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Equation ( 7 )  can readily be solved by iteration. Most impor- 
tantly, it provides a convenient means of performing a sensitivity 
analysis that is always an essential part of the decision analysis. 
One can also easily discern from ( 7 )  the structural dependence 
of the optimal target a* upon the outcome function (through 
k, k", k"),  the utility function (through e ) ,  and the distribution of 
the uncertain state (through y ,  M ,  S' ) .  In particular, when the 
utility function v is linear so that c = 0, then (7) reduces to 

k" 
a * = y + M + Q - '  ~ 

( k " +  k")S '  
which is a special case of (3), under our assumptions 1 and 2. 

111. DERIVATION OF OPTIMAL SOLUTION 
The derivation of (7)-(8) is accomplished in four steps; details 

of lengthy but straightforward transformations are omitted. 
1) Utility of State-Target Pairs: While expression ( 5 )  is conve- 

nient for the estimation of parameter b,  an alternative form is 
advantageous for decision analysis: 

v ( x )  = pe-"* - q ,  (10) 
where c is given by (8~1,  q = l/[exp(- b ) -  I], and p = 
qexp(cx"). With U = v ( B )  denoting the composition of (10) and 
(21, after dropping the inessential scaling constant q and intro- 
ducing the relation r = y + w ,  we have 

where 

( 12) 
= p e - < [ ( k + k " j y - h r " ]  

= p e - ~ [ ( X - k " ) \ - h r ' 2 ]  

2) Utility of Decision: Given U and density g corresponding to 
distribution G, the utility of any decision a is specified by 

u(a> = j ; ; ( y + w , a ) g ( w ) d w  

g ( w )  dw 
= aue ik"u  a - ' e - -L  ( k  + k " )w 1- r 

g ( w ) d w .  (13) 

The first derivative of U is 

ly ye - c ( k  - h " ) w  g ( w ) d w ,  (14) - a ~ ~ c k ~ ~ e - < k t ' u  

as the other two terms cancel out. 
3) Normality Assumption: We shall now make use of the 

assumption G = N ( M ,  S'), so that for any constant p ,  

e - P " g ( w )  = , -wPS ' / ' jh ( , )  (15) 
where h is the density corresponding to distribution H = N ( M  
- pS2,  S'). By applying (15) to (14), and solving both integrals, 
we obtain 

where 

A" = a"ckD exp { - e( k + k") [ M - e( k + k")S2/2]},  

A"=a"ck"exp{ - c ( k -  k " ) [ M - c ( k  -k")S'/2]}, 
(17) 

and 

H " =  N ( m " , S ' ) ,  

H i ' =  N ( m " , S ' ) ,  

with means rn" and m" spccificd by (8a) and (8b). 

= 0 derived from (16) takes the form 
4)  Optimality Condition: The optimality condition d U ( a * ) / d a  

It remains now to demonstrate that 

A" k ' I  

- 
A" k '' 

exp { e(  k" + k")  

. [ y + M - c(2k  + k" - k")S2/2] )  

k" 
k" 

= - e x p [ c ( k " +  k") (m"+m") /2] ,  (20) 

and that 

c(  k" + k " )  = ( m "  - m")/S2, (21) 
where mo and m" are defined by (8a) and (8b). By inserting (20) 
and (21) into (19), we obtain 

a * - m O  a * - m "  k" 1 - H " ( a * )  
exp [ ( 7 + ~ I] = 

HO( a * )  . (22) S 

Finally, substituting H "  and H" by the standard normal distri- 
bution Q and rearranging thc terms results in (7). 
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I. INIRODUCTION 
In the past two decades, many kinds of methods to solve 

MOP's have been proposed from different points of view [ I l l ,  
[151, [16]. Recently, however, more attention has been paid to 
interactive methods because of their practicality [ 121, [32]. Sev- 
eral well-known methods have been presented by, for instance, 
Y. Y. Haimes et al. [13], Benayoun et al. [2], Geoffrion et al. 
[lo], Belenson and Kapur [I], and Zionts and Wallenius [33]. 
Some methods have been successfully applied to many fields, 
such as the planning of water resources, forest management, 
production planning, etc. 

Generally, a multiobjective optimization problem (MOP) can 
be expressed as follows: 

where X is an n-dimensional decision vector, R a nonempty 
constraint domain (also called decision space), and F , ( X )  ( I  = 
1,. . . , p )  the objective functions (OF), which are usually conflict- 
ing with each other and noncommensurable. Therefore it is 
generally impossible in MOP's to obtain an optimal solution at 
which all objective functions are optimized. We can only obtain 
preferred efficient solutions. 

MOP can be used as one of the basic quantitative models of a 
decision support system (DSS). As we known, a DSS is designed 
to help, rather than replace, the decisionmaker (DM) to make 
decisions in complex situations. Hence any method for solving 
MOP's in a DSS must possess the following two functions: 1) 
generate efficient solutions, and 2) provide the DM with helpful 
trade-off information. Although some proposed interactive 
methods may have both function$, their interactive procedures 
between analysts and the DM seem indirect and not practical 
enough for DM to provide direct preference information. 

Haimes and Chankong [3], [13], [14] used the trade-off rates 
between objective functions as local trade-off information in 
their SWT method, so that the D M  is able to effectively make 
decision analysis to provide useful preference information. 
STEM, proposed by Benayoun et al., possessed the advantage of 
simple and clear interactive procedure [8], [ 151. By synthesizing 
the authors' experience in designing a decision support system 
for production planning of an oil refinery, this paper attempts to 
combine some advantages of the two methods mentioned and to 
propose an interactive method (ISTM) which enables the DM to 
directly express his preference information in interactive proce- 
dures. 

Three basic steps are included in ISTM, as in other interac- 
tive methods. First, an efficient solution and the corresponding 
local trade-off information (there may be different contents in 
local trade-off information for different methods) are provided 
by the analyst. Then the DM determines the preference diree- 
tion and step size. Again the analyst looks for a new efficient 
solution according to the preference information. The new solu- 
tion should dominate the previous one. In ISTM, the efficient 
solution and the local trade-off information, the current values 
of objective functions and the trade-off rates between them, are 
obtained by solving an auxiliary problem AP(e'- '),  which is 
fundamental to ISTM. APE'- ' )  is first defined in the paper, and 
then relationships between the optimal solutions of AP(E'- I )  

and the efficient solutions of the ori inal problem are explored. 
The basic idea of designing AP(e'-') comes from a reasonable 
classification of the objective space given by W. Michalowski 
and A. Piotrowski [ZI], and by K. Musselman and J. Talavage 
[22]. Then the relationships between the Kuhn-Tucker multipli- 
ers (or simplex multipliers) of A P ( e ' - ' )  and the trade-off rates 
are analyzed. Subsequently, steps of ISTM algorithm are given. 
Finally, an example is discussed to illustrate the use of the 
algorithm. 

11. Ttlt AUXILIAKY PKOnLtM AND ITS PROPERTIES 

A. Basic Concepts and Assumptions 
Regarding efficient solutions of MOP's, we define the follow- 

ing basic concepts. 

Definition I: X "  is called an efficient (noninferior or Pareto- 
optimal) solution of MOP if there does not exist any X E R,  
X Z  XI', so that F ( X ) >  F ( X " )  and F ( X ) #  F ( X " ) .  

Definition 2: X "  is called a weakly efficient solution of MOP 
if there does not exist any X E R, X # X " ,  so that F ( X ) >  

Definition 3: The set of all efficient solutions in R is called 

The investigation here is based on the following assumptions. 

1) Objective functions F , ( X )  ( I  = 1;. . , p )  and constraint 
functions g $ X )  ( i  = 1; . ., m )  are all twice continuously 
differentiable. 

2) Decision space R is a compact set which is closed and 
bound. 

3) The preferred solution of an MOP must be on its efficient 
solution face. 

4) The DM can judge the relative importance among objec- 
tive functions and is able to decide whether it is worth 
substituting one unit of F , ( X )  with several units of F , ( X )  

F ( X " ) .  

the efficient solution face of MOP. 

( I , k =  1; ' . , p ;  1 z k ) .  

B. The Definition of Auxiliary Problem AP(E'- ') 
Suppose t represents the number of interaction, and given an 

efficient solution of the MOP X ' - l  and its corresponding objec- 
tive values <(X'-') (1  = 1;. . , p ) ,  which are not preferred by 
the DM; then the set of objective indices can be classified into 
the following three subsets. 

W the index subset of objective functions which should be 
improved from & ( X ' - ' ) .  

R the index subset of objective functions which should be 
maintained at least at the current level, F.(X ' - ' ) .  

Z the index subset of objective functions Lhich should be 
decreased from F,( X '  ). 

Let 
W =  {i(i = i ,  , i2 ;  . 3 ,  i,) 

R = I i l j = j l , i 2 , . . . , i , )  (2) i z = {k lk  = k , , k , ;  ' . , k , } .  
Then WURUZ=(1,2;.. ,p) and W n R n Z = b .  Su pose Xu 
= [ X T u  . . . , u f W J T  and , ; - ' = F , ( x ' - ' ) - d ~ , ( X ' - p ) ,  where 
dF,(X"") is the reduced value of F,(X) ,  d F , ( X ' - ' ) >  0, and 
U , ( ;  E W )  is an auxiliary variable, then the auxiliary problem 
AP( E ' -  I ) can be defined as 

(3) 

where U ,  is maximized to improve F , ( X )  as greatly as possible, U 

is the auxiliary objective function, and a, is a positive weighting 
factor, which is determined according to the relative importance 
of the objective functions in subset W. Normally, we let a, = 1 
( i E  W ) .  In (3), E ' - '  = [ e ; ; ' ; .  . , E ~ ; I ] ~  and h,  is a weighting 

I 





I 

IEEE TRANSACTIONS ON SYSTEMS, M A N ,  A N D  C Y B E R N E T I C S ,  VOL.. 20. NO. 3, M A Y / . I I J N F  1990 69 1 

Theorem 1: 

1 )  If XU' is an optimal solution of A P ( E " ) ,  XU' = [ ( ~ ' ) ' u , l ~  
. . . u , ' , ~ ] ~ ,  XI is also a weakly efficient solution of the 
MOP. 

2) If Xu' is the unique optimal solution, X '  is then the 
efficient solution. 

3) Any efficient solution of the MOP can be generated by 
solving A P ( E " )  through proper choices of W ,  R ,  and Z ,  
and the right-side values of objective constraints in Ra.  

Proof: Define two subspaces RI, and R,, 

where the symbol " g " means that there exists at least one " < " 
relationship between the elements in a vector inequality. Evi- 
dently, the following equation is true: 

RI, U 0, = R"+" 

For convenience, let's define R of (1) again. Let Xe = 
[ X',O; . .,0] so that Xe and Xu have the same dimension. 
Then R is defined as the following equivalent form: 

R={XeJg,(Xe)<O, i = l  > . . .  , m } '  
Obviously, R c R"+". Hence 

R = R n(R,, u 0,) 

=(an n , , )u (R  n Cl,) 

= R , U R .  

where 

R, = R n a,,, R = R n a,,. 
1)  Let Xu1 = [ ( X ' ) ' U , ' ~  . . . c i f , , ] '  be an optimal solution of 

AP(E").  If X E R I, there must be at least one 1 (1 E W ,  
or  1 E R, or 1 E Z ) ,  such that 

F L X )  < F ' ( X " )  when 1 E R 
or 

F,( X) < €1' 
or 

when 1 E Z 

F,( X) - h,u,  < F,( X " )  for any U ,  a 0 when 1 E W 

when 1 E W 

Hence, for any X E R we have 

F,( X ' )  > F,( X " )  > F,( X )  

F,( XI) 2 €I' > F,( X )  when 1 E Z 

F,( X I )  - h,ul = F,( X " )  > F,( X) when 1 E W 

F,( X ' ) > F,( X )  + h when 1 E W 

when 1 E R 
or 

or 

so 

2 F,( X ) 

where h, > 0 and U: > 0 are considered. The preceding rela- 
tions mcan that it is impossible that F ( X ) >  F ( X ' )  for any 
X E R , .  

If X E fl,,, let Xu '=  [ X T u ; I  . . . U;]' E Cl( , ;  then 

F,( X )  - h,u;  > F,( XI') 

F,( X) > F,( XO)  + h,u;  

i E W 
or 

i E w. 
If the symbol " ;b " means that there exists a t  least one pair of 
elements with the " G " relationship, the following vector 
inequality will be true: 

Otherwise, a group of U ;  could be found where . ; > U :  
(i E W ) ,  such that 

F,( X) = F,( X") + h,u; i E W .  

Obviously, Xu" = [X'zc;: . . . U:: I T  E a,. On the other hand, 
since 

we conclude that Xu' is not the optimal solution of AP(E") ,  
which contradicts the assumption. According to lemma 1, we 
obtain 

which shows that F ( X ) ; b  F ( X ' )  when X E  R,. 

R(X # XI), such that F ( X )  > F ( X ' ) .  

to the definition of R ., and similar reasoning for 1). 

A s  a whole, there  exists n o  X E R ,  U R = 

2) If X E R I, i t  is easy to prove F ( X ) *  F ( X ' ) ,  according 

If X E {I(,, but X # XI, we must have 

Otherwise, only two cases might occur. First, the relationships 
F , ( X )  = F , ( X ' )  ( i  E W )  might be true, which, however, would 
contradict the assumption of Xu' being the unique optimal 
solution of AP(e") .  
Secondly, at least one '' > "  relationship might exist between 
some pair of elements, and '' =" relationships would be true 
between the other elements. In this case, we can obtain the 
conclusion that Xu' is not the optimal solution of AP(E")  
according to the similar reasoning for 1). Hence, if Xu' is the 
unique optimal solution of AP(e"),  there exists no X E R 
(X+ XI), such that F ( X ) >  F ( X ' ) .  

3) If W is chosen to include only one objective function 
index, and the right-side vector of objective constraints in R, 
is considered to be arbitrarily given values, then AP(E")  is the 
same as €-constraint problems, as defined in [3], [4], and [14]. 
Therefore the proof of the conclusion is also the same as the 
proof of theorem 1 in [14]. 

Conclusions 1 )  and 2 )  in the preceding theorem 1 show that 
the preferred solution will be an efficient (weakly efficient) 
solution of the MOP if A P ( E " )  is used as the interactive model. 
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Then the algorithm of this paper will look only for the preferred 
solution on the efficient solution face of the MOP. The DM 
determines search directions and selects step sizes according to 
local trade-off information, which is determined, step by step, by 
the optimal solutions of AP(E")  and the trade-off rates analyzed 
in the following. 

111. 

A. Trade-off Rates 
In the MOP, the following trade-off problems must be an- 

swered. Is it worth decreasing some objective functions so as to 
increase some other objective functions? If so, how much is 
reasonable? Following [ 141, these concepts can be quantitatively 
described as the trade-off rates. 

Definition 4: Given an efficient solution of the MOP, XI, and 
a feasible direction, d ' ,  emanating from X' (i.e., there exists 
a g  > 0 so that X' + a d '  E R for 0 Q a Q all ) .  Define T , , ( X ' , d ' )  
as 

TRADE-OFF RATES A N D  DECISION ANALYSIS 

F,( X' + a d ' )  - F,( X ' )  
n - 0  F k ( X ' + a d ' ) - F k ( X ' )  

T , k (  X ' , d ' )  = lim 

If there exist a dh and a ii > 0 so that F,(X '  + a d ( ) ) =  F , ( X ' )  
(1 # i , k ,  0 G a Q ii), then we call the corresponding T , , ( X ' , d ' )  
the partial trade-off rate of objective functions F , ( X )  and 
F , ( X )  in X '  (or, the trade-off rate). 

B. Trade-off Rates and Kuhn - Tucker Multipliers of AP(E") 

The relationships between trade-off rates and Kuhn-Tucker 
multipliers can be obtained from the sensitivity theorem [3], [20]. 
With the help of the definition of A P ( E " )  and theorem 4.30 in 
[3], we can prove the following theorem. 

Theorem 2: Given the optimal solution of AP(E") ,  X u ' ,  and 
the corresponding Kuhn-Tucker multipliers, A \  ( k  E Z ) ,  for the 
constraints F k ( X )  B .E: ( k  E Z ) ,  if 

1) Xu' is a regular point for the constraints of AP(E"),  
2) Xu'  satisfies the second-order sufficient conditions of opti- 

3) the constraints F k ( X ) >  €2 ( k  E Z )  are not degenerate in 
mality for AP(E") ,  and 

X u ' ;  then 

(9)  

The definitions of regular points, nondegenerate con- 
straints, and the second-order sufficient conditions in theorem 
2 can be found in [3] and [20]. In AP(E"),  condition 3) is 
always considered to be satisfied. 

Considering the formulation of U ,  we can get 

au = au,. (10) 
I t W  

According to lemma 1, there is 

F , ( X ' ) - h ; u , ' = F , ( X " )  i E W  (11) 

or 

1 
U ;  = - ( F , ( X ' ) -  F , ( X " ) ) .  (12) 

h ,  

Suppose (11) is true for all X in a neighborhood of XI, along 
a feasible direction d ' ,  emanating from XI. Then, combining 

(9). ( I O ) ,  and ( 1  I ) .  and noticing lemma 2, we can obtain 

or 
1 

-T ,  , ( X ' , d ' ) = - A :  k E Z .  (13) 

If we independently consider the trade-off relationship be- 
I t W h I  

tween F , ( X )  and F, (X) ,  then 

T, , ( X ' , d ' ) = - h ; A \ .  (14) 
Equat ion  (14)  m e a n s  that  h ,  . A \ .  d F , ( X ' )  units 
of F , ( X )  will be increased for the decrease of d F , ( X ' )  units 
of F , ( X )  in the neighborhood of Xu' along the direc- 
tion d '  if only F , ( X )  is decreased from F , ( X ' )  to 
F, (X '  f a d ' ) .  Here we consider only the influence on F,(X) .  
Thus, when the optimal solution of AP(E")  and the corre- 
sponding Kuhn-Tucker multipliers A; ( k  E Z )  are obtained, 
the DM is asked the following questions. 

Questions Q;: Suppose that all F A X )  ( I =  1; " , p ,  I # i , k )  
are kept at the levels of F ( X ' ) .  If you decrease F , ( X )  from 
F , ( X ' )  to F , ( X ' ) -  dF , (X ' ) ,  you will obtain another efficient 
solution X 2  by using the ISTM, so that F , ( X * )  will be & ( X I ) +  
h ,  .A\dF,(X'). Do you think the trade-offs worthwhile? 

For every k E Z ,  the DM is required to answer w questions 
(i.e., QLl . . . QP ). 
C. Trade-off Rates and Simplex Multipliers of AP(E") 

If the MOP is linear, the simplex method can be used to solve 
AP(E") .  Given the optimal basic vector X b ' ,  define the corre- 
sponding simplex multiplier vector as 

- A '  . . .  
I 1  

Let B ( E ( ) )  be the optimal basic matrix and C ~ ( E " )  the corre- 
sponding basic objective coefficient vector to X b ' ;  then 

Xb' = B ( E " ) - ' . b ( E " )  

m- ' = Ch( E " )  . B( E " )  - I 

where 

b( E " )  = [ F,J X") . . . Flw( X"), F,JX") . 

Notice 

where 

Then 

7 - 1  
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TABLE I 1  
Drc I \ I O N  A N N  Y\I \  I (DA I )  

SO0 Solution Number  

Through the similar discussion in Section 111-B, we can get 

1 
q T , A ( X ' , d ' ) = - A i  k E Z .  (22) 

' € W  

Equation (22) is similar to (13). The only difference is that - A i  
in (22) represents the optimal simplex multipliers relative to the 
constraints F , ( X ) a  E:. 

IV. ISTM ALGORITI I M  

The algorithm consists of two basic parts. I n  the first part, an 
initial efficient solution X" is searched. Then an efficient solu- 
tion set { X " X ' X '  . . . ] of the MOP are generated, step by step, 
by solving A P ( E ' -  I) ( t  = 1,2, . . . ), which will approach an effi- 
cient solution preferred by the DM if the scopes of preferred 
objective values can be predetermined [26] by the DM. 

A .  Initial Efficient Solution X" 
A weighting ideal point method (WIP) is used to find X". 

First a single objective optimization 600) table is constructed. 
In Table I ,  X,* represents the optimal solution obtained by only 
optimizing the Ith objective. Let M ,  = F,(X,*) and 

N, = min F,( X,*). 
/ < ; < / I  

In (4), let d ,  = M , ,  c ,  = N, ( i  E W ) .  The weighting ideal point 
(WIP) problem of the MOP is then defined as 

min d, 

s . t . 7 i - L ( M L - F F , ( X ) ) - d d , Q 0 ,  I = 1  , ' . .  , p (23) 
X E ~ ,  d,aO 

where T, is a weighting coefficient, which is given by 

7 i - L = P L / ( M L - N )  ( M L > N , )  

O Q P ' G l ,  c p L , = l .  (24) 
P 

L =  1 

pL can be determined according to the relative importance of 
the objectives. Normally, let p, = l / p ) ( l =  1;. . ,p)lSuppose X 
is the optimal solution of the WIP, then X must be 
an effgient (weakly efficient) solution of the MOP [4], [9]. Let 
x" = X. 

B. Algorithm 

the algorithm of our ISTM. 
Considering the preceding discussion, we can now construct 

Step I: 
Step 2: 

Step 3: 

Step 4: 

Construct the single objective optimization table. 
Find M ,  and N, in Table I ( I  = 1; . . , p ) ,  and com- 
pute weighting coefficients T, ( I  = 1;. . , p )  and h ,  
( i  E W ) .  
Solve the WIP to obtain the initial efficient solution 
X" and the corresponding objective vector F (X") .  If 
F ( X " )  is preferred by the DM, X "  is the preferred 
solution. Otherwise, let t = 1, and continue. 
Construct the first decision analysis, Table 11, aeeord- 
ing to the current values of the objectives. The DM is 

OF Level OF Number  
P . . .  1 2 

MP 
NP 

. . .  Ideal values MI M 2  
Lower bounds  N 1  N 2  
Cur ren tva lues  F I ( X ' - ' )  F Z ( X ' + ' )  . . .  Fp( X ' I ) 
Index subset 

. . .  

step 

Step 

Step 

Step 

5: 

6: 

7: 

8: 

required to determine W ' - ' ,  R ' - '  and Z' - '  in the 
last row of Table 11. 
Construct the second decision analysis, Table 111, in 
light of Table I1 and the trade-off rates. The DM is 
required to select the values of d F , ( X ' - ' )  ( K  E Z )  
by answering Q; ( i  E W ,  k E Z).  If the DM selects 
d F , ( X ' - ' )  = 0 ( k  E Z) ,  the interactive procedure will 
be stopped and the current efficient solution X'-' is 
the preferred solution, because no objectives can be 
sacrificed according to the DM's opinion. 
Design a new auxiliary problem A P ( E ' - ' )  on the 
basis of Tables I1 and 111. 
Solve A P ( e ' - ' )  to obtain a new efficient solution X', 
the corresponding Kuhn-Tucker (simplex for linear 
case) multipliers A', ( k  E Z ) ,  and the new values of 
the objectives F ( X ' ) .  
If the DM is satisfied with F ( X ' ) ,  the interactive 
procedure is stopped and the corresponding efficient 
solution X' is the preferred solution. Otherwise let 
t = t + 1, and go to Step 4. 

In  the preceding steps, the Convergence issue of the designed 
interactive procedure has not been dealt with, which depends on 
the DM's preference structures. The conventional utility theory 
or surrogate functions may be used to treat the problem [3], [41, 
[13]. In [261 and [29], however, we have proposed a hierarchical 
analysis model and a corresponding analysis method to express 
the DM's preference structure, based on the concept of satisfia- 
bility degree. The basic idea is to project the objective function 
space of the MOP onto a membership function space, according 
to the DM's satisfiability degrees, about some objective fune- 
tions' values. Then a preferred subset is defined, and the inter- 
action is executed in the membership function space. If the 
rnembcrship function distribution at an efficient solution X' 
generated in the interaction is located in the subset, when X '  is 
a preferred solution. If the subset is empty over the efficient 
solution face of the MOP, additional preference information is 
required from the DM to revise the definition of the subset. 
More details and an application can be found in references 1261, 
[27], and [291. 

VI. EXAMPLE 
Consider the following multiobjective linear programming [18]: 

i F I ( X )  = ~ 1 - ~ 2 +  x3 i F 3 ( X )  = ~ 1 + 4 ~ 2 -  x3 
max F (  X )  = F 2 (  X) = - x l + 2 x 2 + 3 x 3  

s.t. X E n X = [ x I x * x 3 ] T  

2x1+ x 2 +  x 3 ~  1 

x l +  x2+4x3 G 1 

A. Look for the Initiul Eficient Solution 
By optimizing F,(X) ( 1  = 1,2,3) individually, we get X* = 

[0.4286,0,0.1429IT, X; = [o, 0.2727, O.lSl8lT, x;. = [o, 0.3333,'oJr. 

7 
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x l -  x 2 +  ~ 3 - 0 . 9 0 4 7 ~ 1  > 0.1977 
- ~ 1 + 2 ~ 2 + 3 ~ 3 > 0 . 3 9 2 9  

x l + 4 ~ 2 -  ~3 > 0.6235 
Ul>O,  X E R  

TABLE I11 
D E C I S I O N  ANALYSIS 11 (DA 11) 

o,= Xu 

TABLE IV 
SO0 RESULTS 

FI(XI*) F2(X1*) F3(X1*) 

x l -  x 2 +  ~ 3 - 0 . 9 0 4 7 ~ 1 >  0.1311 
- ~ 1 + 2 ~ 2 + 3 ~ 3 > 0 . 5 9 2 9  

x l + 4 ~ 2 -  ~3 > 0.7235 
u l g 0 ,  X E R  

x l *  0.5714 0 0.2857 
x 2 *  0.0909 1.0909 0.9090 
x 3 *  - 0.3333 0.6666 1.3333 

The single objective optimization results are shown in Table IV. 
From Table IV, we obtain 

( M l M 2 M 3 )  = (0.5714,1.0909,1.3333), 

( N l N 2 N 3 )  =(  -0.3333,0,0.2857), 

and then (h l ,  h2, h3) = (0.9047,1.0909,1.0476), (al, a2, a,) = 
(0.3316,0.3667,0.2804), given ( p I , p 2 , p , )  = (0.3,0.4,0.3). There- 
fore, WIP can be written as 

min d, 

s.t.X, E R,, Xw = [ x l x 2 ~ 3 d , ] ~  
WIP ( 

x l + 4 ~ 2 -  x3+3.4916dX> 1.3333 ' I x l -  x 2 +  x3+3.0157dX> 0.5714 
- x l  + 2x2 + 3x3 + 2.727d, > 1.0909 a,= xw 

d , > 0 ,  X E R  I 
Having solved WIP, we get X"  = [0.1761,0.2008,0.1558]7, d, = 
0.146, and F ( X " )  = [0.1311,0.6929,0.8235]T. 

B. The First Interaction 

the DM. 
Construct the Table D A  I where W , Z , Z  are determined by 

D A  I 

F l ( X " )  F2(X0)  F 3 ( X 0 )  
0.1311 0.6929 0.8235 

W z z 

The D M  selects dF2(X0)  = dF3(X0)  = 0.1. AP(E")  is given by 

max u l  
A P ( e " ) (  s.t. Xu E Ru 

Solving AP(E") ,  we get 

Xu ' = [ 0.2094,O. 1675,O. 1558,0.07362] ' , 
F (  X I )  = [0.1977,0.5929,0.7235]T. 

C. The Second Interaction 
Construct the Tables DA I and D A  11. 

DA I DA I1 

F l ( X ' )  F2(Xl) F3(X') F I ( X ' )  
0.1977 0.5929 0.7235 F2(X1) 0.5278 dF2(X1)= 0.2 

W z z F3(X' )  0.1389 dF3(X1)=0.1 

Then AI'(€')  can be written as 

max u l  
s.t. xu E n u  

D. The Third Interaction 
Similarly, construct tables D A  I and D A  11. 

DA I DA I1 

Fl(X2) F2(X*) F3(X2) F l (X2)  
0.3173 0.3929 0.6236 F2(X2) 0.5278 d F 2 ( X 2 ) =  0.0929 

W z Z F3(X2) 0.1389 dF3(X2) = 0.0236 

We formulate as 

max u l  
s.t. Xu E R a  

x l -  x 2 +  ~ 3 - 0 . 9 0 4 7 ~ 1 >  0.3173 
- ~ 1 + 2 ~ 2 + 3 ~ 3 > 0 . 3  

x l + 4 ~ 2 -  ~3 > 0.6 
u l > O ,  X E R  

n a p  i 
We obtain from A P ( e 2 ) ,  Xu3 = [0.3306,0.1028,0.141,0.05764]T 

and F ( X 3 )  = [0.37,0.3,O.6lT. The values of objective vector 
F ( X 3 )  are all in the scope of the DM's preferred objective 
values. So we obtain the preferred solution X *  = X 3  = 
[0.3306,0.1028, 0.141IT. 

VII. CONCLUSION 
A newly developed interactive method (ISTM) for solving the 

MOP has been proposed. In this method, the trade-off rate and 
the classification of objectives' three subsets (W,  R ,  and Z )  are 
clear and direct for decision analysis; tables D A  I and D A  I1 are 
designed to help the DM make decisions step by step; and the 
computation for efficient solutions and local trade-off informa- 
tion is done simply by the auxiliary problem A P ( e ' - ' ) .  It is 
these characteristics of the ISTM that enable the DM to be 
actively involved in the decisionmaking process. The extensions 
and applications of the ISTM are dealt with in other papers 
[26]-[31]. 
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Methods of Digraph Representation and Cluster 
Analysis for Analyzing Free Association 

s. MIYAMOTO,  S. S U G A ,  AND K. 0 1  

Absfracf -A method for constructing two measures of association 
between a pair of words that distribute over a sequence is developed. 
The association measures are used for digraph representation and 
cluster analysis. In particular, study of a measure for cluster analysis 
leads to a new algorithm of hierarchical agglomerative clustering. The 
digraph representation and the cluster analysis are applied to data of 
free (psychological) association obtained from a questionnaire survey on 
living environment of local residents. The two association measures are 
interpreted as estimates of probabilistic parameters. Hence methods of 
hypothesis testing are developed for showing differences of structures of 
the free associations between two different populations. The result of 
analysis on the association data is summarized into figures of digraphs 
and clusters that show structures of free associations of groups of 
people. 

I .  INTRODUCTION 
‘Methods developed for structural modeling [l], [ 2 ]  have fre- 

quently been applied to represent, and to help in the under- 
standing of, the structures of human cognition related to com- 
plex systems. When these methods are applied to represent 
cognitive structures of a group of people, the problem of aggre- 
gating the individual structures into a whole structure should be 
studied. This means that a method of structural modeling should 
include a feature of statistical analysis to deal with such a 
problem. Since important problems in social studies require the 
analysis and representation of a structure of cognition for a 
large number of people, a method of structural modeling that 
includes statistical analysis is important as a tool of analysis in 
these problems. 

The authors studied a method of digraph representation with 
cluster analysis and applied it to the cognition by local residents 
of living environment [3]. The previous paper [3] introduced a 
symmetric measure and an asymmetric measure of association 
between a pair of words. Then a family of four methods for 
analyzing psychological associations based on the two measures 
is developed: 1) cluster analysis based on symmetric measure, 
2) digraph representation based on asymmetric measure, and 
3) two methods of statistical hypothesis testing based on both 
measures. 
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