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A Belief Rule-Based Expert System for Fault
Diagnosis of Marine Diesel Engines

Xiaojian Xu, Xinping Yan

Abstract—This paper proposes a new belief rule-based (BRB)
expert system for fault diagnosis of marine diesel engines. The
expert system is the first of its kind that consists of multiple
concurrently activated BRB subsystems, in which each subsys-
tem has its distinctive outputs and uses the evidential reasoning
approach for inference. This novel modeling approach can be
applied to identify fault modes that may co-exist. In essence, the
group of BRB subsystems is used to model the nonlinear relation-
ships between the fault features and the fault modes in marine
diesel engines. The initial BRB expert system can be established
by using expert experience and then optimized by using the
data samples accumulated during the operation of marine diesel
engines. Due to limitations in knowledge and data collected, igno-
rance is also considered in some BRB subsystems. The proposed
BRB expert system is applied to abnormal wear detection for
a kind of marine diesel engine. The performance of the BRB
expert system is investigated in comparison with that of artificial
neural network (ANN) models, support vector machine (SVM)
models, and binary logistic regression model with fivefold cross-
validation. The results show that the BRB expert system can be
used for fault diagnosis of marine diesel engines in a probabilistic
manner, which outperforms the ANN models, SVM models, and
the binary logistic regression model in terms of accuracy and
stability, and can effectively identify concurrent faults.

Index Terms—Diesel engines, expert systems, fault diagnosis,
marine vehicle power systems, wear.
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I. INTRODUCTION

URRENTLY most ships are propelled by diesel engines,

and faults in marine diesel engines have great influence
on the normal operation of ships. As indicated in the report
of Swedish Club on main engine damage, claims caused by
marine diesel engine damage account for 37.7% of the total
ship machinery claims during the period from 2005 to 2011,
leading to over $20 million U.S. loss [1]. Consequently, it is
necessary to pay more attention to the fault diagnosis of marine
diesel engines to improve their reliability.

With expert experience and fault data collected during
engines’ operation, faults in engines can be identified by fault
diagnostic models. Automatic fault diagnosis is an artificial
intelligence problem and a variety of intelligent algorithms
have been applied in this area. Among these methods, rule-
based expert system is one of the most widely used methods.
By using a variety of condition monitoring information,
such as vibration signal, instantaneous angular speed signal,
performance parameters, and oil information, expert systems
can provide diagnostic advice automatically to ensure the
safe running of machines [2]-[5]. Currently, simple diagnostic
systems embedded in condition monitoring systems onboard
are still mainly based on traditional rule-based expert systems.
However, limited knowledge acquisition is the bottle neck of
traditional rule-based expert system, limiting its application
scope. Meanwhile, traditional rule-based expert systems for
fault diagnosis lack flexibility. Once an expert system is built,
it cannot learn from real operating data or make adjustments
to meet changing environments.

To better describe the nonlinear relationship between fault
features and fault modes, intelligent algorithms with strong
computing, nonlinear mapping and self-learning capabili-
ties have been used in fault diagnosis. Artificial neural
network (ANN) is the most representative among these meth-
ods. Fault diagnosis systems based on ANN were developed
to detect engines’ combustion fault, wear fault, fuel injection
fault, etc. [6]-[10]. But an ANN model is a black-box simu-
lator in the sense that the relationship between the inputs and
outputs of the model is difficult to be explained. Perturbation
to the inputs of neural networks could affect their stability,
reducing the robustness of ANN models [11]. Additionally,
an important but difficult problem for ANN is to determine its
structure. For example, the performance of a neural network
will be different with the variation of the number of hidden
units [12].

Other methods, such as support vector machine (SVM) [13],
grey target theory [14], Dempster—Shafer (D-S) theory of
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evidence [15], statistic method [16], etc. are also used for
fault diagnosis of engines. A common concern on the above-
mentioned methods is that they cannot take full advantages
of quantitative and qualitative information simultaneously. For
example, a traditional rule-based expert system cannot be
trained; models constructed with intelligent algorithms like
ANN can be trained using quantitative information only but
lack the ability of accommodating expert knowledge.

The belief rule-based (BRB) inference methodology is
proposed to analyze the complex decision problems with both
quantitative and qualitative information [17]-[19]. It is devel-
oped on the basis of D-S theory of evidence, decision theory
and traditional “IF-THEN” rules [18]. Different from tradi-
tional IF-THEN rules, each consequent attribute of a belief rule
is associated with a belief degree. Experts can use their subjec-
tive knowledge to build an initial BRB model. The parameters
of the BRB model can be optimized using numerical data to
describe the nonlinear relationship between inputs and outputs
more accurately [19]. The parameters of the BRB model can
also be adjusted by experts using their experiences and knowl-
edge as the belief rules are transparent and interpretable [20].
The BRB inference methodology has been applied in finan-
cial decision-making, medical care, oil leakage detection,
product life estimation, etc. [17], [21]-[23]. It has also been
used in marine domain, such as accident analysis, technique
selection for ship emission reduction, and marine security
assessment [24]-[26]. In the fault diagnostic area, BRB infer-
ence methodology is used to detect the track vertical irregu-
larity of trains [27], and fault diagnosis of aircraft navigation
systems [28]. However, no research shows that the BRB infer-
ence methodology has been applied to fault diagnosis in ships.

From the literature review, it can be found that in the
previous research the states of consequent attributes in a BRB
model are required to be mutually exclusive with each other.
However, fault diagnosis, especially fault mode identifica-
tion in ships has its own characteristics which needs to be
taken into account when BRB and evidential reasoning (ER)
approaches are used for causal inference. First, fault modes
generally are not mutually exclusive, but are coupled with each
other in the sense that the occurrence of one fault may lead
to another fault mode [29]. Moreover, different types of faults
may occur simultaneously. As a result, when fault modes are
used as consequent attributes in a BRB model, all combina-
tions of concurrent fault modes should be considered to make
a BRB model logical. Second, there is a many-to-many rela-
tionship between fault features and fault modes, which means
that one fault symptom can be caused by several different
fault modes and vice versa. In the previous fault diagnostic
models, different fault modes were considered to be exclu-
sive with each other and the combinations of different fault
modes were ignored, and therefore the fault diagnostic mod-
els only generated a single output and were not suitable for
concurrent fault modes. Additionally, all fault modes shared
the same fault features as the input of fault diagnostic mod-
els, which increased the model complexity, especially in the
occasion that a large number of fault features were considered.
For example, Zhang et al. [30] used different fault modes to
construct a BRB model for fault diagnosis in engines, but the
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Fig. 1. Fault diagnostic model for a single fault.

fault modes were considered to be exclusive and concurrent
faults were ignored in the model.

Based on the above analysis, a new fault diagnostic model
structure is proposed in this paper to solve the problems in the
previous fault diagnostic models. BRB inference methodology
is used to link the fault modes of marine diesel engines with
their fault features. A case for detecting abnormal wear of
a kind of marine diesel engine is examined using the new
BRB fault diagnostic model to show its potential in wide
application. With fivefold cross-validation, the performance
of the BRB fault diagnostic model is compared with that
of the ANN model, the SVM model, and the binary logistic
regression model.

II. FAULT DIAGNOSTIC MODEL BASED ON BRB
INFERENCE METHODOLOGY

A. Model Structure

One of the most commonly employed fault diagnostic model
is for single fault diagnosis as illustrated in Fig. 1. The rela-
tionship between fault features and different fault modes is
built by an algorithm, such as statistical methodology, ANN, or
SVM, which is the basis of fault diagnosis. As shown in Fig. 1,
every fault mode shares the same fault feature vector, and ¢
single fault modes compose the fault frame of discernment
® = {Fi,F,,...,F;}, which is a finite nonempty exhaus-
tive set of all possible failure hypotheses Fi(i = 1,2,...,1).
Given the inputs about the M fault features for the fault diag-
nostic model, the model can generate a single output based
on the relationship between the M fault features and ¢ fault
modes, identifying which fault mode is true. The fault diag-
nostic model in Fig. 1 can only identify a single fault mode
at a time and is not appropriate for the concurrent fault diag-
nosis of multiple modes. As mentioned in Section I, there are
a variety of fault modes in marine diesel engines, some of
which may co-exist simultaneously, and the above single fault
diagnostic model is not applicable in this case.

To construct a fault diagnostic model for identification of
multiple concurrent fault modes, all combinations of failure
hypotheses F; in ® should be considered. In other word,
QO) = |{F,....F,{F,Fy},....{F,...,F},...,0}
should be used as the fault frame of discernment, consist-
ing of 2! — 1 subsets of ® [31]. As shown in Fig. 2, the
relationship between M fault features and 2" — 1 fault modes
(including ¢ single fault modes and 2’ — ¢ — 1 multiple con-
current fault modes) is the basis of multiple concurrent fault
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Fault diagnostic model for multiple concurrent fault modes in

diagnosis. Given input to a fault diagnostic model as shown in
Fig. 2, it will generate a single fault mode or a combination
of multiple concurrent fault modes as output. However, there
are several inherent problems in this model structure.

1) It is difficult to determine a fault feature vector for
multiple concurrent fault modes, and therefore the rela-
tionship between fault features and fault modes is hard
to be determined.

2) With the increase of failure hypotheses considered in
the fault diagnostic model, the number of combinations
of different fault modes will rise exponentially. When
fault samples are insufficient and cannot cover all fault
modes, a fault diagnostic model proposed may not be
reliable.

To deal with the above problems, a new parallel fault
diagnostic model is proposed as shown in Fig. 3, which con-
tains ¢ parallel subfault diagnostic models for ¢ single fault
modes. Each submodel corresponds to one particular fault
mode and has its own fault features. Due to the many-to-
many relationship between fault features and fault modes,
different submodels may share the same fault feature. The out-
put of each subfault diagnostic model are the belief degrees
of two states which are normal and abnormal, where normal
means this fault does not occur and abnormal indicates this
fault occurs. The input coming into the fault diagnostic model
will be distributed to every submodel according to its fault
features. The belief degrees of the two states (normal and

abnormal) of a fault mode are generated by the corresponding
submodel, represented by Bn(i = 1,2;h = 1,2,...,1),
where h is the hth subfault diagnostic model. The subfault
diagnostic models do not affected each other and the final
diagnostic result {p{,p2,...,pn,...,p:} is composed of the
results generated by each submodel, where p; equals the
belief degree of the abnormal state in the hth fault mode,
ie., Ph = ﬂhz(h =1,2,...,0).

Currently, most fault diagnostic models are still about
single fault diagnosis, ignoring concurrent faults, espe-
cially in marine fault diagnosis. Compared with models in
Figs. 1 and 2, the fault diagnostic model in Fig. 3 is well suited
for concurrent fault diagnosis of multiple modes which is
transformed into several parallel binary classification problems
in the one-versus-all scheme [32]. Instead of using all combi-
nations of failure hypotheses as outputs of a fault diagnostic
model directly, the number of parameters of the diagnostic
model in Fig. 3 decreases significantly, reducing the complex-
ity of the model. Since each submodel in Fig. 3 has its own
fault features rather than sharing whole fault features for all
fault modes, the complexity of the diagnostic model can also
be reduced and the relationship between input and output can
be described more clearly. Additionally, the fault diagnostic
model in Fig. 3 is easier to be expanded due to the parallel
structure. When a new fault mode is added into the diagnos-
tic model, only a submodel for the new fault mode needs to
be constructed and tuned without modifying the other sub-
models. However, the model either in Figs. 1 or 2 has to
be reconstructed totally including the inputs, outputs and the
relationships between fault features and fault modes.

In order to use the qualitative and quantitative informa-
tion simultaneously, BRB inference methodology is applied to
establish the relationship between the fault features and fault
modes in every subfault diagnostic model. The development
of the BRB expert system for fault diagnosis of marine diesel
engines includes belief rule base construction, transformation
of fault feature data, rule inference, model optimization, and
final diagnostic result generation.

B. Belief Rule Base

In the BRB inference methodology, the kth belief rule in
the BRB subsystem for the ith (h = 1,2, ..., ) fault mode
is defined as follows [18]:

Ry:
IF: Xy is Ajy; A Xig is Afygy A -+ A Xiag, is Al
THEN:

{(Dhl, ﬂ;’fl), (th, /3;/,{2), (Dhth ﬁ;’iN,,>}

Nj
(Zﬁ,’;n < 1>(n= 1,...,Np).

n=1

In the rule, X;(i = 1,2,...,Mp) is the ith fault feature
which is used as an antecedent attribute of the kth belief rule.
A’ZU(i =1,2,...,Mp;j = 1,2,...,Ty) denotes the referen-
tial value of the ith fault feature, where M), is the number of
fault features and it varies with the different BRB subsystems
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because each fault mode has its own fault features; Tj; is the
number of referential points used for the ith fault feature and
the number of referential points for each fault feature can be
either the same or different, depending on the need of the real
problems. My, and T3;(i = 1, 2, ..., My) have direct influences
on the complexity of the hth BRB subsystem and determine
the number of rules in the belief rule base which is ]_[?i"l Thi.

Dp,(n = 1,2,...,Np) is the consequent state for the
hth fault mode with the belief degree ,B,’fn, where N}, is the
number of consequent states. In the fault diagnostic model
shown in Fig. 3, N;, mostly equals two and the consequent
states include normal and abnormal. If the sum of the belief
degrees ,B;l‘n(n =1,2,...,Ny) for the consequence of the kth
belief rule is one, the belief rule will be said to be com-
plete; otherwise it is incomplete and the remaining belief
degree is referred to ignorance as indicated by the gray box
in Fig. 3. Generally, ignorance is expressed by the power set
of a set of mutually exclusive and collectively exhaustive con-
sequent states. For example, ignorance in the BRB subsystem
in Fig. 3 is {normal, abnormal}. During the construction of
the BRB subsystem for fault diagnosis, some measures should
be taken to eliminate or reduce the ignorance of consequent
states, such as adding a new antecedent attribute, but if the
ignorance cannot be eliminated, it should be considered in the
BRB subsystems. It is believed that the fault diagnostic result
with ignorance is better than a misleading or a totally wrong
fault diagnostic result.

In the kth rule of the Ath BRB subsystem, 6p(k =
1,2,...,Lp) is the rule weight of the kth rule, indicating
the importance of the kth rule in the hth BRB subsystem,
and L represents the number of rules in this subsystem; the
antecedent attribute weights are 81,;.(1' = 1,2,...,Mp). An
initial BRB is constructed based on experts’ subjective knowl-
edge. Rule weights O (k = 1,2, ..., L) and the weights of
antecedent attributes Sﬁi(i = 1,2,..., Mj) need to be deter-
mined, which are all set to be 1 initially in this paper. As for
the belief degrees of consequent states, they are determined by
the statistics of the whole historical operating data of marine
diesel engines and the domain knowledge of experts.

C. Transformation of Fault Data

The antecedent attributes of a BRB model in this paper are
qualitative, and the quantitative fault feature data xj; should
be transformed into belief degrees with the piecewise linear
function. When u(Ap;) < xpi < u(Apjjy1), Xp; is transformed
according to [33]

u(Apijr1) — xni
w(Anij+1) — u(Anj)
xXpi — u(Any)

u(Anj+1) = u(Anj)
where Ap;j(i =1,2...,Mp;j=1,2,..., Ty;) is the referential
points defined for antecedent attribute Xp;(i = 1,2, ..., Mjy).
u(Ap;j) is the quantified value of Ay and u(Api1) < u(App) <

< u(Apir;,;). After data transformation, the fault fea-
ture data x;; can be represented by {(Ap1,0), ..., (Apj-1,0),
(Anijs i), (Anij+1, dnij+1), Anij+2, 0), - .., (Anizy,;, 0)}.

Qpijj =

(D

Qpij+1 =
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D. Rule Inference

1) Rule Activation: otﬁi € {apit, . op, i =1,..., M)
acquired by (1) represent the extents to which each antecedent
attribute of the kth belief rule is matched by the input data x, =

{xnt, ..., thh}-]_[?i"l (a}’;ij)gﬁf is the overall degree to which the
kth rule is matched, where S,’ji = 8’,;./ max;—12,.., Mh{SZi} is the
relative weight of Xj,;(i = 1, 2, ..., Mp). The activation weight

of the kth rule wyy is calculated from (2), which indicates the
degree that the belief rule is activated. The more similarity
between the antecedent attributes and the input fault feature
data, the higher activation weight will be given to the rules.
If wpx is zero, this rule will not be activated

k.
M, hi
9hk|:1_[i—]1<a£ij> }
il
L M
P 9hl|:l_[i=hl<aflij> }

2) Aggregation of Activated Rules: The ER approach is
applied to combine activated rules and generate final conclu-
sions in the BRB inference. The activation weights acquired
from (2) are treated as the relative importance of each con-
sequence and the consequences generated by all the activated
belief rules are aggregated by

M[Hill (whkﬂ;',‘,- +1—om S0 ﬁ;’f,) - (1 - o Y ﬁ;’;)}
1= [T (1 = o)

x(j=1,2,....Np) 3)

Np Ly Np
{z i (ﬂ R ﬂ)
=1

j=1 k=1

(@)

Whi =

.6111'

=
Il

-1
Ly Nj

—(Nh—l)]_[(l—wthﬁ,’jjﬂ )
k=1 j=1

where By; is the predicted belief degree of the jth consequent
state and the final conclusion D), can be expressed as follows:

th{(Dhj,ﬁh/),j:L...,Nh}. (&)

E. Optimization of BRB Model

The performance of the BRB system can be improved
if the parameters of the BRB model are optimized using
the operating data of marine diesel engines. The parame-
ters of a BRB model that can be optimized include rule
weights Op(k = 1,2,...,L;), antecedent attribute weight
8%(1’ = 1,2,...,Mp), and the belief degree of consequents
B, (n=1,2,...,Np).

In a BRB submodel for one fault mode, the outputs of
the model are belief distributions as expressed by (5), and
therefore the objective function of the optimization model is
constructed as follows [19]:

min max i(Pp),j=1,...,N,
Ao ma {&(Pn).j i}

S

&= éZ(ﬂhj(s) ~ th(s>)2<j =1.....Ny (6

s=1

Subjectto 0 <Oy <1,(k=1,...,Ly) (6a)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XU et al.: BRB EXPERT SYSTEM FOR FAULT DIAGNOSIS OF MARINE DIESEL ENGINES 5
R TABLE I
O0<éu=1,G=1,...,Mp) (6b) MATERIAL OF WEAR COMPONENTS IN A FOUR-STROKE
k . MARINE DIESEL ENGINE
< < =
0<pl<L(=L...Nyp (6
Ny,
Z ,3}]:] =1 (6d) Wear Component Material Main Elements
J=1
T - Cylinder liner HT 25~47 Fe, Si
where Py = [6h1, ..., Onry, Sty - s Snbays Bty - - - BN, 1" 18 4
the vector of the parameters which should be optimized
in the hth BRB subsystem. S is the total number of the Piston ring Alloy castiron  Fe, Si

training samples, ﬁhj = (,éhj(l),...,,éhj(S)) represents the
observed belief degree of the jth consequent state and fj; =
(Brj(1), ..., Bpi(S)) is the predicted belief degree of the jth
consequent state that is generated by the BRB model. The
number of parameters in P, is related to the numbers of
belief rules, antecedent attributes, and consequent states, which
equals to (N, x Ly + L, + Mp,).

F. Final Diagnostic Result Generation

The belief degree of the abnormal state of the Ath fault mode
can be acquired with (1)—(5) which is Bp(h = 1,2,...,1).
As described in Section II-A, p; = Bpp(h = 1,2, ...,1) and
pr(h = 1,2,...,1) is used to constitute the final diagnostic
result {p1,p2,...,Pn-..,pn}. 0.5 is used as the threshold to
evaluate whether the fault mode is positive (the fault occurs)
or not. If pp(h=1,2,...,1) exceeds 0.5, the fault mode will
be considered to occur; if the belief degrees of the abnormal
state of several fault modes are over 0.5, all the corresponding
fault modes will be considered to be happened; if no p,(h =
1,2,...,1t) is above 0.5, the marine diesel engine is considered
to be good without any fault.

III. APPLICATION TO THE ABNORMAL WEAR DETECTION
OF MARINE DIESEL ENGINES

A. Problem Description and Dataset

A marine diesel engine contains a variety of wear com-
ponents. Statistics shows that over 50% of faults in marine
diesel engines are caused by friction and wear [34]. Detecting
abnormal wear timely and accurately is an important aspect of
avoiding severe wear faults in marine diesel engines. Among
the methods used for wear fault diagnosis of marine diesel
engine, spectral analysis is a proven technique to find out
abnormal wear positions by analyzing elements’ concentra-
tions in lubricating oil since different wear components in
a marine diesel engine are made of different materials [35].

For abnormal wear detection in a marine diesel engine, the
states (normal and abnormal) of the various wear components
and working medium of the engine, such as lubricating oil are
considered as fault modes. These fault modes are reflected by
the concentration levels of elements in lubricating oil which
are considered as fault features. The elements in lubricating
oil can be from multiple sources and the abnormal state of
one component may make another component become abnor-
mal. For example, once the lubricating oil is polluted by
outside contaminants, main bearing may be in abnormal wear
subsequently after working in the environment of the pol-
luted lubricating oil. In this application, lubricating oil and
three wear components which are main bearing, piston, and

Main bearing * ZQPb30, S45C  Cu, Pb, Fe

Piston ZL108 Al

2Main bearing, bearing bush and bearing journal
are considered together.

cylinder liner-piston ring are considered for wear detection.
The materials of the major wear components are listed in
Table I [36]. Cylinder liner and piston ring constitutes a fric-
tion pair so they are treated as one wear component in this
paper. Similarly, since main bearing, bearing bush and bearing
journal fit together, they are considered as a whole part.

The concentrations of the elements in lubricating oil can
be acquired by analyzing lubricating oil samples with spectral
analysis. In this paper, historical samples are collected dur-
ing the operation of several marine diesel engines which are
of the same type and the dataset is expanded to 152 sam-
ples based on the mega-trend-diffusion method [37], [38] to
keep the numbers of the samples on different wear faults bal-
anced. Every sample contains the concentration of elements
Fe, Al, Pb, and Si. There are five kinds of wear faults in the
dataset, including abnormal wear of piston, abnormal wear
of cylinder liner-piston ring, abnormal wear of main bearing,
polluted lubricating oil, and the concurrence of polluted lubri-
cating oil and main bearing wear. Besides the five kinds of
wear faults, the samples on normal state are also contained in
the dataset. Fig. 4 shows the concentrations of Fe, Al, Pb, and
Si, respectively. To test the BRB expert system constructed
in the following sections, fivefold cross-validation method is
used. The whole dataset is divided into five subsets with sim-
ilar size. Any four subsets are used as a training dataset with
120 or 122 samples and the fifth subset is used as a testing
dataset with 30 or 32 samples. During the training process, the
training step of each BRB subsystem is done using the whole
training data, considering the patterns from the single class
as positive and all other samples are negative. For example,
when the training dataset is used to train the BRB subsystem
for piston wear, only the samples on abnormal wear of piston
are positive (i.e., abnormal wear in piston) and the rest of the
samples in the training dataset are considered to be negative
(i.e., normal wear in piston).

B. BRB Expert System for Abnormal Wear Detection of
Marine Diesel Engines

The BRB expert system contains four BRB subsystems to
identify the abnormal wear state of piston, cylinder liner-piston
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ring, main bearing, and lubricating oil, respectively. The ele-
ments concentrations in lubricating oil are used as antecedent
attributes which will be allocated to each BRB subsystem cor-
respondingly. Due to the many-to-many relationship between
the element concentrations and the abnormal wear parts, there
will be intersection among the antecedent attributes of the four
BRB subsystems. As a binary classification model, the outputs
of each BRB subsystem include normal state and abnormal
state, which is ® = {statel = normal; state2 = abnormal}.
When ignorance exists in a belief rule, {normal, abnormal}
will be considered as the third consequent state. The final out-
put given by the BRB expert system is in the form {(Piston:
p1), (Cylinder liner-piston ring: p»), (Bearing: p3), (lubricat-
ing oil: p4)}, where p1, pa, p3, and p4 represents the predicted
belief degree of abnormal wear state in each part.

To represent the expert knowledge in abnormal wear detec-
tion, referential points for each antecedent attribute are given.
Two referential points low (L) and high (H) are essential which
equal to the minimum and maximum values of each element’s
concentration [23]. Consequently, the points between L and H
can cover the whole value range of each antecedent attribute.

However, the data ranges of some element concentrations
tend to be large from normal state to abnormal state. For
example, the minimum concentration of Si is only 1.6 ppm
but the maximum concentration is 52.26 ppm. To make the
samples represented by belief distributions better distinguish
from each other, a referential point middle (M) is added
which is a cut-point ¢ of each element concentration range.
The samples of which element concentrations on one side
of the cut-point ¢ are labeled as abnormal wear and those
with values on the other side are labeled as normal wear.
The accuracy of such a classification can be determined by
the sensitivity and specificity, where sensitivity and specificity
are the probability of truly identifying abnormal and normal
samples at a certain cut-point, respectively. Receiver operat-
ing characteristic (ROC) curve is used to determine optimal
cut-point, which is a plot of sensitivity versus (1-specificity)
at all possible cut-points [39], [40]. The optimal cut-point is
generally located in the top left part of the ROC curve with
the maximum value (sensitivity + specificity — 1) known as
Youden index [41] and it is used as the value of the referen-
tial point M. Take the concentration of Al for example. The
minimum value (2.9 ppm) and maximum value (26.4 ppm)
of Al concentration are selected as referential points L and
H, respectively. Since Al is the dominant element indicat-
ing abnormal wear of piston, the samples on piston wear
are labeled as 1, whereas the other samples are labeled as
0. By using statistical product and service solutions (SPSS),
the ROC curve of Al can be acquired as well as coordinate
points (x-coordinate: sensitivity; y- coordinate: 1-specificity)
of the curve. It can be found that when 13.35 ppm is used
as the cut-point, the corresponding coordinate point is (x-
coordinate: 1; y-coordinate: 0), and (sensitivity + specificity —
1) of this coordinate point equals to 1 which is maxi-
mum among the (sensitivity + specificity — 1) values of all
coordinate points. Therefore, 13.35 ppm is selected as the
referential point M of Al. The referential point M of other
elements can be determined in the same way. The values of

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE II
VALUES OF REFERENTIAL POINTS FOR EACH
ANTECEDENT ATTRIBUTE (PPM)

Fe Al Pb Si

Low(L) 1250 290 195 160
Middle(M) 3695 1335 963 807
High(H) 8530 2640 1850 52.26

the referential points for each antecedent attribute are listed
in Table II.

Each antecedent attribute will be divided by either two
(L and H) or three (L, M, H) referential points to con-
struct the rule base of the BRB expert system. The tradeoff
between model accuracy and model complexity is taken into
account when the number of reference points are selected.
The submodel with best accuracy, stability, and validity will be
selected finally. Specifically, accuracy is the closeness between
the predicted belief degrees and the observed belief degrees
of consequent states in a BRB model. Stability describes how
the parameters of a BRB model vary with its inputs. Validity
indicates whether there is any rule being in conflict with other
rules or experts’ experience.

C. BRB Subsystem for Piston

The material of the piston is ZL108, of which the main
element is Al as shown in Table I. Consequently, the con-
centration of Al is selected as the single antecedent attribute
in the BRB subsystem for the piston. The BRB subsystems
with two referential points and three referential points for
Al concentration are constructed, respectively, for compari-
son. By comparing the accuracy and complexity of the two
BRB subsystems with each other, it can be found that the
BRB subsystem with two referential points for the concentra-
tion of Al can generate more accurate prediction. Therefore,
only two rules are included in the BRB subsystem for the
abnormal wear detection of the piston. The referential points
for the concentration levels of Al are L (L = 2.90 ppm) and
H (H = 26.40 ppm). According to (1), the inputs of the BRB
subsystem will be transformed into belief distributions. For
example, the concentration of Al in one sample is 17.6 ppm,
and it will be transformed into {(L:0.376); (H:0.624)} so that
0.376 x 2.9 + 0.624 x 26.4 = 17.6. Then the inference will
be conducted based on (2)—(5) to generate the outputs of the
model. Using the training dataset described in Section III-A,
seven parameters (six of them are shown in Table III and the
seventh is the antecedent weight which is 1) of the BRB sub-
system for piston are trained. The optimized BRB subsystem
which is trained by the first training dataset is listed as Table III
and the parameters of the other four BRB subsystems in the
fivefold cross-validation can be found in Appendix Al.

D. BRB Subsystem for Cylinder Liner-Piston Ring

Fe and Si are selected as the antecedent attributes of the
BRB system for cylinder liner-piston ring since Fe is the
main element of the material of the cylinder liner-piston ring,
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TABLE III
BRB SUBSYSTEM FOR PISTON AFTER OPTIMIZATION

Rule NO.  Rule Weight  Element Concentration in Lubricating Oil ~ Consequent Distribution
Al Normal Abnormal
1 1 L 1 0
2 0.938 H 0 1

and cylinder liner-piston ring wear can also produce some Si.
However, Fe does not only come from cylinder liner-piston
ring wear, but also come from the main bearing wear. Due to
the multisources of Fe, it is difficult to identify the wear state
of the cylinder liner-piston ring when the antecedent attributes
of a rule are in the combination {Fe: H, Si: L}. The samples
with {Fe: H, Si: L} can be on the abnormal wear state of the
cylinder liner-piston ring or that of the main bearing. To solve
the problem, Pb, which is the dominant element for abnor-
mal wear detection of the main bearing, is also used as the
antecedent attribute of the BRB subsystem for the cylinder
liner-piston ring. By adding Pb into the antecedent attributes,
the rule with the antecedent attributes {Fe: H, Si: L} is further
divided into two rules

R;: IF: Feis HA Siis LAPbis L

THEN: wear state of cylinder liner-piston ring is

1 1 G 1 )
{(normal, Bi ), (abnormal, ,32>], (; B, <1]).

Ry IF: Feis HA Siis LAPbis H
THEN: wear state of cylinder liner-piston ring is

{(normal, ,312), (abnormal, ﬂzz)}, <22: ,3,% < 1)
n=1

where 11 is far smaller than ,321 in Ry, whereas ﬂ% is far higher
than ﬁ% in Ry.

The numbers of referential points for the concentration lev-
els of Fe, Si, and Pb can be 2 or 3. We have tested and
compared all combinations of different numbers of referen-
tial points and found that the BRB subsystem in which the
numbers of the referential points for all antecedent attributes
are 3 performs best in terms of accuracy, stability, and validity
which are defined in Section III-B. By traversing the referen-
tial points of the antecedent attributes Fe, Si, and Pb, 27 rules
are constructed.

Ignorance should be taken into account in the consequent
states when Fe, Si, and Pb are all in H level. This is because
several totally different combinations of the wear faults can
lead to high concentrations of the three elements and the
ignorance cannot be eliminated with the information acquired
currently. In this occasion, the belief distribution of the out-
put is {(rnormal,0), (abnormal, 0), ((normal, abnormal), 1)},
indicating the complete ignorance in the rule.

One hundred and eleven parameters of the BRB subsys-
tem are optimized by the training dataset according to (6) and
the constrains illustrated in (6a)—(6d). The BRB subsystem
trained by the first training dataset is shown in Table IV and

the parameters of the other four BRB subsystems in the five-
fold cross-validation are listed in Appendix A3. In Table IV,
the rule weights of the 13th and 14th rules are close to 0, indi-
cating that the two rules hardly play any roles in the abnormal
wear detection for cylinder liner-piston ring. In addition, when
the concentration level of Fe is L or M, the cylinder liner-
piston ring tends to be in normal state. With the concentration
level of Fe increasing from L to M, the belief degree of nor-
mal state decreases correspondingly, even though the change
is slight. On the contrary, there is a high probability for the
cylinder liner-piston ring to be in abnormal state when the
concentration level of Fe is H except the rule that the con-
centration level of Pb is also H. Similar trends can also be
observed in the other four sub-BRB models trained by the
other four training datasets, respectively.

E. BRB Subsystem for Main Bearing

Pb is used as the antecedent attribute of the BRB subsys-
tem for main bearing. By comparing the performance of the
BRB subsystem with two referential points for the concentra-
tion levels of Pb with that of the BRB subsystem with three
referential points, it is proved that the BRB subsystem with
three referential points is more appropriate.

After optimization, the BRB subsystem can better describe
the relationship between the concentration of Pb and the wear
states of the main bearing. The belief rule base for abnormal
wear detection of the main bearing after being trained by the
first training dataset is shown in Table V. The parameters of
the BRB subsystems trained by the other four training datasets
can be referred to Appendix A2.

F. BRB Subsystem for Lubricating Oil

Generally external pollutants, such as silt and dust can get
into the lubricating oil during the operation of ships and con-
taminate the oil. Meanwhile, the contaminants can deposit in
the mechanical components of the marine diesel engine, exac-
erbating the abnormal wear of these components. Some wear
components are sensitive to the pollution of the lubricating oil,
such as the main bearing.

Si is the main element of the silt and dust which is used as
the antecedent attribute of the BRB subsystem for lubricating
oil. As mentioned above, the external contaminant is not the
single source of Si, and the abnormal wear of the piston and
the cylinder liner-piston ring can also produce a certain amount
of Si. Therefore, when the concentration of Si is in the high
level, the ignorance of the state of the lubricating oil will exist.
To eliminate the ignorance, the concentrations of Fe and Al are



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE IV
BRB SUBSYSTEM FOR CYLINDER LINER-PISTON RING AFTER OPTIMIZATION

Rule NO.  Rule Weight  Element Concentration in Lubricating Oil Consequent Distribution
Fe Si Pb Normal ~ Abnormal  {Normal, Abnormal}
1 1 L L L 1 0 0
2 1 L L M 1 0 0
3 1 L L H 1 0 0
4 1 L M L 0.998 0 0.002
5 1 L M M 0.998 0 0.002
6 0.998 L M H 1 0 0
7 0.997 L H L 1 0 0
8 1 L H M 1 0 0
9 1 L H H 0.998 0.001 0.001
10 0.996 M L L 1 0 0
11 1 M L M 1 0 0
12 1 M L H 1 0 0
13 0.026 M M L 0.017 0.836 0.146
14 0.001 M M M 0.628 0.18 0.192
15 1 M M H 1 0 0
16 0.953 M H L 0.958 0.038 0.004
17 0.986 M H M 0.98 0.02 0
18 0.999 M H H 0.995 0.002 0.003
19 0.929 H L L 0.044 0.954 0.002
20 0.587 H L M 0.358 0.456 0.185
21 1 H L H 1 0 0
22 1 H M L 0 1 0
23 0.657 H M M 0.154 0.846 0
24 1 H M H 1 0 0
25 0.999 H H L 0 0.999 0.001
26 0.999 H H M 0 0.715 0.285
27 1 H H H 0 0 1
TABLE V
BRB SUBSYSTEM FOR MAIN BEARING AFTER OPTIMIZATION
Rule NO. Rule Weight  Element Concentration in Lubricating Oil Consequent Distribution
Pb Normal Abnormal
1 1 L 1 0
2 0.001 0.347 0.653
3 1 H 0 1

also used as the antecedent attributes of the BRB subsystem
for the polluted lubricating oil.

By comparing the BRB subsystems for the detection of
polluted lubricating oil with different numbers of referential
points for each antecedent attributes, it can be found that
the BRB subsystem containing 12 rules can achieve a better
tradeoff between the model accuracy and complexity. In this
subsystem, the numbers of referential points are 3 (L, M, H),
2 (L, H), and 2 (L, H) for the concentration levels of Si, Fe,
and Al, respectively. The complete ignorance is also consid-
ered in the consequent attribute besides the normal state and
the abnormal state when all the concentrations of the three ele-
ments are in high level. Table VI gives the optimized belief
rule base which is trained by the first training dataset. The
parameters of the BRB subsystems trained by the other four
training datasets are listed in Appendix A4. In Table VI, it can
be found the state of lubricating oil will be normal as long as
the concentration level of Si is L, but the concentration levels

of Fe and Al have an effect on the state of lubricating oil
when the concentration level of Si is M or H. Specifically, as
indicated by the fifth and ninth rules, the lubricating oil has an
extremely high probability of being abnormal when the con-
centration levels of Fe and Al are both L, and the higher the
concentration level of Si, the more important the correspond-
ing rule in the rule base (0.235 for the fifth rule and 0.997 for
the ninth rule). However, when the concentration level of Si
is M, there will be a high probability of lubricating oil being
in normal state as long as one of Fe and Al is in H concentra-
tion level. Due to the limitation of our current knowledge, high
belief degree will be assigned to ignorance when the concen-
tration levels of Si and either Fe or Al are H. Moreover, the
multiple sources of Fe reduces the credibility of the seventh
rule, making this rule hardly have any effect on the final result
with a rule weight 0.001. Similar trends can also be observed
in the other four sub-BRB models trained by the other four
training datasets.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XU et al.: BRB EXPERT SYSTEM FOR FAULT DIAGNOSIS OF MARINE DIESEL ENGINES 9

TABLE VI
BRB SUBSYSTEM FOR LUBRICATING OIL AFTER OPTIMIZATION

Rule NO.  Rule Weight  Element Concentration in Lubricating Oil Consequent Distribution
Si Fe Al Normal  Abnormal  {Normal, Abnormal}

1 1 L L L 1 0 0

2 1 L L H 1 0 0

3 1 L H L 1 0 0

4 1 L H H 1 0 0

5 0.235 M L L 0 1 0

6 0.997 M L H 1 0 0

7 0.001 M H L 0.998 0.002 0

8 1 M H H 1 0 0

9 0.997 H L L 0 1 0

10 0.924 H L H 0.011 0.002 0.987

11 0.686 H H L 0.005 0.128 0.867

12 0.973 H H H 0.009 0 0.991
90 T

*— Fe

80 W r T ? —e— g H

Element Concentration (ppm)

0 20 40 60 80 100 120 140 160
Sample Number

(a)

Element Concentration (ppm)

0 20 40 60 80 100 120 140 160
Sample Number

(b)

Fig. 4. Concentrations of elements Fe, Si, Al, and Pb in the dataset (a) concentration of Fe and Si and (b) concentration of Al and Pb.

IV. VALIDATION OF THE BRB EXPERT SYSTEM

Abnormal wear detection of marine diesel engines is still
used as the example to verify the effectiveness of the BRB
expert system for fault diagnosis.

As described previously, fivefold cross-validation is con-
ducted to evaluate the robustness of the BRB expert system.
To further verify the performance of the optimized BRB expert
system, the results of the abnormal wear detection given by the
optimized BRB expert system are compared with those given
by ANN models, SVM models, and the initial BRB expert
system which can be treated as a model based on expert expe-
riences only. We constructed two ANN models and two SVM
models with different structures. The first ANN model and
the first SVM model share the similar structure with the BRB
expert system, containing four subsystems for detecting abnor-
mal states of piston, cylinder liner-piston ring, main bearing,
and lubricating oil, respectively. In the second ANN model
and the second SVM model, the concentration levels of ele-
ments Fe, Al, Pb, and Si are used as the inputs and six modes
(including five fault modes and the normal mode) contained in

the training dataset are used as the outputs. Therefore, there
are four nodes in the input layer and six nodes in the out-
put layer in the second ANN model, and four inputs and six
outputs in the second SVM model. To demonstrate the over-
all performance of the models mentioned above, we use user
accuracy (UA) [42] to show the result. UA is the ratio of the
number of correctly detected samples to the number of sam-
ples on this component. Fig. 5 shows the UA variation of
testing datasets given by the six different models in fivefold
cross-validation. In Fig. 5, onefold in the horizontal axis rep-
resents the model is trained by the first training dataset and
so on. The vertical axis represents the values of UA.

From Fig. 5, it can be seen that the optimized BRB expert
system has the best performance on abnormal wear detection.
All the UA values are above 80% in the fivefold cross-
validation test. Especially in the secondfold and fourth fold
tests, all the samples in the testing datasets are identified cor-
rectly. Moreover, the optimized BRB expert system is more
stable than other models and there is not an obvious fluctuation
of UAs in the fivefold cross-validation test. The ANN model
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UA of the testing datasets in fivefold cross-validation given by (a) initial BRB expert system, (b) optimized BRB expert system, (c) ANN model

with four ANN subsystems, (d) ANN model with six outputs, (¢) SVM model with four SVM subsystems, and (f) SVM models with six outputs.

containing four ANN subsystems has a similar performance
both in accuracy and stability, but in the second and fifth
fold tests the performance of the ANN group model on the
identification of normal samples is not as good as that of the
optimized BRB expert system. The ANN model with six out-
puts and the SVM model with four SVM subsystems have
the moderate performance either on accuracy or on stability.
Although the SVM model with six outputs performs best on
detecting abnormal wear of cylinder liner-piston ring, it cannot
identify the concurrent faults stably, especially in the fourth
round. The initial BRB expert system which is only based
on expert experience performs worse than the other models.
Specifically, with the initial BRB expert system, some UAs of

detecting cylinder liner-piston ring and concurrent faults are
below 50%, and the UAs of detecting cylinder liner-piston ring
and main bearing using the initial BRB expert system fluctuate
significantly.

Although the ANN group model has a similar performance
to the optimized BRB expert system, its identification accuracy
is influenced by the number of hidden layer nodes. Based on
the empirical equation n, = «/n + m + a [43], where n is the
number of input layer nodes, m the number of output layer
nodes, a an integer between 0 and 10, and n; the number
of hidden layer nodes in the ANN models. In each fold, a
varies from O to 10 and the number of hidden layer nodes
which makes the ANN model perform better with the training
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Fig. 6. Number of hidden layer nodes in fivefold cross-validation test for
the ANN model with four ANN subsystems.

dataset is selected. Fig. 6 shows the variation of the number
of hidden layer nodes in the fivefold cross-validation test.

From Fig. 6, it can be seen that the numbers of the hidden
layers nodes in the ANN subsystems for piston and lubricating
oil are stable which are all 3. But the numbers of the hidden
layers nodes in the sub-ANN models for cylinder liner-piston
ring and main bearing vary obviously with different training
datasets which change between 3 to 7 and between 2 to 6,
respectively. Compared with the ANN models, the structure of
the BRB expert system does not change from fold to fold after
optimization, with only slight changes in parameters as shown
in Appendix A. This indicates the robustness and credibility
of the BRB expert system.

Besides ANN models, a binary logistic regression model
which is used to estimate the probability of a binary response
to one or several independent variables is also applied to con-
struct an abnormal wear detection model for marine diesel
engine using SPSS. Similar to the BRB expert system, ANN
model with four subsystems, and SVM model with four sub-
systems, the whole model is also divided into four submodels
for each component and each submodel is constructed by
binary logistic regression. However, as the number of sam-
ples on abnormal wear of different wear components from real
ships is limited, the samples tend to be distributed at either
normal or abnormal end and there are not enough samples
in the transition phase from normal to abnormal, the feasibil-
ity of the abnormal wear detection model based on binary
logistic regression cannot be ensured. For example, in the
abnormal wear detection model for piston, the concentration
of Al is used as the independent variable and the wear state
(normal = 0 and abnormal = 1) is used as the categori-
cal dependent variable. A logistic regression function can be
acquired to represent the relationship between the concentra-
tion of Al and the wear state of piston, but the relationship
between the concentration of Al and the wear state of piston
is insignificantly correlated with each other at p<0.05 level,
indicating that the concentration of Al is not significantly asso-
ciated with the probability of the piston being in abnormal
state. This result contradicts with the knowledge that the con-
centration of Al is the main feature indicating the wear state
of piston as we described previously. This is because there

eters of the logistic regression. As a result, the significant role
of Al concentration cannot be recognized and reflected in the
final regression function.

Based on the discussion about the performance of the BRB
expert system in fivefold cross-validation, a model which
is suitable for detecting various types of abnormal wear of
engines is determined. As Fig. 5(b) indicated, the BRB expert
system trained by the second and fourth training datasets can
both perform well on the testing datasets. Considering the
performance of the BRB expert system on the whole dataset,
the system constructed using the fourth training dataset is used
as the final BRB model.

Fig. 7 shows the predicted belief degrees of abnormal
state in the fourth testing dataset. The belief degrees in
Fig. 7(a) and (b) are given by the initial BRB expert system
and the BRB expert system trained by the fourth training
dataset. In Fig. 7, each sample corresponds to four predicted
belief degrees which represent the belief degrees of abnormal
state of piston (P), bearing (B), cylinder liner-piston ring (R),
and lubricating oil (L), respectively. For example, the four
values of the 19th sample in Fig. 7(a) are {p; = 0.181, p, =
0.895, p3 = 0.015, ps = 0.047}, which indicates that the prob-
abilities of the 19th sample being in abnormal state of piston,
cylinder liner-piston ring, main bearing, and lubricating oil
are 0.181, 0.895, 0.015, and 0.047, respectively. Since only
the belief degree of abnormal state of cylinder liner-piston
ring exceeds the threshold 0.5, this sample indicates that the
cylinder liner-piston ring is in abnormal wear state.

As described in Section III, ignorance is considered in the
BRB subsystems for cylinder liner-piston ring and lubricat-
ing oil. The ignorance (the belief degree associated with an
unknown state in a prediction) of sample 19, 20, and 22 on
abnormal wear of cylinder liner-piston ring marked by the
rectangle in Fig. 7(a) is obvious. For the three samples, the
belief degrees of abnormal state of cylinder liner-piston ring
are 0.801, 0.775, and 0.922, with the ignorance 0.097, 0.097,
and 0.093 correspondingly. After optimization, the ignorance
of these samples is small enough to be ignored. The belief
degrees of abnormal state of cylinder liner-piston ring are
0.895, 0.935, and 0.95, respectively. Meanwhile, the ignorance
of the samples on polluted lubricating oil is small no matter
whether the predication is given by the initial BRB expert
system or by the BRB expert system after optimization. The
falsely identified samples in the testing dataset are marked
by black ovals. By comparing Fig. 7(a) and (b), it can be
found the optimized BRB expert system reduces the number
of falsely identified samples from five to zero. Moreover, the
optimized BRB expert system makes the distinction between
the normal wear state and abnormal wear state clearer by giv-
ing a higher belief degree to abnormal state of the abnormal
components and a lower belief degree to abnormal state of the
normal components.

As shown in Fig. 6, the number of hidden layer nodes of
each ANN subsystem varies in the fivefold cross-validation
causing changes to the structures of the ANN model with
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Fig. 7.
(P: piston; B: main bearing; R: cylinder liner-piston ring; L: lubricating oil).

four subsystems in every fold. To determine a model which
can perform well in every test, the performances of the ANN
models in 12 possible structures are compared. The UAs of
the testing datasets in fivefold cross-validation given by the
12 possible ANN group models are shown in Fig. 8. From
this figure, it can be found that the ANN group model with 3,
3, 6, and 3 hidden layer nodes in the ANN subsystems for pis-
ton, cylinder liner-piston ring, main bearing, and lubricating
oil performs best no matter in accuracy or in stability. It can
also be found that the ANN models with different structures
have different performances in the fivefold cross-validation,
which further indicates that the structure of ANN model is
not robust.

V. APPLICATION EXAMPLE OF THE BRB EXPERT
SYSTEM ON ABNORMAL WEAR DETECTION

In this section, the samples from the 1000-h reliability
test of a four-stroke diesel engine are used to illustrate the
inference process of the BRB expert system constructed in
Section III. The materials of the components of the engine
are very similar to those from which the samples used in
Sections IIT and IV were collected. The 1000-h reliability test
was conducted. During the experiment, the lubricating oil was
sampled every 48 h and the spectral data was acquired by
spectral analysis. We use the optimized BRB expert system to
detect the wear state of the marine diesel engine with the sam-
ple collected at the 912th h. The concentrations of the particles
in this sample is listed as follows:

Sample at the 912th h: {(Fe: 92.5 ppm), (Al: 8.8 ppm), (Pb:
10.7 ppm), (Si: 7.7 ppm)}.

The subinputs to the BRB subsystems for piston, cylin-
der liner-piston ring, main bearing, and lubricating oil are
{Al}, {Fe, Si, Pb}, {Pb}, and {Fe, Al, Si} correspondingly.
Using (1) and the values of the referential points in Table II,
the concentrations of the elements are transformed into belief
distributions over the referential values, which are as follows.
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In the BRB subsystem for piston: {Al: (L: 0.749); (H:
0.251)}.

In the BRB subsystem for cylinder liner-piston ring:
{Fe: (L: 0); (M: 0); (H: 1)}; {Si: (L: 0.057); (M: 0.943);
(H: 0)}; {Pb: (L: 0); (M: 0.879); (H: 0.121)}.

In the BRB subsystem for main bearing: {Pb: (L: 0);
(M: 0.879); (H: 0.121)}.

In the BRB subsystem for lubricating oil: {Fe: (L: 0);
H: D}; {AL (L: 0.749); (H: 0.251)}; {Si: (L: 0.057);
(M: 0.943); (H: 0)}.

After the inputs are transformed into belief distribution, the
activation weight of each rule in each BRB subsystem can be
calculated using (2). For the sample collected at 912th h, the
activation weights of each rule in every subsystem are listed
as follows.

In the BRB subsystem for piston: {w; = 0.759; wy =0.241}.

In the BRB subsystem for cylinder liner-piston ring: only
the 20th, 21st, 23rd, and 24th rules are activated and the rule
activation weights are {wy9 = 0.024; wy; = 0.026; w3 =
0.482; wpyqa = 0.468}. The rule activation weights of the other
rules are all zero.

In the BRB subsystem for main bearing: {w; = 0; wy =
0.007; w3z = 0.993}.

In the BRB subsystem for lubricating oil: only the 3rd, 4th,
7th, and 8th rules are activated with activation weights {w3 =
0.149; wq = 0.05; w7 = 0.208; wg = 0.593}, and the rule
activation weights of the other rules are all zero.

Using the ER approach as described by (3)—(5), we can
calculate the belief degrees of the consequent states in each
BRB subsystem. The results given by these subsystems are as
follows, where 81 and B, are belief degrees associated with
normal and abnormal states, respectively.

In the BRB subsystem for piston: {81 = 0.91; 82 = 0.09}.

In the BRB subsystem for cylinder liner-piston ring: {8 =
0.624; B> = 0.374; B3 = 0.002}.

In the BRB subsystem for main bearing:

B2 =1}

{B1 = 0
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model structure 3323 means there are

B

and lubricating oil,

UA of the testing datasets in fivefold cross-validation given by 12 possible ANN group model structures (e.g.

Fig. 8.

respectively).

piston ring, main bearing,

cylinder liner-

>

3,3,2, and 3 hidden layer nodes in the ANN subsystems for piston

which also indicate that the main bearing are in abnormal

wear state.

In the overhaul of the diesel engine after 1000-h reliabil-

ity test

it is found that surface peeling and scorching have

il

occurred in the bottom of the bearing bush of the third main

bearing as shown in Fig. 9

which is in agreement with the

s

predicted results of the BRB expert system.

VI. CONCLUSION

Effective and timely fault diagnosis is significant to improve
the reliability of marine diesel engines. In this paper, we pro-

Fig. 9. Abnormal wear in the bush of main bearing.

pose a novel fault diagnostic structure and use BRB inference
methodology to link the fault modes of marine diesel engines

i

{B1

In the BRB subsystem for lubricating oil:

B2 =0;

with their fault features. A case study was conducted for

= 0).

B3
The final result given by the optimized BRB expert system

s

the application of the BRB expert system to identifying the

abnormal wear in marine diesel engines. With fivefold cross-

validation

; p4 = 0}. The result p3

9p3:1

= 0.374;

= 0.09; p»

is: {p1

the effectiveness of the BRB expert system for fault

]

1 indicate that the main bearing is considered to be in abnor-

mal wear state. Moreover.

diagnosis of marine diesel engine is compared with that of
ANN fault diagnostic model and SVM fault diagnostic model.

The major conclusions of this paper are as follows.

the predicted results from sample

s

collected at 960th h and 1000th h are {p; = 0.1; p» = 0.337;

p3 = 1;pa =0} and {p; = 0.1; p2 = 0.290; p3 = 1; p4 = 0},
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1st 2nd 3rd 4th
0.243  0.209
§: 10557 0.613
0.200 0.178
B1 B2 B3 0
[(1.000 0.000 0.000 1.0007
1.000 0.000 0.000 1.000
1.000 0.000 0.000 1.000
0.998 0.000 0.002 1.000
0.998 0.000 0.002 1.000
1.000 0.000 0.000 0.998
1.000 0.000 0.000 0.997
1.000 0.000 0.000 1.000
0.998 0.001 0.001 1.000
1.000 0.000 0.000 0.996
1.000 0.000 0.000 1.000
1.000 0.000 0.000 1.000
0.017 0.836 0.146 0.026
0.628 0.180 0.192 0.001
1.000 0.000 0.000 1.000
0.958 0.038 0.004 0.953
0.980 0.020 0.000 0.986
0.995 0.002 0.003 0.999
0.044 0954 0.002 0.929
0.358 0.456 0.185 0.587
1.000 0.000 0.000 1.000
0.000 1.000 0.000 1.000
0.154 0.846 0.000 0.657
1.000 0.000 0.000 1.000
0.000 0.999 0.001 0.999
0.000 0.715 0.285 0.999
_0.000 0.000 1.000 1.000_
B1 B B3 0
[[1.000 0.000 0.000 1.000 7]
1.000 0.000 0.000 1.000
1.000 0.000 0.000 1.000
1.000 0.000 0.000 1.000
1.000 0.000 0.000 0.999
1.000 0.000 0.000 1.000
1.000 0.000 0.000 1.000
1.000 0.000 0.000 1.000
0.999 0.001 0.000 1.000
0.989 0.004 0.007 0.883
0.999 0.000 0.001 0.981
1.000 0.000 0.000 1.000
0.079 0.789 0.132 0.087
0.734 0.257 0.009 0.001
1.000 0.000 0.000 1.000
0.975 0.023 0.002 0.955
0.998 0.002 0.000 0.985
0.997 0.002 0.001 1.000
0.090 0.882 0.027 0.903
0.343 0473 0.184 0.575
1.000 0.000 0.000 0.919
0.000 1.000 0.000 1.000
0.190 0.810 0.000 0.707
1.000 0.000 0.000 1.000
0.071 0.901 0.028 0.952
0.151  0.637 0.212 0.999
_0.000 0.000 1.000 1.000_

Sth

0.180  0.221  0.286
0.510 0.655 0.535
0.310 0.124  0.179

Bi
1.000
1.000
1.000
1.000
1.000
0.999
1.000
0.998
1.000
0.993
1.000
1.000
0.000
0.613
1.000
0.954
0.991
0.998
0.058
0.340
1.000
0.000
0.000
1.000
0.000
0.003
| 0.000

B1

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.993
1.000
1.000
0.000
0.641
1.000
0.935
0.991
1.000
0.001
0.320
1.000
0.000
0.032
1.000
0.004
0.007

| 0.000

B2
0.000
0.000
0.000
0.000
0.000
0.001
0.000
0.001
0.000
0.000
0.000
0.000
0.887
0.369
0.000
0.041
0.009
0.001
0.941
0.478
0.000
1.000
1.000
0.000
1.000
0.715
0.000

B
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.005
0.000
0.000
0.869
0.330
0.000
0.062
0.001
0.000
0.999
0.466
0.000
1.000
0.968
0.000
0.995
0.723
0.000
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B3 0 Bi B2 B3 0
0.000 1.00077[ 1.000 0.000 0.000 1.0007
0.000 1.000 1.000 0.000 0.000 1.000
0.000  1.000 1.000 0.000 0.000 1.000
0.000 1.000 1.000 0.000 0.000 0.999
0.000 1.000 1.000 0.000 0.000 0.999
0.000 0.999 1.000 0.000 0.000 1.000
0.000 1.000 1.000 0.000 0.000 1.000
0.001  1.000 1.000 0.000 0.000 1.000
0.000 0.999 1.000 0.000 0.000 1.000
0.007 0.989 0.993 0.005 0.002 0.945
0.000 0.988 1.000 0.000 0.000 1.000
0.000 0.991 1.000 0.000 0.000 1.000
0.113  0.061 0.000 0.827 0.173 0.089
0.018 0.001 0.343 0.618 0.038 0.001
0.000  1.000 1.000 0.000 0.000 1.000
0.005 0.941 0.953 0.038 0.009 0.953
0.001  0.966 0.993 0.007 0.000 0.952
0.001  1.000 1.000 0.000 0.000 1.000
0.001  0.920 0.024 0.976 0.000 0.952
0.182 0.595 0.365 0.472 0.164 0.547
0.000 0.988 0.948 0.052 0.000 0.969
0.000 1.000 0.000 1.000 0.000 1.000
0.000 0.600 0.000 0.987 0.013 0.748
0.000 0.980 1.000 0.000 0.000 1.000
0.000 1.000 0.051 0.920 0.029 0.957
0.282 0.998 0.120 0.653 0.227 1.000
1.000 1.000_ _0.000 0.000  1.000 1.000_

B3 0
0.000 1.000 ]
0.000 1.000
0.000 1.000
0.000 1.000
0.000 1.000
0.000 1.000
0.000 1.000
0.000 1.000
0.000 1.000
0.002 0.946
0.001 0.995
0.000 1.000
0.131 0.186
0.029 0.001
0.000 1.000
0.002  0.920
0.008 0.940
0.000  1.000
0.000 0.994
0.214  0.609
0.000 1.000
0.000 0.984
0.000 0.741
0.000  1.000
0.001  0.999
0.270  0.993
1.000  1.000 |

With respect to the new structure of the BRB fault diagnos-
tic model, fault diagnosis which is a multiclass classification
problem is transformed into several parallel binary classifi-
cation problems and the model in this structure can identify

the concurrent fault modes simultaneously. Since each BRB
subsystem has its own antecedent attributes, the complexity
of each subsystem can be reduced. During the construction
of the BRB expert system for fault diagnosis, some issues
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1st 2nd 3rd 4th 5th
0.34 034 034 031 034
0.33 033 033 035 0.33
0.33 033 033 034 0.33
B1 B2 B3 0 B1 B2 B3 0 Bi B2 B3 0
[1.000 0.000 0.000 1.00077[1.000 0.000 0.000 1.0007][ 1.000 0.000 0.000 1.0007
1.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000
1.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000
1.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000
0.000 1.000 0.000 0.235 0.000 0.987 0.013 0.203 0.000 0995 0.005 0.207
1.000 0.000 0.000 0.997 1.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000
0.998 0.002 0.000 0.001 0.998 0.000 0.002 0.001 1.000 0.000 0.000 0.001
1.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000
0.000 1.000 0.000 0.997 0.000 0.999 0.001 0.996 0.000 1.000 0.001 1.000
0.011 0.002 0.987 0.924 0.014 0.006 0.980 0.873 0.010 0.008 0.982 0.892
0.005 0.128 0.867 0.686 0.004 0.252 0.744 0.418 0.000 0.216 0.784 0.510
1 0.009 0.000 0991 0973 [0.012 0.000 0.988 0.955 || 0.008 0.000 0.992 0.966 |
Bi B2 B3 0 Bi B2 B3 0
[1.000 0.000 0.000 1.0007]7[ 1.000 0.000 0.000 1.0007
1.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000
1.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000
1.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000
0.000 0.994 0.006 0.271 0.000 0.981 0.019 0.266
1.000 0.000 0.000 0.998 1.000 0.000 0.000 0.996
1.000 0.000 0.000 0.118 0.998 0.000 0.002 0.001
1.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000
0.000 0.998 0.002 0.999 0.000 0.999 0.001 0.998
0.005 0.007 0.988 0.921 0.000 0.020 0.980 0.894
0.006 0.154 0.840 0.646 0.003 0.206 0.791 0.547
L 0.007 0.000 0.993 0.972 || 0.008 0.000 0.992 0.965 |

should be considered. First, under the condition that a reason-
able prediction accuracy of the model can be achieved, we
should use as few antecedent attributes and referential points
as possible to keep the BRB model concise. For example, only
Pb is selected as the antecedent attribute of the BRB subsystem
for the main bearing and only two referential points are used
for Fe in the BRB subsystem for lubricating oil. Second, when
ignorance exists in the BRB expert system, more information
should be added into the antecedent attributes to eliminate or
reduce the ignorance of the BRB expert system. If the igno-
rance of the BRB expert system cannot be eliminated, it should
be considered to avoid the model giving a misleading or totally
wrong result as what we did in the construction of the BRB
subsystems for cylinder liner-piston ring and lubricating oil.

The application of the optimized BRB expert system to
abnormal wear detection verified the effectiveness of the fault
diagnostic model we proposed in this paper. The results given
by the optimized BRB expert system are better than those
given by the ANN models and SVM models. We have also
shown that the binary logistic regression modeling technique
is not feasible when data distributes at either normal or abnor-
mal end. It is important to note that the structure of the BRB
expert system does not change and its parameters change only
slightly when different training datasets are used to build the
model. This shows that the optimized BRB expert system is
more stable and credible than the ANN models and SVM
models. We have shown that the structures and parameters of
best performing ANN models can be different when different
datasets are used for training the models.

By using a historical spectral data in 1000-h reliability test of
a four-stroke diesel engine, we further tested the effectiveness of
the optimized BRB expert system for fault diagnosis of a marine
diesel engine, and the result is also promising, indicating that
the BRB fault diagnostic model with the new structure can be
well applied in fault diagnosis of marine diesel engines.

Although the wear fault of main bearing is well identi-
fied, the capability of this model needs to be verified using
more data collected from real world operations of different
marine diesel engines. Meanwhile, more representative sam-
ples should be used to optimize this system to increase its
credibility and reliability. Additionally, we will take more mea-
sures to eliminate or reduce the ignorance of the BRB expert
system in the future. Specifically, more real data samples on
different wear faults will be accumulated, experiments will
be conducted on testing engines to explore the relationship
between fault features and fault modes, especially the multiple
fault modes, and multisource information, such as vibration
signals and the number of wear particles will be combined
with oil information to detect wear faults of marine diesel
engines more accurately.

The way the BRB expert system is developed in this
paper can also be applied in other fault diagnosis especially
when multiple faults co-exist. The issues considered in the
construction of the proposed model, such as how to decide the
numbers of antecedent attributes and their referential points,
and how to eliminate the ignorance of the model as much as
possible are also useful for building BRB models in various
other data driven modeling and machine learning applications.
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APPENDIX

A. Parameters of Each BRB Subsystem Trained by Different
Training Datasets

1) BRB Subsystem for Piston:

o1 111 1]

Br B 0 B B2 0 B B 0
1 0 1 1 0 1 1 0 0.999
0O 1 0938(/0 1 0971|/0 1 0.905
B B 0 B1 B2 0
1 0 1 1 0 1
0 1 09450 1 00958
2) BRB Subsystem for Main Bearing:
§: [1 1 1 1 1]
Bi B2 0 Bi B2 0
1 0 1 1 0 1
0.347 0.653 0.001 0.289 0.711 0.001
| O 1 1 0 1 1
Bi B2 0 Bi B2 0
1 0 1 1 0 1
0.31 0.69 0.001 0.31 0.69 0.001
| 0 1 1 0 1 1
Bi B2 0
1 0 1
0.297 0.703 0.001
| 0 1 1

3) BRB Subsystem for Cylinder Liner-Piston Ring: Refer
equation at the top of p. 14.

4) BRB Subsystem for Lubricating Oil: Refer equation at
the top of p. 15.
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