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ABSTRACT
In this paper, we prove from a new angle that Dempster’s rule is inherently probabilistic, extends
Bayes’ rule and reduces to Bayes’ rule when precise probabilities are available, regardless of
whether prior is uniform. We use examples to demonstrate this equivalence. Additionally, we
explain that the Evidential Reasoning (ER) rule is also probabilistic and includes Bayes’ and
Dempster’s rules as special cases. Furthermore, we address some criticisms of the behaviour of
Dempster’s rule from a probabilistic perspective and explain the rationality of the behaviour.
We also identify instances where such critiques were misapplied. Finally, we clarify vital differ-
ences between belief degrees in belief functions and basic probabilities and highlight the critical
differences between Shafer’s discounting method and the ER rule. These differences make the
latter probabilistic, while the former is not. Our motivation is to show that evidence theory has a
probabilistic foundation and is possible to become probabilistic again.
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1. Introduction

Evidence theory was originated from Arthur P. Demp-
ster’s work on upper and lower probabilities (Dempster,
1967, 1968) andwas later formalised byGlenn Shafer in
his book entitled ‘A Mathematical Theory of Evidence’
(Shafer, 1976). It is a framework for reasoning under
uncertainty. It can assign probability masses to sub-
sets of possible outcomes, allowing the representation
of partial ignorance. It is widely applied in decision-
making, sensor fusion and diagnostics, where data from
multiple sourcesmay be imprecise or unreliable, such as
fault detection, medical diagnosis and machine learn-
ing, for combining evidence under uncertainty, espe-
cially in risk assessment and AI-based reasoning.

Rules for evidence combination are the core of evi-
dence theory. The first and the foundation of all rules
in evidence theory is Dempster’s rule. It generalises
Bayesian inference by handling imprecise probabilities
and unreliable data sources (Shafer, 1976). It is asserted
that Dempster’s rule is Bayesian when all probabilities
are assigned to singleton hypotheses (Pearl, 1990).

Shortly after Dempster proposed the rule, Shafer for-
malised the concept of belief functions and used belief
degrees and a discountingmethod to discount evidence
before combining the evidence, which leads to a com-
bination rule that is referred to as Shafer’s discounting
method. While some scholars have argued that belief
functions diverge from probability theory, others high-
lighted the strong links between the two frameworks
(Liu & Hong, 2000).

Lotfi Zadeh (1979) criticised Dempster’s rule for
producing counterintuitive results when combining
highly conflicting evidence. His well-known example
involved two medical experts assigning a 1% proba-
bility to meningitis and 99% to different diagnoses.
Dempster’s rule produced 100% certainty for menin-
gitis, despite individual experts’ low initial probability
for meningitis. This critique sparked extensive debate,
leading to the development of alternative combina-
tion rules and methods to address conflicting evidence
(Haenni, 2005). As far as we know, all of those rules,
excluding Dempster’s rule, are non-probabilistic. So
far, the only rules for evidence combination that are
claimed to be probabilistic are Bayes’ rule, Dempster’s
rule and the Evidential Reasoning rule (Yang and Xu,
2013), the latter two of which use Bayesian inference as
their foundation.

In addition to Zadeh’s critique, other scholars have
also questioned the link between Dempster’s rule and
Bayes’ rule, and the rationality of the behaviour of
Dempster’s rule, such as Dezert and Tchamova (2011),
Dezert, Tchamova, Han, and Tacnet (2013) and Cheng
et al. (1988). However, our research has demonstrated
thatDempster’s rule is probabilistic, serving as a natural
extension to Bayes’ rule, and when precise probabilities
are available, Dempster’s rule converges to Bayes’ rule.
In this paper, we will use examples to demonstrate that
some of the critiques are not correct, Dempster’s rule is
probabilistic, and evidence theory has the foundation
to go back to being probabilistic.
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The main contribution of this paper is to rein-
force the probabilistic foundation of evidence theory by
proving that Dempster’s rule extends Bayes’ rule and
is equivalent to it whenever Bayes’ rule is applicable.
The paper also addresses the criticisms of Dempster’s
rule, explaining its rationality and identifying instances
where such criticisms were misapplied. Additionally, it
clarifies key differences between belief degrees in belief
functions and basic probabilities, emphasising that only
basic probabilities should be used for evidence combi-
nations. Furthermore, it highlights the subtle but criti-
cal difference between Shafer’s discountingmethod and
the ER rule, which makes the ER rule probabilistic,
whereas Shafer’s discounting is not. We argue that the
future development of evidence theory should follow a
probabilistic direction, one that is principled, rigorous,
and interpretable. Following this direction will ensure
that its reasoning outcomes in big data analysis and
explainable artificial intelligence are rational, reliable,
interpretable and trustworthy.

2. Preliminaries

2.1. Common objective of Bayes inference and
evidence theory: judging hypotheses

Both Bayesian inferences and evidence theory aim to
address a fundamental practical problem: determining
which hypothesis among a set of competing alternatives
is true and to what extent, based on available evidence.
This problem has a wide range of presence in fields
such as multi-criteria decision-making, machine learn-
ing, artificial intelligence, large language models, and
other decision support systems. Despite their shared
purpose, they model the problem differently, with dis-
tinct theoretical foundations. This section focuses on
demonstrating Bayesian inference and Dempster’s evi-
dence combination processes and exploring their rela-
tionships.

The practical goal of these methods is to make judg-
ments about which hypothesis is true in a set of mutu-
ally exclusive and collectively exhaustive hypotheses,
denoted as

� = {H1,H2, . . . ,HN}, (1)

with Hi ∩ Hj = ∅ for any i, j ∈ {1, · · · ,N} and i �= j
where ∅ is an empty set and � is referred to as a frame
of discernment.

2.2. Assumptions in Bayesian inference

In Bayesian inference, probabilities are assumed to sat-
isfy the following relationship:

ptHi + pfHi
= 1, ∀Hi ∈ �, (2)

where

• ptHi
: The probability that hypothesis Hi is true,

• pfHi
: The probability assigned to the negation (i.e.Hi

being not true).

Bayesian inference is grounded in the use of Bayes’
Rule to update probabilities given new evidence. This
approach assumes precise probability values and a
closed-world perspective, where the hypotheses com-
pletely describe the space of possibilities.

Another implied assumption is that all probabili-
ties are regarded as correct and fully reliable. Later in
Shafer’s discounting method and the Evidential Rea-
soning rule, we will take into account the reliability of
evidence explicitly.

2.3. Assumptions in evidence theory

Before we discuss the assumptions made in evidence
theory, we need to introduce a few key concepts.

2.3.1. Power set (Shafer, 1976)
Evidence theory extends Bayesian approach to accom-
modate imprecise probabilities. That is, evidence the-
ory allows probability to be allocated not only to single
hypotheses but also to subsets of hypotheses.

For the frame of discernment defined by Equation
(1), all possible subsets of � form a so-called power set
of�, denoted as 2� or P(�), consisting of the following
2N subsets of �, or

2� = P(�) = {∅,H1, · · · ,HN , {H1,H2}, · · · ,
× {H1,HN}, · · · , {H1, · · · ,HN−1},�} (3)

In this paper, we let θ denote a subset of �, i.e. θ ⊆
�, or θ is any one of the elements in the power set
shown in Equation (3), i.e. θ ∈ P(�). To differentiate
it from a singleton hypothesis only, θ is referred to as a
proposition in subsequent sections.

When probability is allowed to be allocated to sub-
sets of hypotheses, it becomes essential to distinguish
and track which portions of the probability are divisible
among smaller elements of the subsets and which are
not. Non-separable or indivisible probability is referred
to as Basic ProbabilityMass or Basic ProbabilityAssign-
ment (bpa) by Dempster (1967, 1968, 2008), which is
different fromShafer’s belief degrees in a belief function
that is separable and divisible. We will give an exam-
ple to illustrate the important differences among these
concepts in Section 2.3.5.

2.3.2. Basic probability mass in evidence theory
In evidence theory, basic probability, basic probability
mass or basic probability assignment (bpa) are differ-
ent names for the same concept. It is denoted by m(θ),
representing the probability specifically assigned to a
subset θ ⊆ �, where � is the frame of discernment.
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It cannot be further divided among the individual ele-
ments in θ or any subset of θ . It is a functionm : 2� →
[0, 1], satisfying (Dempster 1967, 1968, 2008)

m(∅) = 0, 0 ≤ m(θ) ≤ 1 and
∑
θ⊆�

m(θ) = 1

(4)

It is important to note that in the evidential reasoning
(ER) rule (Yang and Xu, 2013, 2025), basic probability
p(θ)and basic probability mass m(θ) are different, and
a more detailed explanation is given in Section 2.3.6.

2.3.3. Belief degree in Shafer’s belief function
To indicate the total support for θ ⊆ �, Shafer (1976)
introduced the concept of belief function to comple-
ment Dempster’s basic probability mass function. In
belief function, belief degree in θ , denoted as Bel(θ),
represents the total basic probabilities committed to θ ,
including those committed to all its subsets B ⊆ θ . It is
computed by

Bel(θ) =
∑
B⊆θ

m(B) (5)

The important difference between the basic probability
mass assigned to θ and the belief degree of θ in a belief
function is that the former cannot be divided among
other smaller subsets in θ while the latter is the sum of
the basic probability mass assigned to θ and its smaller
subset B for any B ⊆ θ .

Generally, in literature about probability theory,
belief degrees, probability and basic probability mass
usually mean the same thing – basic probability, or the
indivisible type of probability. Indeed, they are the same
thing when we consider only the traditional probabili-
ties that are assigned to the singleton hypothesis only.
To avoid confusion, Dempster used basic probability to
compute a triplet (ptθ , p

f
θ , p

u
θ ) for explaining the uncer-

tainty of θ as discussed in the following subsection.

2.3.4. Assumptions in evidence theory: an extension
to Bayesian inference
In evidence theory, the assumption in Bayesian Infer-
ence is relaxed to the following less restrictive condition
(Dempster, 1967, 1968, 2008, 2015):

ptθ + pfθ ≤ 1, (6)

or

ptθ + pfθ + puθ = 1, (7)

where

• ptθ : Probability of θ being true,
• pfθ : Probability of θ being false (not true) and
• puθ : Probability of θ being in unknown states.

Those three probabilities in Equation (7) are referred to
as a triplet by Dempster. As ptθ is defined as the proba-
bility of θ being true, it represents the total basic prob-
abilities committed to θ , including those committed to
all its subsets B ⊆ θ . This definition is the same as the
definition of belief degree in θ in Shafer’s belief func-
tion, i.e. ptθ = Bel(θ) = ∑

B⊆θ
m(B). It should be noted

that ptθ is different fromm(θ), the basic probabilitymass
assigned to θ ; m(θ) is the probability assigned exactly
to θ and cannot be further divided to be assigned to
any subsets of θ . There is always the relationship that
ptθ ≥ m(θ) because ptθ containsm(θ) and all other basic
probability masses assigned to all the subsets of θ .

2.3.5. Numerical example to illustrate the above
basic concepts
The following numerical examples show some of
the key concepts and the links among basic prob-
ability mass, belief degree Bel(θ) and ptθ . Let � =
{H1,H2,H3}, where H1, H2 and H3 are three hypothe-
ses. Suppose the basic probability masses are given
by

m({H1}) = 0.1, m({H2}) = 0.2,

m({H3}) = 0.2, m({H1,H2}) = 0.1,

m({H1,H3}) = 0.2, m({H2,H3}) = 0.1,

m({H1,H2,H3}) = 0.1.

Power set 2� = P(�) = {∅,H1,H2,H3, {H1,H2},
{H1,H3}, {H2,H3}, {H1,H2,H3}}.

Belief degrees are computed using Equation (5) as
follows:

Bel({H1}) = m({H1}) = 0.1;

Bel({H2}) = m({H2}) = 0.2

Bel({H3}) = m({H3}) = 0.2

Bel({H1,H2}) = m({H1}) + m({H2})
+ m({H1,H2})

= 0.1 + 0.2 + 0.1 = 0.4

Bel({H1,H3}) = m({H1}) + m({H3})
+ m({H1,H3})

= 0.1 + 0.2 + 0.2 = 0.5

Bel({H2,H3}) = m({H2}) + m({H3})
+ m({H2,H3})

= 0.2 + 0.2 + 0.1 = 0.5

Bel({H1, H2,H3}) = m({H1}) + m({H2}) + m({H3})
+ m({H1,H2}) + m({H1,H3})
+ m({H2,H3} + m({H1,H2,H3}))

= 0.1 + 0.2 + 0.2 + 0.1

+ 0.2 + 0.1 + 0.1 = 1
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Dempster’s triplet in Equation (7) are given as
follows:

ptH1 = Bel({H1}) = 0.1;

pfH1
= m({H2}) + m({H3})

+ m({H2,H3}) = 0.5;

puH1
= 0.4.

ptH2 = Bel({H2}) = 0.2;

pfH2
= m({H1}) + m({H3})

+ m({H1,H3}) = 0.5;

puH2 = 0.3.

ptH3
= Bel({H3}) = 0.2;

pfH3
= m({H1}) + m({H2})

+ m({H1,H2}) = 0.4;

puH3
= 0.4.

pt(H1,H2)
= Bel({H1,H2}) = 0.4;

pf(H1,H2)
= m({H3}) = 0.2;

pu(H1,H2)
= 0.4.

pt(H1,H3)
= Bel({H1,H3}) = 0.5;

pf(H1,H3)
= m({H2}) = 0.2;

pu(H1,H3)
= 0.3.

pt(H2,H3)
= Bel({H2,H3}) = 0.5;

pf(H2,H3)
= m({H1}) = 0.1;

pu(H2,H3)
= 0.4.

pt(H1,H2,H3)
= Bel({H1,H2,H3}) = 1;

pf(H1,H2,H3)
= 0;

pu(H1,H2,H3)
= 0.

2.3.6. Roles of basic probability, basic probability
mass and belief degree in evidence combination
In Bayesian inference, basic probability, basic proba-
bility mass and belief degree all reduce to the same
concept, p(Hi), the probability that hypothesis Hi is
true. Equations (8) and (9) give such examples.

In Dempster’s terminology, probability mass m(θ)

and basic probability p(θ) are the same, or p(θ) =
m(θ). Equations (12), (13) and (14) provide such exam-
ples. Dempster has not used the term belief function in
his papers but instead stated (Dempster, 2008) that

The set function ptθ was called a belief function
by Shafer, and DS theory itself is often called the

theory of belief functions. The term belief function is
unnecessarily formal, however, and has led to many
misperceptions. In fact, ptθ is a mainline successor to
ordinary textbook probability, principally designed to
allow you to assign a non-zero probability to ‘don’t
know’.

In the evidential reasoning (ER) rule, basic probabil-
ity p(θ)and basic probability mass m(θ) are different.
The basic probability in the ER rule is the same as that
in Dempster’s rule. However, basic probability mass in
the ER rule is equal to basic probability weighted by
evidence weight, i.e.m(θ) = wp(θ)where 0 ≤ w ≤ 1 is
evidence weight. In Dempster’s rule, evidence weight is
assumed to be one, or w = 1. This explains why basic
probabilitymassm(θ) and basic probability p(θ)are the
same in Dempster’s rule.

Shafer intended to extend belief degree to power-
set and invented belief function. However, using belief
functions to compute belief degrees can lead to a non-
probabilistic inference process if the overlapping por-
tions of probability masses are not properly separated.
To make the inference process probabilistic, it is essen-
tial to use only basic probabilities masses directly, just
as Dempster rightly asserted (Dempster, 2015):

Among the four set functions that specify mass m(θ),
ptθ , p

f
θ and puθ , only the mass set function takes the

familiar mathematical form of an ordinary probabil-
ity distribution. When reduced to expressions in terms
of masses, which is always possible, the operations and
computations of the ECP (ExtendedCalculus of Proba-
bility) are abstractly equivalent to operations and com-
putationswithOCP (OrdinaryCalculus of Probability)
models.

In short, any probabilistic operation should only be
conducted on the basic probability function or basic
probability mass function.

2.4. Bayesian inference

2.4.1. Mathematical representation of evidence in
Bayesian inference
Bayesian inference calculates the posterior probability
of a hypothesis after an event is observed. It requires
a known prior distribution of the hypotheses and the
likelihood of observing the event given that each of
the hypotheses is true. Using the language of evidence
theory, in Bayesian inference, evidence is phrased as
prior distribution (as the old knowledge, denoted as e1)
and likelihood function (as the new knowledge after an
event, E, is observed).

A prior distribution, e1, can be written as

e1 = {(H1, p11), (H2, p12), . . . , (HN , p1N)}, (8)

Or simply

e1 = {p(Hi), i = 1, . . . ,N}, (9)
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Figure 1. Bayesian updating after the observation of the second event.

where p1i = p(Hi) represents the probability or degree

of belief assigned to hypothesis Hi, and
N∑
i=1

p(Hi) = 1.

Likelihood function is written as p(E|Hi) and
p(E|¬Hi), the likelihood of observing E ifHi is true and
not true, respectively. In Bayesian inference, normally

p(E|Hi) + p(E|¬Hi) �= 1. (10)

In medical test case studies, we are normally given the
sensitivity and the specificity of a test, such as a rapid
antigenCovid-19 test and PCR test. Such information is
essentially likelihood function as shown in the example
of Section 3.2. Other methods for obtaining the neces-
sary information to conduct Bayesian inference are to
collect data, as shown in Figure 1. From the data table
in the figure, we can calculate prior and likelihoods for
Bayesian inference.

2.4.2. Bayes’ rule for evidence updating
In Bayesian inference, the probability in a hypothesis is
updated when new evidence becomes available, using
Bayes’ Rule:

p(Hi|E) = p(E|Hi)p(Hi)

p(E)
, (11)

where

• p(Hi|E): Posterior probability of hypothesisHi given
evidence E,

• p(E|Hi): Likelihood of observing E if Hi is true,
• p(Hi): Prior probability of Hi being true,

• p(E) =
n∑
j=1

p(E|Hj)p(Hj): Total probability of

observing E under all hypotheses.

Bayes’ approach assumes precise prior probabilities
and is widely used in machine learning and probabilis-
tic inference.

2.5. Dempster’s rule for evidence combination

2.5.1. Mathematical representation of evidence
In evidence theory, in general, the ith piece of evidence
ei can be profiled by a basic probability mass function,
defined as follows

ei =
⎧⎨
⎩(θ , pθ ,i),∀θ ⊆ �,

∑
θ⊆�

pθ ,i = 1

⎫⎬
⎭ (12)

where (θ , pθ ,i) is an element of evidence ei, represent-
ing that the evidence points to proposition θ to the
degree of pθ ,i. If pθ ,i > 0, θ is referred to as a focal ele-
ment of ei. If θ = �, pθ ,i is referred to as a degree of
global ignorance. If θ �= � and θ �= Hi, ( i = 1, . . . ,N),
i.e. when a focal element is not the frameof discernment
or any singleton hypothesis, such elements θ are said to
represent some local ignorance.

2.5.2. Dempster’s rule of evidence combination
Dempster’s Rule of Evidence Combination is used to
combine evidence acquired from independent sources.
If two mass functions m1 and m2 are provided over
the same frame of discernment, their combination m
is given by

m(θ) =
∑

B∩C=θ m1(B)m2(C)

1 − ∑
B∩C=∅ m1(B)m2(C)

(13)

where

mi(θ) = pθ ,i (14)
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is the probability mass assigned to θ indicating the
degree of support from evidence ei, and

K = 1 −
∑

B∩C=∅
m1(B)m2(C) (15)

accounts for the total conflict in evidence because each
term in

∑
B∩C=∅

m1(B)m2(C) indicates a disagreement

between the two pieces of evidence. K is also called a
normalisation factor to make sure that

∑
θ⊆�

m(θ) = 1.

Dempster’s rule allows basic probability (or basic
probability mass) to be assigned to subsets of hypothe-
ses, θ ⊆ �, representing global ignorance if θ = � and
local ignorance if θ ⊂ � and θ is not any singleton
hypothesis. Basic probability assigned to local or global
ignorance is referred to as unknown probability.

3. Equivalence between Bayes’ rule and
Dempster’s rule when there is no ignorance

When there is ignorance in the basic probability assign-
ments, Bayes’ rule cannot be applied for evidence
updating, whereas Dempster’s rule can. Therefore,
Bayes’ rule has a narrower scope of applicability than
Dempster’s rule. In this sense, we can see that Demp-
ster’s rule extends Bayes’ rule and that the two rules are
not equivalent when there is ignorance.

When θ is singleton hypothesis only, we have proved
that Dempster’s rule is equivalent to Bayes’ rule (Yang
and Xu, 2014, 2025; Yang et al., 2023) if and only if we
use prior distribution as the very first piece of evidence
and then use normalised likelihood as the new piece of
evidence for every new observation. In the next section,
we will prove this equivalence from a new perspective
for situations where multiple events are observed, the
precise prior distribution is known and the precise pos-
terior probabilities of individual events are each given
as well.

Dempster has always insisted that his rule of evi-
dence combination is an extension of Bayes’ rule. Pearl
also asserted this claim (1990). Pearl’s exact wording is
as follows:

Given two belief functions Bel1 and Bel2, their orthog-
onal sum Bel1 ⊕ Bel2, also known as Dempster’s rule
of combination, is defined by their associated probabil-
ity assignments:

(m1 ⊕ m2)(A) = K
∑

A1∩A2=A

m1(A1)m2(A2)

where K is a normalization constant:

K−1 = 1 −
∑

A1∩A2=∅
m1(A1)m2(A2)

. . . . . .

A belief function is called additive or Bayesian if each
of its focal elements is a singleton, that is, an ele-
mentary event or a possible world. Bayesian belief
Bel(A) = Pl(A) = 1 − Bel(¬A). If Bel1 is Bayesian,
then Bel1 ⊕ Bel2 is also Bayesian, and Dempster’s con-
ditioning reduces to ordinary Bayesian conditioning.
(Shafer [1976])

Although both Dempster and Pearl, and some other
scholars, have asserted that Dempster’s rule reduces to
Bayes’ rule when all probabilities are assigned to sin-
gleton hypotheses only, none of themhas demonstrated
the equivalence using examples or clarified the process
of how the equivalence can be established, until 2023
when Yang et al. (2023) proved the necessary and suf-
ficient condition for the two to be equivalent. That is,
when Dempster’s rule is applied, the prior distribution
should be used as the first piece of evidence, and in sub-
sequent evidence combinations, any other evidence to
be combined should be acquired as normalised likeli-
hoods with the prior no longer taken into account in
evidence combination.

In Yang et al. (2023), the equivalence condition was
established for situations where prior and likelihood
probabilities are known. In the next subsection, we
prove the equivalence for situations where the pri-
ors and posterior probabilities of individual events are
known. The rationale behind the new proof is to show
how to get rid of the effect of the prior which is embed-
ded in each individual event’s posterior distribution
andwhywe need to do so. In fact, in Bayesian inference,
prior distribution is used only once at the beginning of
the inference process. In subsequent evidence updating,
only likelihoods of new events are taken into account.
Similarly, in Dempster’s evidence combination, if we let
the prior distribution be the first piece of evidence, and
subsequent evidence is profiled as posterior probabili-
ties, without getting rid of the effect of the prior from
posterior probabilities, the prior’s effect will be double
counted every time we combine new evidence with the
old one. The following equivalence theorem is estab-
lished to show how to get rid of the effect of the prior in
evidence combination.

3.1. Equivalence theorem and proof

Dempster’s rule and Bayes’ rule are equivalent in con-
ditions where both rules are applicable. More precisely,
suppose there are N hypotheses (or states) in the frame
of discernment, � = {H1,H2, . . . ,HN}, and L events
observed, E1, · · · ,EL, which occur independently of
each other. The prior distribution of the hypotheses is
given as follows:

e0 = {(H1, p(H1)), (H2, p(H2)), . . . , (HN , p(HN))},

and the individual posterior after the observation of each
event, El, is given and denoted as pl(Hi|El). Then the joint
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posterior probabilities, p(Hi|E1 ∩ · · · ∩ EL), of hypoth-
esis Hi( i = 1, . . . ,N) being true generated by applying
Bayes’ Theorem are the same as those generated by apply-
ing Dempster’s rule if and only if the pieces of evidence
to be combined are the prior distribution and the nor-
malised likelihoods of each individual event.

Proof: Let’s denote

• p(E1 ∩ · · · ∩ EL|Hi) as the joint likelihood of observ-
ing all the L events E1 ∩ · · · ∩ EL given that hypoth-
esis Hi is true

• pl(El|Hi) as the likelihood that each individual event,
El(l = 1, 2, . . . , L), is observed given that Hi is true.

If the prior e0 and the individual posterior pl(Hi|El)
are given, then from Bayes’ Theorem pl(Hi|El) =
pl(El|Hi)pl(Hi)

pl(El)
, we can compute the individual likelihood

pl(El|Hi)as follows:

pl(El|Hi) = pl(Hi|El)pl(El)
pl(Hi)

(16)

Here, pl(Hi) is a prior associated with the popula-
tion from which event El is observed. If all events are
observed from the same population, then the individual
prior takes the common prior, i.e. pl(Hi) = p(Hi).

The term pl(El) is the total probability of observing
the event El, which can be calculated from the formula

pl(El) =
N∑
i=1

pl(El|Hi)pl(Hi). From the assumption that

the L events E1, · · · ,EL occur independently of each
other, we have

p(E1 ∩ · · · ∩ EL|Hi) =
L∏
l=1

pl(El|Hi), (17)

After taking into account all the L observations
E1, · · · ,EL, the posterior probability of hypothesis Hi
being true is generated as follows according to Bayes’
Theorem:

p(Hi|E1 ∩ · · · ∩ EL) = p(E1 ∩ · · · ∩ EL|Hi)p(Hi)

p(E1 ∩ · · · ∩ EL)

= p(Hi)
∏L

l=1 pl(El|Hi)

p(E1 ∩ · · · ∩ EL)

= p(Hi)
∏L

l=1 pl(El|Hi)∑N
j=1

(
p(Hj)

∏L
l=1 pl(El|Hj)

)
(18)

where p(E1 ∩ · · · ∩ EL) =
N∑
j=1

(
p(Hj)

L∏
l=1

pl(El|Hj)

)

because there must be
N∑
i=1

p(Hi|E1 ∩ · · · ∩ EL) = 1.

Now let’s substitute Equation (16) into Equation
(18) so that we can make use of the known individual

posteriors. We then have

p(Hi|E1 ∩ · · · ∩ EL) =
p(Hi)

∏L
l=1

pl(Hi|El)pl(El)
pl(Hi)

p(E1 ∩ · · · ∩ EL)

=
p(Hi)

∏L
l=1

pl(Hi|El)
pl(Hi)

p(E1∩···∩EL)∏L
l=1 pl(El)

∀i = 1, · · ·N, (19)

In Equation (19), we do not have all the information to
compute p(Hi|E1 ∩ · · · ∩ EL), but we know there must

be
N∑
j=1

p(Hj|E1 ∩ · · · ∩ EL) = 1. Therefore, we have

N∑
j=1

p(Hj)
∏L

l=1
pl(Hj|El)
pl(Hj)

p(E1∩···∩EL)∏L
l=1 pl(El)

= 1
p(E1∩···∩EL)∏L

l=1 pl(El)

N∑
j=1

(
p(Hj)

L∏
l=1

pl(Hj|El)
pl(Hj)

)
= 1

(20)

which means

p(E1 ∩ · · · ∩ EL)∏L
l=1 pl(El)

=
N∑
j=1

(
p(Hj)

L∏
l=1

pl(Hj|El)
pl(Hj)

)
(21)

Now substituting Equations (21) to (19), we then have
for any hypothesis Hi, i = 1, · · · ,N

p(Hi|E1 ∩ · · · ∩ EL) =
p(Hi)

∏L
l=1

pl(Hi|El)
pl(Hi)∑N

j=1

(
p(Hj)

∏L
l=1

pl(Hj|El)
pl(Hj)

)
(22)

As every element on the right-hand side of Equation
(22) is known, we can use the equation to obtain the
joint posterior for every Hi given common prior and
the individual priors and posteriors for each event.

When pl(Hi) = p(Hi) ∀i = 1, · · ·N, meaning
every event is observed from the same population with
the same prior, Equation (22) becomes

p(Hi|E1 ∩ · · · ∩ EL) =
p(Hi)

∏L
l=1

pl(Hi|El)
p(Hi)∑N

j=1

(
p(Hj)

∏L
l=1

pl(Hj|El)
p(Hj)

)
(23)

Equation (22) or (23) is the formula for computing
the joint posterior when the common prior and the
individual priors and posteriors are known.

Next, we show the equivalence between Bayesian
updating and Dempster’s combination. In this case, all
probabilities are precisely known and assigned to indi-
vidual hypotheses. Suppose the pieces of evidence to be
combined are expressed as the prior distribution and
theLnormalised likelihoods for theL individual events,

e0 = {(H1, p(H1)), (H2, p(H2)), . . . , (HN , p(HN))},
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e1 =
{(

H1,
p1(E1|H1)∑N
k=1 p1(E1|Hk)

)
,

×
(
H2,

p1(E1|H2)∑N
k=1 p1(E1|Hk)

)
, . . . ,

×
(
HN ,

p1(E1|HN)∑N
k=1 p1(E1|Hk)

)}
,

· · ·

eL =
{(

H1,
pL(EL|H1)∑N
k=1 pL(EL|Hk)

)
,

×
(
H2,

pL(EL|H2)∑N
k=1 pL(EL|Hk)

)
, . . . ,

×
(
HN ,

pL(EL|HN)∑N
k=1 pL(EL|Hk)

)}

Then by applying Dempster’s rule to combine the L+ 1
pieces of evidence, we have

p(Hi|e0e1 · · · eL) =
p(Hi)

∏L
l=1

pl(El|Hi)∑N
k=1 pl(El|Hk)∑N

j=1

(
p(Hj)

∏L
l=1

pl(El|Hj)∑N
k=1 pl(El|Hk)

)
(24)

Therefore, to prove that Bayes updating is equivalent
to Dempster’s evidence combination, we need only to
prove that the right-hand side of Equation (18) equals
the right-hand side of Equation (24) or

p(Hi)
∏L

l=1 pl(El|Hi)∑N
j=1

(
p(Hj)

∏L
l=1 pl(El|Hj)

)

=
p(Hi)

∏L
l=1

pl(El|Hi)∑N
k=1 pl(El|Hk)∑N

j=1

(
p(Hj)

∏L
l=1

pl(El|Hj)∑N
k=1 pl(El|Hk)

) (25)

Note that
L∏
l=1

N∑
k=1

pl(El|Hk) is a term that does not

change with respect to any particular event El or any
particular hypothesisHi. Suppose it is not zero so that it
can be multiplied or divided to both the numerator and
denominator of the right-hand side of Equation (18)
without changing its value, leading to Equation (18)
being equivalently re-written as follows:

p(Hi|E1 ∩ · · · ∩ EL) = p(Hi)
∏L

l=1 pl(El|Hi)∑N
j=1

(
p(Hj)

∏L
l=1 pl(El|Hj)

)

p(Hi|E1 ∩ · · · ∩ EL)

= p(Hi)
∏L

l=1 pl(El|Hi)∑N
j=1

(
p(Hj)

∏L
l=1 pl(El|Hj)

)

= p(Hi)
∏L

l=1 pl(El|Hi)∑N
j=1

(
p(Hj)

∏L
l=1 pl(El|Hj)

)

× 1/
∏L

l=1
∑N

k=1 pl(El|Hk)

1/
∏L

l=1
∑N

k=1 pl(El|Hk)

=
p(Hi)

∏L
l=1 pl(El|Hi)∏L

l=1
∑N

k=1 pl(El|Hk)∑N
j=1

(
p(Hj)

∏L
l=1 pl(El|Hj)∏L

l=1
∑N

k=1 pl(El|Hk)

)

=
p(Hi)

∏L
l=1

pl(El|Hi)∑N
k=1 pl(El|Hk)∑N

j=1

(
p(Hj)

∏L
l=1

pl(El|Hj)∑N
k=1 pl(El|Hk)

) . (26)

We can see that the first two terms of Equation (26) are
the same as Equation (18) and the last term of Equation
(26) is the same as the right-hand side of Equation (24).
Therefore, we have shown that Equation (25) holds.
End of Proof. �

In the next two subsections, we will use examples
to illustrate the equivalence of Bayesian inference and
Dempster’s evidence combination when Bayes’ rule is
applicable, assuming that prior distribution is not uni-
form, and prior and likelihoods of observed events are
known.

3.2. Numerical examples of applying Bayes’ rule

Example 3.1: Suppose in an area 10% of people are
having Covid-19. A rapid test has 90% sensitivity and
80% specificity. If a person is tested positive, what is his
probability of having Covid-19?

To apply Bayes’ rule, we need to use Equation (11) to
compute the posterior probability p(H1|E1)that a per-
son has Covid-19 (H1) given that the person’s test result
is positive (E1).

Let

• H1 be the hypothesis that the person has Covid-19,
and

• H2 the hypothesis that the person does not have
Covid-19.

• Sensitivity is defined as the probability of a positive
test result if the person hasCovid-19, i.e. p(E1|H1) =
sensitivity = 0.9.

• Specificity is defined as the probability of a nega-
tive test if the person does not have Covid-19, i.e.
specificity = p(Not E1|H2). Given that the person
does not have Covid-19, the probability of the per-
son’s test being positive is therefore p(E1|H2) = 1 −
Specificity = 0.2.

• Prior probabilities are given as:
o p(H1) = 0.1 (The prior probability that the per-

son has Covid-19).
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o p(H2) = 0.9 (The prior probability that the per-
son does not have Covid-19).

Substituting the above values into Equation (11), we
have

p(E1|H1)p(H1) = 0.9 × 0.1 = 0.09.

p(E1|H2)p(H2) = 0.2 × 0.9 = 0.18.

p(E1) = p(E1|H1)p(H1) + p(E1|H2)p(H2)

= 0.09 + 0.18 = 0.27.

p(H1|E1) = 0.09
0.27

= 0.3333 (27)

p(H2|E1) = 0.18
0.27

= 0.6667. (28)

Interpretation of the results:
• Even though the test is 90% sensitive and 80% spe-

cific, the probability that the person has Covid-19 after
being tested positive is only 33.33%.
• This is due to the low prior probability of hav-

ing Covid-19 (10%) and the relatively high probability
(20%) of a false positive rate due to the 80% specificity.

This example highlights the importance of consider-
ing prior probabilities and not relying solely on likeli-
hoods (sensitivity and specificity).

When more events are observed, Equation (11) can
be applied recursively by treating the most recently
updated posterior probability as the prior probability
for a new round of evidence updating. Figure 1 illus-
trates the process and results of updating when the 2nd
event, fever is observed.

3.3. Numerical example of applying Dempster’s
rule of evidence combination

We use Example 1 above to illustrate the equivalence
between Bayesian inference and Dempster evidence
combination. Let e1 be the prior distribution and e2 the
normalised likelihood, i.e.

e1 = {(θ , pθ ,1),∀θ ⊆ �}
= {(H1, p(H1)), (H2, p(H2))}
= {(H1, 0.1), (H2, 0.9)}or

m1(H1) = p(H1) = 0.1 and

m1(H2) = p(H1) = 0.9

As likelihoods are p(E1|H1) = 0.9 and p(E1|H2) = 0.2,
by normalising them, we get

pH1,2 = p(E1|H1)

p(E1|H1) + p(E1|H2)
= 0.9

0.9 + 0.2
= 0.8182

(29)

pH2,2 = p(E1|H2)

p(E1|H1) + p(E1|H2)
= 0.2

0.9 + 0.2
= 0.1818

(30)

e2 = {(θ , pθ ,2),∀θ ⊆ �} = {(H1, pH1,2), (H2, pH2,2)}
= {(H1, 0.8182), (H2, 0.1818)}

or

m2(H1) = pH1,2 = 0.8182 and

m2(H2) = pH2,2 = 0.1818

Applying Dempster’s rule in Equation (13), we get

m(H1) =
∑

B∩C=H1
m1(B)m2(C)

1 − ∑
B∩C=Øm1(B)m2(C)

= m1(H1)m2(H1)

1 − m1(H1)m2(H2) − m1(H2)m2(H1)

= 0.1 × 0.8182
1 − 0.1 × 0.1818 − 0.9 × 0.8182

= 0.3333

(31)

m(H2) =
∑

B∩C=H2
m1(B)m2(C)

1 − ∑
B∩C=Øm1(B)m2(C)

= m1(H2)m2(H2)

1 − m1(H1)m2(H2) + m1(H2)m2(H1)

= 0.9 × 0.1818
1 − 0.1 × 0.1818 − 0.9 × 0.8182

= 0.6667

(32)

3.4. Interpretation of the results

We can see that m(H1) and m(H2) in Equations (31)
and (32) are equal to the posterior probabilities in Equa-
tions (27) and (28) obtained by applying Bayes’ rule.

When anew event (E2) is observed, the new evidence
can be combinedwith the old one. For comparison pur-
poses, suppose the second event observed is the same
as what is shown in Figure 1. Equation (13) is then
applied recursively by treating the previously combined
evidence as the new 1st piece of evidencem1(θ) and the
normalised likelihood from the second event as the new
second piece of evidencem2(θ). Figure 2 illustrates the
process and the results of combining the evidence from
the second event that fever is observed.

Once again, we observe that the probabilities in the
last column of Figure 1 match those in Figure 2, indi-
cating that the final results obtained by applying Demp-
ster’s rule andBayes’ rule are identical. This equivalence
is not coincidental. Yang et al. (2023) and Yang and Xu
(2025) proved that Bayesian inference and Dempster’s
combination are strictly equivalent if and only if the
prior distribution, regardless of its form, is treated as the
initial piece of evidence and the normalised likelihoods
for subsequent events as new evidence.
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Figure 2. Combining new evidence from the second event using Dempster’s rule.

4. Addressing critiques of Dempster’s rule
from a probabilistic perspective

There are quite a number of critiques against Demp-
ster’s rule. The most well-known is perhaps Zadeh’s
critique. He criticised Dempster’s rule of combination
for producing counterintuitive results, particularly in
scenarios involving highly conflicting evidence. This
issue has recently been completely clarified theoreti-
cally (Yang and Xu, 2025), and effective methods for
addressing the issue have also been suggested in the
past, for example using a robust yet practical pertur-
bation analysis method (Yang and Xu, 2013) from a
probabilistic perspective.

In this section, we will address a few observations
about the behaviour of Dempster’s rule and critical
comments reported by Dezert, Tchamova, Han, and
Tacnet (2013), Dezert and Tchamova (2011) and Cheng
et al. (1988).

4.1. Addressing “Dempster’s rule is equivalent to
Bayes rule only when prior distribution is uniform”

It was asserted that Dempster’s rule and Bayes’ rule
are not equivalent in general and are only equivalent
when the prior distribution is uniform (Dezert et al.,
2013).

From the proof of the Equivalence theorem, we can
see that there is no need to assume a uniform prior.
The reason that they made such a critique is that they
suggested to use posterior distribution as evidence to

be combined with Dempster’s rule. If the posterior dis-
tributions of the L events are combined, the priors for
these events will be used L times because each posterior
already incorporates its prior. This results in the prior
effect being accounted for L times. This is why they
need a uniform (or non-informative) prior to establish
the equivalence of the two rules.

Next, we use Example 1 in their paper (Dezert et al.,
2013) to illustrate Bayesian updating (Equation (23))
and Dempster’s combination (Equation (24)) and show
the equivalence of the two without assuming a uniform
prior. The example assumes that prior distribution is
known and not uniform. The individual posterior dis-
tribution after each event is observed is also known.
The task is to compute the joint posterior after three
independent events are observed.

4.1.1. Bayesian updating
• Priors are given as follows:

p(H1) = 0.2, p(H2) = 0.8

• Posteriors after individual events are given as follows:

o After Event E1 is observed: p(H1|E1) = 0.1,
p(H2|E1) = 0.9
o After Event E2 is observed: p(H1|E2) = 0.5,

p(H2|E2) = 0.5
o After Event E3 is observed: p(H1|E3) = 0.6,

p(H2|E3) = 0.4
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For this example, Equation (23) becomes

p(Hi | E1 ∩ E2 ∩ E3)

= p(Hi)
∏3

l=1(p(Hi | El)/p(Hi))

p(H1)
∏3

l=1(p(H1|El)/p(H1)

+p(H2)
∏3

l=1(p(H2 | El)/p(H2))

• For E1:

p(H1|E1)
p(H1)

= 0.1
0.2

= 0.5,
p(H2|E1)
p(H2)

= 0.9
0.8

= 1.125

(33)

• For E2:

p(H1|E2)
p(H1)

= 0.5
0.2

= 2.5,

p(H2|E2)
p(H2)

= 0.5
0.8

= 0.625 (34)

• For E3:

p(H1|E3)
p(H1)

= 0.6
0.2

= 3,
p(H2|E3)
p(H2)

= 0.4
0.8

= 0.5 (35)

• Numerator for H1:

p(H1)

3∏
l=1

(p(H1|El)/p(H1))

= 0.2 × 0.5 × 2.5 × 3 = 0.75 (36)

• Numerator for H2:

p(H2)

3∏
l=1

(p(H2|El)/p(H2))

= 0.8 × 1.125 × 0.625 × 0.5 = 0.28125 (37)

• The denominator is the sum of the numerators:

Denominator = 0.75 + 0.28125 = 1.03125 (38)

• Posterior probability for H1:

p(H1|E1 ∩ E2 ∩ E3) = 0.75
1.03125

= 0.727 (39)

• Posterior probability for H2:

p(H2|E1 ∩ E2 ∩ E3) = 0.28125
1.03125

= 0.273 (40)

4.1.2. Dempster’s evidence combination
Using the same example, we illustrate Dempster’s rule
in Equation (24) as follows. Given the prior and the
individual posteriors, likelihoods are computed by

p(El|Hi) = p(Hi|El) · p(El)
p(Hi)

(41)

Let normalised likelihood be denoted as

p̄(ElHi) = pl(El|Hi)∑N
k=1 pl(El|Hk)

= p(Hi|El) · p(El)/p(Hi)∑N
k=1 p(Hk|El) · p(El)/p(Hk)

(42)

then Equation (24) can be re-written as follows:

p(Hi|m1m2 · · ·mL) = p(Hi)
∏L

l=1 p̄(El|Hi)∑N
j=1

(
p(Hj)

∏L
l=1 p̄(El|Hj)

)
(43)

• For E1:

The normalised likelihoods are calculated by using
Equations (42) and (33) for H1, and (42) and (34) for
H2:

p̄(E1|H1) = p(E1|H1)

p(E1|H1) + p(E1|H2)

= p(H1|E1) · p(E1)/p(H1)∑N
k=1 p(Hk|E1) · p(E1)/p(Hk)

= 0.5p(E1)
0.5p(E1) + 1.125p(E1)

= 0.3077

p̄(E1|H2) = p(E1|H2)

p(E1|H1) + p(E1|H2)

= 1.125p(E1)
0.5p(E1) + 1.125p(E1)

= 0.6923

• For E2:

p̄(E2|H1) = 2.5p(E2)
2.5p(E2) + 0.625p(E2)

= 0.8

p̄(E2|H2) = 0.625p(E2)
2.5p(E2) + 0.625p(E2)

= 0.2

• For E3:

p̄(E3|H1) = 3p(E3)
3p(E3) + 0.5p(E3)

= 0.8571

p̄(E3|H2) = 0.5p(E3)
3p(E3) + 0.5p(E3)

= 0.1429

• Combined probability for H1:

p(H1|m1m2 · · ·mL)

= p(H1)
∏L

l=1 p̄(El|H1)∑N
j=1

(
p(Hj)

∏L
l=1 p̄(El|Hj)

)
= 0.2 × 0.3077 × 0.8 × 0.8571

0.042197 + 0.015829
= 0.7272 (44)

• Combined probability for H2:

p(H2|m1m2 · · ·mL)
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Table 1. Inputbasic belief assignments (BBAs)m1(·)andm2(·).
Focal elements m1(·) m2(·)
A a1 0
B a2 0
A ∪ B 1 − a1 − a2 b1
C 0 1 − b1 − b2
A ∪ B ∪ C 0 b2

= p(H2)
∏L

l=1 p̄(El|H2)∑N
j=1

(
p(Hj)

∏L
l=1 p̄(El|Hj)

)
= 0.8 × 0.6923 × 0.2 × 0.1429

0.042197 + 0.015829
= 0.2723 (45)

We can see that both Bayesian updating andDempster’s
combination have generated the same results.

4.2. Addressing ‘Bayes rule is not associative or
commutative’

The above example was used to claim that Bayes’ rule
is neither associative nor commutative (Dezert et al.,
2013). However, no detailed explanations were pro-
vided to support the claim.

From the proof of the above Equivalence theorem
and the calculation process for the example in Section
4.1, it is obvious that for multiple pieces of independent
evidence, the left-hand side of Equation (25) shows that
Bayes’ rule is both associative and commutative, while
the right-hand side demonstrates the same for Demp-
ster’s rule. From Equations (36), (37), (44) and (45), we
can see that the outcomes of both Bayesian updating
and Dempster’s combination are proportional to the
multiplications of the prior and the individual event’s
likelihoods, which are both associative and commuta-
tive. Those properties of Dempster’s combination are
also confirmed by Pearl (Pearl, 1988, p. 432). This
means that the three pieces of evidence can be updated
or combined in any order or grouped in any configura-
tion, and the final results will remain the same in both
Bayesian updating and Dempster’s combination.

4.3. Addressing ‘Dempster’s rule is not sensitive to
some evidence’

Dezert and Tchamova (2011) observed that Dempster’s
rule does not respond adequately to certain sources
of evidence, even when the level of conflict between
the sources is low. Table 1 presents the details of the
example they used to illustrate this phenomenon.

By applying Dempster’s rule, the two pieces of evi-
dence represented by the two probability mass func-
tions shown in Table 1 can be combined. The combined
mass functionm12(·) is given by

• m12(A) = a1(b1 + b2)
• m12(B) = a2(b1 + b2)

• m12(A ∪ B) = (1 − a1 − a2)(b1 + b2)
• K12 = m12(∅) = 1 − b1 − b2

After normalisation by 1 − K12 = b1 + b2, the com-
bined probability masses are

• mDS(A) = m12(A)
1−K12

= a1
• mDS(B) = m12(B)

1−K12
= a2

• mDS(A ∪ B) = m12(A∪B)
1−K12

= 1 − a1 − a2

where mDS(·)are the combined and normalised prob-
ability masses, which are exactly the same as m1(·),
meaning that m2(·) plays no role in the final result.
While this is an interesting and correct observation,
does it mean that Dempster’s rule is not rational?

To answer this question, let’s examine what m2(·)
represents.

First, althoughm2(·) assigned someprobabilitymass
to hypothesis C,m1(·) categorically denies it by assign-
ing 0 probability to C and any subsets that contain
C. Therefore, after combination, the probability mass
assigned to hypothesis C is 0 regardless of what m2(·)
says aboutC. This is becauseDempster’s rule andBayes’
rule assume full reliability for any evidence. This is the
limitation of both rules. This can be addressed by intro-
ducing a discounting factor, such as in the Evidential
Reasoning rule (probabilistic) or Shafer’s discounting
method (non-probabilistic).

With C out of the picture, we can now focus on A
and B. From Table 1, we can see thatm2(·) only assigns
probability to subsets A ∪ B and A ∪ B ∪ C (which is
essentiallyA ∪ B asCwas already excluded as explained
in the previous paragraph) indifferently, nothing to sin-
gleton A or B. This means that m2(·) is effectively
telling m1(·): ‘I don’t know how to divide the proba-
bility between A or B. I leave that decision to you’. The
final result reflects exactly what m2(·) intends. There-
fore, we argue that Dempster’s rule is rational under the
assumption that any evidence is fully reliable and the
outcome is what can be expected from Dempster’s rule
under the assumption.

4.4. Interpreting imprecise probabilities

Let’s first look at the following example. Suppose

e1 = ((H1, 0.8), (H2, 0.1), ((H1,H2), 0.1) (46)

e2 = ((H1, 0.6), (H2, 0.2), ((H1,H2), 0.2) (47)

Dempster’s combination of these pieces of evidence
yields:

e1 ⊕ e2 = (H1, 0.8974), (H2, 0.0769),

× ((H1,H2), 0.0256) (48)

One may argue that the probability 0.8974 for H1 and
0.0769 for H2 in Equation (48) should be treated as
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the lower bound of p(H1) and p(H2), respectively, since
the unknown probability 0.0256 could be allocated to
H1 or H2 to make them larger. On the other hand, if
all the unknown probability were assigned to only one
of the singleton hypotheses, such as H1, it would seem
reasonable to assume that the sum:

0.8974 + 0.0256 = 0.9231 (49)

becomes the upper bound of p(H1). Therefore, the
upper and lower bound for p(H1) would be [0.8974,
0.9231]. This was Dempster’s original interpretation of
the unknown probability (Dempster, 1967, 1968).

However, suppose we now assign all the unknown
probabilities, [(H1,H2), 0.1] in e1 and [(H1,H2), 0.2] in
e2 to H1 before combining them, so that the two pieces
of evidence look like the ones shown in Equations (50)
and (51). We can now apply either Dempster’s rule or
the Bayes rule to combine thembecause all probabilities
are precisely known.

e1 = ((H1, 0.9), (H2, 0.1), ((H1,H2), 0) (50)

e2 = ((H1, 0.8), (H2, 0.2), ((H1,H2), 0) (51)

Applying either rule to combine them, we get:

e1 ⊕ e2 = (H1, 0.9730), (H2, 0.0270), ((H1,H2), 0)
(52)

The combined probability for H1 is 0.9730 > 0.9231,
which exceeds the upper bound in Equation (49). Con-
versely, the combined probability for H2 in Equation
(52), p(H2) = 0.0270, is much lower than its lower
bound of 0.0769 in Equation (48). This demonstrates
that the probabilities in Equations (48) and (49) should
not be interpreted as true upper and lower bounds.

Cheng et al. (1988) observed a similar phenomenon.
They reported:

We show that the width of the interval given by the
Dempster rule is narrower than that of Bayes.

How to address this phenomenon? From the evidence
combination process ofDempster’s rule, we can see that
the unknown probabilities in a piece of evidence must
be respected as it is. It should not be divided into pieces
to be reallocated by the evidence itself because this evi-
dence alone cannot make such a reallocation decision
but essentially allows other evidence to decide where
to allocate the unknown probabilities in the combina-
tion process so that the unknown could be reduced
by other evidence. This phenomenon agrees with our
best practice that whenever possible we do not make
unnecessary or unjustifiable assumptions but collect
more information whenever there is a need to clarify
any doubt.

As amatter of fact, Dempster (2008) also realised the
phenomenon by stating that:

My original adoption of the terms lower and upper
probability invites confusion with other theories that

use these same terms, and provokes debate concern-
ing the implied existence or non-existence of unknown
true probabilities lying between defined lower and
upper bounds. No such existence is implied, since true
probabilities nowhere appear in the theory.

It is in the same paper (Dempster, 2008) that Demp-
ster made it crystal clear that:

The mass m(A) associated with each assertion A ⊂ �
is an atom in the sense that it cannot be further broken
down into pieces assigned to subsets of A.

5. Relationship among Bayes’ rule, Dempster’s
rule and the evidential reasoning rule

Figure 3 (Xu and Yang, 2017) illustrates the relationship
among Bayes’ rule, Dempster’s rule and the eviden-
tial reasoning (ER) rule. Bayes’ rule is a special case
of Dempster’s rule as proved by Yang et al. (2023)
and Yang and Xu (2014) and also demonstrated in this
paper. Earlier, Yang and Xu (2013) proved that Demp-
ster’s rule is a special case of the ER rule. In other words,
the ER rule extends Dempster’s rule to cases where evi-
dence is not fully reliable, and Dempster’s rule extends
Bayes’ rule to cases where there is unknown probability.
All of them are probabilistic.

5.1. Assumptions in Bayes’ rule

r = 1, p(θ) + p(θ̄) = 1

Here, r represents the reliability of evidence which is
used for discounting p(θ). All probabilities are assigned
to singleton hypotheses, i.e. θ can only be singleton
hypotheses. In Bayes’ rule, basic probability, basic prob-
ability mass, and belief degree all mean the same thing.
There is no need to distinguish them.

Figure 3. Relationship among Bayes’ rule, Dempster’s rule, and
the evidential reasoning rule (Xu and Yang, 2017).
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5.2. Assumptions in Dempster’s rule

r = 1, p(θ) + p(θ̄) ≤ 1

Dempster’s rule allows basic probability (or basic prob-
ability mass) to be assigned to subsets of hypothe-
ses, θ ⊆ � and assumes that evidence is fully reliable
(r = 1).

It is important to emphasise that Dempster’s rule
operates on basic probability mass only. He has made
this point crystal clear that evidence combination
processes should be carried out on basic probability
mass (Dempster, 2015).

5.3. Relationship between Dempster’s rule and
Bayes’ rule

When r = 1and p(θ) + p(θ̄ ) = 1 for any θ , that is, the
basic probability is only assigned to singleton hypothe-
ses (θ), Dempster’s rule reduces to Bayes’ rule.

5.4. Assumptions in the ER Rule (Yang and Xu
2013)

w ≤ 1, r ≤ 1, p(θ) + p(θ̄) ≤ 1

where w and r are weights and reliability represent-
ing the importance and the reliability of evidence,
respectively. They can be equal or not equal. Weight
is defined as conditional probability and reliability is
also a probability defined as the ability of evidence
to provide a correct conclusion (Yang and Xu, 2025).
When they are used to weigh basic probabilities p(θ),
the weighted basic probabilities wp(θ) are referred to
as basic probability mass. We can see that in Bayes’ rule
and Dempster’s rule, those two concepts (basic proba-
bility and basic probability mass) are the same because
r = w = 1.

5.5. Relationship between the ER rule and
Dempster’s rule

Whenw = r = 1 (assuming full reliability), the ER rule
becomes Dempster’s rule.

5.6. Relationship between the Evidential
Reasoning (ER) Rule and Bayes’ rule

When w = r = 1 and p(θ) + p(θ̄) = 1, that is, all θ are
singleton hypotheses, the ER rule becomes Bayes’ rule.

5.7. Relationship between the ER Rule and
Shafer’s discountingmethod

Shafer’s discounting method is not shown in Figure
3 because it does not lead to probabilistic inference
even though it uses Dempste‘r’s rule for combining

discounted belief degrees. Shafer’s discounting method
does not conform to the likelihood principle (Birn-
baum, 1962), as explained in Yang and Xu (2013).
However, it is closely related to the ER rule in the fol-
lowing context. Shafer uses a discounting factor to take
into account the reliability of evidence for discounting
each piece of evidence but allocates the unreliable mass
(or leftover belief) to the frame of discernment, �, as
follows (Shafer, 1976, 1990):

m(θ) =
⎧⎨
⎩

α · p(θ), θ �= �,
α · p(θ) + (1 − α), θ = �,
0, θ = ∅,

(53)

where p(θ)is the basic probability to which a piece of
evidence points to proposition θ , and α (0 ≤ α ≤ 1)
a factor to discount p(θ). After the evidence is dis-
counted, thenDempster’s rule is applied to combine the
evidence.

Inspired by Shafer’s discountingmethod, the ER rule
also discounts evidence with a factor which is a con-
ditional probability representing the importance of the
evidence. The key difference between the ER rule and
Shafer’s discounting method is that Shafer allocates
the unreliable portion of the evidence directly to the
frame of discernment, while the ER rule buffers it in
the power set of the frame of discernment as shown in
Equation (54) in the anticipation that other evidence
will redistribute it among the elements of the power set.

m(θ) =
⎧⎨
⎩

α · p(θ), θ ⊆ �,
(1 − α), θ = P(�),
0, θ = ∅,

(54)

This difference is subtle but vital in making the ER
rule probabilistic as explained in Yang and Xu (2013,
2025) and Yang et al. (2023). The necessity and ratio-
nale of buffering the unreliable portion of evidence to
the power set are carefully argued and theoretically
proven within the new MAKER (maximum likelihood
evidential reasoning) framework (Yang and Xu, 2025).

6. Conclusion

In this paper, we have examined the relationships
among Bayes’ rule, Dempster’s rule, Shafer’s discount-
ing method and the Evidential Reasoning (ER) rule for
evidence combination. We have also addressed some
critiques and observations of the behaviours of Demp-
ster’s rule from a probabilistic perspective,

Bayesian inference is perhaps an ideal engine for
inference with perfect data (Yang and Xu, 2025) but is
generally perceived as a tool for reasoning with ‘small
data’ because it requires precise and complete proba-
bility information. In contrast, evidence theory relaxes
this requirement and is therefore more suitable for ‘big
data’ applications. If evidence theory is theoretically
sound and interpretable, it can be applied more widely
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and give users greater confidence in the results it gener-
ates. This motivation underpins our work to investigate
some of the critiques of Dempster’s rule, with the inten-
tion of bringing the development of evidence theory
back to its original probabilistic foundation.

We have tried to uncover a probabilistic rule for
evidence combination that can take advantage of both
Dempster’s rule and Shafer’s discounting method,
which has led to the establishment of the ER rule. By
building on Dempster’s and Shafer’s original insights
that probabilities may be imprecise and evidence may
be partially unreliable, the ER rule retains the theoret-
ical rigour of Dempster’s rule and the practical utility
of Shafer’s discounting method. This explains why the
ER rule is not only probabilistic and rational but also
practical.

Our work so far demonstrates that the goal of mak-
ing evidence theory probabilistic again is achievable
if

• Any evidence is acquired as normalised likelihood
distribution except for the first piece of evidence
which should be prior distribution if available,

• All elements of a powerset are treated with equal
respect in discounting or conditioning, with the
probability meaning of evidence kept intact,

• All probabilistic operations in evidence combination
are carried out on basic probability functions instead
of belief functions, and

• The combination of multiple pieces of evidence con-
stitutes a process for generating their joint probabil-
ities.

However, much work remains to fulfill this goal. This
effort requires the collaboration of both the statistics
and evidence theory communities to extend rigorous
statistical theories, methods, and tools to handle impre-
cise probabilities and unreliable data sources.

Potential-related research directions include explor-
ing the links between evidence theory and random
set theory, since both generalise classical probability to
handle uncertainty about sets rather than single ele-
ments; and investigating connections between evidence
theory and quantum theory, as both frameworks deal
with the probabilities of multiple hypotheses.
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