Friedman’s test ranking of NDRLA_IPC and variants.

Algorithm Ranking
NDRLA _IPC 1.0067
NDRLA_IPC_a4 3.7200
NDRLA_IPC_ay 3.7767
NDRLA_IPC a3 3.9567
NDRLA_IPC_a; 4.1067
NDRLA_IPC_Rand 4.4133

15

scheduling rules. The GUPTA ranks second with 2.9667, while other
rules show considerably higher rankings ranging from 3.7900 to 4.3733,
with SPT achieving the least favorable ranking. The Wilcoxon signed-
rank test results reinforce these findings, showing that NDRLA_IPC
consistently outperforms all classical scheduling rules with statistically
significant differences at both @=0.1 and a=0.05 confidence levels. The
uniformly high R+ values of 11325.0 and R- values of 0.0, coupled with
extremely small p-values (ranging from 2.9236E-25 to 2.2977E-26),
provide robust statistical evidence that NDRLA IPC’s performance ad-
vantages are systematic and reliable across all test instances. These
statistical results quantitatively support the superior capability of
NDRLA _IPC in handling dynamic scheduling scenarios compared to
traditional scheduling rules.

In terms of ARPD, it can be observed that NDRLA_IPC outperforms six
scheduling rules from Tables 11-13. Additionally, Figs. 10 and 11
illustrate the competitive results of NDRLA_IPC under statistical distri-
butions. This is because NDRLA_IPC, based on the processing constraints
of DMPFSP, can select the jobs whose processing times align with the
“shape” of the current job’s completion times across all machines. This
results in a more compact and efficient job arrangement on the Gantt
chart, enhancing the overall scheduling. Compared to traditional heu-
ristic rules, NDRLA IPC exhibits greater flexibility and generalization
ability, enabling it to output appropriate strategies based on the char-
acteristics of the processing environment and jobs.

However, in terms of SD, NDRLA _IPC does not achieve the optimal

Y.-Y. Yang et al. Swarm and Evolutionary Computation 96 (2025) 101973
Table 11
Comparisons between six scheduling rules and NDRLA_IPC (New jobs arrival rate 1=0.05).
(M, 19D FIFO LPT SPT EDD CR rule GUPTA NDRLA_IPC
ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD
3.10 17.14 40.28 14.39 19.56 18.67 9.24 15.23 29.04 17.31 24.55 8.75 22.95 5.73 27.54
3.20 9.56 42.57 12.08 19.90 13.46 0.00 9.94 46.17 10.53 30.99 10.07 19.74 3.75 21.09
3.30 10.95 64.70 13.22 22.47 9.33 0.00 12.76 53.93 12.19 44.76 6.47 48.24 3.83 35.91
3.40 5.90 53.01 6.10 2.45 6.76 0.00 5.69 44.69 6.11 22.47 7.70 0.00 1.81 28.83
3.50 3.55 36.35 7.40 11.08 7.31 0.00 5.10 97.58 6.04 48.70 3.34 0.00 1.58 30.34
510 21.18 51.66 16.27 23.99 20.51 17.15 21.34 37.41 18.86 31.05 12.71 27.50 6.72 37.80
520 13.83 58.51 20.15 33.90 18.44 30.48 13.22 47.02 12.72 56.29 21.78 29.40 6.09 44.61
530 16.64 82.29 19.13 24.20 9.00 28.65 17.31 100.52 16.70 67.43 16.86 34.74 3.33 49.59
540 14.35 95.26 15.06 28.23 8.41 23.73 12.37 84.94 14.79 106.77 10.72 46.54 2.38 55.33
5.50 9.20 90.38 11.21 38.76 7.19 75.04 9.86 79.21 8.82 43.96 7.46 58.20 1.48 27.20
10_10 10.34 54.93 12.75 72.58 16.79 22.34 9.43 49.41 6.26 51.93 8.17 25.29 1.18 16.81
1020 16.10 72.26 10.50 53.13 19.20 5.61 14.29 76.37 11.74 74.20 19.98 53.72 4.71 33.87
10_30 11.57 85.25 5.92 70.14 13.57 6.80 11.62 90.21 8.63 58.57 11.79 39.83 2.75 32.62
10_40 9.24 77.86 4.48 44.66 15.20 29.63 8.64 116.19 7.38 77.55 8.62 37.05 2.57 48.24
1050 10.60 144.35 5.90 26.85 13.13 23.05 8.81 107.09 6.98 85.48 7.39 43.61 3.03 57.56
Table 12
Comparisons between six scheduling rules and NDRLA_IPC (New jobs arrival rate 1=0.08).
(M, |9 FIFO LPT SPT EDD CR rule GUPTA NDRLA_IPC
ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD
3.10 12.77 24.70 17.27 48.40 18.12 0.00 13.46 37.81 17.35 46.08 4.01 29.30 1.88 12.14
3.20 6.86 33.13 9.20 18.62 10.42 0.00 13.66 56.18 10.62 64.28 6.15 17.67 2.62 16.76
3.30 11.33 51.12 13.21 22.63 9.68 0.00 10.38 55.08 11.75 52.31 7.10 52.15 3.08 25.17
3.40 6.83 72.03 6.81 2.00 7.53 0.00 7.08 66.44 6.90 47.34 6.67 28.01 2.02 33.01
3.50 4.40 58.29 7.69 15.21 6.95 0.00 4.06 57.17 5.92 51.28 4.76 35.74 1.07 32.31
510 24.64 47.53 20.97 27.06 24.93 14.32 24.19 42.70 20.40 53.15 14.54 34.53 12.19 39.70
520 15.80 75.10 18.77 27.99 16.75 32.77 16.86 65.46 14.94 73.28 20.66 19.15 4.58 47.42
530 16.55 109.20 22.22 21.90 9.59 23.18 17.32 93.36 20.61 60.40 14.91 34.71 5.09 42.39
540 15.29 84.21 15.85 21.99 8.73 14.89 15.70 94.58 16.39 73.29 8.45 46.95 2.65 67.73
5.50 11.08 118.30 11.12 19.68 7.39 18.75 10.88 96.05 9.92 109.34 4.76 35.74 2.77 60.38
1010 13.00 53.44 15.11 78.63 19.66 4.77 16.29 74.67 11.65 58.82 7.28 12.88 3.15 15.58
10_20 10.90 84.84 6.59 40.37 15.15 22.77 12.04 76.78 8.21 51.00 19.28 49.37 2.26 22.33
10_30 7.38 84.20 2.88 68.13 12.12 25.36 9.23 134.63 5.58 79.72 12.50 53.15 0.95 13.96
10_40 14.19 101.95 9.73 97.75 17.76 17.37 13.98 121.82 11.56 101.33 8.08 22.38 6.09 63.36
1050 12.94 127.53 8.01 7.29 15.00 23.95 11.10 77.23 8.40 51.27 9.83 44.12 3.95 82.03
Table 13
Comparisons between six scheduling rules and NDRLA_IPC (New jobs arrival rate 1=0.1).
(M, |9 FIFO LPT SPT EDD CR rule GUPTA NDRLA_IPC
ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD
3.10 18.87 38.88 14.79 17.00 18.12 0.00 12.94 29.18 18.53 41.42 4.47 27.16 3.95 21.01
3.20 10.94 59.30 9.20 18.62 10.42 0.00 11.36 51.46 9.37 58.18 6.05 17.50 2.07 16.69
3.30 10.28 25.91 11.98 26.72 8.78 0.00 12.09 47.53 13.65 44.63 6.55 45.18 3.42 40.19
3.40 7.84 59.69 6.10 2.45 6.76 0.00 6.29 76.49 6.37 26.86 6.16 13.31 2.16 19.92
3.50 2.75 34.90 7.49 12.00 7.15 0.00 6.59 65.74 7.84 48.51 3.31 37.22 1.69 30.42
510 22.46 52.56 18.19 18.60 24.06 15.57 20.83 47.55 20.32 49.06 11.80 35.29 7.04 36.85
520 11.89 77.80 17.24 27.90 15.76 31.20 20.56 57.68 15.62 84.62 22.01 30.37 3.40 23.68
530 14.57 91.19 23.60 32.35 10.72 13.22 16.53 116.46 17.27 65.09 15.91 16.00 5.82 45.15
540 14.18 119.85 16.25 24.80 9.28 30.75 16.36 80.35 16.78 53.83 8.19 48.67 1.07 17.58
5.50 9.55 44.34 10.07 22.45 5.93 36.07 11.95 94.35 12.44 81.25 6.73 37.38 1.99 40.11
1010 17.87 51.74 20.09 79.07 25.50 14.99 19.67 71.52 18.22 51.16 8.63 19.08 7.21 38.38
1020 14.40 69.71 8.70 63.87 16.66 5.17 9.11 69.09 7.87 51.01 19.29 45.31 3.33 21.42
10_30 12.24 91.92 5.03 30.28 13.92 36.46 9.68 93.12 7.05 59.49 10.74 38.02 3.01 32.78
10_40 10.80 110.75 4.55 59.33 12.53 20.85 9.13 111.21 6.61 104.56 7.83 23.68 1.58 27.61
1050 8.67 98.31 5.81 7.72 12.45 13.62 9.60 94.78 7.50 71.98 8.47 39.52 2.54 75.19

results in all instances, as SPT obtained smaller SD values in 77.8% of
instances. This is due to the fixed and limited nature of SPT, which se-
lects the job with the shortest processing time at each decision point. In
this scenario, each set of experiments randomly pre-selects half of the
job scale of the given instance in the buffer, leading to overlapping job
selections in repeated experiments and resulting in more similar results.
Consequently, SPT performs better performance in terms of SD but
poorer performance in ARPD.

16

In terms of the combined aspects of ARPD and SD, Fig. 12 shows that
NDRLA_IPC consistently exhibits a redder color than the other methods,
indicating its superior overall performance. Additionally, the CPU times
for all methods remain within 0.5 seconds. Therefore, NDRLA_IPC
demonstrates superior comprehensive performance in the DMPFSP
environment while maintaining the same fast response speed as sched-
uling rules.

Y.-Y. Yang et al. Swarm and Evolutionary Computation 96 (2025) 101973

m=3 m=5 m=10 m=3 m=5 m=10
- 2 - - 254 20 1

20 1

ey
——t

—_
.
w
.
1
e S

ARPD
s
—_—
g ot
s &
]
—
| —
S S
T Sl
. _
z G
-
e m—
S S
T
HO
H—J
ARPD
S 5
e —"
D
O T
s 8
o
s S o
=
i
-
S
O+
]
S

| T 54] T
B o/l) - il g i
= &
Lo o o o o o
SEERiER EEERfEY REESESE SEERSEE 2EERYEE gEES4cE
) =) & = SRRz E] &= SR RZE] e = SERZE] e = D anq e = T A% g e =
EPE IF IF 83 < 252 252
z z z = = =
a a a a a a
z z z Z Z z
(a) 1=0.05 (b) 2=0.08
m= m=5 m=10 2=0.05 4=0.08 A=0.1
T » T T K 25 1 T 25 4 T
[! i i 00T . T
] | 20 1 i i 154 . . |7 i i
Bl B!D ! H R IR 01T
i f 154 P i 1l .
- 154 ! A 15 1 i 1544 T
2 101 m i 10 7+ =) i
< 10 44 T < 107 0
i + i I L R T T -+ id
1 T 51 p | 1 [! 1 - L i
5 Y J o |1 e CpEtte 7 b
—— 0 L—————— —————— —————— 0 0 L
o L L o o Q
°EEREEE 2EERESE 2EEAESE gEERESE EEEAEEE SEERLgEE
Z-?2mgaeT E-?2mZaeT E- o2& E-?mgZa&" Z-2@mgaeT ==Ym e
D D 2D g D 2D © D«
SECHE| OO0 gj 0o [SRG) O o 003
2 z 2 2 2 z
5 5 - - - -
(c) 4=0.1 (d) Comparisons of all instances at different 1

Fig. 10. Box plots for the comparisons of six scheduling rules and NDRLA_IPC.

(b) 2=0.08 (¢)2=0.1

EDD

CR rule
GUPTA
NDRLA_IPC

GUPTA
NDRLA_IPC

GUPTA
NDRLA_IPC

Fig. 11. Heat maps of ARPD for all comparisons between six scheduling rules and NDRLA_IPC at different A.

(a) 1=0.05 (b) 2=0.08 (¢)2=0.1
FIFO . FIFO FIFO
LPT LPT LPT
SPT SPT SPT
EDD EDD EDD
CR rule CR rule | CR rule
GUPTA GUPTA GUPTA
NDRLA_IPC . NDRLA_IPC NDRLA_IPC
SRS SIS S SO S S SR IO RO R SRS SIS AL IHS S
™S S NS s I s) n a '—,/\Q/\Q/\Q/\Q/\Q/ NS NS S S S s el a) 1—,/\@/\@/&/@/@/ e e D O P P P “./\Q/\Q/\Q/\E/\Q/
0.0-OjZ 0;4 016 08_ OHTZ 014 0?6 08_ 0,0-OTZ OT4 0;6 08_
Fig. 12. Heat maps of the composite values (ARPD:SD = 0.5:0.5) for all comparisons between six scheduling rules and NDRLA_IPC at different A
5.5. Comparisons of NDRLA_IPC and state-of-the-art methods algorithm that is commonly used. It obtains sequence results through
iterative use of deconstruction and insertion strategies. Similarly, GSH
To further assess the performance of NDRLA _IPC, the most recent uses insertion strategies to explore better sequence structures to obtain
state-of-the-art DMPFSP methods, including IG [48], GSH [18], and satisfactory solutions for DMPFSP. Additionally, SA-NET is a represen-
SA-NET [33], are used for comparison with the proposed algorithm. To tative DRL algorithm that takes the characteristics of jobs or machines as
the best of our knowledge, these three algorithms are among the best states and utilizes various heuristic rules as actions to optimize sched-
performing DMPFSP algorithms for testing RL-based solution methods uling plans.
currently available in the literature. IG is an iterative optimization To establish the statistical significance of the comparative results

17

Y.-Y. Yang et al.

Table 14
Friedman’s test ranking of NDRLA_IPC and
scheduling rules.

Algorithm Ranking
NDRLA_IPC 1.0000
GUPTA 2.9667
LPT 3.7900
CR rule 3.9833
FIFO 3.9864
EDD 4.0600
SPT 4.3733

Table 15

Wilcoxon signed-rank test results for NDRLA_IPC and scheduling rules.
NDRLA_IPC VS R+ R- p-value a=0.1 a=0.05
GUPTA 11325.0 0.0 2.9236E-25 YES YES
LPT 11325.0 0.0 2.2956E-26 YES YES
CR rule 11325.0 0.0 2.2966E-26 YES YES
FIFO 11325.0 0.0 2.2976E-26 YES YES
EDD 11325.0 0.0 2.2977E-26 YES YES
SPT 11325.0 0.0 2.2962E-26 YES YES

Table 16

Friedman’s test ranking of NDRLA_IPC and effi-
cient methods.

Algorithm Ranking
NDRLA_IPC 1.3567
1G(100) 2.5767
1G(30) 2.6067
SA-NET 3.9000
GSH 4.5600

between NDRLA_IPC and state-of-the-art methods, both Friedman and
Wilcoxon signed-rank tests were performed, as shown inTables 16 and
17. The Friedman test results demonstrate that NDRLA_IPC achieves the
best ranking of 1.3567, followed by IG(100) and IG(30) with rankings of
2.5767 and 2.6067, respectively. SA-NET ranks fourth with 3.9000,
while GSH shows the least competitive performance with a ranking of
4.5600. The Wilcoxon signed-rank test results further confirm
NDRLA_IPC’s advantages with statistical significance at both @=0.1 and
a=0.05 levels. The consistently positive R+ values (ranging from 9180.0
to 11325.0) and R- values of 0.0, along with extremely small p-values
(from 1.1672E-15 to 2.2486E-26), provide strong statistical evidence for
NDRLA_IPC’s superior performance across all test instances. These sta-
tistical findings quantitatively validate that NDRLA_IPC’s improvements
over existing state-of-the-art methods are both substantial and reliable.

For the three reference algorithms, we adopt the parameter settings
found in the literature. Among them, the termination iterations for IG
are set to 30 and 100. The average CPU time for all algorithms across
different test instances is presented in Table 18. Additionally, the
comparative results concerning 4 = 0.05, 0.08, 0.1, and all instances at
different 1 values are reported in Tables 19 to 21, with the corresponding
box plots for different machine numbers given in Fig. 13. The heat maps
in terms of ARPD for NDRLA_IPC and state-of-the-art methods over all
instances are shown in Fig. 14. Furthermore, the heat maps in terms of
the weighted sum of ARPD and SD are shown in Fig. 15. And The heat
maps in terms of the weighted sum of ARPD, SD, and CPU time are
shown in Fig. 16, with darker red colors indicating better performance.

From Tables 19-21, it can be observed that NDRLA_IPC achieved the
best results in terms of ARPD for all instances. Figs. 13 and 14 demon-
strate the competitive performance of NDRLA_IPC in ARPD statistical
distribution. Regarding SD, NDRLA_IPC achieves the optimal results in
only 24.4% of instances. However, the proposed algorithm achieves

18

Swarm and Evolutionary Computation 96 (2025) 101973

Table 17

Wilcoxon signed-rank test results for NDRLA_IPC and efficient methods.
NDRLA_IPC VS R+ R- p-value a=0.1 a=0.05
1G(100) 10545.0 0.0 1.1672E-15 YES YES
1G(30) 9180.0 0.0 5.9328E-20 YES YES
GSH 11319.0 0.0 7.1439E-26 YES YES
SA-NET 11325.0 0.0 2.2486E-26 YES YES

optimal average results in terms of both overall ARPD and SD.
Furthermore, considering the combined results of ARPD and SD, Fig. 15
indicates that NDRLA_IPC still exhibits higher overall efficiency
compared to other algorithms. Regarding CPU time, as shown in
Table 18, both SA-NET and NDRLA_IPC are real-time scheduling algo-
rithms with short and similar CPU times, completing within 0.1 seconds.
On the other hand, IG and GSH, as iterative optimization algorithms, are
highly sensitive to problem size, requiring longer times to solve larger-
scale problems. This results in relatively slower response times.

From the comprehensive results of ARPD, SD, and CPU time, Fig. 16
illustrates that NDRLA_IPC achieves the best results in 93.33% of the
instances. Although IG, and GSH, based on the insertion operation, are
considered excellent iterative algorithms in many COPs, they do not
consistently outperform others in this study. This can be attributed to
four factors:

1. Dynamic problems like DMPFSP involve frequent dynamic events,
leading to a continuously changing and expanding solution search
space, which creates challenges for the effectiveness of iterative
algorithms.

2. Iterative algorithms make decisions based solely on static problems
that are fixed at the current moment, limiting their ability to
promptly adapt to dynamic environmental changes.

3. The complexity and uncertainty of the dynamic problem increase the
likelihood of iterative algorithms getting trapped in local optima and
struggling to escape.

4. Rescheduling with every dynamic event occurrence may result in
excessively high scheduling frequencies, increasing computational
costs and making it difficult for iterative algorithms to find satis-
factory solutions within a reasonable time.

In this context, SA-NET, as a real-time DRL scheduling algorithm,
demonstrates greater adaptability and global optimization capabilities,
outperforming IG and GSH in instances of m=10. Similarly, NDRLA_IPC
adopts a more direct state representation approach by extracting the
“shape” of job completion times to obtain global processing information.
This approach avoids the need for high-dimensional feature extraction
in complex dynamic scheduling environments, effectively improving the

Table 18
The CPU time for comparisons between state-of-the-art algorithms and
NDRLA_IPC.

(M, 1D 1G(30) 1G(100) GSH SA-NET NDRLA_IPC
3.10 0.023 0.065 0.033 0.048 0.001
3.20 0.367 1.178 0.553 0.051 0.010
3.30 1.533 5.003 2.821 0.053 0.012
3.40 4.624 15.081 5.482 0.057 0.022
3.50 13.147 43.074 15.396 0.061 0.030
510 0.043 0.137 0.052 0.050 0.003
5.20 0.429 1.374 0.634 0.053 0.010
5.30 2,192 7.098 4.146 0.055 0.011
5.40 6.606 21.374 8.248 0.060 0.019
5.50 16.765 55.967 19.215 0.065 0.026
1010 0.070 0.230 0.013 0.049 0.002
10.20 0.916 2.992 1.067 0.051 0.007
1030 4.275 13.934 9.463 0.055 0.024
1040 14.288 47.592 18.126 0.061 0.026
1050 32.675 104.645 41.253 0.067 0.031

Y.-Y. Yang et al. Swarm and Evolutionary Computation 96 (2025) 101973

Table 19
Comparisons between state-of-the-art algorithms and NDRLA_IPC (New jobs arrival rate 1=0.05).
(M, 1) 1G(30) 1G(100) GSH SA-NET NDRLA_IPC
ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD
3.10 9.29 25.55 10.06 29.97 10.75 19.16 11.38 25.33 6.30 19.60
3.20 5.97 22.93 6.66 15.57 12.67 2.00 9.40 59.50 5.05 12.21
3.30 4.71 40.38 3.90 31.12 7.80 5.40 8.23 29.95 1.20 19.62
3.40 4.33 41.44 4.35 33.22 8.76 0.00 4.89 74.02 2.10 27.40
3.50 1.39 27.47 2.13 21.14 5.10 0.00 6.01 73.11 1.70 26.20
510 11.45 32.81 12.21 29.32 11.10 31.75 10.71 35.49 6.03 22.37
5.20 6.57 38.68 7.88 41.53 11.82 26.86 13.51 46.56 3.64 26.23
530 6.69 32.39 6.27 33.09 7.93 58.15 10.20 78.35 4.12 39.47
540 8.33 32.84 8.71 54.34 7.64 28.19 11.15 61.78 4.18 51.81
5.50 3.73 99.73 3.09 45.35 4.52 56.53 4.55 86.89 1.74 29.78
10_10 22.80 35.49 4.25 12.55 20.27 27.60 7.67 49.24 4.24 12.55
1020 12.85 95.04 10.66 137.33 19.75 48.88 6.15 63.64 3.83 37.95
10_30 10.36 120.87 9.16 64.73 14.70 60.85 7.76 102.34 3.58 56.88
10_40 5.99 60.91 5.70 75.49 7.45 60.00 6.09 81.52 2.81 43.51
1050 5.07 71.95 4.05 71.56 4.82 73.64 3.30 28.14 2.21 32.53
Average 7.97 51.90 6.61 46.42 10.34 33.27 8.07 59.72 3.52 30.54
Table 20
Comparisons between state-of-the-art algorithms and NDRLA_IPC (New jobs arrival rate 1=0.08).
(M, 19D 1G(30) 1G(100) GSH SA-NET NDRLA_IPC
ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD
3.10 3.27 23.15 3.27 23.15 3.69 19.58 11.04 28.63 3.01 20.46
320 2.82 23.68 1.17 14.95 8.28 2.50 12.25 56.35 0.59 9.17
3.30 4.84 49.99 3.51 40.94 7.72 1.50 9.60 68.47 1.15 8.78
3.40 2.32 39.87 1.20 36.06 6.52 0.00 11.23 90.67 1.13 23.69
3.50 1.59 27.29 1.24 24.60 5.10 0.00 7.35 79.90 0.58 15.65
510 13.82 28.60 12.59 45.48 12.31 17.80 15.12 45.41 7.69 32.17
520 7.31 33.40 6.10 27.74 10.18 14.09 9.79 47.11 2.96 32.16
5.30 5.33 32.08 6.56 43.11 6.30 32.45 9.65 60.96 2.74 45.40
540 5.83 47.98 4.91 58.59 7.01 35.75 9.02 50.62 2.49 54.21
5.50 1.59 27.29 1.24 24.60 5.10 0.00 7.35 79.90 0.58 15.65
1010 18.83 62.48 5.38 40.87 18.91 23.03 6.97 34.94 3.98 8.73
1020 12.33 90.84 7.21 97.78 16.46 36.59 2.77 28.00 2.34 31.10
10_30 9.90 95.85 11.90 76.81 14.70 33.90 4.11 29.83 3.71 54.20
10_40 5.27 58.27 6.26 55.88 7.46 41.58 4.78 55.53 2.17 29.03
1050 8.22 92.03 6.07 83.50 6.28 85.17 3.17 59.09 3.01 58.34
Average 6.88 48.85 5.24 46.27 9.07 22.93 8.28 54.36 2.54 29.25
Table 21
Comparisons between state-of-the-art algorithms and NDRLA_IPC (New jobs arrival rate 2=0.1).
(M, 19D 1G(30) 1G(100) GSH SA-NET NDRLA_IPC
ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD
3.10 4.68 30.96 4.68 30.96 2.67 18.78 11.04 28.63 2.33 19.33
3.20 2.81 26.97 2.58 26.81 8.18 2.29 12.25 56.35 1.85 6.36
3.30 3.44 45.02 1.62 23.36 7.68 0.00 9.60 68.47 1.31 13.42
3.40 2.10 25.99 1.87 40.56 6.52 0.00 11.23 90.67 1.03 17.00
3.50 2.20 27.53 0.89 15.64 5.10 0.00 7.35 79.90 0.61 11.14
510 13.50 45.69 10.69 58.62 22.68 14.87 12.88 45.41 4.69 23.82
520 7.65 41.20 6.92 36.61 11.44 27.58 10.41 47.11 2.36 20.94
5.30 8.78 57.23 7.33 47.65 9.35 4213 10.95 60.96 5.00 41.96
540 4.68 47.44 4.01 25.73 6.17 50.26 8.41 50.62 2.07 31.39
5.50 4.71 46.37 3.81 40.97 6.07 60.55 11.22 111.74 1.97 25.41
1010 19.06 73.59 10.04 78.81 21.79 19.70 7.51 43.88 5.97 10.24
10_20 7.02 63.91 11.09 99.75 17.83 50.40 4.13 57.46 1.66 27.26
10_30 9.55 59.58 10.46 127.66 12.89 55.22 4.10 68.93 3.39 53.79
10_40 7.06 65.96 5.72 43.55 7.84 96.03 5.12 51.56 2.44 44.89
10_50 5.22 75.86 6.06 69.08 8.51 94.94 3.62 57.35 3.01 64.32
Average 6.83 48.89 5.85 51.05 10.31 35.52 8.65 61.27 2.65 27.42
alignment of neighboring jobs on the Gantt chart and generating stable 5.6. Comparison with Gurobi and state-of-the-art methods on small-scale
scheduling strategies. instances
Based on the provided analysis, NDRLA_IPC can be considered as an
effective real-time scheduling method for DMPFSP. To rigorously validate NDRLA_IPC’s capabilities under controlled

conditions, this section applies it to small-scale DMPFSP instances where
optimal solutions can be obtained for comparison. Therefore, three

19

Swarm and Evolutionary Computation 96 (2025) 101973

Y.-Y. Yang et al.

m=10

5

=10

m=5

m=3

FOdl VTIAN
r LAN-VS

- HSD

- (001)DI

F (09DL

FOdl VTIAN
- LAN-VS

- HSD

- (001)DI

- (0901

(o]

s

F Odl VTIAN
- LAN-VS

- HSD

- (001)DI

- (0€)DI

124

10 4
8
6
4
2

(=]

rOdl VTIAN
- LAN-VS

- HSD

- (001)DI

- (0€)D1

- Odl VTIAN
- LAN-VS

- HSD

- (001)DI

- (0€)DI

rOdl VTIAN
- TAN-VS

- HSD

- (001)DI

- (0€)DI

=0.05
m=5

() 4

2=0.1

2=0.05

m=10

F OdI VTIAN
F LAN-VS

F HSD

F (00D)DI

I (0£)o1

FOdl VTIAN
F LAN-VS

F HSD

F (00DOI1

F (0£)D1

T T T
S v <2
oo o

F OdI VTIAN
F LAN-VS

F HSD

I (001)DI1

F (0€)D1

15.0

F OdI VTIAN
F LAN-VS

F HSD

F (001)DI1

F (0€)D1

FOdl VTIAN
F LAN-VS

F HSD

F (00D)DI1

F (0€)D1

FOdl VTIAN
F LAN-VS

F HSD

F (001)DI1

F (0£)D1

12 1

10 1

adyayv

(d) Comparisons of all instances at different 1

(¢) 4=0.1

Fig. 13. Box plots for the comparisons between state-of-the-art algorithms and NDRLA _IPC.

0.05

L

() A=

AP

GSH
SA-NET

NDRLA_IPC

1G(30)
1G(100)

GSH
SA-NET

NDRLA_IPC

1G(30)
1G(100)

1G(30)
1G(100)
GSH
SA-NET

NDRLA_IPC

1.0

08

0.6

04

02

0.0

08

06

04

02

0.0

08

0.6

04

02

0.0

Fig. 14. Heat maps of ARPD for all comparisons between state-of-the-art algorithms and NDRLA_IPC at different A.

=0.1

() &

(a) 1=0.05

et

b

o]
7
&}

g3
g 2
2 g

NDRLA_IPC

GSH

1G(30)
1G(100)
SA-NET

NDRLA_IPC

GSH

1G(30)
1G(100)

SA-NET
NDRLA_IPC

1.0

0.8

0.6

0.4

02

0.0

1.0

0.8

0.6

0.4

02

0.0

0.6

0.4

02

0.0

Fig. 15. Heat maps of the composite values (ARPD:SD = 0.5:0.5) for all comparisons between state-of-the-art algorithms and NDRLA_IPC at different A.

=0.1

(o) %

(b) 2=0.08

(a) 2=0.05

GSH

1G(30)
1G(100)
SA-NET

GSH

1G(30)
1G(100)
SA-NET

GSH

1G(30)
1G(100)
SA-NET

NDRLA_IPC

O
&
<
.|
I~
a
z

NDRLA_IPC

0.8

04

02

0.0

0.8

0.6

04

02

0.0

0.8

0.6

04

02

0.0

LA_IPC at

Fig. 16. Heat maps of the composite values (ARPD: SD: CPU time = 1/3: 1/3: 1/3) for all comparisons between state-of-the-art algorithms and NDR

different 1.

20

Y.-Y. Yang et al.

70 1 —s— Gurobi

--=- NDRLA IPC

60 4 = GSH
—-]G-30

50 4 ¢ IG-100
-¥- SA-NET

Weighted Objective Value

(a) 6 jobs

70 4 —— Gurobi

--=- NDRLA_IPC

Weighted Objective Value

1 2 3 4 5 6 7
(b) 7 jobs
90
—— Gurobi
801 -«- NDRLA IPC
704 GSH
-+ 1G-30
601 e IG-100

SA-NET

Weighted Objective Value
N
3
1

(c) 8jobs

Fig. 17. Comparison of the evolution of objective value for sequentially
scheduling jobs between approximate and baseline methods in a small-scale
dynamic example.

small-scale instances with 6, 7, and 8 jobs on three machines respec-
tively are constructed. For these comparative experiments, Gurobi
serves as a theoretical performance benchmark by exhaustively evalu-
ating all possible sequences at each decision point. Meanwhile,
NDRLA_IPC is compared with state-of-the-art methods (i.e., GSH, IG
variants, and SA-NET) and Gurobi in solving these small-scale instances.

Initially, |[n/2| jobs are available in the BF at t=0, with processing
times randomly generated from [5,15] time units. Their due dates are set

21

Swarm and Evolutionary Computation 96 (2025) 101973

to 1.2 times their total processing times. The remaining |n/2] jobs arrive
dynamically during the scheduling process. For consistency across
different problem scales, we designed a scalable arrival pattern where
the first dynamic job arrives at 10 time units, followed by subsequent
arrivals at 15 time unit intervals. The due dates of these jobs are set to
1.3 times the sum of their arrival time and total processing time. Addi-
tionally, random processing time variations occur within the [10,20]
time unit window. Fig. 17 (a), (b), and (c) illustrate the objective value
progression as jobs are sequentially processed for instances with 6, 7,
and 8 jobs, respectively.

The results demonstrate that NDRLA_IPC shows remarkable perfor-
mance, closely tracking the solutions provided by Gurobi. Compared to
other heuristic methods, NDRLA_IPC exhibits superior adaptability to
dynamic changes. While GSH and IG variants occasionally match the
optimal solution at certain points, they demonstrate greater volatility in
solution quality, particularly after dynamic events occur. SA-NET
demonstrates reasonable performance as a DRL approach. The
observed performance differences among these methods can be attrib-
uted to several key factors:

Given the NP-hard property and highly dynamic nature of DMPFSP, a
fundamental optimization challenge emerges: even state-of-the-art
mathematical programming approaches must decompose the problem
into a series of static snapshots, optimizing each independently as the
production environment evolves. This fragmented optimization para-
digm inherently sacrifices global optimality across the complete pro-
duction horizon for local optimality at discrete time points, creating a
significant methodological gap in handling truly dynamic scheduling
environments. Consequently, methods like Gurobi tend to optimize
based on currently available information but lack comprehensive
consideration of future uncertainties in dynamic scheduling environ-
ments. When dynamic events such as new job arrivals or machine
breakdowns occur, the originally optimal solution may quickly become
suboptimal or even infeasible.

In contrast, NDRLA_IPC can capture the “completion time shape” on
the Gantt chart through carefully designed state features, thereby
achieving a more accurate alignment between the current job and sub-
sequent jobs. This helps minimize idle times between adjacent jobs and
reduce potential delays. Its four scheduling rules focus on reducing the
operation interval, enabling the algorithm to maintain high adaptability
when facing machine failures or processing time changes. Traditional
methods such as GSH and IG mainly rely on predefined rules and local
search mechanisms, which are relatively rigid when dealing with com-
plex dynamic environments. Regarding SA-NET, this DRL method in-
troduces more flexible strategies to a certain extent, but its network
architecture still has limitations and struggles to fully capture the
complex dependencies between scheduling decisions and environmental
states.

The test results demonstrate that NDRLA_IPC can obtain high-quality
solutions for small-scale instances in real time. This indicates that
NDRLA_IPC has a powerful and robust search mechanism, which can
efficiently address DMPFSP under different scales.

6. Conclusion

This research introduces novel deep reinforcement learning algo-
rithm incorporating problem characteristics (NDRLA_IPC) that system-
atically integrates problem-specific characteristics to address the
complex challenges of dynamic multi-objective permutation flow-shop
scheduling problem. Specifically, the algorithm captures the “comple-
tion time shape” on the Gantt chart to extract state features, thereby
deriving global processing information across machines. This innovative
representation mechanism provides NDRLA_IPC with robust environ-
mental perception capabilities for addressing the aforementioned
methodological gaps in dynamic scheduling environments. Addition-
ally, five new scheduling rules are designed to constitute the action
space, aiming to optimize the alignment of neighboring jobs from

Y.-Y. Yang et al.

multiple perspectives based on different states. The architecture further
employs a weighted composite reward function that evaluates action
effectiveness, guiding the decision-making process of the double deep Q-
network agent. By establishing robust correlations among state repre-
sentation, action selection, and reward evaluation, NDRLA_IPC main-
tains objective consistency throughout the learning and decision-
making processes, addressing the fragmented optimization paradigm
inherent in traditional approaches. Comprehensive experimental results
confirm NDRLA IPC’s superior performance across diverse dynamic
scenarios, from small-scale instances with theoretical benchmarks to
large-scale industrial problems. The algorithm consistently demon-
strates remarkable adaptability to dynamic changes and maintains so-
lution quality compared to state-of-the-art alternatives.

Future research will focus on two principal directions. First, we plan
to enhance the computational efficiency and cognitive decision-making
capabilities of DRL agents through the systematic extraction of prom-
ising heuristics and patterns inherent in dynamic production environ-
ments. Second, we will develop more robust frameworks for addressing
the real dynamical scenarios of tin chemical production, tin New Ma-
terial production, and tobacco leaf redrying process.

CRediT authorship contribution statement

Yuan-Yuan Yang: Writing — review & editing, Writing — original
draft, Software, Methodology, Investigation. Bin Qian: Writing — review
& editing, Supervision, Methodology, Funding acquisition, Conceptu-
alization. Rong Hu: Writing — review & editing, Supervision, Funding
acquisition, Conceptualization. Zuocheng Li: Writing — review & edit-
ing, Supervision, Funding acquisition, Conceptualization. Zi-Qi Zhang:
Supervision, Funding acquisition. Huai-Ping Jin: Validation, Supervi-
sion. Jian-Bo Yang: Validation, Supervision, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability statement

The data that support the findings of this study are openly available
in reference [41].

Acknowledgment

This research was supported by the National Natural Science Foun-
dation of China (Grant Number: U24A20273, 62173169, 72362026,
7220011091), the Basic Research Key Project of Yunnan Province
(Grant Number: 202201AS070030), the Major Science and Technology
Project of China National Tobacco Corporation Yunnan Company
(2024530000241029), and the Construction Project of Higher Educa-
tional Key Laboratory for Industrial Intelligence and Systems of Yunnan
Province (Grant Number: KKPH202403003).

Data availability
No data was used for the research described in the article.

References

[1] Z.Q. Zhang, B. Qian, R. Hu, et al., A matrix-cube-based estimation of distribution
algorithm for the distributed assembly permutation flow-shop scheduling problem,
Swarm. Evol. Comput. 60 (2021).

B. Qian, Z.Q. Zhang, R. Hu, et al., A Matrix-Cube-Based Estimation of Distribution
Algorithm for No-Wait Flow-Shop Scheduling With Sequence-Dependent Setup
Times and Release Times, IEEE Transactions on Systems, Man, and Cybernetics:
Systems 53 (3) (2023) 1492-1503.

[2]

22

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]
[12]
[13]
[14]
[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Swarm and Evolutionary Computation 96 (2025) 101973

M.M. Yenisey, B. Yagmahan, Multi-objective permutation flow shop scheduling
problem: Literature review, classification and current trends, Omega (Westport) 45
(2014) 119-135.

Q.K. Pan, R. Ruiz, A comprehensive review and evaluation of permutation
flowshop heuristics to minimize flowtime, Comput. Oper. Res. 40 (1) (2013)
117-128.

K. Tliba, T.M.L. Diallo, O. Penas, et al., Digital twin-driven dynamic scheduling of a
hybrid flow shop, J. Intell. Manuf. 34 (5) (2022) 2281-2306.

D. Rahmani, R. Ramezanian, A stable reactive approach in dynamic flexible flow
shop scheduling with unexpected disruptions: A case study, Comput. Ind. Eng. 98
(2016) 360-372.

Y. Liu, J. Fan, L. Zhao, et al., Integration of deep reinforcement learning and multi-
agent system for dynamic scheduling of re-entrant hybrid flow shop considering
worker fatigue and skill levels, Robot. Comput. Integr. Manuf. 84 (2023).

A. El-Bouri, S. Balakrishnan, N. Popplewell, Cooperative dispatching for
minimizing mean flowtime in a dynamic flowshop, Int. J. Prod. Econ. 113 (2)
(2008) 819-833.

N. Mazyavkina, S. Sviridov, S. Ivanov, et al., Reinforcement learning for
combinatorial optimization: A survey, Comput. Oper. Res. 134 (2021).

S. Li, F. Wang, Q. He, et al., Deep reinforcement learning for multi-objective
combinatorial optimization: A case study on multi-objective traveling salesman
problem, Swarm. Evol. Comput. 83 (2023).

V. Mnih, Playing atari with deep reinforcement learning, arXiv preprint (2013)
arXiv:1312.5602.

Y. Ly, Y. Yuan, A. Sitahong, et al., An Optimization Method for Green Permutation
Flow Shop Scheduling Based on Deep Reinforcement Learning and MOEA/D,
Machines 12 (10) (2024) 721.

S. Luo, Dynamic scheduling for flexible job shop with new job insertions by deep
reinforcement learning, Appl. Soft. Comput. 91 (2020) 106208.

R. S. Sutton, Open theoretical questions in reinforcement learning. 11-17.

M.A. Adibi, M. Zandieh, M. Amiri, Multi-objective scheduling of dynamic job shop
using variable neighborhood search, Expert. Syst. Appl. 37 (1) (2010) 282-287.
J. Long, Z. Zheng, X. Gao, Dynamic scheduling in steelmaking-continuous casting
production for continuous caster breakdown, Int. J. Prod. Res. 55 (11) (2016)
3197-3216.

N. Kundake1, O. Kulak, Hybrid genetic algorithms for minimizing makespan in
dynamic job shop scheduling problem, Comput. Ind. Eng. 96 (2016) 31-51.

G. Li, N. Li, N. Sambandam, et al., Flow shop scheduling with jobs arriving at
different times, Int. J. Prod. Econ. 206 (2018) 250-260.

H.F. Rahman, M.N. Janardhanan, L.E. Nielsen, Real-time order acceptance and
scheduling problems in a flow shop environment using hybrid GA-PSO algorithm,
IEEe Access. 7 (2019) 112742-112755.

P. Valledor, A. Gomez, P. Priore, et al., Modelling and solving rescheduling
problems in dynamic permutation flow shop environments, Complexity. (2020)
1-17, 2020.

Z.Jalali Khalil Abadi, N. Mansouri, M.M. Javidi, Deep reinforcement learning-
based scheduling in distributed systems: a critical review, Knowl. Inf. Syst. (2024)
1-74.

J. Wu, Y. Liu, A modified multi-agent proximal policy optimization algorithm for
multi-objective dynamic partial-re-entrant hybrid flow shop scheduling problem,
Eng. Appl. Artif. Intell. 140 (2025) 109688.

S. Luo, Dynamic scheduling for flexible job shop with new job insertions by deep
reinforcement learning, Appl. Soft. Comput. 91 (2020).

S. Luo, L. Zhang, Y. Fan, Real-time scheduling for dynamic partial-no-wait
multiobjective flexible job shop by deep reinforcement learning, IEEE Transactions
on Automation Science and Engineering 19 (4) (2021) 3020-3038.

Y. Zhao, Y. Wang, Y. Tan, et al., Dynamic jobshop scheduling algorithm based on
deep Q network, IEEe Access. 9 (2021) 122995-123011.

L. Zhang, Y. Feng, Q. Xiao, et al., Deep reinforcement learning for dynamic flexible
job shop scheduling problem considering variable processing times, J. Manuf. Syst.
71 (2023) 257-273.

Z. Wang, W. Liao, Smart scheduling of dynamic job shop based on discrete event
simulation and deep reinforcement learning, J. Intell. Manuf. (2023).

H. Wang, J. Cheng, C. Liu, et al., Multi-objective reinforcement learning framework
for dynamic flexible job shop scheduling problem with uncertain events, Appl. Soft.
Comput. 131 (2022).

Y. Gui, D. Tang, H. Zhu, et al., Dynamic scheduling for flexible job shop using a
deep reinforcement learning approach, Comput. Ind. Eng. 180 (2023) 109255.
M. Xu, Y. Mei, F. Zhang, et al., Niching Genetic Programming to Learn Actions for
Deep Reinforcement Learning in Dynamic Flexible Scheduling, IEEE Transactions
on Evolutionary Computation (2024).

H. Hu, X. Jia, Q. He, et al., Deep reinforcement learning based AGVs real-time
scheduling with mixed rule for flexible shop floor in industry 4.0, Comput. Ind.
Eng. 149 (2020).

S. Yang, Z. Xu, J. Wang, Intelligent Decision-Making of Scheduling for Dynamic
Permutation Flowshop via Deep Reinforcement Learning, Sensors. (Basel) 21 (3)
(2021).

S. Yang, J. Wang, Z. Xu, Real-time scheduling for distributed permutation
flowshops with dynamic job arrivals using deep reinforcement learning, Advanced
Engineering Informatics 54 (2022).

M. Wang, J. Zhang, P. Zhang, et al., Independent double DQN-based multi-agent
reinforcement learning approach for online two-stage hybrid flow shop scheduling
with batch machines, J. Manuf. Syst. 65 (2022) 694-708.

F. Grumbach, A. Miiller, P. Reusch, et al., Robust-stable scheduling in dynamic
flow shops based on deep reinforcement learning, J. Intell. Manuf. 35 (2) (2024)
667-686.

http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0001
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0001
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0001
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0002
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0002
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0002
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0002
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0003
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0003
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0003
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0004
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0004
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0004
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0005
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0005
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0006
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0006
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0006
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0007
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0007
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0007
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0008
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0008
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0008
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0009
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0009
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0010
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0010
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0010
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0011
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0011
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0012
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0012
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0012
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0013
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0013
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0015
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0015
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0016
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0016
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0016
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0017
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0017
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0018
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0018
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0019
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0019
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0019
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0020
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0020
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0020
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0021
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0021
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0021
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0022
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0022
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0022
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0023
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0023
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0024
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0024
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0024
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0025
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0025
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0026
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0026
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0026
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0027
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0027
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0028
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0028
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0028
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0029
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0029
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0030
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0030
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0030
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0031
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0031
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0031
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0032
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0032
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0032
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0033
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0033
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0033
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0034
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0034
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0034
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0035
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0035
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0035

[36]

[37]

[38]

[39]

[40]

[41]

. Yang et al.

H.J. Kim, J.H. Lee, Look-ahead based reinforcement learning for robotic flow shop
scheduling, J. Manuf. Syst. 68 (2023) 160-175.

J. Ren, C. Ye, F. Yang, Solving flow-shop scheduling problem with a reinforcement
learning algorithm that generalizes the value function with neural network,
Alexandria Engineering Journal 60 (3) (2021) 2787-2800.

C.B. Gil, J.H. Lee, Deep Reinforcement Learning Approach for Material Scheduling
Considering High-Dimensional Environment of Hybrid Flow-Shop Problem,
Applied Sciences 12 (18) (2022).

Z. Wang, B. Cai, J. Li, et al., Solving non-permutation flow-shop scheduling
problem via a novel deep reinforcement learning approach, Comput. Oper. Res.
151 (2023) 106095.

A. Allahverdi, T. Aldowaisan, No-wait flowshops with bicriteria of makespan and
maximum lateness, European Journal of Operational Research 152 (1) (2004)
132-147.

E. Vallada, R. Ruiz, J.M. Framinan, New hard benchmark for flowshop scheduling
problems minimising makespan, European Journal of Operational Research 240
(3) (2015) 666-677.

23

[42]

[43]

[44]

[45]
[46]
[47]

[48]

Swarm and Evolutionary Computation 96 (2025) 101973

M. Ghaleb, H. Zolfagharinia, S. Taghipour, Real-time production scheduling in the
Industry-4.0 context: Addressing uncertainties in job arrivals and machine
breakdowns, Comput. Oper. Res. 123 (2020) 105031.

M.Shahgholi Zadeh, Y. Katebi, A. Doniavi, A heuristic model for dynamic flexible
job shop scheduling problem considering variable processing times, Int. J. Prod.
Res. 57 (10) (2019) 3020-3035.

Z. Hu, W. Gong, W. Pedrycz, et al., Deep reinforcement learning assisted co-
evolutionary differential evolution for constrained optimization, Swarm. Evol.
Comput. 83 (2023) 101387.

Z. Zhang, W. Wang, S. Zhong, et al., Flow Shop Scheduling with Reinforcement
Learning, Asia-Pacific Journal of Operational Research 30 (05) (2013).

M.L. Pinedo, Scheduling : theory, algorithms, and systems, A I1E Transactions 28
(8) (2016) 695-697.

J.N.D. Gupta, A Functional Heuristic Algorithm for the Flowshop Scheduling
Problem, Journal of the Operational Research Society 22 (1) (1971) 39-47.

R. Ruiz, T. Stiitzle, A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem, European Journal of Operational
Research 177 (3) (2007) 2033-2049.

http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0036
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0036
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0037
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0037
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0037
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0038
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0038
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0038
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0039
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0039
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0039
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0040
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0040
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0040
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0041
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0041
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0041
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0042
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0042
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0042
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0043
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0043
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0043
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0044
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0044
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0044
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0045
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0045
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0046
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0046
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0047
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0047
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0048
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0048
http://refhub.elsevier.com/S2210-6502(25)00131-2/sbref0048

	Deep reinforcement learning algorithm incorporating problem characteristics for dynamic multi-objective permutation flow-sh ...
	1 Introduction
	2 Literature review
	3 Problem description and analysis
	4 Novel deep reinforcement learning algorithm incorporating problem characteristics
	4.1 State feature
	4.2 Action space
	4.3 Weighted composite reward function and its feasibility proof
	4.4 Update process of DDQN in NDRLA_IPC
	4.5 Proposed framework of the NDRLA_IPC
	4.6 Implementation example of NDRLA_IPC

	5 Computational tests
	5.1 Experimental setup and parameter settings
	5.2 Reward convergence process
	5.3 Comparative evaluation of action variants
	5.4 Comparisons of NDRLA_IPC and classical scheduling rules
	5.5 Comparisons of NDRLA_IPC and state-of-the-art methods
	5.6 Comparison with Gurobi and state-of-the-art methods on small-scale instances

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability statement
	Acknowledgment
	Data availability
	References

