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A B S T R A C T

Dynamic permutation flow shop scheduling problem (DPFSP) plays a critical role in real-world production 
systems, characterized by complex uncertainties including machine breakdowns, variable processing times, and 
the unpredictable job arrivals. Developing real-time solution approaches for such complex dynamic environ
ments represents both a significant industrial need and a substantial computational challenge. Deep reinforce
ment learning (DRL) has demonstrated excellent capability for rapid and adaptive decision-making in complex 
dynamic environments, making it particularly suitable for DPFSP applications. This paper proposes a novel DRL 
algorithm incorporating problem characteristics (NDRLA_IPC) that specifically addresses the dynamic multi- 
objective PFSP (DMPFSP), with the objectives of minimizing the weighted maximum completion time and the 
total tardiness. NDRLA_IPC leverages a key insight that DMPFSP can be decomposed into a series of static PFSPs 
requiring real-time solutions, and implements a double deep Q-network (DDQN) architecture with components 
specifically engineered for DMPFSP characteristics. The algorithm introduces three key innovations: (1) a state 
feature vector design with high discrimination and generalization capabilities; (2) an action space designed to 
minimize temporal gaps between operations on the Gantt chart by leveraging processing constraints dynamically 
derived from the evolving problem state; and (3) a theoretically-validated reward function that effectively 
evaluates the online execution impact of each action. Comprehensive experiments demonstrate that NDRLA_IPC, 
after training on small-scale instances, transfers effectively to larger-scale DMPFSPs, delivering high-quality real- 
time solutions that outperform existing approaches across multiple performance metrics.

1. Introduction

Permutation flow shop scheduling problem (PFSP) is one of the most 
extensively studied combinatorial optimization problems (COPs), which 
is typically NP-hard [1,2]. Existing literature on PFSP mainly focus on 
static and deterministic environments [3,4]. However, with the inten
sification of market competition and manufacturing complexity [5], 
unpredictable factors are increasingly prevalent, such as the arrival of 
new orders, machine breakdowns, and variations in job processing times 
due to process and workflow improvements, or component availability 

issues [6]. This makes predefined plans less ideal or even unfeasible. 
Therefore, dynamic PFSP (DPSP) has become an important research 
topic in the field of intelligent manufacturing systems [7].

The practical significance of DMPFSP is well illustrated through its 
application in electronics manufacturing, particularly in printed circuit 
board assembly lines. This complex manufacturing process typically 
comprises several sequential stages: 

• Solder paste printing, applying solder paste to the board pads.
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• Component placement using surface mount technology (SMT) 
machines.

• Reflow soldering, melting the solder paste to form permanent joints.
• Inspection (e.g., automated optical inspection) to detect assembly 

defects.
• Testing (e.g., in-circuit test or functional test) to ensure electrical 

functionality.

The dynamic nature of this system is evident in multiple aspects. At 
any given time, numerous boards, often belonging to different product 
batches (jobs), are simultaneously processed across these stages. New 
production orders arrive frequently, with an average interval of perhaps 
every few hours in high-mix environments. Equipment reliability in
troduces additional dynamics, with machine stoppages for maintenance 
or unexpected failures (e.g., component feeder issues on SMT machines, 
inspection system adjustments) occurring potentially multiple times per 
shift. Furthermore, job processing times can vary due to factors like 
component loading/unloading, minor setup adjustments between 
batches, or temporary component shortages requiring alternative ac
tions. This operational environment requires the simultaneous optimi
zation of multiple performance indicators, particularly production 
efficiency, on-time delivery performance, minimizing work-in-process, 
and maintaining high product yield/quality. Unlike the traditional 
static PFSP, DMPFSP more accurately captures these real-world 
manufacturing complexities [7]. Successful scheduling solutions in 
this context should possess three critical capabilities: 

• Rapid responsiveness to both planned changes (e.g., new orders) and 
unplanned events (e.g., equipment failures).

• Real-time optimization capability to minimize idle time between 
operations and increase production efficiency.

• Effective management of multiple, often conflicting objectives, 
particularly balancing makespan minimization with due date 
adherence.

Existing research on DPFSP primarily involve two strategies: event- 
driven rescheduling algorithms and classical scheduling rules. Event- 
driven rescheduling algorithms decompose DPFSP into a series of 
static problems triggered by dynamic events, and then apply heuristic or 
intelligent optimization algorithms to solve these static problems. While 
this approach can achieve high-quality solutions, it is often computa
tionally intensive and time-consuming, as discussed in Section 2, 
limiting their applicability in real-time production environments. Clas
sical scheduling rules, on the other hand, operate by assigning priorities 
to jobs based on predetermined criteria (such as first-come-first-served 
(FIFO), shortest processing time (SPT) priority, longest processing 
time (LPT) priority) and processing them accordingly. These rules offer 
significant advantages in terms of computational efficiency, typically 
with a time complexity of O(nlogn) or less, enabling rapid response times 
and effective “online” scheduling capabilities. However, their simple 
dependence on job priorities can lead to lower resource utilization and 
certain limitations [8]. For instance, in diverse production environ
ments, the SPT rule may result in early-completing machines remaining 
idle while slow-completing machines cause jobs to queue, creating in
efficiencies in the overall manufacturing process. Given these limita
tions, there is a critical need for a method that combines solution quality 
computational efficiency—providing both outstanding performance and 
fast responsiveness in the complex dynamic environment of DPFSP. This 
approach aims to adapt to the complex dynamic environment of DPFSP 
and further enhance productivity.

Deep reinforcement learning (DRL) has recently emerged as a 
powerful approach for solving various production scheduling problems 
(PSPs) [9]. A key advantage over deep learning is its learning paradigm: 
DRL agents interact with the environment to accumulate experience and 
develop optimal strategies, rather than relying on extensive labeled data 
or predefined knowledge [10]. This interaction-based learning 

inherently equips DRL with the ability to dynamically adapt to changing 
conditions without significant reconfiguration. Therefore, when faced 
with dynamic events inherent in dynamic PSP (DPSP), including DPFSP, 
DRL offers a distinct advantage over traditional rescheduling methods 
that typically require problem decomposition and algorithm restarts. A 
pre-trained DRL agent can instantly utilize its learned policy to evaluate 
the current system state and select effective actions, enabling efficient 
real-time scheduling decisions. This responsiveness and adaptive capa
bility derived from learned experience are central to DRL’s effectiveness 
and speed in tackling DPSP. Section 2 will provide a detailed review 
exploring how DRL are specifically designed in existing literature 
components to address DPSP.

Recent studies have identified significant challenges in applying DRL 
to DMPFSP. These challenges primarily focus on the following three 
aspects. 

• State design: Current state design approaches face the issue of highly 
correlated state sequences [11] that attempt to capture extensive 
machine, job, and buffer information, as discussed in Section 2. 
However, these information-dense vectors not only increase 
computational load but, more critically, often obscure the key fea
tures needed for effective scheduling [12]. This issue becomes 
particularly critical during dynamic events like machine break
downs. Existing state representations struggle to capture how dis
ruptions propagate through subsequent operations. For instance, the 
downstream effects of machine idle time and maintenance on job 
queuing times and operation dependencies are poorly represented. 
Consequently, the extracted state features may lack relevance or 
consistency, severely degrading the decision quality of the DRL 
agent.

• Action space: Most existing methods define the action space using a 
limited set of generic scheduling rules (e.g., heuristics like SPT, 
FIFO). However, the effectiveness of these rules varies significantly 
under different processing constraints and optimization objectives 
[13]. This simplistic approach often lacks the adaptability needed for 
specific PFSP constraints and operational dependencies, leading to 
suboptimal schedules with unnecessary idle time. This problem is 
intensified during dynamic events such as new job arrivals, pro
cessing time variations, or machine unavailability. In such scenarios, 
the cumulative effect of repeatedly applying these generic rules be
comes unpredictable, potentially reducing the stability of the 
scheduling process. For example, while prioritizing a long-waiting 
job might address a local concern, this localized decision rarely op
timizes the overall production process or minimizes makespan 
effectively.

• State-action correlation: As highlighted by fundamental RL theory 
[14], the interaction between state and action is critical. Yet, existing 
DRL approaches for PFSP typically design state representations and 
action spaces independently, often overlooking their inherent 
connection and potential synergies. This disconnect hinders the 
agent’s stable decisions, especially when responding to dynamic 
events like new jobs arrivals or machine breakdowns. In these en
vironments, a coherent and integrated state-action design is essential 
for achieving robust scheduling performance.

These three interconnected challenges—inefficient state represen
tations, simplistic action definitions, and the disconnect between state 
and action—create significant barriers to effective DRL implementation 
in dynamic manufacturing scheduling environments. To address these 
fundamental challenges, we propose a novel DRL algorithm incorpo
rating problem characteristics (NDRLA_IPC) for solving DMPFSP with 
the objectives of minimizing the weighted maximum completion time 
and the total tardiness. The key contributions of this work are summa
rized as follows.

First, NDRLA_IPC leverages DMPFSP production constraints to 
extract processing completion times, generating a compact yet 
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comprehensive feature vector that represents the processing environ
ment state. Crucially, we design five novel actions specifically tailored to 
address different scheduling scenarios identified through this state 
representation, establishing an effective and targeted action space. 
Using DDQN as the agent, we develop a weighted composite reward 
function to handle multi-objective optimization, guiding the agent to 
discover superior scheduling policies through iterative environmental 
interaction.

Second, we address the significant computational challenge of 
continuous state feature extraction in highly dynamic scheduling envi
ronments. While traditional approaches rely on high-dimensional state 
representations that impede training efficiency and convergence, 
NDRLA_IPC prioritizes schedule compactness—visualized as minimizing 
idle times between operations on the Gantt chart. Our approach captures 
essential inter-operation dependencies through a significantly lower- 
dimensional state representation derived directly from DMPFSP timing 
constraints. This strategic simplification substantially reduces learning 
complexity, reducing training difficulty and improving model accuracy 
robustness in different scheduling scenarios.

Third, NDRLA_IPC establishes a highly generalizable framework for 
real-time DPFSP scheduling through a direct and interpretable mapping 
between environmental states and appropriate scheduling actions. The 
framework triggers specific actions based on precisely assessed system 
states, explicitly targeting the elimination between processing time gaps 
on the Gantt chart. This targeted approach facilitates more compact job 
arrangements with minimal idle time, substantially improving solution 
quality across diverse problem scales. A crucial advantage emerges from 
the dimensional efficiency of our state-action design: agents trained on 
small-scale problems demonstrate exceptional generalization capabil
ities when applied to larger-scale instances during online scheduling. 
This framework provides both theoretical foundations and practical 
implementation guidelines for developing efficient real-time DRL algo
rithms across diverse FSP environments.

2. Literature review

Rescheduling algorithms serve as a core methodology in addressing 
DPSPs, with extensive research dedicated to their development. These 
traditional approaches address dynamic events by iteratively revising 
existing schedules, primarily through reactive strategies that require 
complete re-executing of algorithms when dynamic events occur. For 
instance, Adibi [15] proposed a greedy iterative rescheduling algorithm 
for dynamic job shop scheduling problems (DJSP), with reported run
times ranging from 76.41 to 437.4 seconds for small-scale problems. 
Similarly, Long [16] developed a hybrid rescheduling algorithm for 
dynamic steelmaking continuous casting, where comparative experi
ments were subject to a 250-second termination criterion. The appli
cation of metaheuristics is evident in Kundakcı’s [17] hybrid genetic 
algorithm (HGA) for DJSP, achieving completion times between 0.22 
and 114 seconds. Li [18]’s GSH algorithm for FSP with new job arrivals 
outperformed Nawaz-Enscore-Ham (NEH) algorithm, but exhibited 
execution times between 0.12 and 664.91 seconds for problem scales of 
10 to 100 jobs. Similarly, Rahman [19] explored a hybrid approach 
combining a genetic algorithm and particle swarm optimization for 
dynamic FSP (DFSP), reporting runtimes between 11.57 and 183.21 
seconds for problem scales of 20 to 200 jobs. A critical limitation of these 
algorithms is their dependence on restarting the entire optimization 
process when dynamic events occur, resulting in computationally 
expensive operations that become prohibitive as problem complexity 
increases. Specifically, Valledor [20]’s rescheduling method for DFSP, 
where new schedules are generated upon dynamic changes, and the 
runtime was experimentally determined as: runtime=number of 
machines× (number of jobs)2×100 milliseconds.

As previously discussed, rescheduling algorithms have proven 
effective for static scheduling problems. However, they encounter sub
stantial computational barriers when scaled to medium and large-scale 
industrial problems, limiting their practical applicability in real-time 
environments. Each time a dynamic event occurs, the algorithm must 
be restarted to generate a new strategy. In our study of DPFSP, we 
simulate real-world production scenarios by incorporating three types of 

Table 1 
Summary of DRL methods in DPSPs.

Reference Year Problem Dynamic situation Methodology State Action

Luo [23] 2020 Dynamic flexible JSP 
(DFJSP)

New job insertions Deep Q network (DQN) 7 6

Luo [24] 2021 DFJSP New job insertions and machine breakdowns PPO 20 11
Zhao [25] 2021 DJSP Urgent orders, machine failures DQN 5 10
Zhang [26] 2023 DFJSP Machine processing time uncertainty PPO 6 8
Wang [27] 2023 DJSP Random job arrivals PPO 9 11
Wang [28] 2022 DFJSP Job insertion, job cancellation, job operation modification, 

machine addition, machine tool replacement and machine 
breakdown

Double DQN (DDQN) 6 9

Gui [29] 2023 DFJSP Changes in due date, order size, and arrival interval of new jobs Deep deterministic policy 
gradient

20 7

Xu [30] 2024 DFJSP New jobs arrive Niching genetic 
programming (GP) +RL

15 Heuristic rules 
selection by Niching 
GP

Hu [31] 2020 Dynamic AGV 
scheduling

Real-time task DDQN 5 5

Yang [32] 2021 DFSP New jobs arrive Advantage actor-critic 
(A2C)

17 5

Yang [33] 2022 Dynamic distributed 
FSP

New jobs arrive SA-NET 8 8

Liu [7] 2023 Dynamic hybrid FSP 
(DHFSP)

Urgent demands and unexpected interruptions Multi-agent DRL 14 8

Wang [34] 2022 DHFSP New jobs arrive Multi-agent DRL 27 23
Grumbach 

[35]
2024 Robust-stable 

scheduling for DFSP
Uncertain processing times, stochastic machine failures and 
uncertain repair times

PPO and A2C 12 3

Kim [36] 2023 Robotic FSP - DQN 6 Unloading and loading 
actions

Ren [37] 2021 FSP - State and action network 9 10
Gil [38] 2022 FSP - DQN m/2 m/2
Wang [39] 2022 Non-permutation FSP - LSTM-based approach 15 14
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dynamic events: new job arrivals following a Poisson process, stochastic 
machine breakdowns, and probabilistic variations in processing times. 
This high degree of dynamism makes it particularly challenges. There
fore, current rescheduling approaches face a fundamental trade-off be
tween solution quality and computational efficiency, making real-time 
response to frequent dynamic events virtually unattainable for complex 
industrial scenarios.

DRL has emerged as a promising alternative paradigm for dynamic 
scheduling problems, drawing substantial research attention for its 
effectiveness in uncertain environments. This strength stems from its 
ability to learn directly from environmental interaction and adapt 
rapidly to dynamic changes [21,22]. However, despite the promising 
potential of DRL, a key research challenge remains: designing state 
representations and action spaces that capture the complexity of dy
namic scheduling environments while ensuring computational effi
ciency and scalability. The ongoing evolution of these design 
approaches, as summarized in Table 1, highlights systematic progress in 
addressing these fundamental challenges across different DPSPs.

Recent applications of DRL in dynamic scheduling problems reveal a 
persistent limitation in state space design and action representation that 
constrains their full potential. In the domain of DJSP, Luo [23] designed 
a deep Q network (DQN) algorithm for the dynamic flexible JSP 
(DFJSP), which uses seven features and six heuristic rules as actions. 
Building on this work, the authors [24] advanced to a hierarchical 
multi-agent proximal policy optimization (PPO) method for the dynamic 
partial-no-wait multi-objective FJSP. This method employs 20 state 
features to comprehensively capture production states, along with 5 job 
selection rules and 6 machine assignment rules as actions. The evolution 
of DRL applications in this domain reveals a consistent pattern of 
increasing complexity in state representation while maintaining reliance 
on heuristic rules for action spaces. Notable implementations include 
Zhao[25]’s DQN method with five state features and ten heuristic rules. 
Zhang [26] and Wang[27]’s PPO framework for DJSP. Wang [28] im
proves solution quality using double DQN (DDQN) for DFJSP. Gui’s deep 
deterministic policy gradient (DDPG) algorithm [29] that utilizes 20 
production environment features and seven rules as actions. To select 
higher-quality scheduling rules as actions, Xu proposed a novel method 
[30] that integrates Niching genetic programming (GP) with RL. Instead 
of relying on directly selecting heuristic rules, this approach leverages 
the evolutionary capabilities of GP to automatically select scheduling 
heuristics as actions for the RL agent. Besides, DRL is also used to solve 
dynamic intelligent vehicle scheduling problem. Hu [31] designed a 
DDQN algorithm with a variable state dimension of 5 features to address 
the dynamic AGV scheduling problem.

In the domain of DFSP, recent DRL applications exhibit similar pat
terns in state-action design. Yang [32] implemented an advantage 
actor-critic algorithm with the 17 state features and five heuristic rules 
as actions. In their subsequent work [33], they introduced the 
state-action network (SA-NET) algorithm for dynamic distributed PFSP 
with eight state features and eight heuristic rules. Liu [7] addressed 
dynamic hybrid FSP (DHFSP) through multi-agent DRL approach. 
Similarly, Wang [34] proposed a MADRL algorithm for DHFSP with 27 
state features and 23 heuristic rules. Addressing the need for robust 
solutions in dynamic environments, Grumbach [35] developed a DRL 
approach for DFSP specifically focusing on robust-stable scheduling. 
They designed 12 state features and 3 actions to handle operation time 
to achieve stable and robust schedules against disruptions. In static FSP 
applications, which can be viewed as a special case of dynamic sched
uling, Kim [36] developed a DQN algorithm with six state features and 
feasible operations as actions. Similar approaches were adopted by Ren 
[37] (nine features, ten heuristic rules) and Gil [38] (m/2 features, m/2 
heuristic rules) for various FSP variants. Notably, Wang [39] proposed a 
more sophisticated approach for non-permutation FSP (NPFSP), incor
porating 15 state features and 14 heuristic rules as actions, while uti
lizing long short-term memory networks to capture temporal 
dependencies in state sequences.

A systematic review of existing literature reveals that current 
research focuses on two directions: designing complex state represen
tations to comprehensively capture machine status, job dependencies, 
and environmental variations, while still limiting action spaces to pre
defined simple heuristic rules. There exists a fundamental mismatch 
between these complex state representations and constrained action 
spaces, making it difficult for agents to effectively utilize excessive 
environmental information and overcome the limitations of simplified 
action mechanisms. Inspired by these insights, there is a compelling 
need to explore novel architectural designs, including more effective 
state extraction methods, flexible action space definitions, and tighter 
state-action integration mechanisms, to achieve significant performance 
improvements in highly dynamic scheduling environments

3. Problem description and analysis

This section provides a detailed introduction to the DMPFSP process. 
A set of jobs J = {J1, ..., Jn} is to be processed sequentially on a set of 
machines M = {M1, ...,Mm}. At time 0, jobs are waiting in the buffer for 
processing, and new jobs will arrive dynamically. During processing, 
there exists a probability that the processing time of jobs in the buffer 
may change, and machines may encounter breakdowns. The notations 
used in the DMPFSP model are summarized in Table 2.

For the static component of DMPFSP, we formulate a mixed integer 
linear programming (MILP) model as the basis for further analysis. The 
objective function of DMPFSP, consistent with [40], is to minimize the 
weighted total tardiness and maximum completion time, as follows: 

Minimize α ∗ Cmax(π) + (1 − α)
∑

Jj∈J
Tj (1) 

Where Cmax(π) = max
{
Cm,j

}
,j ∈ {1,2,...n},Tj = max

{
0,Cm,j − dj

}
,j ∈ {1,

2, ...n}.
Subject to: 

∑

k∈{1,2,...n}
xjk = 1,∀j ∈ {1,2, ..., n}, (2) 

∑

j∈{1,2,...n}
xjk = 1, ∀k ∈ {1,2, ..., n}, (3) 

Table 2 
Notations applied in the model of the DMPFSP.

Parameters Description

π The total sequence of jobs, i.e., π = [π1,π2, ...,πn].
πj The j-th job of π.
Cmax The maximum completion time (makespan).
α The weighting factors between objectives (0≤α≤1)
Jj The index for jobs where j = 1,2, ...,n.
Mi The index for machines where i = 1,2, ...,m.
O The set of operations, i.e., O = {Oi1,Oi2, ...,Oin}.
pi,j The processing time of operation Oij on Mi.
Si,j The start time of Jj on Mi where j = 1,2, ...,n,i = 1,2, ...,m.
Ci,j The completion time of Jj on Mi where j = 1,2, ...,n,i = 1,2, ...,m.
Cj The completion time of Jj on the last machine where j = 1,2,...,n.
dj The due date of Jj where j = 1,2, ...,n.
rj The release time of Jj

Tj The tardiness of job Jj

Λ The average arrival rate of new jobs follows a Poisson process
Ai,t The availability status of Mi at time t
Decision 

Variables
​

xjk Binary variable, xjk = 1 if job Jj is processed at the k-th position 
and xjk = 0 otherwise.

yijt Binary variable, yijt = 1 if job Jj starts processing on Mi at the time 
t and yijt = 0 otherwise.

Ait Binary variable, equals 1 if Mi is available at the time t.
Sets ​
J Set of jobs
M Set of machines
T Set of discrete time periods
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∑

t
yijt ≤ 1,∀i ∈ {1,2, ...,m}, t ∈ T, (4) 

Si,j =
∑

t∈T
t⋅yijt, ∀i ∈ {1,2, ...,m}, j ∈ {1,2, ...n}, (5) 

Si,j ≥ rj,∀i ∈ {1,2, ...m}, j ∈ {1,2, ...n}, (6) 

Si+1,j ≥ Si,j + pi,j,∀i ∈ {1,2, ...,m}, j ∈ {1,2, ...n}, (7) 

Ci,j = Si,j + pi,j (8) 

Si+1,j ≥ Si,j + pi,j − G
(
2 − xjk − xj́ (k+1)

)
, ∀i ∈ {1,2, ...,m},

j, j́ ∈ {1,2, ...n}, j ∕= j́ , k ∈ {1,2, ...n − 1} , (9) 

Cmax ≥
∑

t∈T

(
t⋅ymjt

)
+ pm,j,∀j ∈ {1,2, ...n},Cmax ≥ 0,Cmax ≥ Cm,j, (10) 

Tj ≥
∑

t∈T

(
t⋅ymjt

)
+ pm,j − dj,∀j ∈ {1,2, ...n},Tj ≥ 0. (11) 

Eqs. (2) and (3) ensure that each job is assigned to exactly one po
sition and each position is filled by exactly one job. Eq. (4) is a machine 
capacity constraint. It ensures that on each machine, at most one job can 
be processed at any given time t. Eq. (5) defines the constraint that the 
start time for Jj on Mi. Eq. (6) indicates the constraint that the start time 
of a job on each machine must be after its release time. Eq. (7) imposes 
the constraint that a job’s start time on the next machine must be after 
the completion time on the previous machine. Eq. (8) defines that the 
completion time of a job on Mi is the sum of its start time and processing 
time on Mi. Eq. (9) represents the job order constraint. On each machine, 
if Jj is in position k and Jj́  is in position k+1 in the processing sequence, 
this constraint ensures Jj́  begins processing only after Jj completes on 
Mi. G is a sufficiently large positive number. Eq. (10) defines the 
makespan, which is the maximum completion time among all jobs on the 
last machine. Eq. (11) defines the tardiness. It is the positive difference 
between the job’s completion time and due date.

It should be pointed out that DMPFSP studied in this paper in
corporates three types of dynamic events: new job arrivals, machine 
breakdowns, and processing time variations. These dynamic character
istics can be mathematically expressed as follows: 

1) New job arrivals: For each new job, it has 

rj = ATj,∀Jj ∈ Jnew (12) 

where ATj is the arrival time of new job Jj, and Jnew is the set of newly 
arrived jobs. Then we can get the start time constraint of the Jj: 

S1,j ≥ max
(
rj,C1,j− 1

)
,
(
C1,0 =0

)
. (13) 

In Eq. (13), the arrival time ATj follows a Poisson process with rate λ, 
where the probability of s new jobs arriving in a time interval Δt is given 
by 

P(s; λΔt) =
(λΔt)se− λΔt

s!
, s = 0,1, 2, .... (14) 

Here, λ is the average arrival rate (jobs per unit time), and Δt is the 
time interval. 

2) Machine breakdowns: For each machine Mi ∈ M: 

P(breakdowni(t)) = θi, ∀t ∈ T (15) 

RepairTimei ∼ R(μi, σi), (16) 

where θi is the breakdown probability of Mi and R(μi, σi) represents the 
repair time distribution. 

Ai,t =

{
0, ∀i ∈ {1,2, ...,m}, t ∈ [tbreakdown, tbreakdown + RepairTimei]

1, otherwise , (17) 

yijt ≤ Ai,t ,∀i ∈ {1,2, ...,m}, j ∈ {1,2, ...n}, t ∈ T, (18) 

Eqs. (17) and (18) describe the update mechanism for machine 
availability status and enforce constraints to prevent jobs from being 
scheduled during periods when machines are under breakdown or 
repair. 

3) Processing time variations: The actual processing time pʹ
ij can be 

expressed as: 

pʹ
i,j ≥ pi,j

(
1 ± δi,j

)
, ∀Mi ∈ M, Jj ∈ J. (19) 

where δi,j represents the variation factor.
Obviously, DMPFSP consists of a series of scheduling decision 

problems (i.e., a series of static PFSPs with gradually increasing scale) 
triggered by dynamic events. The above MILP formulation can be used 
to describe each PFSP in DMPFSP. The main characteristic of DMPFSP 
lies in its dynamics.

In many rapid production scenarios of DMPFSP in the modern 
manufacturing industry, high-performance algorithm needs to be uti
lized to solve each DMPFSP’s inherent scheduling decision problem (i.e., 
each PFSP) in real time to ensure stable and effective production 
execution. Unfortunately, the following Theorem 1 proves the NP- 
hardness of DMPFSP.

Theorem 1. DMPFSP incorporating dynamic job arrivals, machine 
breakdowns, and job processing time variations is strongly NP-hard.

Proof. Obviously, when no new jobs arrive (i.e., λ=0), no machine 
breakdowns (i.e., θi=0, ∀Mi ∈ M), and no processing time variations (i. 
e., δij=0, ∀Mi ∈ M, Jj ∈ J), DMPFSP is transformed into the static PFSP. 
That is, PFSP is a special case of DMPFSP.

Based on the reduction concept of complexity theory, it can be 
concluded that PFSP reduces to DMPFSP. Since the static PFSP is known 
to be NP-hard in the strong sense, DMPFSP is also strongly NP-hard.

Theorem 1 indicates that mathematical programming methods, 
approximate methods and commercial solvers (e.g., Gurobi, Cplex) 
cannot ensure to obtain high-quality solution of each PFSP in DMPFSP 
within a real-time computing time [2]. Thus, it is a challenge to devise 
an efficient algorithm to address DMPFSP, i.e., a series of PFSPs with 
different scales. Inspired by the good performance of DRL-based algo
rithm in solving some DPSPs in recent years (see Table 1), a novel 
DRL-based algorithm, namely NDRLA_IPC (see Section 4), is designed to 
efficiently solve the considered DMPFSP.

In addition, to better illustrate the DMPFSP mathematical formula
tion, we present an example with five initial jobs (J₁-J₅) on four ma
chines (M₁-M₄), where two additional jobs (J₆, J₇) arrive during 
production. Table 3 presents the corresponding processing times.

Table 3 
An example of processing information for each job.

Job M₁ M₂ M₃ M₄ Arrival time Due date

J₁ 3 4 2 5 0 20
J₂ 4 3 5 2 0 22
J₃ 2 5 3 4 0 25
J₄ 5 2 4 3 0 23
J₅ 3 4 2 5 0 21
J₆ 4 3 5 2 5 30
J₇ 2 5 3 4 8 35
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Fig. 1(a) shows the Gantt chart of a static FSP with the processing 
sequence {J₁, J₂, J₃, J₄, J₅} when no new jobs arrive. It can be seen that 
after each job is processed, it is removed from the buffer while the next 
job continues to be processed. This process continues until all jobs are 
processed the buffer is empty. Subsequently, Fig. 1(b) demonstrates how 
the DMPFSP handles the arrival of new jobs. Specifically, when J₆ arrives 
at time t=5, it is added to the buffer to wait for processing. According to 
the constraint relationship between job release time and its processing 
start time defined in Eq. (13), the job being processed will not be 
interrupted by the arrival of new jobs. Instead, after M1 completes 
processing the current job, the next job to be processed is selected from 
the buffer. Similarly, J₇ arrives at t=8 to wait for processing. The final 
Gantt chart incorporating all 7 jobs is shown in Fig. 1(b).

4. Novel deep reinforcement learning algorithm incorporating 
problem characteristics

This section introduces the key components of NDRLA_IPC in detail, 
including the state feature, the action space, the weighted composite 
reward function and its feasibility proof, the update process of DDQN in 
NDRLA_IPC, the proposed framework of the NDRLA_IPC, and the 
implementation example of NDRLA_IPC.

4.1. State feature

The state features in NDRLA_IPC are extracted based on the relative 
completion time interval of the current job across all machines. In other 
words, it describes the “completion time shape” of the current job on the 
Gantt chart. This is done to better match the processing time of the next 
job with the current state (the completion time shape of the current job) 

when selecting the next job through action.
Based on the DMPFSP model characteristics, the jobs are arranged in 

the same order on each machine, and the new operation starts after the 
current operation is completed. Therefore, once the next job to be pro
cessed is determined, its completion time on each machine can be 
calculated. Assuming that the j-th job πj has been selected at the current 
time, let 

(
C1,j, C2,j, ..., Cm,j

)
denote the vector consisting of its 

completion time on each machine. The completion time interval on the i- 
th machine is defined as follows. 

▵Ii,j = Ci+1,j − Ci,j, j = 1,2, ..., n; i = 1, 2, ...,m − 1. (20) 

Then the completion time interval vector 
(
▵I1,j, ▵I2,j, ..., ▵Im,j

)
of πj 

is normalized to reduce the complexity of the state space by constraining 
the size of each element to the range [0, 1], as follows: 

▵Iʹi,j =
▵Ii,j

∑m− 1
i=1 ▵Ii,j

. (21) 

Thus, the state feature sj can be obtained when πj is determined as 
follows: 

sj =
(

▵Iʹ1,j,▵Iʹ2,j, ...,▵Iʹm− 1,j

)
. (22) 

For example, consider job J1’s with completion times: M1: C1,1=5, 
M2: C1,2=9, M3: C1,3=14. The completion time intervals are calculated 
as follows: ▵I1,1=C1,1=5 (first machine uses absolute completion time), 
▵I2,1=C1,2-C1,1=9-5=4 (interval between M2 and M1), ▵I3,1=C1,3- 
C1,2=14-9=5 (interval between M3 and M2). These intervals reflect the 
distribution of processing times across machines. Next, Eq. (21) nor
malizes all values to the range [0,1] to make the state representation 
scale-invariant, which is beneficial for DRL network training. In our 

Fig. 1. An example explanation of DMPFSP.
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example: ▵Iʹ1,1=5/14≈0.357, ▵Iʹ2,1=4/14≈0.286, ▵Í3,1=5/14≈0.357. 
The state vector s = [0.357, 0.286, 0.357], obtained using Eq. (22), 
captures the normalized time distribution pattern, machine completion 
information, and serves as the basis for action selection.

In DMPFSP, machine breakdowns are considered. Jobs can only 
resume processing after the broken machine is repaired. Therefore, the 
repair time of the machine can be regarded as additional processing 
time, which may result in Ci,j > Ci+1,j. In this case, ▵Iij = 0.

4.2. Action space

This section introduces the proposed action space, including an ac
tion to select the first job and four actions to select non-first jobs. 

1) Action for selecting the first job

When the first job π1 is to be selected, the weights wBT and wdue j are 
assigned to the jobs in the buffer (BF) according to Eqs. (23) and (24), 
and the job with the largest v1

j is as the π1. 

wBT =

(

1 −
BTj − minBTj∈BF

maxBTj∈BF − minBTj∈BF

)

∑
j∈BF

(

1 −
BTj∈BF − minBTj∈BF

maxBTj∈BF − minBTj∈BF

). (23) 

wdue j =

(

1 −
dj − mindj∈CR

maxdj∈CR − mindj∈CR

)

∑
j∈CR

(

1 −
dj − mindj∈CR

maxdj∈CR − mindj∈CR

). (24) 

v1
j = α ∗ wBT + (1 − α) ∗ wdue j, j ∈ CR. (25) 

Here, BTj represents the total accumulated waiting time of Jj on each 
machine throughout the entire processing period, starting from the time 
Jj begins processing.

The selection of the first job is crucial, as it establishes the foundation 
for subsequent scheduling decisions. Eq. (23) normalizes the BTj of all 
jobs. The lower the wBT for a job, the shorter the waiting time on each 
machine when the job is processed first. Eq. (24) normalizes the dj of all 
job, where dj is the due date of Jj (as defined in Table 2). The lower the 
wdue j for a job, the higher its due date priority. Then the Eq. (25)
combines the two factors from Eqs. (23) and (24) to calculate the 
composite priority of the jobs, balancing processing time and due date 
considerations. 

2) Actions for selecting non-first jobs

In NDRLA_IPC, four scheduling rules (a1 to a4) as actions are pro
posed for selecting non-first jobs. Assuming the first j-1 jobs have been 
identified, select the job from the BF as the πj.

a1: ① Determine the key machine Mi∗ based on the biggest ΔIi∗,̂j in 
(
ΔI1,̂j,ΔI2,̂j,...,ΔIm− 1,̂j

)
. ② Sort the jobs in non-decreasing order based on 

their dii∗,j, where dii∗,j =

⃒
⃒
⃒pi∗,j − ΔIi∗,̂j

⃒
⃒
⃒, j ∈ BF. Add the first 

max
{

2,
[
log|BF|

2 − 1
]}

jobs with the smallest dii∗,j and the earliest dj job in 

the BF into the candidate region (CR). ③ Assign the weights w1j and w2j 

for the jobs in the CR as follows, and the job with the biggest vj is 
selected as πj. 

w1j =

⃒
⃒
⃒
⃒1 −

dii∗,j − mindii∗
maxdii∗− mindii∗

⃒
⃒
⃒
⃒

∑
j∈CR

⃒
⃒
⃒
⃒1 −

dii∗,j − mindii∗
maxdii∗ − mindii∗

⃒
⃒
⃒
⃒

. (26) 

w2j =

(
1 − Dnorm

j

)

∑
j∈CR

(
1 − Dnorm

j

). (27) 

Dnorm
j =

⃒
⃒Ci∗− 1,j − Si∗,j

⃒
⃒ − min

⃒
⃒Ci∗− 1,j − Si∗,j

⃒
⃒
j∈CR

max
⃒
⃒Ci∗− 1,j − Si∗,j

⃒
⃒
j∈CR − min

⃒
⃒Ci∗− 1,j − Si∗,j

⃒
⃒
j∈CR

. (28) 

vj =
1
2

α ∗
(
w1j +w2j

)
+ (1 − α) ∗ wdue j, j ∈ CR. (29) 

The action a1 is designed to consider both the current machine load 
distribution and job processing characteristics. We provide a detailed 
explanation of its components and working mechanism using Fig. 2. 

Step 1: Key machine identification. As shown in Fig. 2(a), action a1 
first identifies the key machine Mi∗ based on the maximum 
completion time interval (ΔIi∗,̂j) among all machines. This step aims 
to identify the potential bottleneck in the current schedule. For 
example, in Fig. 2(a), M2 is identified as the key machine (i*=2) due 
to its largest interval ΔI2∗,̂j.
Step 2: Job evaluation and candidate region formation. The action 
then evaluates jobs in the BF using the difference measure dii∗,j. Here, 
dii∗,j represents the absolute difference between the job’s processing 
time (pi∗,j) and the current interval (ΔIi∗,̂j). Smaller dii∗,j values indi
cate better matching between job processing time and machine in

terval. The CR is formed by selecting max
{

2,
[
log|BF|

2 − 1
]}

jobs with 

smallest dii∗,j. As illustrated in Fig. 2(a), four jobs (J1-J4) are evalu
ated with their processing times and due dates. Jobs with smaller 
differences are prioritized for the CR.
Step 3: Weight assignment and final selection. Fig. 2(b) illustrates 
final selection process through weight assignment:

w1j: Eq. (26) considers the normalized processing time difference.
w2j: Eq. (27) accounts for the normalized completion time difference.
Dnorm

j : Eq. (28) normalizes the completion time differences across 
machines.

vj: Eq. (29) combines all factors using the importance coefficient α.
a2: ① Determine the key machine Mi∗ based on the smallest ΔIi∗,̂j in 

(
ΔI1,̂j,ΔI2,̂j, ...,ΔIm− 1,̂j

)
.The remaining steps are the same as those for a1.

a3: ① Let Îj =
(
ΔI1,̂j,ΔI2,̂j, ...,ΔIm− 1,̂j

)
, and the average value of Îj is 

denoted as AvgÎj
. ② Sort the jobs in non-decreasing order based on the 

variance Varj of their processing time across all machines, where j ∈ BF. 

Add the first max
{

2,
[
log|BF|

2 − 1
]}

jobs with the smallest Varj and the 

earliest dj job in the BF into the CR. ③ Assign the weights w1́j and w2́j for 
the jobs in the CR as follows, and the job with the biggest v́j is selected as 
πj. 

wʹ
1j =

⃒
⃒
⃒
⃒1 −

Varj − minVarj∈CR
maxVarj∈CR − minVarj∈CR

⃒
⃒
⃒
⃒

∑
j∈CR

⃒
⃒
⃒
⃒1 −

Varj − minVarj∈CR
maxVarj∈CR − minVarj∈CR

⃒
⃒
⃒
⃒

. (30) 

wʹ
2j =

1 −
AvgÎj

− minAvgÎj,j∈CR
maxAvgÎj,j∈CR

− minAvgÎj,j∈CR

∑
⃒
⃒
⃒
⃒
⃒
1 −

AvgÎj
− minAvgÎj,j∈CR

maxAvgÎj,j∈CR
− minAvgÎj,j∈CR

⃒
⃒
⃒
⃒
⃒

. (31) 

v́j =
1
2

α ∗
(

wʹ
1j +wʹ

2j

)
+ (1 − α) ∗ wdue j, j ∈ CR. (32) 

The purpose of action a3 is as follows: when the completion time 
intervals across machines are similar, select the jobs with relatively 
uniform processing time on each machine and whose processing time is 
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close to the current interval vector Iĵ. This approach aims to better align 
new jobs with the current completion time intervals. Fig. 3 demonstrates 
the implementation process and effects of this action using a detailed 
example. 

Step 1: Time interval vector construction. For each job Jj in the BF, an 
interval vector Îj =

(
ΔI1,̂j,ΔI2,̂j, ...,ΔIm− 1,̂j

)
is constructed. The 

average value AvgÎj 
of these intervals provides a reference for eval

uating schedule consistency. As shown in Fig. 3(a), the intervals ΔI1,̂j 
and ΔI2,̂j represent the completion time intervals that need to be 
considered in scheduling.
Step 2: Job evaluation based on variance. The action calculates and 
sorts jobs based on their processing time variance (Varj). Processing 
times are represented as columns for each job (p1,1, p1,2, p1,3 for J1, 
etc.). More uniform the processing time across machines lead to 
smaller variance values. The CR is formed by selecting 

max
{

2,
[
log|BF|

2 − 1
]}

jobs with the smallest Varj value and the 

earliest due dates.
Step 3: Weight assignment and final selection. The final selection 
process, illustrated in Fig. 3(b), involves three weighted calculations.

w1́j: Eq. (30) normalizes the variance of candidate jobs’ processing 
time across all machines, where jobs with smaller variance have higher 
weights.

wʹ
2j: Eq. (31) evaluates the difference between the average interval of 

jobs in the CR and the average completion time interval across all ma
chines. This difference is normalized for all jobs to enable comparison.

v́j: Eq. (32) integrates variance and interval considerations using a 
coefficient α to incorporate the due date priority wdue j. This achieving a 
balance between the selecting jobs with appropriate processing time and 
the prioritizing jobs based on their due date, optimizing both efficiency 

(minimizing idle time) and timeliness (meeting due dates) in the 
scheduling process.

a4: ① Determine the key machine Mi∗ based on the smallest ΔIi∗,̂j in 
(
ΔI1,̂j,ΔI2,̂j,...,ΔIm− 1,̂j

)
. ② Sort the jobs in non-decreasing order based on 

their dii∗j, where dii∗,j =

⃒
⃒
⃒pi∗,j − ΔIi∗,̂j

⃒
⃒
⃒, j ∈ BF. Add the first 

max
{

2,
[
log|BF|

2 − 1
]}

jobs with the smallest dii∗,j and the earliest dj job in 

the BF into the CR. ③ Assign the weight wʹ́
2j for the jobs in the CR as 

follows, and the job with the biggest vʹ́
j is selected as πj. 

wʹ́
2j =

1 −
pi∗+1,j − minpi∗+1,j∈CR

maxpi∗+1,j∈CR − minpi∗+1,j∈CR

∑
j∈CR

⃒
⃒
⃒
⃒
⃒
1 −

pi∗+1,j − minpi∗+1,j∈CR
maxpi∗+1,j∈CR − minpi∗+1,j∈CR

⃒
⃒
⃒
⃒
⃒

. (33) 

vʹ́
j =

1
2

α ∗
(

w1j +wʹ́
2j

)
+ (1 − α) ∗ wdue j, j ∈ CR. (34) 

The action a4 focuses on selecting jobs whose processing times 
closely match the time interval on the key machine, incorporating them 
into the CR. Subsequently, the job with the shortest processing time on 
the next process of the key machine is selected to minimize the machine 
idle time. Fig. 4 illustrates the implementation process and effects of this 
action using a detailed example. 

Step 1: Key machine identification. As shown in Fig. 4 (a), a4 first 
identifies the key machine Mi∗ by selecting the machine with the 
minimum interval ΔIi,̂j in the interval vector 

(
ΔI1,̂j,ΔI2,̂j,...,ΔIm− 1,̂j

)
. In 

the example, M1 is identified as the key machine (i*=1).
Step 2: Job evaluation based on variance. This step evaluates the 
difference between the processing time of the jobs in the BF and the 
completion time interval of the key machine using the dii∗,j. A lower 
dii∗,j value indicates a closer alignment between the job’s processing 

Fig. 2. Explanation of the legend for a1.

Fig. 3. Explanation of the legend for a3.
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time and the current processing state. As shown in Fig. 4(a), four jobs 
are evaluated: J1(d1=2), J2(d2=7), J3(d3=5), J4(d4=4). The differ
ence dii∗,j is computed for comparison, and select the 

max
{

2,
[
log|BF|

2 − 1
]}

jobs with the smallest dii∗,j to enter the CR.

Step 3: Weight assignment and final selection process. Fig. 4(b)
demonstrates the effect of weight assignment process using Eqs. (33)
and (34):

wʹ́
2j: Eq. (33) normalizes the processing times of jobs in the CR on the 

subsequent machine (i*+1) of jobs in the CR, accounting for the impact 
of a continuous short time interval on the job selection.

vʹ́
j : Eq. (34) integrates the alignment between the job processing 

times and the current completion state with the due date factor to 
determine the final job priority.

4.3. Weighted composite reward function and its feasibility proof

In this section, a weighted composite reward function is designed to 
evaluate the performance of the agent in executing actions, and its 
feasibility in optimizing the objective function of the problem is 
demonstrated.

Assuming the πj has been selected for processing, then the reward rj 

is as follows: 

rj = −

[

α
∑m

i=1

∫ Cj

S1j

δi(t)dt+(1 − α)
∫ Cj

S1j

ψ j(t)dt

]

. (35) 

Where δi(t) and ψ j(t) are indicator functions for Mi and Jj at time t, 
respectively, as follows. 

δi(t) =
{

0,Mi is busy at time t
− 1,Mi is idle at time t . (36) 

ψ j(t) =
{

0, S1j ≤ t < min
{
Cj, dj

}

− 1,min
{
Cj, dj

}
≤ t ≤ Cj

. (37) 

The composite reward function Eq. (35) serves two primary purposes 
through its weighted components:

The first term, weighted by α, evaluates machine utilization effi
ciency. It measures idle time across all machines (i=1 to m) during the 
job processing interval [S1j, Cj]. The indicator function δi(t) captures the 
binary state of each machine, assuming a value of -1 during idle time and 
0 when the machine is operational.

The second term, weighted by (1-α), quantifies job completion per
formance based on due dates. Using the indicator function ψ j(t), it 
measures the cumulative tardiness effect. The function transitions from 
0 to -1 when the processing time exceeds the minimum of the comple
tion time (Cj) and the due date (dj).

The weighting coefficient α enables a balanced consideration of 
operational efficiency and timely completion objectives. It allows flex
ible prioritization between these competing performance metrics.

Theorem 1. Minimizing the objective function is equivalent to maxi
mizing the total reward R obtained by running a single experiment.

Proof:
Given that the total reward R obtained by running a single experi

ment is the sum of the reward from k decisions, that is 

Fig. 4. Explanation of the legend for a4.

Fig. 5. Update process of DDQN in NDRLA_IPC.
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R =
∑n

j=1
rj = −

∑n

j=1

[

α
∑m

i=1

∫ Cj

S1j

δi(t)dt + (1 − α)
∫ Cj

S1j

ψ j(t)dt

]

= −

[

α
∑n

j=1

∑m

i=1

∫ Cj

S1j

δi(t)dt + (1 − α)
∑n

j=1

∫ Cj

S1j

ψ j(t)dt

]

= −

[

α
∑m

i=1

∫ Cmax

0
δi(t)dt + (1 − α)

∑n

j=1

∫ Cj

S1j

ψ j(t)dt

]

.

(38) 

The total reward R is expressed as the sum of rewards from individual 
decisions (Eq. (38)), combining both machine utilization and tardiness 
components. The first term, weighted by α, accounts for machine idle 
time. The second term, weighted by 1-α, captures job tardiness.

Let φ1 =
{
j
⃒
⃒Cj ≥ dj,1 ≤ j ≤ n

}
, φ2 =

{
j
⃒
⃒Cj < dj,1 ≤ j ≤ n

}
. Where φ1 

represents jobs completed after their due dates, φ2 represents jobs 
completed before their due dates. We have  

Through Eq. (39), the reward function is decomposed into the ma
chine idle time component α

∑m
i=1 Idi and the tardiness component (1 −

α)
∑

j∈φ1

(
Cj − dj

)
, where Idi is the total idle time of Mi.

Given Idi = C
∑n

j=1 pijmax, and 

TDT(π) =
∑n

j=1

(
Cj − dj

)
=
∑

j∈φ1

(
Cj − dj

)
+
∑

j∈φ2

(
Cj − dj

)
=
∑

j∈φ1

(
Cj − dj

)
.

(40) 

Therefore 

R = − [α
∑m

i=1

(

Cmax(π) −
∑n

j=1
pij

)

+ (1 − α)TDT(π)

= −

[

αmCmax(π) − α
∑m

i=1

∑n

j=1
pij + (1 − α)TDT(π)

]

.

(41) 

Due to 
∑m

i=1
∑n

j=1 pij is a constant, maximizing the total reward R is 
equivalent to minimizing both Cmax and TDT(π), which corresponds to 
the objective function.

4.4. Update process of DDQN in NDRLA_IPC

This section details of the update process of DDQN in NDRLA_IPC, as 
shown in Fig. 5. Its network structure is shown in Table 4.

DDQN addresses the overestimation issue common in DQN by 
employing two Q-networks. One Q-network, the main network, selects 
actions and estimates their values. The other, the target Q-network, is a 
copy of the main network and provides fixed Q-values for updating the 
main network. By decoupling action selection and target calculation, 
DDQN reduces the risk of overestimating action values during updates. 
During the weight update process, the DDQN algorithm first stores the 
transition (st , at , rt , st+1) by interacting with the environment. It then 
updates the weights of the main Q network by sampling a random batch 
of transitions from the replay buffer. The target Q-value Qʹ(st , at ; θʹ) is 

calculated using Eq. (42). The loss function is derived from the temporal 
difference error between the main Q-value and the target Q-value, 

guiding the network towards more accurate value estimation. Specif
ically, the loss function L(θ) = ||(Qʹ(st , at ; θʹ) − Q(st , at ; θ))2

||, where 
Qʹ(st , at ; θʹ) is computed as follows: 

Qʹ(st, at; θʹ) =
{

rt , st is terminal
rt + γQʹ(st+1, argmaxaQ(st + 1, a; θ); θʹ), otherwise

(42) 

The weights of the target Q network are replaced with the weights of 
the main Q network every c steps.

4.5. Proposed framework of the NDRLA_IPC

This section details the main framework of the NDRLA_IPC, as shown 
in Algorithm 1, and its flowchart is illustrated in Fig. 6.

As shown in Algorithm 1, the NDRLA_IPC schedules all jobs and 
generates a processing sequence π that optimizes the objective function. 
Specifically, the NDRLA_IPC extracts the relative interval vector of job 
completion time across all machines to construct state features. It then 
selects and executes actions using an ε -greedy exploration strategy 
(Lines 3 to 12), balancing exploration of new actions and exploitation of 
known high-reward actions. The reward for the executed action is 
computed using the weighted composite reward function, and the 
transition (st , at , rt , st+1) is stored for training. Thereafter, the DDQN is 
trained by sampling transitions from the replay buffer (Lines 13 and 15), 
which breaks temporal correlations and stabilizes training.

4.6. Implementation example of NDRLA_IPC

To better illustrate how NDRLA_IPC solves DMPFSP, we provide an 
example of solving a small-scale DMPFSP instance. This example dem
onstrates the process of state extraction, action execution, operation 
selection, reward calculation, and Q-table updates. For simplicity, we 
use Q-learning instead of the original DDQN in NDRLA_IPC. Consider a 
DMPFSP with three machines and five jobs. In the initial system state 
(0,0), representing all machines being idle and the BF in its initial 
configuration, the Q-table is empty, with no Q-values assigned. The 

Table 4 
Structure parameters of two Q-networks.

Layer Node number Activation 
function

Description

Input layer Machine number- 
1

None Complete states 
information st

Hidden layer 
1

32 Tanh None

Hidden layer 
2

32 Tanh None

Hidden layer 
3

32 Tanh None

Output layer Action number None Q value of each action

R = −

{

α
∑m

i=1
Idi + (1 − α)

{
∑

j∈φ1

[
∑n

j=1

∫ dj

S1j

ψ j(t)dt +
∫ Cj

dj

ψ j(t)dt

]

+
∑

j∈φ2

∫ Cj

S1j

ψ j(t)dt

}}

= −

{

α
∑m

i=1
Idi + (1 − α)

∑

j∈φ1

[

0 +

∫ Cj

dj

ψ j(t)dt

]

+ 0

}

= −

[

α
∑m

i=1
Idi + (1 − α)

∑

j∈φ1

∫ Cj

dj

ψ j(t)dt

]

= −

[

α
∑m

i=1
Idi + (1 − α)

∑

j∈φ1

(
Cj − dj

)
]

,

(39) 
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scheduling environment begins with three jobs in the BF, and one 
additional job arrives at a scheduled time.

Initial BF configuration: The system starts with three jobs in the BF, 
each characterized by their processing times across three operations, 
due dates, and total processing times: 

J1: Processing time [5,4,8], due date 20, total processing time 17.
J2: Processing time [3,6,4], due date 16, total processing time 13.
J3: Processing time [8,3,6], due date 23, total processing time 17.

Future job arrivals: One additional job is scheduled to arrive during 
the processing period: J4: Processing time [4,7,5], arrival time 8, due 
date 31, total processing time 16.

Processing time changes: During the scheduling process, the pro
cessing time of J3 changes from [8,3,6] to [8,5,7] at time 7, and its total 
processing time increases from 17 to 19.

Machine breakdowns: Machine M2 breaks down after processing two 
consecutive operations. A repair period of 1 time unit is required, after 
which M2 resumes normal operation and can process subsequent 
operations.

Initially, the first job is selected based on the method described in 
Subsection 4.2 (1). The BT values of each job are [14,12,19]. Using Eq. 
(23), the corresponding weight wBT is calculated to be [0.417,0.583,0]. 
Next, the due dates of each job in the BF are considered, which are 
[20,16,23]. According to Eq. (24), the corresponding final weight wdue j 

is computed to be [0.3,0.7,0]. The final weight v1
j for each job is then 

determined by combining weights wBT and wdue j using the Eq. (25). 
Applying Eq. (26), the final weights for each job are calculated as fol
lows: v1

1=0.8*0.417+0.2*0.3=0.394, v1
2=0.8*0.583+0.2*0.7=0.606, 

v1
3=0.8*0+0.2*0=0. According to the calculated weights v1

j , J2 is 
selected as the first job to be processed.

Following the initial job selection, the system state evolved as fol
lows. The current completion times of the three machines are [3,9,13], 
and the machine completion time interval vector is [6,4], calculated 
using Eq. (20). This vector is then normalized using Eq. (21) to obtain 
the current state [0.6, 0.4] as described in Eq. (22). At this stage, J1 and 
J3 are retained in the BF.

To select the next job, an action is randomly executed (a1) due to the 
empty Q-table, as detailed in Subsection 4.2(2). The first machine has 

Algorithm 1 
Main framework of the NDRLA_IPC.
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the largest completion time interval, and jobs whose processing time are 
most similar to this interval, J1 and J3, are added to the CR. Here i ∗=1, 
dii∗,1=1, dii∗,2=2. Based on Eqs. (26), (27), and (24), the weights are 
calculated as w11=1, w13=0, w21=1, w23=0, wdue 1=0.5, and wdue 3=0.5. 
Finally, the vj for each job in the CR is obtained using Eq. (29), resulting 
in v1=0.9 and v3=0.1. Therefore, J1, which has the largest vj, is selected 
for processing.

After completing the processing of J1, the completion time intervals 
across all machines are updated to [5,8], and the corresponding state 
vector becomes [0.385, 0.615]. However, after accounting for a break
down of machine M2 following the completion of two operations and its 
subsequent one-time-unit repair period, the completion time interval is 
adjusted to [6,7]. Consequently, the state vector is updated to [0.462, 
0.538]. For the purpose of demonstration, the proposed algorithm re
places DDQN in the NDRLA_IPC framework with Q-learning. The 
Q-value update follows the standard Q-learning procedure. At this stage, 
the Q-value for the current state is initially 0.0, and the maximum 
Q-value in next state is also 0.0. The reward is calculated based on the 
weighted sum of machine idle time and tardiness following the Eq. (35). 
Specifically, the idle time between the current job J1 and last job J2 is 
0 (α is 0.8), and the tardiness increases by 4 (1-α is 0.2). Thus, the reward 
is computed as r=− (0×0.8+4×0.2)=− 0.8. Assuming a learning rate (lr) 
of 0.001 and a discount factor (γ) of 0.99, Eq. (42) is modified to update 
the Q value according to the following formula: Q(s,a)=Q(s,a)+lr* 
[r+γ×max(Q(s’,a’))-Q(s,a)]=0+0.001[-0.8+0.99×0-0]=-0.0008. Thus, 
the current Q-table is updated as shown in Table 5.

When M1 completes processing J1 at time 8, the BF contains the 

remaining jobs J3 and J4, as J4’s arrival time coincides with this 
completion time. The subsequent action is selected based on the Q-table 
values, which will determine the next job to be processed. Since the 
processing time of J3 has changed, Eqs. (26) and (34) are used to 
calculate the job weight based on the updated processing time of J3. 
Once the next job is selected and processed, the reward is calculated, and 
the Q-table is updated accordingly. This process is repeated until all jobs 
have been successfully scheduled.

5. Computational tests

This section evaluates the effectiveness of NDRLA_IPC in solving 
DMPFSP. It includes details on the experimental setup and parameter 
settings, the reward convergence process, the comparative evaluation of 
action variants, the comparisons of NDRLA_IPC and classical scheduling 
rules, the comparisons of NDRLA_IPC and state-of-the-art methods, and 
the comparison with Gurobi and state-of-the-art methods on small-scale 
instances.

5.1. Experimental setup and parameter settings

The test instances used in this study are sourced from well-known 
benchmark datasets commonly used in scheduling research, as refer
enced in [41]. The machine scale considered are {3, 5, 10}, and the job 
scale are {10, 20, 30, 40, 50}. All training processes and comparative 
experiments are conducted on a personal computer running the Win
dows 10 operating system and using Python 3.7. The computer is 
configured with an Intel(R) Core(TM) i7-12700K 3.6-GHz CPU, a 
GeForce RTX 3080Ti GPU, and 32-GB RAM. Carefully selected execution 
tool ensures the accuracy and reliability of the experiments.

In all test results, the average relative percentage deviation (ARPD) 
and standard deviation (SD) obtained from repeated experiments with 
L=10 runs are used as response variables to evaluate algorithm perfor
mance, as shown below. 

Fig. 6. Flow chart of NDRLA_IPC.

Table 5 
Q table in a concrete example demonstrating the algorithm flow.

Current state a1 a2 a3 a4

[0.6, 0.4] -0.0008 0 0 0
[0.462, 0.538] 0 0 0 0
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ARPD =
1
L
∑L

l=1

(
Cl − Cbest

Cbest

)

× 100%, (43) 

SD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑L

l=1
(
Cl − C

)2

L

√

. (44) 

Here Cl represents the makespan achieved by the algorithm in the l-th 
experiment, and Cbest represents the best makespan achieved by all al
gorithms in a given test instance. ARPD measures the relative deviation 
between the algorithm’s results and the best results. It is a widely used 
indicator for evaluating algorithm performance. A smaller ARPD value 
indicates better performance of the algorithm across all test results. SD 
measures the stability of the algorithm’s results in repeated experiments. 
Similarly, a smaller SD value indicates a stronger stability of the algo
rithm’s results.

In DMPFSP, three constraints are considered, namely, machine 
breakdowns, variations in processing time of jobs, and the arrival of new 
jobs. For machine failures, we propose a simplified discrete-time model 
based on the exponential failure distribution model in [42]. While the 
original model uses failure rate λ to determine the mean time to failure 
(MTTF=1/λ), our study adopts a simplified discrete-time model to 
maintain the random failure characteristics. Specifically, we set the 
machine failure probability to 0.1 per time unit (equivalent to expecting 
one failure every 10 time units) with a random breakdown duration 
within [0, 20] time units. This simplification preserves the essential 
stochastic characteristics while facilitating implementation. For pro
cessing time variations of jobs, reference [43] defines four dynamic 
levels that adjust processing times by adding varying percentages to the 
estimated duration, requiring recalculations and rescheduling for each 
dynamic level. To simplify the computation, this study adopts a unified 
probability and change range approach, preserving the dynamic char
acteristics while reducing experimental complexity. We assume that job 
processing times on each machine change randomly within the interval 
[0, 50] with a probability of 0.1. Following the guidelines specified in 
reference [33], the parameters TF and RDD, which affect the job due 
date dj, are set to 0.5. For each test instance, half of the jobs are 
randomly selected into the buffer, while the other half arrive at the BF 
during processing as new jobs following a Poisson process with arrival 
rate parameters λ=0.05, 0.08, and 0.1, as described in [29]. For 
example, for 20 jobs, their arrival times under these rate parameters are 
as follows. Note that NDRLA_IPC and the comparison methods run in the 
same environment, ensuring consistent variations in job processing 
time, machine breakdown times, and the arrival time and sequence of 
new jobs. Besides, γ is usually set to 0.99.

Fig. 7

5.2. Reward convergence process

Due to the ability of NDRLA_IPC to extract the shape features of job 
completion times across all machines for decision making, it exhibits 

strong generalization capability. By learning from the decisions based on 
different completion time shapes generated in moderate-sized instances 
(e.g., instances with 30 jobs), NDRLA_IPC can effectively solve problems 
of varying job scales. For different numbers of machines, we train DDQN 
using instances with 30 jobs for 10,000 episodes. For example, for m=3, 
we train DDQN with instance m=3 and n=30 to solve problems with 
m=3 and n={10, 20, 30, 40, 50}. Similarly, for m=5 and m=10, the 
training and solving approaches remain consistent.

The curve of reward variation across episodes is shown below. It can 
be observed that the reward gradually increases from episode 0 to 
episode 4000 and converges within the range of [-2000, -1000] after 
5000 episodes. This demonstrates that the weighted composite reward 
function effectively evaluates actions to minimize the objective 
function.

Fig. 8

5.3. Comparative evaluation of action variants

To evaluate the ability of NDRLA_IPC to generate suitable strategies, 
we designed five variants: NDRLA_IPC_a1 to NDRLA_IPC_a4 and 
NDRLA_IPC_Rand. (1) The NDRLA_IPC_a1 to NDRLA_IPC_a4 are four 
variants where NDRLA_IPC_ax is restricted to a single action ax in each 
state. (2) NDRLA_IPC_Rand randomly selects an action from a1 to a4 in 
each state. The comparison of NDRLA_IPC and its variants verifies that 
the effectiveness of NDRLA_IPC stems from its ability to generate 
appropriate strategies, rather than relying solely on the superior per
formance of individual actions. To further verify the statistical signifi
cance of the performance advantage of NDRLA_IPC, we performed 
Friedman and Wilcoxon signed-rank tests according to the statistical 
analysis framework described in [44], as shown in Tables 9 and 10. 
Additionally, the comparative results of five variants and NDRLA_IPC 
regarding ARPD at λ=0.05, 0.08, and 0.1 are provided in Tables 6 to 8. 
We summarize the results of all comparative algorithms for λ values of 
0.05, 0.08, 0.1, as well as for all instances at different λ. The corre
sponding box plots are shown in Fig. 9.

The Friedman test results show that NDRLA_IPC achieves the best 
ranking of 1.0067 among all variants, followed by NDRLA_IPC_a4 
(3.7200) and NDRLA_IPC_a2 (3.7767), while NDRLA_IPC_rand performs 
the worst with a ranking of 4.4133. Additionally, the Wilcoxon signed- 
rank test results demonstrate that NDRLA_IPC significantly outperforms 
all its variants at both α=0.1 and α=0.05 significance levels, with 
extremely small p-values (ranging from 1.0427E-25 to 3.3539E-26). The 
consistent R+ values around 11320 and R- values of 0 across all pairwise 
comparisons provide strong statistical evidence that NDRLA_IPC’s su
perior performance is not due to chance but rather stems from its 
effective integration of state representation and action selection 
mechanisms.

As shown in Tables 6-8, NDRLA_IPC demonstrates superior perfor
mance compared to the other five algorithm variants in almost all in
stances in terms of ARPD and SD. Additionally, Fig. 9 shows that 
NDRLA_IPC exhibits a more competitive statistical distribution than five Fig. 7. Arrival times of 20 jobs following Poisson processes at different λ.

Fig. 8. Reward-Episode curve.
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algorithm variants. This is due to NDRLA_IPC’s consideration of multiple 
states when designing actions, and establishes correlations between 
states and actions. Furthermore, the proposed actions are designed to 
optimize the temporal alignment of jobs from different perspectives. 
This shared objective contributes to a synergistic effect among the ac
tions, enhancing their collective impact on scheduling performance. 
Therefore, NDRLA_IPC can select appropriate actions based on the cur
rent state, producing stable and efficient scheduling strategies in 

dynamic environments across various test instances.
In contrast, the other five algorithm variants either perform a single 

action fixedly or select actions randomly. They not only ignore the job 
completion time “shape” across all machines but also lead to poor results 
due to the accumulation of suboptimal actions. Besides, Fig. 9 (d) pro
vides the box plots for the summary of the comparison between the five 
algorithm variants and NDRLA_IPC on all machines, using different 
values of λ (0.05, 0.08 and 0.1, respectively). This further confirms the 

Table 6 
Comparisons between five variants and NDRLA_IPC (New jobs arrival rate λ=0.05).

(|M|, |J|) NDRLA_IPC_a1 NDRLA_IPC_a2 NDRLA_IPC_a3 NDRLA_IPC_a4 NDRLA_IPC_Rand NDRLA_IPC

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD

3_10 10.65 56.38 13.46 32.91 10.74 37.19 7.23 40.30 19.17 46.31 4.21 23.41
3_20 8.79 58.56 11.20 40.33 11.69 46.16 5.61 15.88 10.18 53.29 3.12 17.55
3_30 13.83 36.12 10.01 69.02 7.47 21.73 10.55 77.50 12.84 78.08 3.55 32.77
3_40 9.02 83.20 9.46 71.79 8.38 77.51 6.85 59.92 7.87 47.47 3.42 38.35
3_50 13.56 43.48 12.07 103.75 9.75 142.11 8.95 38.96 8.38 94.21 3.98 58.52
5_10 15.10 34.94 12.12 48.08 13.98 36.10 16.79 50.67 18.21 41.31 5.31 31.27
5_20 7.95 33.13 7.80 40.64 9.88 57.84 11.75 80.32 12.19 66.99 2.89 19.29
5_30 12.05 73.13 11.43 75.77 14.37 49.76 10.26 50.75 16.11 79.41 6.35 63.85
5_40 12.99 100.07 11.39 47.69 10.48 25.43 9.33 137.85 12.62 51.10 2.41 46.41
5_50 13.79 100.37 15.52 80.93 11.82 53.87 10.95 132.44 13.83 114.19 5.23 93.21
10_10 14.82 96.19 19.97 68.50 19.95 71.96 21.26 48.36 17.04 51.59 5.93 35.97
10_20 15.39 31.64 15.11 50.30 16.84 53.63 17.34 73.46 18.52 65.21 9.68 57.71
10_30 9.05 64.32 9.87 74.52 10.92 60.63 12.52 96.53 15.26 107.47 4.02 53.02
10_40 8.64 50.83 8.23 65.23 8.38 46.42 7.80 82.28 10.12 65.99 4.17 59.58
10_50 8.65 122.93 9.15 89.46 9.82 52.20 9.77 93.72 11.93 69.65 4.05 80.97

Table 7 
Comparisons between five variants and NDRLA_IPC (New jobs arrival rate λ=0.08).

(|M|, |J|) NDRLA_IPC_a1 NDRLA_IPC_a2 NDRLA_IPC_a3 NDRLA_IPC_a4 NDRLA_IPC_Rand NDRLA_IPC

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD

3_10 13.52 44.24 16.21 41.36 13.19 36.66 14.63 51.08 24.58 40.81 8.24 37.60
3_20 8.65 35.04 11.95 55.11 11.17 43.29 5.87 38.02 10.81 49.85 2.80 23.99
3_30 20.97 32.04 19.81 60.50 17.57 14.38 17.92 102.99 20.09 59.39 11.08 60.76
3_40 29.85 53.24 30.29 56.19 26.40 91.98 26.70 38.43 33.32 116.67 20.50 122.95
3_50 6.95 38.64 6.64 53.77 6.49 100.9 4.00 50.01 5.73 91.22 1.32 20.00
5_10 22.08 44.13 16.43 50.28 22.93 37.80 20.29 33.47 23.79 33.24 11.07 46.89
5_20 8.94 64.51 9.04 39.37 10.82 40.56 12.64 59.29 15.91 102.77 3.76 23.27
5_30 10.85 62.44 9.32 70.21 12.11 67.92 10.87 82.78 15.99 77.64 3.45 44.72
5_40 11.33 66.06 8.53 69.25 8.39 46.24 6.04 73.04 13.50 118.04 2.68 44.90
5_50 13.74 110.38 12.40 104.04 8.18 54.14 10.39 150.47 10.67 142.05 2.53 55.98
10_10 19.84 78.58 24.00 55.33 19.39 96.34 26.94 72.26 22.94 61.70 6.73 42.06
10_20 9.27 76.55 12.06 70.91 11.46 35.54 10.57 55.03 12.64 85.56 4.76 46.52
10_30 13.11 98.49 10.74 51.15 13.95 82.18 15.50 112.58 15.58 119.73 6.15 63.32
10_40 8.40 70.71 8.08 58.40 7.84 61.05 7.95 65.60 24.58 40.81 8.24 37.60
10_50 6.29 65.71 8.72 116.87 7.87 51.88 14.63 51.08 10.81 49.85 2.80 23.99

Table 8 
Comparisons between five variants and NDRLA_IPC (New jobs arrival rate λ=0.1).

(|M|, |J|) NDRLA_IPC_a1 NDRLA_IPC_a2 NDRLA_IPC_a3 NDRLA_IPC_a4 NDRLA_IPC_Rand NDRLA_IPC

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD

3_10 17.80 35.37 21.88 47.67 20.67 39.68 18.93 42.40 25.71 39.41 12.77 36.46
3_20 11.42 42.37 11.74 43.15 9.48 33.28 5.84 31.56 9.31 46.31 2.08 22.26
3_30 23.57 72.57 22.96 62.12 18.59 30.84 23.90 129.97 27.89 90.90 13.22 68.71
3_40 13.79 37.67 15.86 58.69 14.03 90.39 16.46 99.73 13.93 49.01 8.38 78.36
3_50 22.33 38.38 22.46 61.92 22.57 178.07 18.98 54.59 18.95 50.56 11.84 124.93
5_10 17.96 68.43 16.84 48.37 19.01 66.62 18.63 60.11 16.11 61.22 7.36 50.00
5_20 12.73 51.88 12.01 62.63 13.11 40.01 17.50 55.80 18.16 58.85 6.03 39.52
5_30 14.20 85.42 12.71 71.09 15.41 44.26 13.80 47.21 17.05 98.18 7.56 63.24
5_40 15.00 82.16 17.31 94.95 14.79 69.11 11.99 130.73 17.54 109.55 7.03 77.29
5_50 12.26 65.51 10.40 83.81 9.51 91.52 7.84 99.09 10.59 101.40 3.94 74.35
10_10 16.87 101.86 21.77 53.60 22.13 94.41 20.65 85.99 16.26 61.90 4.77 30.80
10_20 15.36 47.44 18.41 99.37 15.90 61.75 18.71 96.08 16.99 72.11 10.56 84.10
10_30 7.73 72.45 9.66 92.17 10.66 51.64 9.98 82.87 10.65 71.07 3.44 50.31
10_40 6.36 76.04 6.20 88.88 5.46 59.81 5.99 68.07 6.54 83.13 1.79 39.04
10_50 7.14 80.08 8.87 95.98 7.93 35.55 7.87 139.21 10.60 103.91 3.64 56.32
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competitiveness of NDRLA_IPC.

5.4. Comparisons of NDRLA_IPC and classical scheduling rules

To evaluate the effectiveness of NDRLA_IPC, we compare it with 
classical scheduling rules, including FIFO, LPT, SPT [45], EDD, CR rule 
[46], and GUPTA [47]. These six scheduling rules are well-known in the 
field of production scheduling, characterized by fast response, flexible 
application, and excellent performance. Thus, they have been widely 
used to provide satisfactory solutions for various production environ
ments and serve as common benchmarks for evaluating the performance 
of DRL methods. To rigorously verify the statistical significance of per
formance differences between NDRLA_IPC and classical scheduling 
rules, Friedman and Wilcoxon signed-rank tests were conducted, with 
results presented in Tables 14 and 15. The comparative results of the six 
scheduling rules and NDRLA_IPC regarding ARPD at λ=0.05, 0.08, and 
0.1 are provided inTables 11 to 13. Additionally, the corresponding box 
plots for all comparative algorithms with regard to λ = 0.05, 0.08, 0.1, 
and all instances at different λ values are shown in Fig. 10. The heat 
maps in terms of ARPD for NDRLA_IPC and the six scheduling rules over 
all instances are shown in Fig. 11. Furthermore, the heat maps in terms 
of the weighted sum of ARPD and SD are shown in Fig. 12, with darker 
red colors indicating better performance.

The Friedman test rankings reveal NDRLA_IPC’s clear superiority 
with a ranking of 1.0000, substantially outperforming all traditional 

scheduling rules. The GUPTA ranks second with 2.9667, while other 
rules show considerably higher rankings ranging from 3.7900 to 4.3733, 
with SPT achieving the least favorable ranking. The Wilcoxon signed- 
rank test results reinforce these findings, showing that NDRLA_IPC 
consistently outperforms all classical scheduling rules with statistically 
significant differences at both α=0.1 and α=0.05 confidence levels. The 
uniformly high R+ values of 11325.0 and R- values of 0.0, coupled with 
extremely small p-values (ranging from 2.9236E-25 to 2.2977E-26), 
provide robust statistical evidence that NDRLA_IPC’s performance ad
vantages are systematic and reliable across all test instances. These 
statistical results quantitatively support the superior capability of 
NDRLA_IPC in handling dynamic scheduling scenarios compared to 
traditional scheduling rules.

In terms of ARPD, it can be observed that NDRLA_IPC outperforms six 
scheduling rules from Tables 11-13. Additionally, Figs. 10 and 11
illustrate the competitive results of NDRLA_IPC under statistical distri
butions. This is because NDRLA_IPC, based on the processing constraints 
of DMPFSP, can select the jobs whose processing times align with the 
“shape” of the current job’s completion times across all machines. This 
results in a more compact and efficient job arrangement on the Gantt 
chart, enhancing the overall scheduling. Compared to traditional heu
ristic rules, NDRLA_IPC exhibits greater flexibility and generalization 
ability, enabling it to output appropriate strategies based on the char
acteristics of the processing environment and jobs.

However, in terms of SD, NDRLA_IPC does not achieve the optimal 

Fig. 9. Box plots for the comparisons of five variants and NDRLA_IPC.

Table 9 
Friedman’s test ranking of NDRLA_IPC and variants.

Algorithm Ranking

NDRLA_IPC 1.0067
NDRLA_IPC_a4 3.7200
NDRLA_IPC_a2 3.7767
NDRLA_IPC_a3 3.9567
NDRLA_IPC_a1 4.1067
NDRLA_IPC_Rand 4.4133

Table 10 
Wilcoxon signed-rank test results for NDRLA_IPC and variants.

NDRLA_IPC VS R+ R- p-value α=0.1 α=0.05

NDRLA_IPC_a1 11324.0 0.0 3.3539E-26 YES YES
NDRLA_IPC_a2 11322.0 0.0 4.8958E-26 YES YES
NDRLA_IPC_a3 11324.0 0.0 3.3543E-26 YES YES
NDRLA_IPC_a4 11315.0 0.0 1.0427E-25 YES YES
NDRLA_IPC_Rand 11325.0 0.0 2.2975E-26 YES YES
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results in all instances, as SPT obtained smaller SD values in 77.8% of 
instances. This is due to the fixed and limited nature of SPT, which se
lects the job with the shortest processing time at each decision point. In 
this scenario, each set of experiments randomly pre-selects half of the 
job scale of the given instance in the buffer, leading to overlapping job 
selections in repeated experiments and resulting in more similar results. 
Consequently, SPT performs better performance in terms of SD but 
poorer performance in ARPD.

In terms of the combined aspects of ARPD and SD, Fig. 12 shows that 
NDRLA_IPC consistently exhibits a redder color than the other methods, 
indicating its superior overall performance. Additionally, the CPU times 
for all methods remain within 0.5 seconds. Therefore, NDRLA_IPC 
demonstrates superior comprehensive performance in the DMPFSP 
environment while maintaining the same fast response speed as sched
uling rules.

Table 11 
Comparisons between six scheduling rules and NDRLA_IPC (New jobs arrival rate λ=0.05).

(|M|, |J|) FIFO LPT SPT EDD CR rule GUPTA NDRLA_IPC

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD

3_10 17.14 40.28 14.39 19.56 18.67 9.24 15.23 29.04 17.31 24.55 8.75 22.95 5.73 27.54
3_20 9.56 42.57 12.08 19.90 13.46 0.00 9.94 46.17 10.53 30.99 10.07 19.74 3.75 21.09
3_30 10.95 64.70 13.22 22.47 9.33 0.00 12.76 53.93 12.19 44.76 6.47 48.24 3.83 35.91
3_40 5.90 53.01 6.10 2.45 6.76 0.00 5.69 44.69 6.11 22.47 7.70 0.00 1.81 28.83
3_50 3.55 36.35 7.40 11.08 7.31 0.00 5.10 97.58 6.04 48.70 3.34 0.00 1.58 30.34
5_10 21.18 51.66 16.27 23.99 20.51 17.15 21.34 37.41 18.86 31.05 12.71 27.50 6.72 37.80
5_20 13.83 58.51 20.15 33.90 18.44 30.48 13.22 47.02 12.72 56.29 21.78 29.40 6.09 44.61
5_30 16.64 82.29 19.13 24.20 9.00 28.65 17.31 100.52 16.70 67.43 16.86 34.74 3.33 49.59
5_40 14.35 95.26 15.06 28.23 8.41 23.73 12.37 84.94 14.79 106.77 10.72 46.54 2.38 55.33
5_50 9.20 90.38 11.21 38.76 7.19 75.04 9.86 79.21 8.82 43.96 7.46 58.20 1.48 27.20
10_10 10.34 54.93 12.75 72.58 16.79 22.34 9.43 49.41 6.26 51.93 8.17 25.29 1.18 16.81
10_20 16.10 72.26 10.50 53.13 19.20 5.61 14.29 76.37 11.74 74.20 19.98 53.72 4.71 33.87
10_30 11.57 85.25 5.92 70.14 13.57 6.80 11.62 90.21 8.63 58.57 11.79 39.83 2.75 32.62
10_40 9.24 77.86 4.48 44.66 15.20 29.63 8.64 116.19 7.38 77.55 8.62 37.05 2.57 48.24
10_50 10.60 144.35 5.90 26.85 13.13 23.05 8.81 107.09 6.98 85.48 7.39 43.61 3.03 57.56

Table 12 
Comparisons between six scheduling rules and NDRLA_IPC (New jobs arrival rate λ=0.08).

(|M|, |J|) FIFO LPT SPT EDD CR rule GUPTA NDRLA_IPC

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD

3_10 12.77 24.70 17.27 48.40 18.12 0.00 13.46 37.81 17.35 46.08 4.01 29.30 1.88 12.14
3_20 6.86 33.13 9.20 18.62 10.42 0.00 13.66 56.18 10.62 64.28 6.15 17.67 2.62 16.76
3_30 11.33 51.12 13.21 22.63 9.68 0.00 10.38 55.08 11.75 52.31 7.10 52.15 3.08 25.17
3_40 6.83 72.03 6.81 2.00 7.53 0.00 7.08 66.44 6.90 47.34 6.67 28.01 2.02 33.01
3_50 4.40 58.29 7.69 15.21 6.95 0.00 4.06 57.17 5.92 51.28 4.76 35.74 1.07 32.31
5_10 24.64 47.53 20.97 27.06 24.93 14.32 24.19 42.70 20.40 53.15 14.54 34.53 12.19 39.70
5_20 15.80 75.10 18.77 27.99 16.75 32.77 16.86 65.46 14.94 73.28 20.66 19.15 4.58 47.42
5_30 16.55 109.20 22.22 21.90 9.59 23.18 17.32 93.36 20.61 60.40 14.91 34.71 5.09 42.39
5_40 15.29 84.21 15.85 21.99 8.73 14.89 15.70 94.58 16.39 73.29 8.45 46.95 2.65 67.73
5_50 11.08 118.30 11.12 19.68 7.39 18.75 10.88 96.05 9.92 109.34 4.76 35.74 2.77 60.38
10_10 13.00 53.44 15.11 78.63 19.66 4.77 16.29 74.67 11.65 58.82 7.28 12.88 3.15 15.58
10_20 10.90 84.84 6.59 40.37 15.15 22.77 12.04 76.78 8.21 51.00 19.28 49.37 2.26 22.33
10_30 7.38 84.20 2.88 68.13 12.12 25.36 9.23 134.63 5.58 79.72 12.50 53.15 0.95 13.96
10_40 14.19 101.95 9.73 97.75 17.76 17.37 13.98 121.82 11.56 101.33 8.08 22.38 6.09 63.36
10_50 12.94 127.53 8.01 7.29 15.00 23.95 11.10 77.23 8.40 51.27 9.83 44.12 3.95 82.03

Table 13 
Comparisons between six scheduling rules and NDRLA_IPC (New jobs arrival rate λ=0.1).

(|M|, |J|) FIFO LPT SPT EDD CR rule GUPTA NDRLA_IPC

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD

3_10 18.87 38.88 14.79 17.00 18.12 0.00 12.94 29.18 18.53 41.42 4.47 27.16 3.95 21.01
3_20 10.94 59.30 9.20 18.62 10.42 0.00 11.36 51.46 9.37 58.18 6.05 17.50 2.07 16.69
3_30 10.28 25.91 11.98 26.72 8.78 0.00 12.09 47.53 13.65 44.63 6.55 45.18 3.42 40.19
3_40 7.84 59.69 6.10 2.45 6.76 0.00 6.29 76.49 6.37 26.86 6.16 13.31 2.16 19.92
3_50 2.75 34.90 7.49 12.00 7.15 0.00 6.59 65.74 7.84 48.51 3.31 37.22 1.69 30.42
5_10 22.46 52.56 18.19 18.60 24.06 15.57 20.83 47.55 20.32 49.06 11.80 35.29 7.04 36.85
5_20 11.89 77.80 17.24 27.90 15.76 31.20 20.56 57.68 15.62 84.62 22.01 30.37 3.40 23.68
5_30 14.57 91.19 23.60 32.35 10.72 13.22 16.53 116.46 17.27 65.09 15.91 16.00 5.82 45.15
5_40 14.18 119.85 16.25 24.80 9.28 30.75 16.36 80.35 16.78 53.83 8.19 48.67 1.07 17.58
5_50 9.55 44.34 10.07 22.45 5.93 36.07 11.95 94.35 12.44 81.25 6.73 37.38 1.99 40.11
10_10 17.87 51.74 20.09 79.07 25.50 14.99 19.67 71.52 18.22 51.16 8.63 19.08 7.21 38.38
10_20 14.40 69.71 8.70 63.87 16.66 5.17 9.11 69.09 7.87 51.01 19.29 45.31 3.33 21.42
10_30 12.24 91.92 5.03 30.28 13.92 36.46 9.68 93.12 7.05 59.49 10.74 38.02 3.01 32.78
10_40 10.80 110.75 4.55 59.33 12.53 20.85 9.13 111.21 6.61 104.56 7.83 23.68 1.58 27.61
10_50 8.67 98.31 5.81 7.72 12.45 13.62 9.60 94.78 7.50 71.98 8.47 39.52 2.54 75.19
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5.5. Comparisons of NDRLA_IPC and state-of-the-art methods

To further assess the performance of NDRLA_IPC, the most recent 
state-of-the-art DMPFSP methods, including IG [48], GSH [18], and 
SA-NET [33], are used for comparison with the proposed algorithm. To 
the best of our knowledge, these three algorithms are among the best 
performing DMPFSP algorithms for testing RL-based solution methods 
currently available in the literature. IG is an iterative optimization 

algorithm that is commonly used. It obtains sequence results through 
iterative use of deconstruction and insertion strategies. Similarly, GSH 
uses insertion strategies to explore better sequence structures to obtain 
satisfactory solutions for DMPFSP. Additionally, SA-NET is a represen
tative DRL algorithm that takes the characteristics of jobs or machines as 
states and utilizes various heuristic rules as actions to optimize sched
uling plans.

To establish the statistical significance of the comparative results 

Fig. 10. Box plots for the comparisons of six scheduling rules and NDRLA_IPC.

Fig. 11. Heat maps of ARPD for all comparisons between six scheduling rules and NDRLA_IPC at different λ.

Fig. 12. Heat maps of the composite values (ARPD:SD = 0.5:0.5) for all comparisons between six scheduling rules and NDRLA_IPC at different λ.
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between NDRLA_IPC and state-of-the-art methods, both Friedman and 
Wilcoxon signed-rank tests were performed, as shown inTables 16 and 
17. The Friedman test results demonstrate that NDRLA_IPC achieves the 
best ranking of 1.3567, followed by IG(100) and IG(30) with rankings of 
2.5767 and 2.6067, respectively. SA-NET ranks fourth with 3.9000, 
while GSH shows the least competitive performance with a ranking of 
4.5600. The Wilcoxon signed-rank test results further confirm 
NDRLA_IPC’s advantages with statistical significance at both α=0.1 and 
α=0.05 levels. The consistently positive R+ values (ranging from 9180.0 
to 11325.0) and R- values of 0.0, along with extremely small p-values 
(from 1.1672E-15 to 2.2486E-26), provide strong statistical evidence for 
NDRLA_IPC’s superior performance across all test instances. These sta
tistical findings quantitatively validate that NDRLA_IPC’s improvements 
over existing state-of-the-art methods are both substantial and reliable.

For the three reference algorithms, we adopt the parameter settings 
found in the literature. Among them, the termination iterations for IG 
are set to 30 and 100. The average CPU time for all algorithms across 
different test instances is presented in Table 18. Additionally, the 
comparative results concerning λ = 0.05, 0.08, 0.1, and all instances at 
different λ values are reported in Tables 19 to 21, with the corresponding 
box plots for different machine numbers given in Fig. 13. The heat maps 
in terms of ARPD for NDRLA_IPC and state-of-the-art methods over all 
instances are shown in Fig. 14. Furthermore, the heat maps in terms of 
the weighted sum of ARPD and SD are shown in Fig. 15. And The heat 
maps in terms of the weighted sum of ARPD, SD, and CPU time are 
shown in Fig. 16, with darker red colors indicating better performance.

From Tables 19-21, it can be observed that NDRLA_IPC achieved the 
best results in terms of ARPD for all instances. Figs. 13 and 14 demon
strate the competitive performance of NDRLA_IPC in ARPD statistical 
distribution. Regarding SD, NDRLA_IPC achieves the optimal results in 
only 24.4% of instances. However, the proposed algorithm achieves 

optimal average results in terms of both overall ARPD and SD. 
Furthermore, considering the combined results of ARPD and SD, Fig. 15
indicates that NDRLA_IPC still exhibits higher overall efficiency 
compared to other algorithms. Regarding CPU time, as shown in 
Table 18, both SA-NET and NDRLA_IPC are real-time scheduling algo
rithms with short and similar CPU times, completing within 0.1 seconds. 
On the other hand, IG and GSH, as iterative optimization algorithms, are 
highly sensitive to problem size, requiring longer times to solve larger- 
scale problems. This results in relatively slower response times.

From the comprehensive results of ARPD, SD, and CPU time, Fig. 16
illustrates that NDRLA_IPC achieves the best results in 93.33% of the 
instances. Although IG, and GSH, based on the insertion operation, are 
considered excellent iterative algorithms in many COPs, they do not 
consistently outperform others in this study. This can be attributed to 
four factors: 

1. Dynamic problems like DMPFSP involve frequent dynamic events, 
leading to a continuously changing and expanding solution search 
space, which creates challenges for the effectiveness of iterative 
algorithms.

2. Iterative algorithms make decisions based solely on static problems 
that are fixed at the current moment, limiting their ability to 
promptly adapt to dynamic environmental changes.

3. The complexity and uncertainty of the dynamic problem increase the 
likelihood of iterative algorithms getting trapped in local optima and 
struggling to escape.

4. Rescheduling with every dynamic event occurrence may result in 
excessively high scheduling frequencies, increasing computational 
costs and making it difficult for iterative algorithms to find satis
factory solutions within a reasonable time.

In this context, SA-NET, as a real-time DRL scheduling algorithm, 
demonstrates greater adaptability and global optimization capabilities, 
outperforming IG and GSH in instances of m=10. Similarly, NDRLA_IPC 
adopts a more direct state representation approach by extracting the 
“shape” of job completion times to obtain global processing information. 
This approach avoids the need for high-dimensional feature extraction 
in complex dynamic scheduling environments, effectively improving the 

Table 14 
Friedman’s test ranking of NDRLA_IPC and 
scheduling rules.

Algorithm Ranking

NDRLA_IPC 1.0000
GUPTA 2.9667
LPT 3.7900
CR rule 3.9833
FIFO 3.9864
EDD 4.0600
SPT 4.3733

Table 15 
Wilcoxon signed-rank test results for NDRLA_IPC and scheduling rules.

NDRLA_IPC VS R+ R- p-value α=0.1 α=0.05

GUPTA 11325.0 0.0 2.9236E-25 YES YES
LPT 11325.0 0.0 2.2956E-26 YES YES
CR rule 11325.0 0.0 2.2966E-26 YES YES
FIFO 11325.0 0.0 2.2976E-26 YES YES
EDD 11325.0 0.0 2.2977E-26 YES YES
SPT 11325.0 0.0 2.2962E-26 YES YES

Table 16 
Friedman’s test ranking of NDRLA_IPC and effi
cient methods.

Algorithm Ranking

NDRLA_IPC 1.3567
IG(100) 2.5767
IG(30) 2.6067
SA-NET 3.9000
GSH 4.5600

Table 17 
Wilcoxon signed-rank test results for NDRLA_IPC and efficient methods.

NDRLA_IPC VS R+ R- p-value α=0.1 α=0.05

IG(100) 10545.0 0.0 1.1672E-15 YES YES
IG(30) 9180.0 0.0 5.9328E-20 YES YES
GSH 11319.0 0.0 7.1439E-26 YES YES
SA-NET 11325.0 0.0 2.2486E-26 YES YES

Table 18 
The CPU time for comparisons between state-of-the-art algorithms and 
NDRLA_IPC.

(|M|, |J|) IG(30) IG(100) GSH SA-NET NDRLA_IPC

3_10 0.023 0.065 0.033 0.048 0.001
3_20 0.367 1.178 0.553 0.051 0.010
3_30 1.533 5.003 2.821 0.053 0.012
3_40 4.624 15.081 5.482 0.057 0.022
3_50 13.147 43.074 15.396 0.061 0.030
5_10 0.043 0.137 0.052 0.050 0.003
5_20 0.429 1.374 0.634 0.053 0.010
5_30 2.192 7.098 4.146 0.055 0.011
5_40 6.606 21.374 8.248 0.060 0.019
5_50 16.765 55.967 19.215 0.065 0.026
10_10 0.070 0.230 0.013 0.049 0.002
10_20 0.916 2.992 1.067 0.051 0.007
10_30 4.275 13.934 9.463 0.055 0.024
10_40 14.288 47.592 18.126 0.061 0.026
10_50 32.675 104.645 41.253 0.067 0.031
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alignment of neighboring jobs on the Gantt chart and generating stable 
scheduling strategies.

Based on the provided analysis, NDRLA_IPC can be considered as an 
effective real-time scheduling method for DMPFSP.

5.6. Comparison with Gurobi and state-of-the-art methods on small-scale 
instances

To rigorously validate NDRLA_IPC’s capabilities under controlled 
conditions, this section applies it to small-scale DMPFSP instances where 
optimal solutions can be obtained for comparison. Therefore, three 

Table 19 
Comparisons between state-of-the-art algorithms and NDRLA_IPC (New jobs arrival rate λ=0.05).

(|M|, |J|) IG(30) IG(100) GSH SA-NET NDRLA_IPC

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD

3_10 9.29 25.55 10.06 29.97 10.75 19.16 11.38 25.33 6.30 19.60
3_20 5.97 22.93 6.66 15.57 12.67 2.00 9.40 59.50 5.05 12.21
3_30 4.71 40.38 3.90 31.12 7.80 5.40 8.23 29.95 1.20 19.62
3_40 4.33 41.44 4.35 33.22 8.76 0.00 4.89 74.02 2.10 27.40
3_50 1.39 27.47 2.13 21.14 5.10 0.00 6.01 73.11 1.70 26.20
5_10 11.45 32.81 12.21 29.32 11.10 31.75 10.71 35.49 6.03 22.37
5_20 6.57 38.68 7.88 41.53 11.82 26.86 13.51 46.56 3.64 26.23
5_30 6.69 32.39 6.27 33.09 7.93 58.15 10.20 78.35 4.12 39.47
5_40 8.33 32.84 8.71 54.34 7.64 28.19 11.15 61.78 4.18 51.81
5_50 3.73 99.73 3.09 45.35 4.52 56.53 4.55 86.89 1.74 29.78
10_10 22.80 35.49 4.25 12.55 20.27 27.60 7.67 49.24 4.24 12.55
10_20 12.85 95.04 10.66 137.33 19.75 48.88 6.15 63.64 3.83 37.95
10_30 10.36 120.87 9.16 64.73 14.70 60.85 7.76 102.34 3.58 56.88
10_40 5.99 60.91 5.70 75.49 7.45 60.00 6.09 81.52 2.81 43.51
10_50 5.07 71.95 4.05 71.56 4.82 73.64 3.30 28.14 2.21 32.53
Average 7.97 51.90 6.61 46.42 10.34 33.27 8.07 59.72 3.52 30.54

Table 20 
Comparisons between state-of-the-art algorithms and NDRLA_IPC (New jobs arrival rate λ=0.08).

(|M|, |J|) IG(30) IG(100) GSH SA-NET NDRLA_IPC

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD

3_10 3.27 23.15 3.27 23.15 3.69 19.58 11.04 28.63 3.01 20.46
3_20 2.82 23.68 1.17 14.95 8.28 2.50 12.25 56.35 0.59 9.17
3_30 4.84 49.99 3.51 40.94 7.72 1.50 9.60 68.47 1.15 8.78
3_40 2.32 39.87 1.20 36.06 6.52 0.00 11.23 90.67 1.13 23.69
3_50 1.59 27.29 1.24 24.60 5.10 0.00 7.35 79.90 0.58 15.65
5_10 13.82 28.60 12.59 45.48 12.31 17.80 15.12 45.41 7.69 32.17
5_20 7.31 33.40 6.10 27.74 10.18 14.09 9.79 47.11 2.96 32.16
5_30 5.33 32.08 6.56 43.11 6.30 32.45 9.65 60.96 2.74 45.40
5_40 5.83 47.98 4.91 58.59 7.01 35.75 9.02 50.62 2.49 54.21
5_50 1.59 27.29 1.24 24.60 5.10 0.00 7.35 79.90 0.58 15.65
10_10 18.83 62.48 5.38 40.87 18.91 23.03 6.97 34.94 3.98 8.73
10_20 12.33 90.84 7.21 97.78 16.46 36.59 2.77 28.00 2.34 31.10
10_30 9.90 95.85 11.90 76.81 14.70 33.90 4.11 29.83 3.71 54.20
10_40 5.27 58.27 6.26 55.88 7.46 41.58 4.78 55.53 2.17 29.03
10_50 8.22 92.03 6.07 83.50 6.28 85.17 3.17 59.09 3.01 58.34
Average 6.88 48.85 5.24 46.27 9.07 22.93 8.28 54.36 2.54 29.25

Table 21 
Comparisons between state-of-the-art algorithms and NDRLA_IPC (New jobs arrival rate λ=0.1).

(|M|, |J|) IG(30) IG(100) GSH SA-NET NDRLA_IPC

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD

3_10 4.68 30.96 4.68 30.96 2.67 18.78 11.04 28.63 2.33 19.33
3_20 2.81 26.97 2.58 26.81 8.18 2.29 12.25 56.35 1.85 6.36
3_30 3.44 45.02 1.62 23.36 7.68 0.00 9.60 68.47 1.31 13.42
3_40 2.10 25.99 1.87 40.56 6.52 0.00 11.23 90.67 1.03 17.00
3_50 2.20 27.53 0.89 15.64 5.10 0.00 7.35 79.90 0.61 11.14
5_10 13.50 45.69 10.69 58.62 22.68 14.87 12.88 45.41 4.69 23.82
5_20 7.65 41.20 6.92 36.61 11.44 27.58 10.41 47.11 2.36 20.94
5_30 8.78 57.23 7.33 47.65 9.35 42.13 10.95 60.96 5.00 41.96
5_40 4.68 47.44 4.01 25.73 6.17 50.26 8.41 50.62 2.07 31.39
5_50 4.71 46.37 3.81 40.97 6.07 60.55 11.22 111.74 1.97 25.41
10_10 19.06 73.59 10.04 78.81 21.79 19.70 7.51 43.88 5.97 10.24
10_20 7.02 63.91 11.09 99.75 17.83 50.40 4.13 57.46 1.66 27.26
10_30 9.55 59.58 10.46 127.66 12.89 55.22 4.10 68.93 3.39 53.79
10_40 7.06 65.96 5.72 43.55 7.84 96.03 5.12 51.56 2.44 44.89
10_50 5.22 75.86 6.06 69.08 8.51 94.94 3.62 57.35 3.01 64.32
Average 6.83 48.89 5.85 51.05 10.31 35.52 8.65 61.27 2.65 27.42
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Fig. 13. Box plots for the comparisons between state-of-the-art algorithms and NDRLA_IPC.

Fig. 14. Heat maps of ARPD for all comparisons between state-of-the-art algorithms and NDRLA_IPC at different λ.

Fig. 15. Heat maps of the composite values (ARPD:SD = 0.5:0.5) for all comparisons between state-of-the-art algorithms and NDRLA_IPC at different λ.

Fig. 16. Heat maps of the composite values (ARPD: SD: CPU time = 1/3: 1/3: 1/3) for all comparisons between state-of-the-art algorithms and NDRLA_IPC at 
different λ.
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small-scale instances with 6, 7, and 8 jobs on three machines respec
tively are constructed. For these comparative experiments, Gurobi 
serves as a theoretical performance benchmark by exhaustively evalu
ating all possible sequences at each decision point. Meanwhile, 
NDRLA_IPC is compared with state-of-the-art methods (i.e., GSH, IG 
variants, and SA-NET) and Gurobi in solving these small-scale instances.

Initially, ⌊n/2⌋ jobs are available in the BF at t=0, with processing 
times randomly generated from [5,15] time units. Their due dates are set 

to 1.2 times their total processing times. The remaining ⌊n/2⌋ jobs arrive 
dynamically during the scheduling process. For consistency across 
different problem scales, we designed a scalable arrival pattern where 
the first dynamic job arrives at 10 time units, followed by subsequent 
arrivals at 15 time unit intervals. The due dates of these jobs are set to 
1.3 times the sum of their arrival time and total processing time. Addi
tionally, random processing time variations occur within the [10,20] 
time unit window. Fig. 17 (a), (b), and (c) illustrate the objective value 
progression as jobs are sequentially processed for instances with 6, 7, 
and 8 jobs, respectively.

The results demonstrate that NDRLA_IPC shows remarkable perfor
mance, closely tracking the solutions provided by Gurobi. Compared to 
other heuristic methods, NDRLA_IPC exhibits superior adaptability to 
dynamic changes. While GSH and IG variants occasionally match the 
optimal solution at certain points, they demonstrate greater volatility in 
solution quality, particularly after dynamic events occur. SA-NET 
demonstrates reasonable performance as a DRL approach. The 
observed performance differences among these methods can be attrib
uted to several key factors:

Given the NP-hard property and highly dynamic nature of DMPFSP, a 
fundamental optimization challenge emerges: even state-of-the-art 
mathematical programming approaches must decompose the problem 
into a series of static snapshots, optimizing each independently as the 
production environment evolves. This fragmented optimization para
digm inherently sacrifices global optimality across the complete pro
duction horizon for local optimality at discrete time points, creating a 
significant methodological gap in handling truly dynamic scheduling 
environments. Consequently, methods like Gurobi tend to optimize 
based on currently available information but lack comprehensive 
consideration of future uncertainties in dynamic scheduling environ
ments. When dynamic events such as new job arrivals or machine 
breakdowns occur, the originally optimal solution may quickly become 
suboptimal or even infeasible.

In contrast, NDRLA_IPC can capture the “completion time shape” on 
the Gantt chart through carefully designed state features, thereby 
achieving a more accurate alignment between the current job and sub
sequent jobs. This helps minimize idle times between adjacent jobs and 
reduce potential delays. Its four scheduling rules focus on reducing the 
operation interval, enabling the algorithm to maintain high adaptability 
when facing machine failures or processing time changes. Traditional 
methods such as GSH and IG mainly rely on predefined rules and local 
search mechanisms, which are relatively rigid when dealing with com
plex dynamic environments. Regarding SA-NET, this DRL method in
troduces more flexible strategies to a certain extent, but its network 
architecture still has limitations and struggles to fully capture the 
complex dependencies between scheduling decisions and environmental 
states.

The test results demonstrate that NDRLA_IPC can obtain high-quality 
solutions for small-scale instances in real time. This indicates that 
NDRLA_IPC has a powerful and robust search mechanism, which can 
efficiently address DMPFSP under different scales.

6. Conclusion

This research introduces novel deep reinforcement learning algo
rithm incorporating problem characteristics (NDRLA_IPC) that system
atically integrates problem-specific characteristics to address the 
complex challenges of dynamic multi-objective permutation flow-shop 
scheduling problem. Specifically, the algorithm captures the “comple
tion time shape” on the Gantt chart to extract state features, thereby 
deriving global processing information across machines. This innovative 
representation mechanism provides NDRLA_IPC with robust environ
mental perception capabilities for addressing the aforementioned 
methodological gaps in dynamic scheduling environments. Addition
ally, five new scheduling rules are designed to constitute the action 
space, aiming to optimize the alignment of neighboring jobs from 

Fig. 17. Comparison of the evolution of objective value for sequentially 
scheduling jobs between approximate and baseline methods in a small-scale 
dynamic example.
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multiple perspectives based on different states. The architecture further 
employs a weighted composite reward function that evaluates action 
effectiveness, guiding the decision-making process of the double deep Q- 
network agent. By establishing robust correlations among state repre
sentation, action selection, and reward evaluation, NDRLA_IPC main
tains objective consistency throughout the learning and decision- 
making processes, addressing the fragmented optimization paradigm 
inherent in traditional approaches. Comprehensive experimental results 
confirm NDRLA_IPC’s superior performance across diverse dynamic 
scenarios, from small-scale instances with theoretical benchmarks to 
large-scale industrial problems. The algorithm consistently demon
strates remarkable adaptability to dynamic changes and maintains so
lution quality compared to state-of-the-art alternatives.

Future research will focus on two principal directions. First, we plan 
to enhance the computational efficiency and cognitive decision-making 
capabilities of DRL agents through the systematic extraction of prom
ising heuristics and patterns inherent in dynamic production environ
ments. Second, we will develop more robust frameworks for addressing 
the real dynamical scenarios of tin chemical production, tin New Ma
terial production, and tobacco leaf redrying process.
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