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Abstract

Environmental impact assessment (EIA) problems are often characterised by a large number of identified environ-
mental factors that are qualitative in nature and can only be assessed on the basis of human judgments, which inevitably
involve various types of uncertainties such as ignorance and fuzziness. So, EIA problems need to be modelled and ana-
lysed using methods that can handle uncertainties. The evidential reasoning (ER) approach provides such a modelling
framework and analysis method. In this paper the ER approach will be applied to conduct EIA analysis for the first
time. The environmental impact consequences are characterized by a set of assessment grades that are assumed to
be collectively exhaustive and mutually exclusive. All assessment information, quantitative or qualitative, complete
or incomplete, and precise or imprecise, is modelled using a unified framework of a belief structure. The original ER
approach with a recursive ER algorithm will be introduced and a new analytical ER algorithm will be investigated
which provides a means for using the ER approach in decision situations where an explicit ER aggregation function
is needed such as in optimisation problems. The ER approach will be used to aggregate multiple environmental factors,
resulting in an aggregated distributed assessment for each alternative policy. A numerical example and its modified ver-
sion are studied to illustrate the detailed implementation process of the ER approach and demonstrate its potential
applications in EIA.
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1. Introduction

Environmental impact assessment (EIA) is concerned with the systematic identification and evaluation
of the potential impacts (effects), both beneficial and harmful, of proposed projects, plans, programmes or
legislative actions related to the physical–chemical, biological, cultural, and socio-economic components of
the total environment. The primary purpose of the EIA process is to encourage the consideration of the
environment in planning and decision making and to ultimately arrive at actions which are more environ-
mentally compatible (Canter, 1996).

Since its introduction in the United States in the late 1960s, EIA has been adopted and implemented by
many developed and developing countries (Sowman et al., 1995; Leu et al., 1996; Bojórquez-Tapia and
Garcı́a, 1998; Barker and Wood, 1999; Chen et al., 1999; Hopkinson et al., 2000; Weston, 2000; Jay and
Handley, 2001; Steinemann, 2001; Appiah-Opoku, 2001; Tran et al., 2002; Henne et al., 2002). Numerous
EIA methodologies have been developed such as interaction matrices, networks, weighting-scaling (or
-ranking or -rating) checklists (Canter, 1996), multicriteria/multiattribute decision analysis (MCDA/
MADA) (Parkin, 1992; Marttunen and Hämäläinen, 1995; McDaniels, 1996; Hokkanen and Salminen,
1997a,b,c; Hokkanen et al., 1998, 1999; Kim et al., 1998; Rogers and Bruen, 1998; Salminen et al., 1998;
Wang and Yang, 1998; Lahdelma et al., 2000, 2002; Janssen, 2001; Kwak et al., 2002; Pun et al., 2003),
input–output analysis (Lenzen et al., 2003), life cycle assessment (LCA) (Tukker, 2000; Brentrup et al.,
2004a,b), AHP or fuzzy AHP (Ramanathan, 2001; Goyal and Deshpande, 2001; Tran et al., 2002; Sólnes,
2003), fuzzy sets approaches (Munda et al., 1994; Parashar et al., 1997; Enea and Salemi, 2001; Hui et al.,
2002), Rapid Impact Assessment Matrix (RIAM) (Pastakia, 1998; Hagebro, 1998; Pastakia and Jensen,
1998; Pastakia and Bay, 1998), and data envelopment analysis (DEA) (Wei et al., 2004).

Since EIA problems are often characterized by a large number of identified environmental factors, most
of which are qualitative in nature and can only be assessed on the basis of human judgments, EIA methods
must be able to deal with various uncertainties that are inevitably involved in subjective judgments due to
human being�s inability to provide accurate judgments, or the lack of information, or the vagueness of
meanings about environmental factors and their assessments. There is a clear need to develop methods
which can be used to handle various uncertainties such as ignorance and fuzziness simultaneously. This pa-
per is dedicated to exploring an EIA method based on the evidential reasoning (ER) approach which is
developed on the basis of decision theory and the Dempster–Shafer (D–S) theory of evidence (Dempster,
1967; Shafer, 1976) and can be used to model various uncertainties in EIA process.

The rest of the paper is organized as follows. Section 2 gives a brief description of the Dempter–Shafer
theory of evidence, which is the basis of the ER approach. In Section 3, the ER approach for EIA will be
fully investigated, including the identification of environmental factors, the ER distributed modelling
framework, the description of the recursive ER algorithm, the development of a new analytical ER algo-
rithm, and the utility interval based ER ranking method. Section 4 presents the examination of an example
and its modified version using both complete and incomplete assessment information to show the detailed
implementation process of the ER approach and its potential applications in EIA. The paper is concluded
in Section 5 with a discussion about the features of the ER approach. The derivation of the analytical ER
algorithm is provided in Appendix A.
2. The Dempster–Shafer theory of evidence

The evidence theory was first developed by Dempster (1967) in the 1960s. His work was later extended
and refined by Shafer (1976) in the 1970s. Therefore, this theory is also called the Dempster–Shafer theory
of evidence, or the D–S theory for short. The theory is related to the Bayesian probability theory in the
sense that they both deal with subjective beliefs. However, according to Shafer (1976), the evidence theory
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includes the Bayesian probability theory as a special case, the biggest difference being in that the former is
able to deal with ignorance, while the latter is not and its subjective beliefs are also required to obey the
probability rules.

So far, the D–S theory has found wide applications in many areas such as artificial intelligence (AI), ex-
pert systems, pattern recognition, information fusion, database and knowledge discovery, multiple attribute
decision analysis (MADA), audit risk assessment etc. (Ishizuka et al., 1982; Goicoechea, 1988; Korvin and
Shipley, 1993; Yager, 1992, 2002, 2004; Yang and Singh, 1994; Yang and Sen, 1994a,b, 1997; Anand et al.,
1996; Bauer, 1997; Chen, 1997; Guan and Bell, 1997; Luo and Caselton, 1997; McClean and Scotney, 1997;
Cai et al., 2000; Benferhat et al., 2000; Denoeux, 1995, 1997, 1999, 2000a,b; Denoeux and Zouhal, 2001;
Hullermeier, 2001; Bryson and Mobolurin, 1999; Beynon et al., 2000, 2001; Beynon, 2002a,b, 2005a,b;
Binaghi et al., 2000; Sönmez et al., 2001, 2002; Jones et al., 2002; Wang et al., 1995, 1996; Wallery,
1996; Wang, 1997; Wang and Yang, 2001; Yang, 2001; Yang et al., 2001a,b, in press-a, in press-b; Yang
and Xu, 1998, 2002a,b; Siow et al., 2001; Davis and Hall, 2003; Ji and Marefat, 2003; Xu and Yang,
2003; Xu et al., in press; Sohn and Lee, 2003; Osei-Bryson, 2003; Liu et al., 2004a,b; Soundappan et al.,
2004; Srivastava and Shafer, 1992; Srivastava, 1995, 1997; Srivastava and Liu, 2003; Srivastava and Lu,
2002; Srivastava and Mock, 2000, 2002; Cobb and Shenon, 2003).

Let H = {H1, . . ., HN} be a collectively exhaustive and mutually exclusive set of hypotheses or proposi-
tions, which is called the frame of discernment. A basic probability assignment (bpa) is a function
m : 2H ! [0, 1], which is called a mass function, satisfying
mðUÞ ¼ 0 and
X
A�H

mðAÞ ¼ 1; ð1Þ
where U is an empty set, A is any subset of H, and 2H is the power set of H, which consists of all the subsets
of H, i.e.
2H ¼ fU; fH 1g; . . . ; fH Ng; fH 1;H 2g; . . . ; fH 1;H Ng; . . . ;Hg. ð2Þ
The assigned probability (also called probability mass) m(A) measures the belief exactly assigned to A

and represents how strongly the evidence supports A. All the assigned probabilities sum to unity and there
is no belief in the empty set (U). The assigned probability to H, i.e. m(H), is called the degree of ignorance.
Each subset A � H such that m(A) > 0 is called a focal element of m. All the related focal elements are col-
lectively called the body of evidence.

Associated with each bpa is the belief measure, Bel, and the plausibility measure, Pl, which are both
functions: 2H! [0,1] , defined by the following equations, respectively:
BelðAÞ ¼
X
B�A

mðBÞ; ð3Þ

PlðAÞ ¼
X

A\B6¼U

mðBÞ; ð4Þ
where A and B are subsets of H. Bel(A) represents the exact support to A, i.e. the belief of the hypothesis A

being true; Pl(A) represents the possible support to A, i.e. the total amount of belief that could be poten-
tially placed in A. [Bel(A), Pl(A)] constitutes the interval of support to A and can be seen as the lower and
upper bounds of the probability to which A is supported. The two functions can be connected by the
equation
PlðAÞ ¼ 1� BelðAÞ; ð5Þ

where A denotes the complement of A. The difference between the belief and the plausibility of a set A de-
scribes the ignorance of the assessment for the set A (Shafer, 1976).



1888 Y.-M. Wang et al. / European Journal of Operational Research 174 (2006) 1885–1913
Since m(A), Bel(A) and Pl(A) are in one-to-one correspondence, they can be seen as three facets of the
same piece of information. There are several other functions such as commonality function, doubt function,
and so on, which can also be used to represent evidence. They all represent the same information and pro-
vide flexibility to match a variety of reasoning applications.

The core of the evidence theory is the Dempster�s rule of combination by which the evidence from dif-
ferent sources is combined or aggregated. The rule assumes that the information sources are independent
and uses the so-called orthogonal sum to combine multiple belief structures:
m ¼ m1 � m2 � � � � � mK ; ð6Þ
where � represents the operator of combination. With two belief structures m1 and m2, the Dempster�s rule
of combination is defined as follows:
½m1 � m2�ðCÞ ¼
0; C ¼ U;P

A\B¼Cm1ðAÞm2ðBÞ
1�

P
A\B¼Um1ðAÞm2ðBÞ

; C 6¼ U;

8><>: ð7Þ
where A and B are both focal elements and [m1 � m2](C) itself is a bpa. The denominator,
1�

P
A\B¼Um1ðAÞm2ðBÞ denoted by k, is called the normalization factor,

P
A\B¼Um1ðAÞm2ðBÞ is called the

degree of conflict, which measures the conflict between the pieces of evidence (George and Pal, 1996)
and the process of dividing by k is called normalization.

The Dempster�s rule of combination proved to be both commutative and associative (Shafer, 1976), i.e.
m1 � m2 = m2 � m1 (commutativity) and (m1 � m2) � m3 = m1 � (m2 � m3) (associativity). These two
properties show that evidence can be combined in any order. Therefore, in the case of multiple belief struc-
tures, the combination of evidence can be carried out in a pairwise way.

Note that the crude application of the D–S theory and the combination rule can lead to irrational
conclusions in the aggregation of multiple pieces of evidence in conflict (Murphy, 2000). This issue is over-
come in the ER approach introduced in the next section by generating basic probability assignment through
the combination of belief degrees and normalised weights and by normalising the combined probability
masses.
3. The ER approach for EIA

The ER approach for EIA consists mainly of four key parts, which are the identification of environmen-
tal factors, the ER distributed modelling framework for the identified environmental factors, the recursive
and analytical ER algorithms for aggregating multiple identified environmental factors, and the utility
interval based ER ranking method which is designed to compare and rank alternatives/options systemat-
ically. Each part will be described in detail in this section.
3.1. The identification of environmental factors

This is the first step to conduct EIA analysis. In this part all environmental factors that will pos-
sibly be affected need to be investigated and carefully identified. Generally speaking, environments can
be described in two broad categories: the natural environment, consisting of physical–chemical and
biological factors, and the man-made environment, consisting of cultural resources and socio-
economic concerns. Typical environmental factors in each category may include the following (Canter,
1996):
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• Natural environment. Air quality and odor, water quantity and quality, groundwater quantity and qual-
ity, saltwater intrusion, water usage and water rights, meteorology climatology, catastrophic meteoro-
logical events, benthal deposits, noise, soils, geology, seismicity, topography, aquatic and terrestrial
biology, threatened or endangered plant or animal species, visual characteristics, and aesthetic features
of recreational areas, open spaces, and natural areas.

• Man-made environment. Historical, archaeological, and paleontological sites; land use; population (per-
manent versus temporary or recreational); skiing and other recreational uses of area; infrastructure;
resource consumption in terms of energy and minerals; and regulatory and planning frameworks for
the area, including water laws and regulations and planning groups and agencies.

The key issue in this step is to ensure that all environmental factors that need to be considered are in-
cluded, while excluding those items that require extensive identification and interpretation effort but have
little relevance to the environmental impact of the proposed action or any of its alternatives.

Simple and descriptive checklist approaches, including questionnaire checklists, provide a structured ap-
proach for identifying pertinent environmental factors for consideration (Canter, 1996). Usually, an initial
list of environmental factors of potential relevance to a proposed project may be first determined through
extensive literature review, review of other recent EIAs on similar projects or projects in the same geograph-
ical area as the proposed project, and the use of professional knowledge regarding the anticipated impacts
of similar projects. And then, a selected list of pertinent environmental factors for a given project can be
screened through site visits, interdisciplinary team discussions, professional judgments, criteria questions,
and so on.

Site visits can provide familiarization with an area in question and enable more effective review of extant
environmental data. Interdisciplinary team discussions can lead to greater familiarity with project impacts
and, possibly, to the identification of pertinent environmental factors not included in any initial list. Pro-
fessional judgments can be a part of interdisciplinary team discussions, or it can be solicited during conver-
sations with recognized experts in relevant disciplines for a project. The following three criteria questions
are helpful in identifying and screening environmental factors; if any of these criteria apply to a given fac-
tor, then that factor should be included (Canter, 1996):

• Will the environmental factor be affected, either beneficially or adversely, by any of the alternatives
(including the no-action or no-project alternative) under study?

• Will the environmental factor exert an influence on project scheduling or a subsequent operational phase
of any of the alternatives?

• Is the factor of particular public interest or controversy within the local community?

3.2. The ER distributed modelling framework for EIA—the belief structure

To carry out EIA analysis, the impacts of the identified environmental factors need to be further iden-
tified, predicted and assessed. The identified environmental impacts can be assessed on the grades of Table
1, which are also the grades used for evaluating the total environmental impact (Pastakia, 1998; Hagebro,
1998; Pastakia and Jensen, 1998; Pastakia and Bay, 1998). Note that the choice of assessment grades de-
pends on the need of real applications. They may be defined more precisely or more roughly. The ER ap-
proach even allows a different set of assessment grades to be defined for each environmental factor. But
different sets of assessment grades need to be unified before the implementation of the ER algorithm. Inter-
ested readers may refer to Yang (2001) and Yang et al. (in press-b) for details.

All the assessment grades are mutually exclusive and collectively exhaustive and thus form a frame of
discernment in D–S terminology, which is denoted by



Table 1
Assessment grades used for the description of environmental impacts

Assessment grades Description of assessment grades

+E Major positive impact
+D Significant positive impact
+C Moderately positive impact
+B Positive impact
+A Slightly positive impact
N No impact (status quo)
�A Slightly negative impact
�B Negative impact
�C Moderately negative impact
�D Significant negative impact
�E Major negative impact
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H ¼ fþE;þD;þC;þB;þA;N;�A;�B;�C;�D;�Eg. ð8Þ
Cross impact matrix and descriptive checklist approaches as well as Pastakia�s RIAM can all be used to
identify environmental impacts and assess the identified environmental factors. Suppose an EIA problem
has M alternatives or options al (l = 1, . . ., M), one general environmental factor (i.e. evaluation goal)
and L lower level environmental factors ei (i = 1, . . ., L), which are called basic environmental factors.
For illustration purpose, only a two-level hierarchy is assumed in the analysis. However, the ER approach
introduced in the paper is applicable to multiple-level hierarchies. This will be illustrated using an example
in the next section. Suppose the relative weights of the L basic environmental factors are given by
W = (w1, . . ., wL) , which are normalised to satisfy the following condition:
XL

i¼1

wi ¼ 1 and wi P 0; i ¼ 1; . . . ; L. ð9Þ
Note that the determination of the relative weights is an important issue. They may be determined by
using approaches based on pairwise comparisons of factors such as AHP (Saaty, 1980), or estimated by
using mathematical programming techniques (see Yang et al., 2001b). If alternative al is assessed on an
environmental factor ei to a grade Hn with a degree of belief of bn,i(al), we denote this by S(ei(al)) = {(Hn,b-

n,i(al)), n = 1, . . ., N}, which is a distributed assessment and is referred to as a belief structure, where Hn

represents the nth element (assessment grade) of the set H and N = 11 corresponding to (8). For example,
suppose 100 experts coming from different fields and subjects are invited to assess the impact of one project
on air quality. If 40 experts assess the impact to be major negative (�E), 25 experts to be significant negative
(�D) and the other 35 experts to be �A (slightly negative impacts), then such an assessment can be ex-
pressed in the form of a belief structure as S(ei(al)) = {(�A, 35%), (�D, 25%), (�E, 40%)}.

One of the features of the ER approach is its distributed modelling framework, which can capture the
diversity of original assessment information and is well suited to modelling EIA problems. In a distributed
assessment, it is required that bn,i(al) P 0 and

PN
n¼1bn;iðalÞ 6 1. If

PN
n¼1bn;iðalÞ ¼ 1, the assessment is said to

be complete; otherwise, it is incomplete. If
PN

n¼1bn;iðalÞ ¼ 0, then the assessment stands for complete igno-
rance. Take the above assessment about air quality for example. The above assessment is complete. If the
assessments are that 40 experts assess the impact to be major negative (�E), 25 experts to be significant
negative (�D), 30 experts to be �A (slightly negative impacts), and the other five experts are not sure about
the impact, then such a distributed assessment S(ei(al)) = {(�A, 30%), (�D, 25%), (�E, 40%)} is incom-
plete as the total belief degree is 95% with a degree of ignorance of 5%. If the 100 experts are all not sure
about the impact of the project on air quality, then the assessment will be totally ignorant. The ER ap-
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proach can hand such ignorance if environmental factors are assessed with certain degrees of ignorance.
This is another distinct feature of the ER approach.

The assessment results of every alternative on each basic environmental factor are represented by the
following belief decision matrix:
Dg ¼ ðSðeiðalÞÞÞL�M . ð10Þ
Based on the belief decision matrix, all the distributed assessment information can be aggregated in a ra-
tional and effective way using the ER algorithms discussed in the next section.
3.3. The recursive and analytical ER algorithms

Different from the existing EIA methodologies such as the most-used weighting-scaling (or -ranking or
-rating) checklists and RIAM, the ER approach provides an effective process of synthesising the assessment
information on identified environmental factors. The process is based on the belief decision matrix and the
combination rule of the D–S theory of evidence. A recursive ER algorithm for aggregating L basic attri-
butes for alternative al (l = 1, . . ., M) was developed in the past decade (Yang and Singh, 1994; Yang
and Sen, 1994; Yang, 2001; Yang and Xu, 2002a; Yang et al., in press-b), which can be used to aggregate
L basic environmental factors.

The recursive ER algorithm is briefly introduced as follows. First of all, the degrees of belief are trans-
formed into basic probability masses by combining the relative weights and the degrees of belief using the
following equations:
mn;i ¼ miðH nÞ ¼ wibn;iðalÞ; n ¼ 1; . . . ;N ; i ¼ 1; . . . ; L; ð11Þ

mH ;i ¼ miðHÞ ¼ 1�
XN

n¼1

mn;i ¼ 1� wi

XN

n¼1

bn;iðalÞ; i ¼ 1; . . . ; L; ð12Þ

�mH ;i ¼ �miðHÞ ¼ 1� wi; i ¼ 1; . . . ; L; ð13Þ

emH ;i ¼ emiðHÞ ¼ wi 1�
XN

n¼1

bn;iðalÞ
 !

; i ¼ 1; . . . ; L ð14Þ
with
mH ;i ¼ �mH ;i þ emH ;i
and
 XL

i¼1

wi ¼ 1;
where mn,i represents the basic probability mass of al being assessed to the assessment grade Hn on the basic
environmental factor ei. Note that the probability mass assigned to the whole set H, mH,i which is currently
unassigned to any individual grades, is split into two parts: �mH ;i and emH ;i, where �mH ;i is caused by the rel-
ative importance of environmental factors and emH ;i by the incompleteness of the assessment on the basic
environmental factor ei for al. �mH ;i represents how much the other factors can play in assessing the general
factor (goal) and it is the proportion of beliefs that remains to be assigned depending upon how other fac-
tors are assessed. In essence, �mH ;i provides scope for conflict resolution in the presence of conflicting evi-
dence. emH ;i will be zero if there is no ignorance in the assessment.
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Then, the basic probability masses are combined using the following recursive ER algorithm:
fHng : mn;Iðiþ1Þ ¼ KIðiþ1Þ½mn;IðiÞmn;iþ1 þ mn;IðiÞmH ;iþ1 þ mH ;IðiÞmn;iþ1�
mH ;IðiÞ ¼ �mH ;IðiÞ þ emH ;IðiÞ; n ¼ 1; . . . ;N ; ð15Þ

fHg : emH ;Iðiþ1Þ ¼ KIðiþ1Þ½emH ;IðiÞ emH ;iþ1 þ emH ;IðiÞ �mH ;iþ1 þ �mH ;IðiÞ emH ;iþ1�; ð16Þ
fHg : �mH ;Iðiþ1Þ ¼ KIðiþ1Þ½�mH ;IðiÞ �mH ;iþ1�; ð17Þ

KIðiþ1Þ ¼ 1�
XN

n¼1

XN

t¼1
t 6¼n

mn;IðiÞmt;iþ1

2664
3775
�1

; i ¼ 1; . . . ; L� 1 ð18Þ

fHng : bn ¼
mn;IðLÞ

1� �mH ;IðLÞ
; n ¼ 1; . . . ;N ; ð19Þ

fHg : bH ¼
emH ;IðLÞ

1� �mH ;IðLÞ
; ð20Þ
where mn,I(1) = mn,1(n = 1, . . ., N) and mH,I(1) = mH,1 with �mH ;Ið1Þ ¼ �mH ;1 and emH ;Ið1Þ ¼ emH ;1; bn and bH rep-
resent the belief degrees of the aggregated assessment, to which the general environmental factor is assessed
to the grade Hn and H, respectively. The combined assessment can be denoted by S(y(al)) = {(Hn,bn(al)),
n = 1, . . ., N}. It has been proved that

PN
n¼1bn þ bH ¼ 1 (Yang and Xu, 2002a). Yang and Xu also put for-

ward four axioms and have proved the rationality and validity of the above recursive ER algorithm. The
nonlinear features of the above aggregation process have been investigated in detail (Yang and Xu, 2002b).
Note that Eqs. (19) and (20) provide a normalisation process to assign the remaining belief �mH ;IðLÞ back to
the focal elements proportionally after the combination of all basic factors. This step is necessary as �mH ;IðLÞ
is not a degree of ignorance but the unassigned belief caused due to the relative importance of the factors.

The recursive ER algorithm combines various piece of evidence on a one-by-one basis. The advantage of
doing so is its clarity in concept. In situations where an explicit ER aggregation function is required such as
in optimization, an analytical ER algorithm will be desirable. In view of this, the following analytical ER
algorithm is developed:
fHng : mn ¼ k
YL

i¼1

ðmn;i þ �mH ;i þ emH ;iÞ �
YL

i¼1

ð�mH ;i þ emH ;iÞ
" #

; n ¼ 1; . . . ;N ; ð21Þ

fHg : emH ¼ k
YL

i¼1

ð�mH ;i þ emH ;iÞ �
YL

i¼1

�mH ;i

" #
; ð22Þ

fHg : �mH ¼ k
YL

i¼1

�mH ;i

" #
; ð23Þ

k ¼
XN

n¼1

YL

i¼1

ðmn;i þ �mH ;i þ emH ;iÞ � ðN � 1Þ
YL

i¼1

ð�mH ;i þ emH ;iÞ
" #�1

; ð24Þ

fHng : bn ¼
mn

1� �mH
; n ¼ 1; . . . ;N ; ð25Þ

fHg : bH ¼
emH

1� �mH
. ð26Þ
The equivalence between the recursive and analytical ER algorithms are provided in Appendix A. The
analytical ER algorithm offers the ER approach more flexibility in aggregating a large number of environ-
mental factors (or basic attributes). It clearly shows its nonlinear features (Yang and Xu, 2002b) and
provides a straightforward way to conduct sensitivity analysis for the parameters of the ER approach such
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as weights and belief degrees. It also facilitates the estimation and optimization of these parameters. Note
that due to the fact that only a finite number of environmental factors (criteria or attributes) is considered
in any EIA or MADA problem, both the recursive and analytical ER algorithms have no convergence issues.
3.4. The utility interval based ER ranking method

The aggregated distributed assessment S(y(al)) = {(Hn,bn(al)), n = 1, . . ., N} stands for the total environ-
mental impact assessment for the alternative al. It provides a panoramic view about the assessment of the
alternative, from which one can tell which grades the alternative al is assessed to, what belief degrees are
assigned to all the defined grades, and what major impacts on the total environment the alternative has.
However, it may not be straightforward to use the distributed assessments for ranking alternatives.

In order to rank M alternatives in the presence of incomplete assessments, maximum, minimum and
average utilities are introduced. Suppose the utility of an evaluation grade Hn is u(Hn), then the expected
utility of the aggregated assessment S(y(al)) is defined as follows:
uðSðyðalÞÞÞ ¼
XN

n¼1

bnðalÞuðHnÞ. ð27Þ
The belief degree bn(al) represents the lower bound of the likelihood that al is assessed to Hn, whilst the
corresponding upper bound of the likelihood is given by (bn(al) + bH(al)) (Yang, 2001; Yang and Xu,
2002b), which leads to the establishment of a utility interval if an assessment is incomplete. According
to the assessment grades defined in Table 1, the least preferred assessment grade is HN, namely �E, which
has the lowest utility and the most preferred assessment grade is H1, namely +E, which has the highest util-
ity. The maximum, minimum and average utilities of al can be calculated by
umaxðalÞ ¼ ðb1ðalÞ þ bHðalÞÞuðH 1Þ þ
XN

n¼2

bnðalÞuðH nÞ; ð28Þ

uminðalÞ ¼
XN�1

n¼1

bnðalÞuðH nÞ þ ðbN ðalÞ þ bHðalÞÞuðHN Þ; ð29Þ

uavgðalÞ ¼
umaxðalÞ þ uminðalÞ

2
. ð30Þ
It is obvious that if u(HN) = 0, then u(S(y(al))) = umin(al); if all the original assessments S(ei(al)) in the
belief matrix are complete, then bH(al) = 0 and u(S(y(al))) = umin(al) = umax(al) = uavg(al). It has to be
made clear that the above utilities are only used for characterizing a distributed assessment but not for
the aggregation of environmental factors. According to the maximum, minimum utilities and the corre-
sponding utility interval, the ranking of two alternatives can be made as follows. If umin(al) P umax(ak),
al is said to be preferred to ak; if umin(al) = umin(ak) and umax(al) = umax(ak), al is said to be indifferent to
ak. In other cases, the degree of preference of al over ak can be computed by
P ðal > akÞ ¼
max½0; umaxðalÞ � uminðakÞ� �max½0; uminðalÞ � umaxðakÞ�

½umaxðalÞ � uminðalÞ� þ ½umaxðakÞ � uminðakÞ�
. ð31Þ
If P(al > ak) > 0.5, then al is said to be superior to ak to the degree of P(al > ak), denoted by al �
P ðal>akÞ

ak; if
P(al > ak) = 0.5, then al is said to be indifferent to ak, denoted by al 	 ak; if P(al > ak) < 0.5, then al is said

to be inferior to ak to the degree of 1 � P(al > ak), denoted by al 

1�P ðal>akÞ

ak. If P(al > ak) > 0.5 and
P(ak > aq) > 0.5, then P(al > aq) > 0.5, which means the above preference relations are transitive. More de-
tails about the above ranking approach can be found in Wang et al. (2005).
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In order to produce a more reliable ranking between al and ak, it is suggested that the quality of original
assessments should be improved by reducing imprecision or incompleteness presented in the original
information.
4. Numerical example

An initial environmental evaluation (IEE) of alternative methods to conserve Rupa Tal Lake, Nepal was
conducted using the Rapid Impact Assessment Matrix (RIAM) method (Pastakia and Bay, 1998). In this
section, this example will be re-investigated and modified to demonstrate the implementation process of the
ER approach and its validity and applicability in EIA. Some comments will also be made. The description
of the assessment problems is entirely based on the published work by Pastakia and Bay (1998).

4.1. The description of problem

Rupa Tal (�The Lake of Beauty�) lies in the Begnash and Rupa Lakes watershed area in the northeast of
Kaski District in the mid-western region of Nepal. It is a major tourism area and also provides a small
amount of fishery income, including rudimentary cage aquaculture. Its surrounding hills are all terraced
along the lower slopes for rice production. But the lake was undergoing sedimentation at a rapid rate, with
the lake area being reduced from 194 to 115 ha between 1978 and 1995 (a loss of 40% in 17 years). At the
time of conducting the IEE, the lake basin was continuing to receive sediments from the up streams to the
northeast. The lake was fed from an upland system (Dobhan Khola) to the Seti River. The southern margin
of the lake became a small marginal marsh, which drained the southern agriculture lands into the lake be-
fore entering the Tal Khola. In addition to these geophysical changes, the lake was highly eutrophic, with a
considerable biomass of subsurface and emergent macrophytes. It was possible that the deposition of weed
peat would accelerate the sedimentation of the lake area.

The local authorities were very anxious to know if the beauty of the lake and its valley could be pre-
served. They considered the rate of lake sedimentation to be an adverse phenomenon in respect of the pres-
ervation of the lake and the valley; and accordingly wished to consider possible interventions that might
conserve a lake area and preserve the valley for tourism, agriculture and fishery, as had been done elsewhere
in this region of Nepal.

Four possible causes of action were considered in respect of the conservation of the lake area:

1. No action, allowing the present sedimentation to continue, resulting in the total loss of the lake and the
creation of a small gorge to take the inflow/outflow streams.

2. Building a high retaining dam along the southern margin to raise the overall water level. This would be a
major structure, and would inundate in-lake areas that had been created by sedimentation over the last
few decades.

3. Building a smaller, high dam set between two bluffs, about one third of the way up from the southern
shore. This partial dam would be a smaller structure than (2) but would have similar upstream effects.

4. Either a single large sedimentation reservoir in the upstream area, or a series of smaller retaining walls,
forming a sedimentation cascade. This option allowed solids to settle out well upstream of the lake, and
the water area would be able to remain intact.
4.2. Rapid Impact Assessment Matrix (RIAM)

To assist in the evaluation of the above four alternative options, Pastakia and Bay made a short three-
day visit to Rupa Tal and conducted an initial environmental evaluation (IEE) using the Rapid Impact
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Assessment Matrix (RIAM). Due to the rapidity of the exercise and the need to make comparative evalu-
ations in the absence of quantitative data, the final impact assessment was considered to be an initial envi-
ronmental evaluation (IEE) rather than a full environmental impact assessment (EIA). Although the
example presented here is not a full EIA, it does not affect the examination of the validity, rationality
and applicability of the ER approach for EIA. A detailed in-depth EIA analysis/study can be conducted
in the same way. The purpose of this study is to demonstrate the process of implementing the ER approach
for EIA.

A reconnaissance of the lake environments and observations of possible environmental problems related
to changes in sedimentation were conducted and the local people, members of the Village Department
Council, and the members and ex-members of the local authority and planning bodies were involved in dis-
cussion. The following environmental factors were identified for assessment:

• Physical/Chemical (P/C). Covering all physical and chemical aspects of the environment, including
finite (nonbiological) natural resources, and degradation of the physical environment by pollution. In
the initial environmental evaluation of alternative methods to conserve Rupa Tal Lake, these factors
were restricted to those that related to the changes in lake water volume and the process of sedimen-
tation, with the concomitant changes in agricultural land that each option might cause. They are listed
as follows:

P/C 1. Changes in lake water volume.
P/C 2. Changes in the lake sedimentation (measure of reduction of water surface).
P/C 3. Changes in crop and grazing areas.

• Biological/Ecological (B/E). Covering all biological aspects of the environment, including renewable
natural resources, conservation of biodiversity, species interactions, and pollution of the biosphere. In
the initial environmental evaluation of alternative methods to conserve Rupa Tal Lake, these factors re-
flected changes that might occur with each option in respect of the biota in the lake, specially primary pro-
duction, the change in aquatic macrophytes (secondary production) and finally changes in lake fisheries
(including its ability to support aquaculture). The biodiversity of the southern margin marsh and the
changes in insect disease vector populations also needed considering. The concrete factors considered are
presented below:

B/E 1. Changes in lake fisheries.
B/E 2. Changes in biodiversity.
B/E 3. Changes in primary production.
B/E 4. Changes in aquatic macrophytes.
B/E 5. Changes in disease vector populations.

• Sociological/Cultural (S/C). Covering all human aspects of the environment, including social issues
affecting individuals and communities together with cultural aspects, including conservation of heritage,
and human development. In the initial environmental evaluation of alternative methods to conserve Rupa
Tal Lake, it was evident that each option would provide different results to the human settlement pattern of
the area. Sedimentation had provided new land both for agriculture as well as houses and public buildings.
Shops, temples and a school had been developed within the sedimented areas of the lake, and housing was
found both in these areas as well as along the margins and higher reaches of the shores. This dwelling and
development pattern had set access routes to the area and would be affected by some options. The biolog-
ical changes would have an impact on both diet and disease. The aesthetic value of any option would relate
to tourism attractiveness. All these together with an evaluation in the change in quality of life of the local
communities were considered. They are recorded in the following:
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S/C 1. Loss of housing.
S/C 2. Loss of shops/public buildings.
S/C 3. Changes to access routes.
S/C 4. Changes induced by changes in tourism patterns.
S/C 5. Changes to water supplies.
S/C 6. Changes to diet/nutrition.
S/C 7. Changes to aesthetic landscapes.
S/C 8. Changes in water/vector borne disease.
S/C 9. Changes to upstream quality of life.
S/C 10. Changes to downstream quality of life.

• Economic/Operational (E/O). Covering all economic consequences of the environmental change, both
temporary and permanent, as well as the complexities of project management. In the initial environmental
evaluation of alternative methods to conserve Rupa Tal Lake, economic/operational factors reflected the
changes in agriculture, fishery and tourism incomes that might be expected from each option. The cost
of mitigation in the form of rehabilitation of building and access routes and both the cost and complexity
of the operations and maintenance of each option were considered. The following environmental factors
were selected for assessment:

E/O 1. Changes in crop-generated incomes.
E/O 2. Changes in fishery generated incomes.
E/O 3. Ease of Operation and Maintenance of option.
E/O 4. Cost of Operation and Maintenance of option.
E/O 5. Cost of resettlement/compensation for land loss.
E/O 6. Cost of rehabilitation/restoration of shops/public buildings.
E/O 7. Cost of restoration of access routes.
E/O 8. Changes in tourism-generated incomes.

To complete the IEE, the above identified environmental factors were all evaluated using the RIAM,
which was developed by Pastakia in 1998. The results are summarized in Table 2. The corresponding over-
all assessment results for the four alternative options are shown in Fig. 1. The RIAM analysis showed that a
�do nothing� situation (option 1) would result in a complete loss of the lake. To maintain the lake, the
authors thought that both options 4 and 2 were effectively technical solutions. If capital and running costs
were not a major impediment to development, there was much to recommend option 2. But in terms of both
cost and disruption, they suggested that option 4 should be the solution most likely to be affordable and
able to meet the objectives of preserving the character of Rupa Tal.

4.3. Comments on RIAM

As a newly developed EIA tool, the major advantage of RIAM is its rapidity and simplicity. There is no
need for complicated computations before arriving at assessment results. However, the disadvantages of
RIAM are also quite obvious. There are at least the following drawbacks when using RIAM to conduct
EIA. First, RIAM takes no account of the relative importance of each environmental factor. All the iden-
tified environmental factors are treated equally. In practical EIA analyses or studies, this is usually unre-
alistic. It is argued that key or critical environmental factors should have more importance (greater
weights) than other factors. Second, RIAM must and can only assess each environmental factor to one
of the assessment grades with 100% degree of belief. RIAM cannot deal with the problem of distribution
assessments or it does not allow any environmental factor to be evaluated to several different assessment



Table 2
The assessment results on the identified environmental factors by RIAM

Environmental factors Option 1 Option 2 Option 3 Option 4

Physical/Chemical (P/C)

P/C 1 �C B B N
P/C 2 �B B �A B
P/C 3 C �B N N

Biological/Ecological (B/E)

B/E 1 �B D A N
B/E 2 �B �A �B N
B/E 3 �B �B �A N
B/E 4 �B �B �A N
B/E 5 A A A �A

Sociological/Cultural (S/C)

S/C 1 N �A �A N
S/C 2 N �A �A N
S/C 3 A �A �A N
S/C 4 �A B A N
S/C 5 �A C A A
S/C 6 N A A N
S/C 7 �B B A N
S/C 8 A �A A �A
S/C 9 N A A �A
S/C 10 �A B B N

Economic/Operational (E/O)

E/O 1 B �A B N
E/O 2 �B B N N
E/O 3 N �A �A �B
E/O 4 N �A �A �B
E/O 5 N �A �A N
E/O 6 N �A �A N
E/O 7 N �A �A N
E/O 8 �A C A N
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Fig. 1. The overall assessment results for the four alternative options by RIAM.
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grades simultaneously. However, distribution assessments could be commonplace in public surveys or
group decision making because different people or experts may have different opinions. Thirdly, RIAM
can only handle evaluations with certainty and cannot handle incomplete assessment information with igno-
rance. Although robustness/sensitivity analysis is a simple way to take into account parameter uncertainty,
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it is usually conducted for the assumed changes of individual parameters on a point to point basis, thereby
only generating a partial view about the possible impact of uncertainty on final outcomes. Fourthly, RIAM
adopts a simple additive method to synthesis and aggregate assessment information on different environ-
mental factors, which requires that all the environmental factors be additively independent. In reality, linear
additive independence assumption may not always be acceptable. Fifthly, RIAM fails to provide a system-
atic and effective method to rank or compare different alternatives (options). Finally, RIAM is not suited to
dealing with EIA problems if vague or fuzzy information is available. The above comments on RIAM do
not necessarily mean that RIAM is not regarded to be a good method for EIA. However, they do lead to a
conclusion that new methods are needed for more complicated EIA under uncertainty.

4.4. The ER approach

The ER approach provides a novel systematic way to aggregate assessment information on the identified
environmental factors. It can overcome the shortcomings mentioned above. For comparison, the original
assessment information shown in Table 2, together with the relative weights of all the environmental factors
being assumed to be equal, is firstly utilized to carry out the ER synthesis, and then a detailed in-depth IEE
analysis is conducted using the ER approach based on the modified assessment information and relative
weights.

To carry out ER synthesis, the assessment information presented in Table 2 is equivalently represented
in the form of distributed assessments, which are shown in Table 3, where the figures in parentheses for the
environmental factors represent their respective relative weights. It is obvious that this is a hierarchical EIA
problem. Fig. 2 shows the assessment hierarchy.

When the ER algorithm is used to aggregate assessment information for the environmental factors, P/C
1–P/C 3, B/E 1–B/E 5, S/C 1–S/C 10, and E/O 1–E/O 8 are first aggregated to generate assessments for P/
C, B/E, S/C and E/O, respectively, and then P/C, B/E, S/C and E/O are aggregated to generate an overall
assessment for each option. These results are presented in Table 4 and shown in Fig. 3.

It is clear from Table 4 and Fig. 3 that option 4 has the least negative impacts on the total environment.
Its impacts on the environment are basically neutral. Option 1 is the no-action plan. It produces the greatest
negative impacts on the total environment among the four options. Both options 2 and 3 produce lots of
positive impacts on the total environment, but option 2 produces greater negative impacts. So, it is not
straightforward to compare these options directly. In order to compare or rank them, the decision maker
(DM)�s preference information is required. For illustration purpose, utility functions are assumed to rep-
resent the DM�s preferences. Fig. 4 shows three different types of utility functions for different DMs. They
represent risk-neutral, risk-averse and risk-taking DMs, respectively.

Suppose the DM is risk-neutral (curve I) and his/her utilities for each assessment grade are given below:
uð�EÞ ¼ 0; uð�DÞ ¼ 0.1; uð�CÞ ¼ 0.2; uð�BÞ ¼ 0.3; uð�AÞ ¼ 0.4; uðNÞ ¼ 0.5;

ðAÞ ¼ 0.6; uðBÞ ¼ 0.7; uðCÞ ¼ 0.8; uðDÞ ¼ 0.9; uðEÞ ¼ 1.0
Then the expected utility of each option can be calculated using formula (27) as follows:
uðoption 1Þ ¼ 0.4307; uðoption 2Þ ¼ 0.5231; uðoption 3Þ ¼ 0.4984; uðoption 4Þ ¼ 0.4987.
So, the DM prefers option 2 to the other three options.
Suppose the DM is risk-taking (curve II) and provides the following utilities for every assessment

grade:
uð�EÞ ¼ 0; uð�DÞ ¼ 0.08; uð�CÞ ¼ 0.16; uð�BÞ ¼ 0.24; uð�AÞ ¼ 0.32; uðNÞ ¼ 0.40;

uðAÞ ¼ 0.52; uðBÞ ¼ 0.64; uðCÞ ¼ 0.76; uðDÞ ¼ 0.88; uðEÞ ¼ 1.0



Table 3
The distributed assessments of the environmental factors equivalent to Table 2

Environmental factors (relative weights) Option 1 Option 2 Option 3 Option 4

Physical/Chemical (P/C) (0.25)

P/C 1 (0.333) {(�C, 1.0)} {(B, 1.0)} {(B, 1.0)} {(N, 1.0)}
P/C 2 (0.333) {(�B, 1.0)} {(B, 1.0)} {(�A, 1.0)} {(B, 1.0)}
P/C 3 (0.333) {(C, 1.0)} {(�B, 1.0)} {(N, 1.0)} {(N, 1.0)}

Biological/Ecological (B/E) (0.25)

B/E 1 (0.2) {(�B, 1.0)} {(D, 1.0)} {(A, 1.0)} {(N, 1.0)}
B/E 2 (0.2) {(�B, 1.0)} {(�A, 1.0)} {(�B, 1.0)} {(N, 1.0)}
B/E 3 (0.2) {(�B, 1.0)} {(�B, 1.0)} {(�A, 1.0)} {(N, 1.0)}
B/E 4 (0.2) {(�B, 1.0)} {(�B, 1.0)} {(�A, 1.0)} {(N, 1.0)}
B/E 5 (0.2) {(A, 1.0)} {(A, 1.0)} {(A, 1.0)} {(�A, 1.0)}

Sociological/Cultural (S/C) (0.25)

S/C 1 (0.1) {(N, 1.0)} {(�A, 1.0)} {(�A, 1.0)} {(N, 1.0)}
S/C 2 (0.1) {(N, 1.0)} {(�A, 1.0)} {(�A, 1.0)} {(N, 1.0)}
S/C 3 (0.1) {(A, 1.0)} {(�A, 1.0)} {(�A, 1.0)} {(N, 1.0)}
S/C 4 (0.1) {(�A, 1.0)} {(B, 1.0)} {(A, 1.0)} {(N, 1.0)}
S/C 5 (0.1) {(�A, 1.0)} {(C, 1.0)} {(A, 1.0)} {(A, 1.0)}
S/C 6 (0.1) {(N, 1.0)} {(A, 1.0)} {(A, 1.0)} {(N, 1.0)}
S/C 7 (0.1) {(�B, 1.0)} {(B, 1.0)} {(A, 1.0)} {(N, 1.0)}
S/C 8 (0.1) {(A, 1.0)} {(�A, 1.0)} {(A, 1.0)} {(�A, 1.0)}
S/C 9 (0.1) {(N, 1.0)} {(A, 1.0)} {(A, 1.0)} {(�A, 1.0)}
S/C 10 (0.1) {(�A, 1.0)} {(B, 1.0)} {(B, 1.0)} {(N, 1.0)}

Economic/Operational (E/O) (0.25)

E/O 1 (0.125) {(B, 1.0)} {(�A, 1.0)} {(B, 1.0)} {(N, 1.0)}
E/O 2 (0.125) {(�B, 1.0)} {(B, 1.0)} {(N, 1.0)} {(N, 1.0)}
E/O 3 (0.125) {(N, 1.0)} {(�A, 1.0)} {(�A, 1.0)} {(�B, 1.0)}
E/O 4 (0.125) {(N, 1.0)} {(�A, 1.0)} {(�A, 1.0)} {(�B, 1.0)}
E/O 5 (0.125) {(N, 1.0)} {(�A, 1.0)} {(�A, 1.0)} {(N, 1.0)}
E/O 6 (0.125) {(N, 1.0)} {(�A, 1.0)} {(�A, 1.0)} {(N, 1.0)}
E/O 7 (0.125) {(N, 1.0)} {(�A, 1.0)} {(�A, 1.0)} {(N, 1.0)}
E/O 8 (0.125) {(�A, 1.0)} {(C, 1.0)} {(A, 1.0)} {(N, 1.0)}

  P/C1 .…..  P/C3 …… B/E 5 S/C 1    …… S/C 10 E/O 1   ……   
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Fig. 2. The hierarchy for initial environmental evaluation of Rupa Tal Lake.
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Table 4
The aggregated distributed assessments for the four options

Options Environmental factors Degrees of belief assessed to each assessment grade

�E �D �C �B �A N A B C D E

Option 1 P/C 0 0 0.3333 0.3333 0 0 0 0 0.3333 0 0
B/E 0 0 0 0.8522 0 0 0.1478 0 0 0 0
S/C 0 0 0 0.0895 0.2994 0.4222 0.1889 0 0 0 0
E/O 0 0 0 0.1037 0.1037 0.6890 0 0.1037 0 0 0
IEE 0 0 0.0776 0.3630 0.0962 0.2811 0.0805 0.0241 0.0776 0 0

Option 2 P/C 0 0 0 0.2857 0 0 0 0.7143 0 0 0
B/E 0 0 0 0.4286 0.1905 0 0.1905 0 0 0.1905 0
S/C 0 0 0 0 0.4222 0 0.1889 0.2994 0.0895 0 0
E/O 0 0 0 0 0.8113 0 0 0.0944 0.0944 0 0
IEE 0 0 0 0.1732 0.3723 0 0.0898 0.2783 0.0428 0.0437 0

Option 3 P/C 0 0 0 0 0.3333 0.3333 0 0.3333 0 0 0
B/E 0 0 0 0.1818 0.4091 0 0.4091 0 0 0 0
S/C 0 0 0 0 0.2724 0 0.6461 0.0814 0 0 0
E/O 0 0 0 0 0.6890 0.1037 0.1037 0.1037 0 0 0
IEE 0 0 0 0.04 0.4584 0.0988 0.2834 0.1194 0 0 0

Option 4 P/C 0 0 0 0 0 0.7143 0 0.2857 0 0 0
B/E 0 0 0 0 0.1478 0.8522 0 0 0 0 0
S/C 0 0 0 0 0.1633 0.7593 0.0774 0 0 0 0
E/O 0 0 0 0.1995 0 0.8005 0 0 0 0 0
IEE 0 0 0 0.0366 0.0585 0.8383 0.0142 0.0524 0 0 0
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Fig. 3. The overall assessment results for the four alternative options by the ER approach.
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Fig. 4. Decision maker�s utility function.
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Then the expected utility of each option can be calculated as follows:
uðoption 1Þ ¼ 0.3590; uðoption 2Þ ¼ 0.4565; uðoption 3Þ ¼ 0.4196; uðoption 4Þ ¼ 0.4037.
Option 2 is still the best choice.
Suppose the DM is risk-averse (curve III) and provides the following utilities for the 11 assessment

grades:
uð�EÞ ¼ 0; uð�DÞ ¼ 0.13; uð�CÞ ¼ 0.26; uð�BÞ ¼ 0.39; uð�AÞ ¼ 0.52;

uðNÞ ¼ 0.65; uðAÞ ¼ 0.72; uðBÞ ¼ 0.79; uðCÞ ¼ 0.86; uðDÞ ¼ 0.93; uðEÞ ¼ 1.0
Then his/her expected utility for each option will be:
uðoption 1Þ ¼ 0.5382; uðoption 2Þ ¼ 0.6231; uðoption 3Þ ¼ 0.6166; uðoption 4Þ ¼ 0.6412.
In this case, option 2 is no longer the best choice and option 4 becomes the most preferred choice.
In this example, as long as u(N) P 0.5862 under the assumption of piecewise linear utility function, a

risk-averse DM would always prefer option 4 to option 2. If the DM is a highly risk-averse person, curve
III will become more convex. Suppose a highly risk-averse DM provides the following utilities about each
assessment grade:
uð�EÞ ¼ 0; uð�DÞ ¼ 0.17; uð�CÞ ¼ 0.34; uð�BÞ ¼ 0.51; uð�AÞ ¼ 0.68;

uðNÞ ¼ 0.85; uðAÞ ¼ 0.88; uðBÞ ¼ 0.91; uðCÞ ¼ 0.94; uðDÞ ¼ 0.97; uðEÞ ¼ 1.0
His/Her expected utility about each option can be computed as follows:
uðoption 1Þ ¼ 0.6816; uðoption 2Þ ¼ 0.7564; uðoption 3Þ ¼ 0.7741; uðoption 4Þ ¼ 0.8312.
In this case, the DM prefers not only option 4 to option 2, but also option 3 to option 2. So, once the
assessment framework and factor weights are decided, the DM�s attitude towards risk will to a large extent
decide which option is the most preferred. For a risk-neutral or risk-taking DM, option 2 is the best choice;
but for a highly risk-averse DM, option 4 is the first choice.

The above ER evaluation is conducted using exactly the same assessment information as used in RIAM.
In general, EIA is a multi-person evaluation problem. It requires the participation of multiple experts hav-
ing different backgrounds and expertise. Due to differences in background, knowledge, experience, and
cross influence among experts, it is highly likely that different experts may provide nonconsensus assessment
information even for the same identified environmental factor. The original assessment information pro-
vided by RIAM did not reflect such differences. To illustrate the modeling and processing of different types
of assessment information that may be provided by different experts, we modify the above example in the
following ways.

4.5. The modified belief matrix and ER reevaluation

Table 5 is an illustrative belief decision matrix based on Table 3, where incomplete information is high-
lighted in grey and the completely ignorance in dark. The meaning of each distributed assessment in Table 5
would be explained in the way as discussed in Section 3.2. In Table 5, more weights are put on the P/C
factor and less on E/O. Using the ER algorithm to aggregate the above information, the results are pre-
sented in Table 6 and shown in Fig. 5, where H stands for ignorance about assessments due to the incom-
plete information.

It can be seen from Table 6 and Fig. 5 that a no-action plan (option 1) has significant negative impacts
and only marginal positive impacts on the total environment and is obviously the worst option. The
impacts of option 4 on the environment are mainly neutral, so the option does not cause significant
positive or negative impacts. Option 2 has significant positive impacts on the environment, mainly on



Table 5
The modified distributed assessments matrix for the four options
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the improvements of physical-chemical, sociological and cultural environments. However, it also leads to
some negative impacts, including the degeneration of biological/ecological and economical/operational
environments. Compared with option 2, option 3 has more negative impacts on the environment. So, op-
tion 3 is obviously inferior to option 2. As for options 2 and 4, which one is better depends primarily on the
DM�s preferences, which can be represented using utility functions.

For a risk-neutral DM, the minimum, maximum and average expected utilities for each option can be
calculated using formula (28)–(30). The results are shown in Table 7. It is obvious that option 2 is the best
choice in this case.

For a risk-taking DM, who provides the following utilities about each assessment grade:
uð�EÞ ¼ 0; uð�DÞ ¼ 0.06; uð�CÞ ¼ 0.12; uð�BÞ ¼ 0.18; uð�AÞ ¼ 0.24;

uðNÞ ¼ 0.30; uðAÞ ¼ 0.44; uðBÞ ¼ 0.58; uðCÞ ¼ 0.72; uðDÞ ¼ 0.86; uðEÞ ¼ 1.0



Table 6
The aggregated distributed assessments with uncertainty for the four options

Options Factors Degrees of belief assessed to each assessment grade

�E �D �C �B �A N A B C D E H

Option 1 P/C 0 0.09453 0.22056 0.46813 0.11703 0 0 0.04488 0.03491 0 0 0.01995
B/E 0 0 0.08737 0.6658 0.08956 0 0 0 0 0 0 0.15727
S/C 0 0 0 0.13852 0.24246 0.48561 0.09007 0.02601 0 0 0 0.01734
E/O 0 0 0 0.10395 0.10395 0.69103 0 0.08085 0 0 0 0.02021
IEE 0 0.03406 0.1004 0.41345 0.13653 0.20429 0.02019 0.03208 0.01258 0 0 0.04643

Option 2 P/C 0 0 0.01709 0.06837 0 0 0.07469 0.81678 0 0 0 0.02306
B/E 0 0 0 0.44554 0.19802 0 0.19802 0 0 0 0 0.15842
S/C 0 0 0 0 0.3827 0.02698 0.1708 0.30451 0.11052 0 0 0.0045
E/O 0 0 0 0 0.81443 0 0 0.09473 0.06359 0 0 0.02725
IEE 0 0 0.00623 0.12505 0.25305 0.00615 0.11488 0.41515 0.03313 0 0 0.04637

Option 3 P/C 0 0 0 0 0.49185 0.14551 0.05106 0.24926 0.06232 0 0 0
B/E 0 0 0 0.14241 0.43836 0.03649 0.36493 0 0 0 0 0.0178
S/C 0 0 0 0 0.18824 0.01764 0.50448 0.20145 0 0 0 0.08819
E/O 0 0 0 0 0.69005 0.1038 0.1038 0.09211 0 0 0 0.01023
IEE 0 0 0 0.03044 0.46679 0.07592 0.23504 0.14694 0.02164 0 0 0.02324

Option 4 P/C 0 0 0 0 0 0.4475 0.16575 0.38675 0 0 0 0
B/E 0 0 0 0 0.05242 0.93447 0 0 0 0 0 0.01311
S/C 0 0 0 0 0.16357 0.76063 0.06064 0 0 0 0 0.01516
E/O 0 0 0 0.19952 0 0.80048 0 0 0 0 0 0
IEE 0 0 0 0.02 0.04124 0.75197 0.06315 0.11831 0 0 0 0.00532
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Fig. 5. The overall reassessment results for the four alternative options by the ER approach.
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the minimum, maximum and average expected utilities for each option are shown in Table 8, from which it
is clear that option 2 is still the best choice.

For a highly risk-averse DM, who gives the following utilities about the eleven assessment grades:
uð�EÞ ¼ 0; uð�DÞ ¼ 0.17; uð�CÞ ¼ 0.34; uð�BÞ ¼ 0.51; uð�AÞ ¼ 0.68;

uðNÞ ¼ 0.85; uðAÞ ¼ 0.88; uðBÞ ¼ 0.91; uðCÞ ¼ 0.94; uðDÞ ¼ 0.97; uðEÞ ¼ 1.0
the minimum, maximum and average expected utilities about each option are presented in Table 9. It is
clear that option 2 is no longer the best choice and option 4 becomes the best. In fact, as the degree of
risk-aversion increases, the superiority of option 4 becomes more apparent. When u(N) P 0.7024, option
4 becomes absolutely superior to option 2.



Table 7
A risk-neutral DM�s expected utilities and rankings about the four options

Options Expected utilities Rank

Minimum Maximum Average

Option 1 0.3489 0.3953 0.3721 4
Option 2 0.5291 0.5755 0.5523 1
Option 3 0.4950 0.5182 0.5066 3
Option 4 0.5192 0.5245 0.5219 2

Table 8
A risk-taking DM�s expected utilities and rankings about the four options

Options Expected utilities Rank

Minimum Maximum Average

Option 1 0.2191 0.2655 0.2423 4
Option 2 0.4010 0.4474 0.4242 1
Option 3 0.3445 0.3678 0.3561 2
Option 4 0.3355 0.3408 0.3382 3

Table 9
A highly risk-averse DM�s expected utilities and rankings about the four options

Options Expected utilities Rank

Minimum Maximum Average

Option 1 0.5761 0.6225 0.5993 4
Option 2 0.7532 0.7996 0.7764 2
Option 3 0.7584 0.7816 0.7700 3
Option 4 0.8407 0.8460 0.8433 1
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In summary, risk-neutral and risk-taking DMs tend to choose option 2 as the best choice, whilst a highly
risk-averse DM will select option 4 as the best choice. Of course, the final recommended option still needs
the further consideration of real financial capability. This is beyond the scope of the paper and will not be
discussed in the paper. Also, estimating the utility of the DM or DMs is itself a very important and time-
consuming process because changing the points of discontinuity in the piecewise linear utility function may
affect the choice of the best option. How to elicit the DM�s preferences and his utilities will not be discussed
here either. The interested reader may refer to Keeney and Raiffa (1976), Zeleny (1982) or Winston (1994)
for details.

From the comparison of the RIAM and ER approach, it can be found that the ER approach provides a
flexible and pragmatic way for EIA. It can deal with various kinds of uncertainties involved in EIA. Even
the assessment grades may also be expressed in the form of fuzzy linguistic variables. The interested reader
may refer to Yang et al. (in press-b).
5. Concluding remarks

Most real world EIA problems involve large amount of human judgments and various types of uncer-
tainties, which significantly increase the complexity and difficulty in the EIA process. The support to the
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solution of such EIA problems requires powerful methodologies that are capable of dealing with uncertain-
ties in a way that is rational, systematic, reliable, flexible and transparent. The evidential reasoning (ER)
approach provides a novel, flexible and systematic way to support EIA analysis. The new analytical ER
algorithm developed in this paper provides an explicit aggregation function, which can be used in many
decision situations such as optimisation.

In particular, the ER distributed modelling framework makes it possible to deal with various human
judgments, either complete or incomplete, crisp or vague (fuzzy), using the belief structure, which allows
assessors to describe assessment information in a flexible, natural and reliable manner. The ER algorithms
provide two systematic yet rigorous procedures for aggregating assessment information in a recursive or an
analytical fashion. The utility interval based ranking method opens a systematic and effective way to com-
pare and rank alternatives. A numerical example and its modified version demonstrate the implementation
process of the ER approach for EIA. It is expected that the ER approach can be used to deal with a range
of EIA problems with various types of uncertainties.

The ER approach is a kind of MADA method. Different from most existing MADA approaches such as
the simple additive weighting (SAW) method (Hwang and Yoon, 1981), AHP (Saaty, 1980), TOPSIS
(Hwang and Yoon, 1981; Chen, 2000), PROMETHEE (Brans and Vincke, 1985; Brans et al., 1986; Keyser
and Peeters, 1996; Le Téno and Mareschal, 1998; Goumas and Lygerou, 2000; Macharis et al., 2004),
ELECTRE (Roy, 1991; Huylenbroeck, 1995; Hokkanen and Salminen, 1997c; Rogers and Bruen, 1998)
and MAUT (Keeney and Raiffa, 1976; Zeleny, 1982; Winston, 1994), the ER approach models both quan-
titative and qualitative attributes/criteria using a belief structure, leading to a belief decision matrix, where
each element of the matrix is a vector rather than a single value. The ER approach makes no assumptions
about the aggregated functional form that is nonlinear in general and it only requires utility independence
among individual attributes (Keeney and Raiffa, 1976). The ER approach does not result in rank reversal, a
phenomenon which might occur in AHP. This is because the ER approach models each decision alternative
independently.

Both the DS/AHP (Beynon et al., 2000, 2001; Beynon, 2002a,b, 2005a,b) and the ER approaches are
developed on the basis of the D-S theory of evidence, but they are quite different in nature. The former
is an extension of the traditional AHP, while the latter has little to do with AHP. So, they are different
in many ways such as modeling mechanisms, algorithms and so on.

However, the attribute aggregation process of the ER approach is more complicated than several other
MADA methods such as MAUT, though this shortcoming is to a large extent overcome by generating a
Windows-based intelligent decision system (IDS) software package to support the implementation of the
ER approach. The interested reader may refer to Xu and Yang (2003).
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Appendix A. The derivation of the analytical ER algorithm

Since the normalization in the evidence combination rule of the Dempster–Shafer (D–S) theory of evi-
dence can be applied at the end of the evidence combination process without changing the combination
result (Yen, 1990), we first take no account of the normalization when combining all factors and then apply
the normalization at the end. Such an evidence combination process, as Yen (1990) claimed for combining
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fuzzy evidence, can preserve the unique feature of the D–S theory that the belief and plausibility measures
provide the lower and the upper bounds of the degrees of belief.

First of all, let us combine two factors. Table 10 shows the combination process of two factors without
normalization. The combined probability masses generated by aggregating the two factors are given as fol-
lows. Note that m1�l(Hn) and m1�l(H) denote the belief degree assigned to Hn and H generated by combin-
ing the first l factors:
Table
The co

m1 �

m2 {
{
.
{
{
{

m1�2ðH nÞ ¼ mn;1mn;2 þ ðemH ;1 þ �mH ;1Þmn;2 þ mn;1ðemH ;2 þ �mH ;2Þ ¼ mn;1mn;2 þ mH ;1mn;2 þ mn;1mH ;2

¼ mn;1ðmn;2 þ mH ;2Þ þ mH ;1mn;2 ¼ mn;1ðmn;2 þ mH ;2Þ þ mH ;1ðmn;2 þ mH ;2Þ � mH ;1mH ;2

¼ ðmn;1 þ mH ;1Þðmn;2 þ mH ;2Þ � mH ;1mH ;2 ¼
Y2

i¼1

ðmn;i þ mH ;iÞ �
Y2

i¼1

mH ;i

¼
Y2

i¼1

ðmn;i þ emH ;i þ �mH ;iÞ �
Y2

i¼1

ðemH ;i þ �mH ;iÞ; n ¼ 1; . . . ;N ;

em1�2ðHÞ ¼ emH ;1 emH ;2 þ emH ;1 �mH ;2 þ �mH ;1 emH ;2 ¼ ðemH ;1 þ �mH ;1ÞemH ;2 þ emH ;1 �mH ;2

¼ ðemH ;1 þ �mH ;1ÞemH ;2 þ ðemH ;1 þ �mH ;1Þ�mH ;2 � �mH ;1 �mH ;2

¼ ðemH ;1 þ �mH ;1ÞðemH ;2 þ �mH ;2Þ � �mH ;1 �mH ;2 ¼
Y2

i¼1

ðemH ;i þ �mH ;iÞ �
Y2

i¼1

�mH ;i;

�m1�2ðHÞ ¼ �mH ;1 �mH ;2 ¼
Y2

i¼1

�mH ;i.
Suppose the following equations are true for combining the first (l � 1) factors and let l1 = l�1
m1�l1
ðHnÞ ¼

Yl�1

i¼1

ðmn;i þ emH ;i þ �mH ;iÞ �
Yl�1

i¼1

ðemH ;i þ �mH ;iÞ; n ¼ 1; . . . ;N ;

em1�l1
ðHÞ ¼

Yl�1

i¼1

ðemH ;i þ �mH ;iÞ �
Yl�1

i¼1

�mH ;i;

�m1�l1
ðHÞ ¼

Yl�1

i¼1

�mH ;i.
10
mbination of two pieces of evidence

m2 m1

{H1} {H2} . . . {HN} {H} {H}

m1,1 m2,1 . . . mN,1 emH ;1 �mH ;1

H1} m1,2 m{H1} = m1,1m1,2 m{U} = m2,1m1,2 . . . m{U} = mN,1m1,2 mfH1g ¼ emH ;1m1;2 mfH1g ¼ �mH ;1m1;2

H2} m2,2 m{U} = m1,1m2,2 m{H2} = m2,1 m2,2 . . . m{U} = mN,1m2,2 mfH2g ¼ emH ;1m2;2 mfH2g ¼ �mH ;1m2;2

. . . . . . . . . . . . . . . . . . . . . . .
HN} mN,2 m{U} = m1,1mN,2 m{U} = m2,1mN,2 . . . m{HN} = mN,1mN,2 mfHNg ¼ emH ;1mN ;2 mfHNg ¼ �mH ;1mN ;2

H} emH ;2 mfH1g ¼ m1;1 emH ;2 mfH 2g ¼ m2;1 emH ;2 . . . mfHNg ¼ mN ;1 emH ;2 mfHg ¼ emH ;1 emH ;2 mfHg ¼ �mH ;1 emH ;2

H} �mH ;2 mfH1g ¼ m1;1 �mH ;2 mfH 2g ¼ m2;1 �mH ;2 . . . mfHNg ¼ mN ;1 �mH ;2 mfHg ¼ emH ;1 �mH ;2 mfHg ¼ �mH ;1 �mH ;2
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The above combined probability masses are further aggregated with the lth factor. The results are gen-
erated using Table 11. The combined probability masses are then given below
m1�lðH nÞ ¼ mn;1�l1
mn;l þ ðemH ;1�l1

þ �mH ;1�l1
Þmn;l þ mn;1�l1

ðemH ;l þ �mH ;lÞ
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Therefore, the above equations are true for any l 2 {1, . . ., L}. For l = L, we get the following non-normal-
ized combined probability assignments generated by aggregating the L factors:
m1�LðHnÞ ¼
YL
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YL
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Define by k the normalization constant for the evidence combination. Then, we have the normalized
combined probability masses as follows:
mðH nÞ ¼ km1�LðHnÞ ¼ k
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ðemH ;i þ �mH ;iÞ
( )

; n ¼ 1; . . . ;N ;

emðHÞ ¼ k em1�LðHÞ ¼ k
YL

i¼1

ðemH ;i þ �mH ;iÞ �
YL

i¼1

�mH ;i

( )
;

�mðHÞ ¼ k �m1�LðHÞ ¼ k
YL

i¼1

�mH ;i

" #
;



Table 11
The combination of l pieces of evidence

m1�l1
� ml m1�l1

{H1} {H2} . . . {HN} {H} {H}

m1;1�l1
m2;1�l1

. . . mN ;1�l1
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�mH ;1�l1

ml {H1} m1,l mfH 1g ¼ m1;1�l1
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m1;l . . . mfUg ¼ mN ;1�l1
m1;l mfH1g ¼ emH ;1�l1
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where k can be determined using the following normalization constraint condition
XN

n¼1

mðH nÞ þ emðHÞ þ �mðHÞ ¼ 1
from which we get
k ¼
XN

n¼1

YL

i¼1

ðmn;i þ �mH ;i þ emH ;iÞ � ðN � 1Þ
YL

i¼1

ð�mH ;i þ emH ;iÞ
" #�1

.
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