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Abstract: This study aims to explore a novel method for determining attribute weights, which is a key issue in
constructing and analyzing multiple-attribute decision-making (MADM) problems. To this end, a hybrid approach
combining the data envelopment analysis (DEA) model without explicit inputs (DEA-WEI) and a two-layer minimax
optimization scheme is developed. It is demonstrated that in this approach, the most favorable set of weights is first
considered for each alternative or decision-making unit (DMU) and these weight sets are then aggregated to
determine the best compromise weights for attributes, with the interests of all DMUs simultaneously considered in
a fair manner. This approach is particularly suitable for situations where the preferences of decision-makers (DMs)
are either unclear or difficult to acquire. Two case studies are conducted to illustrate the proposed approach and its
use for determining weights for attributes in practice. The first case concerns the assessment of research strengths of
24 selected countries using certain measures, and the second concerns the analysis of the performance of 64 selected
Chinese universities, where the preferences of DMs are either unknown or ambiguous, but the weights of the
attributes should be assigned in a fair and unbiased manner.

Keywords: Data envelopment analysis; Weights; Multiple attribute decision-making; Minimax optimization

1. Introduction

Multiple-attribute decision-making (MADM) prevails in engineering, social, and economic fields. It is used to
solve the problem of selecting or ranking in multiple schemes. The attribute set or solution set is an indispensable
element of MADM. The solution of MADM should formulate decision rules and reflect the preferences of decision-
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making units (DMUs) or decision-makers (DMs) so that the result may be scientifically selected. In the process of
formulating decision rules, the determination of attribute weights is usually a necessary task and thus has become
an important part of MADM problems.

Several methods for determining weights in MADM have been proposed. For example, Eckenrode (1965)
suggested six techniques for collecting the judgments of DMs concerning the relative values of attributes, namely,
ranking, rating, three versions of paired comparisons, and a method of successive comparisons. Hwang and Yoon (1981)
proposed four techniques for weight assignment in MADM, namely, the eigenvector method, the weighted least
squares (WLS) method, the entropy method, and the linear programming (LP) technique for multidimensional analysis
of preference (LINMAP). Ma et al. (1999) proposed an integrated subjective and objective approach to determine
attribute weights. It uses subjective information provided by DMs and objective information based on a decision matrix
to form a two-objective programming model for integrating the subjective considerations of DMs and the objective
measures of attribute importance. However, Xu (2004) noted that the weights thereby obtained can be quite different
from other objective weights, e.g., entropy weights. Shirland et al. (2003) proposed a goal programming model for
determining constrained regression estimates of attribute weights using pairwise comparisons by means of triads of
attributes. Wang and Lee (2009) proposed an extension of the TOPSIS approach that integrates subjective and objective
weights. Their approach is not only based on DMs’ judgments but also calculates subjective weights based on Shannon’s
entropy. Shannon’s entropy has also been applied to calculate subjective weights in group decision-making problems. Yang
et al. (2017) proposed a three-stage approach for weight assignment in MADM to support the solution of such MADM
problems as performance assessment and policy analysis, where (a) the preferences of DMs are either unclear and partial
or difficult to acquire and (b) there is a need to consider the best “will” of each DMU in the sense that the DMU’s individual
way to achieve its best performance should be respected and duly taken into account when its performance is assessed
alongside other DMUs.

Yang et al. (2017) summarized the existing main approaches for determining attribute weights and pointed out that,
in general, there may be three types of approaches for weight assighment, depending on the information provided and
used to identify the weights: (1) subjective approaches, e.g., the simple multi-attribute rating technique (SMART)
(Edwards, 1977; Edwards and Barron, 1994), the point allocation method (Doyle et al., 1997), the analytic hierarchy process
(AHP) (Saaty, 1980 & 1986; Forman and Gass, 1999), rank order distribution weights (Roberts and Goodwin, 2002), and
the Delphi method (e.g. Hwang and Yoon, 1981); (2) objective approaches, e.g., the entropy method (Hwang and Yoon,
1981; Zeleny, 1982), principal component analysis (Jolliffe 1986), the WLS method (Chu et al., 1979), the projection method
(Yue, 2012), the standard deviation integrated approach (Wang and Luo, 2010), and the weight assignment approach based
on the quantification of the contrast intensity and the conflicting character of the evaluation criteria (Diakoulaki et al., 1995);
(3) hybrid approaches, e.g., the integrated subjective and objective approach (Ma et al., 1999), the goal programming model
based on pairwise comparisons between attributes (Shirland et al., 2003), the integer linear goal-programming technique
based on a training set of choices (Choo and Wedley, 1985), the UTilités Additives (UTA) method (e.g. Jacquet-Lagreze and
Siskos, 1982; Siskos et al., 2005), the extended TOPSIS approach integrating subjective and objective weights (Wang and
Lee, 2009), LP for estimating attribute weights by pairwise preference comparisons (Horsky and Rao, 1984), the LP
technique for criteria weights (Horowitz and Zappe, 1995), and the minimax disparity approach (Wang and Parkan, 2006;
Amin and Emrouznejad, 2006; Amin, 2007; Emrouznejad and Amin, 2010). See also Yang et al. (2017) for a more detailed
literature review.

Subjective approaches reflect the subjective judgment or intuition of DMs; however, the analytical results or

rankings of alternatives based on weights can be influenced by the lack of experience or knowledge. Objective
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approaches determine weights by making use of mathematical models or statistical methods, but they often focus
on differences in the values of attributes. For instance, in the entropy method, the decision matrix contains a certain
amount of information for a set of alternatives or DMUs. The hybrid approach combines the advantages of both the
subjective and the objective approaches to determine the weights of attributes in MADM.

The relationship between data envelopment analysis (DEA) without explicit inputs (WEI) and utility theory has
been studied by Yang et al. (2014), where the authors investigated the relationship between extended utility functions
and DEA-WEL Specifically, it was argued that the objective function of DEA-WEI resembles the classic utility
function, and the link between utility theory in MADM and DEA-WEI was established.

In several real MADM problems, however, for example, the assessment of the academic impact of national research
institutes and the assessment of academic capacity of countries, subjective approaches are not applicable because there are
no obvious DMs who can provide subjective judgments or intuition on the relative importance of attributes in such
problems. Although most of the existing objective approaches can determine weights based on the decision matrix and do
not depend on the subjective judgments of DMs, they rely solely on data and do not take into consideration the “will” of
DMUs, ie, a set of the most favorable weights for each DMU. Yang et al. (2017) proposed a new three-stage approach,
whereby a set of preliminary weights as well as the most favorable set of weights for each DMU are first considered using
a DEA-WEI model, and then these weight sets are aggregated to obtain the best compromise weights for attributes, with
the interests of all DMUs taken into account fairly and simultaneously.

However, in the study by Yang et al. (2017), there are two proposed processes that may not match reality, and
thus there may pose problems in its application: First, the use of the entropy method to obtain the preliminary
weights double counts the role of an attribute and may violate the claimed fairness principle. Secondly, the formation
of each DMU'’s “right to speak” is defined as the gap between the DMU's utility based on preliminary weights and
the maximized utility based on an DEA-WEI-like LP model, which is a somehow arbitrary definition and only takes
into indirect consideration the DMU’s “will” of using its most preferred weights for performance assessment. This
may result in deviations from the optimal weight assignment in the sense of genuinely treating each DMU’s best
“will” fairly. Furthermore, the compromise solution in Yang et al. (2017) in stage 3 is based on an ideal utility vector
for all attributes, which is minimized for every DMU, with no special treatment for any DMU to reflect the fairness
principle. However, the best approach is to obtain the compromise solution by minimizing the maximum deviation
(e°-norm) of the different weight assignment schemes from all DMUs.

Taking into account the above considerations, this study aims to investigate a novel approach for determining
the weights of attributes based on a DEA-WEI-like LP model and a two-layer minimax optimization scheme, and to
solve the two above-mentioned problems by abandoning the use of the entropy method and the “right to speak”,
redesigning the model in a sensible and fair manner. In this new approach, a set of the most favorable weights for
each DMU is considered, and then these weight vectors are aggregated to obtain the best compromise solution using
two-layer minimax optimization as the final attribute weights so that the best interests of all DMUs are taken directly
into account fairly and simultaneously.

The remainder of the paper is organized as follows: In Section 2, preliminaries and notations are introduced.
Furthermore, DEA, DEA-WEI, and several secondary models in DEA-WEI are briefly reviewed. The new hybrid
approach for determining attribute weights is then proposed. In Section 3, Monte Carlo simulation is also conducted to
test the characteristics of the proposed approach. Moreover, two case studies are presented to demonstrate the features
of the proposed approach, namely the assessment of the research strengths of 24 selected countries/regions and the

performance analysis of 64 selected Chinese universities. In Section 4, the paper is concluded.
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2. Materials and Methods

2.1. Preliminaries and Notations

In this study, the following notations are used to represent a MADM problem:

S = {DMU;,j = 1,2, ..., n}: a discrete group of n possible DMUs or alternatives.

Y ={Y;,Y,, ..., Ys}: aset of s attributes. It is assumed without loss of generality that the attributes are additively
independent to simplify the discussion.

WT = [wy, w,, ..., ws]T: the weight vector of attributes (or weights thereafter), which satisfies Y.5_; w, =
1,w, = 0. It should be noted that the superscript “T” represents a vector transpose.

A= [ajr]nxs: the decision matrix, where aj. denotes the value of DMU j on attribute r which is non-negative
forj=1,2,..,n and r=1,2,...,s.

As in Yang et al. (2017), the decision matrix A is normalized by transforming each of its elements into a
corresponding element in the normalized (value) matrix D = [bjr]nxs using the following linear formula:

a
Benefit attribute: b;, = ai

max’
r

; ain Ajr (1)
Cost attribute: by, = - or 1- Tmax
r j

When there is no obvious DM to provide value functions for attributes, a piecewise linear value function is
defined for each attribute. Let MIN, and MEDIAN, be the minimal and median values, respectively, of the attribute
r (r = 1,...,s). Then, without loss of generality, let

V(MIN,) = MIN,
V(MEDIAN,) = (1 + V(MIN,))/2 @)
V(1) =1

Figure 1 illustrates a piecewise linear value function V(bj.), where bj, denotes the attribute's value after the
normalization by formula (1).
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Figure 1. Illustration of a Piecewise Linear Value Function'
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1 Figure 1 illustrates only, for example, a risk averse value function.
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Mathematically, the value function shown in Figure 1 can be given by y;. = V(bjr) as follows:

1-MIN, 2XMEDIAN,—MIN;—1 .
2x(MEDIAN;—MIN;) T 2x(MEDIAN;—MIN;) XMIN;, lfbjr € [MIN,, MEDIAN, ] (32)

yir = V(bj) = 1-MIN, 1-2xMEDIAN+MIN; | &)
2x(1-MEDIAN,) T 2x(1-MEDIANy) ’lfbir € [MEDIAN,, 1] (3b)

It can be verified that when b;. = MEDIAN,, the results of formulas (3a) and (3b) are the same. The normalized
matrix DV = [y]-r]n><s generated using the value function (3) will be used as the dataset for the analysis. This value
function assumes that DMUs or alternatives with median achievements on attributes are given average value. Even
though other assumptions may also be made, a more appropriate approach is to obtain as much preference
information from DMs as possible, if it is at all possible.

One of the most widely used MADM methods is the simple additive value method, which leads to the overall

value of a DMU as follows:
Utility(DMU;) = X5, w,vj(by) ,j = 1,2, ..., 0. 4)

Keeney and Raiffa (1976) showed that the theoretical foundation of this method is utility theory.

2.2. Combining DEA-WEI and Two-Layer Minimax Optimization

In Equation (4), a key issue is how to fairly and consistently define the weight w,, which poses a challenge when
there is no obvious decision maker who can provide his/her preferences or when preferences are difficult to obtain
clearly. To address this issue, a novel approach is proposed combining DEA-WEI and a two-layer minimax
optimization technique to determine weights for multiple attributes.

The first stage in this approach is to use DEA-WEI models to generate a set of attribute weights most favored by
each DMU. This set represents the best “will” of each DMU. In the second stage, the most favorable weights of each
DMU are aggregated to obtain the best compromise solution as the common attribute weights recommended for all
DMUs, where the best “will” of each DMU is respected equally and simultaneously. In the third stage, a two-layer
minimax optimization formulation is proposed to obtain the best compromise solution for all DMUs, thus
determining the final weights for the attributes.

To test the robustness of the proposed method, Monte Carlo simulation is used to test the ability of the model in
the solution process from different perspectives in Section 3.1. To improve the adaptability of the proposed method,
in Section 3.2, it is adjusted when there is priori information.

2.2.1. Generating Optimal Weights for Each DMU Based on DEA-WEI Model

DEA was originally developed by Charnes et al. (1978); it is a mathematical programming method for efficiency
analysis or performance assessment of DMUs with multiple inputs and multiple outputs. DEA has been widely used
in efficiency analysis and performance evaluation of various business and non-profit organizations. The essence of
DEA is the principle that each DMU is allowed to generate its most favorable weights for its performance assessment.
That is, a DEA model provides the weighting coefficients so that each DMU can assign weights for its best benefit in
terms of maximizing its efficiency score. Therefore, each DMU is free to value better whatever it is best at and to
ignore the variables with which it does not perform well. In the past several decades, there have been several specific
DEA models, the most well-known being the CCR model (Charnes et al., 1978) and the BCC model (Banker et al.,
1984). Moreover, the related additive model (Charnes et al., 1985) and the weight-restricted model (Dyson and
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Thanassoulis, 1998; Allen et al., 1997) should be mentioned. Systematic reviews on DEA theory and its applications
can be found in several studies, e.g., Cooper et al. (2004, 2006), Cook et al. (2009), and Liu et al. (2013).

However, as argued in, e.g., Yang et al. (2014&2017), in several real applications, there are no explicit input data
available. It is difficult or sometimes impossible to reformulate data into original inputs and outputs and then apply
the classic DEA models to measure the performance of DMUs. In particular, in MADM problems, attributes are
normally divided into benefit and cost attributes rather than inputs and outputs in the DEA framework. After the
transformation by formula (1), the normalized decision matrix with the highest value of an attribute being preferred
is obtained. In this sense, the values of attributes can be regarded as outputs in the context of DEA. Accordingly,
Adolphson et al. (1991) first developed DEA models without inputs. Lovell and Pastor (1999) and Caporaletti et al.
(1999) systematically studied these DEA models without inputs. Liu et al. (2011) conducted systematic studies on
this group of DEA models, which are called DEA-WEI models. Toloo (2013) proposed a new approach for the most
efficient unit without explicit inputs. Yang et al. (2014) investigated and linked the DEA-WEI model with quadratic
terms to the extended utility function.

In general, DEA-WEI is used for evaluation purposes and does not reflect the technical efficiency of the input-output
system of DMUs, which is the normal function of DEA. Yang et al. (2014) investigated the link between the DEA-WEI
model and multi-attribute utility theory and noted that the functional form of its objective function resembles the
traditional utility function. The DEA-WEI model is different from a classic utility function in that only the functional form
of an objective function is determined by the DMs to reflect a subjective emphasis on assessment. The coefficients of the
objective function in the DEA-WEI model are determined by a DMU to ensure the most favorable evaluation for this DMU
(Yang et al. 2014; Yang et al. 2017).

Yang et al. (2017) showed that the DEA-WEI model can generate an optimal weight vector for each DMU. This
weight vector reflects the best “will” of an assessed DMU. In MADM, however, preferential or cognitive constraints
may be imposed on the relative importance of each attribute. For instance, as in the AHP method (e.g. Saaty 1980 &
1986), the ratio range of weights of one attribute A1 to another A2 can be set to E, 9]. Therefore, the DEA-WEI model

can be more generally reformulated as follows:
max{8, = ¥¥_; Wy | X Wy < 1,j=12,..,mu € Q,r=12,..,s}, (5)

where the symbol Q refers to the set of preferential and cognitive constraints on attributes in model (5), and yq
denotes the attribute value of the assessed DMU,. When there are no explicit DMs, for example, @ could be defined
as O = {(ui/uj)#j € E, 9] ,,i=12, .., s}. When there are explicit DMs, Q may be the set denoting the DMs’ prior
preference information or value judgments, e.g,, @ = {u; = uj,i # j}. As previously discussed, the essence of DEA
or DEA-WETI is that each DMU can provide flexible weights for its inputs/outputs. Therefore, the aim is to obtain the
optimal weights for DMU, as (u*,ud’, ...,u?")T, which is the optimal solution of model (5). See Yang et al. (2017)

for details.
2.2.2. Selecting Optimal Weights by Secondary Model

There is the problem that alternative optimal attribute weights commonly exist in the DEA-WEI model (5). A
secondary goal can be introduced for obtaining a unique optimal solution for a DMU, such as an aggressive or
benevolent goal, which can minimize or maximize the utility of the composite DMUSs constructed for other DMUs

compared to DMU,. The aggressive model is given as follows:
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215~=1 Uryro = 86
min2§=1ur(2]'n=1,j==o}’rj) s.t. Zﬁzlury” =Lj=12..,mj=0 (6)
Ur
u. € Qr=1,2,..,s

where 05 is the score of DMU, derived from model (5). The subscript j # 0 indicates that the assessed DMUj, is
excluded from the sequence j = 1,2, ..., n. It can be seen that this model attempts to minimize the utilities of other
DMUs and simultaneously maintain the utility of the assessed DMU,,.

The benevolent formulation is achieved by replacing min with max in the objective function of model (6) as

follows:

21S~=1 Ur¥ro = 98
M (S0 y) £ Do Uiy < 1) = 12, 0 %
ur
u- € Qr=12,..,s

where the subscript “0” denotes the assessed DMU,, and similarly hereinafter.

From the objective function of model (7), the benevolent model intends to maximize the utilities of other DMUs
and simultaneously maintain the utility of the assessed DMUj,.

Furthermore, Liang et al. (2008) proposed three other alternative secondary goals, namely, minimizing total
deviation from the ideal point (total deviation model), minimizing the maximum deviation (maximum deviation
model), and minimizing the mean absolute deviation (absolute deviation model). In fact, the total deviation model
can be easily seen to be equivalent to model (7). The maximum deviation model and the absolute deviation model
are presented in Appendix A. There are also some other alternative secondary goals, such as those in the methods
proposed in Wang and Chin (2010 & 2011) and Sexton et al. (1986).

Using the secondary goal model to obtain a unique optimal solution is not the same as to add weight restrictions
because the secondary goal model is used to obtain a unique optimal solution in the existing feasible region instead
of reducing the feasible region, as is the case with weight restriction. The secondary goal model is used to ensure the
uniqueness of the most favorable weights of the assessed DMU. However, as pointed out by Lin et al. (2016), the
secondary models (6), (7), (Al), and (A3) may theoretically exhibit non-uniqueness. However, when the secondary
goals mentioned above are used, most cases with multiple optimal solutions can be avoided in real applications.

Thus, the secondary LP models have been adopted in this study.
2.2.3. Two-Layer Minimax Optimization for Weight Assignment

Herein the most favorable weight vectors previously generated for individual DMUs are aggregated to obtain the
best compromise solution as the common weights of attributes recommended for all DMUs. In the aggregation process,
the individual most favorable weight vector U* = (u,u’, ...,ul)T, which is obtained from Section 2.2.1 after
normalization, ie., }J_; ujr* =1, for DMU; is represented as a reference point. The distance between the best
compromise solution and reference point j for DMU; is measured by the °>-norm, so that the difference between the
best compromise weight and the reference weight of each attribute is taken into account fairly in the sense that all DMUs
are assumed to be collectively cooperative in terms of minimizing the maximum deviation from any DMU's reference
point, or that no DMU is allowed to take advantage over another DMU in this weight aggregation process. That is, this
minimax optimization process for weight aggregation operates as an equalizer, so that the difference on any attribute
for each DMU is taken into account equally or fairly (Yang, 2000; Yang and Xu, 2014). The best compromise solution is
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defined as that minimizing the maximum distances for all DMUs, so that the interests of all DMUs are simultaneously
taken into consideration without bias. Under this definition, the best compromise solution can be obtained by solving

the following two-layer minimax optimization problem:

Z?:l wp=1
min T= max jt; = max {|w, —u } s. t. 8
j:1,...,n{ ) r=1,2,.., s{| r r |} Wr € ll] ( )
w,=0,r=12,..,s

where w, = 0 denotes the compromise weight for the r-th attribute, and ¥V = {% € E, 9] ,,j=12, .., s} Cltis
]

i
worth emphasizing that the two-layer minimax optimization model (10) can be used to fairly generate the final
attribute weights for all DMUs. This is due to the fact that the inner-layer of the model functions as an equalizer (Yang,
2000; Yang and Xu, 2014), so that the maximum difference between the best compromise weight and the reference
weight for all attributes is minimized for every DMU with no weight difference unfairly given any special treatment
for any DMU. Furthermore, the out-layer of the model also functions as an equalizer, so that the maximum distance
for all DMUs is minimized, with no distance unfairly given any special treatment for any DMU. This fairness
principle is considered to be appropriate for weight assignment in MADM, in particular when there are no obvious
DMs.

Figure 2 shows the rationale of the above two-layer minimax optimization approach. It is assumed that there are
only two attributes, whose weights are denoted by w; and w,, and there are three DMUs, namely, DMU; (Point

A), DMU, (Point B) and DMU; (Point C). Thus, by formula (8), we have t; = A’ P, where A" P is the distance

between point A’ and point P, and similarly t, = B " P and t; =C' P.Asfor every DMU the maximum difference
between the best compromise weight and the reference weight for all attributes is minimized and there is no special
treatment for any DMU, there are at least two DMUs with the same maximum distance measured by the °°-norm
when an optimal solution is obtained. In this figure, it can be seen that t; = t3 > t, is the optimal solution, which is
a fair principle without bias on any DMU.

A

|

L walw,=1/9

Figure 2. Illustration of Two-Layer Minimax Optimization

Model (8) is a nonlinear non-smooth programming problem and can be equivalently transformed into the
following model:

2 Here, the symbol { is used to denote the constraints on the attribute's weight, which is different from Q.
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lw, —ul| <tr=1.2..,s
lw, —u?*|<tr=12,..,5s

mint s.t.{ /W —ul<Tr=12..,s )
15":1Wr =1
w,. € ¥

w,=>0,r=1.2,..,s

The non-smooth constraint |w, — ujr*| <1( =12, ..,n) can be simply replaced by the equivalent smooth
constraints (w; —u’) <t and (w, — u)’) = —t. Thus, model (9) can be transformed into the following model,
which is a standard LP problem and can be easily solved using existing optimization software packages:

w,—ul) <tr=12..,s
(wy—uf) = -1r=12..,s
w,—u?)<tr=12,..,5s
wy—u?)>-1,r=1.2,..,5

mint s.t{ W,—uf)<tr=12..,s (10)
w,—u™) =-1t,r=12,..,s
le-:lwr =1
w.E U,

w,=0,r=12,..,s
1t=20,j=12,..n

Intuitively, it can be deduced from these models that the weight of one attribute, if generated in this weight
aggregation process, will be probably larger if all DMUs perform relatively better on this attribute than others. Thus,
we have the following hypothesis:

H1: Given that each attribute is normalized to take values in the interval [0, 1], the weight of an attribute with greater
expected value is larger than that of attributes with lower expected values.

In summary, the rationale behind this new approach is that the weights of attributes are generated by a three-
stage process. The first stage is to allow each DMU to propose its most favorable weight vector of attributes to
maximize its own utility through the DEA-WEI model. The second stage is to use a properly selected secondary
model for obtaining the unique weight vector of attributes for each DMU individually to avoid multiple solutions in
the first stage. Which secondary model should be selected depends on whether DMUs are individually cooperative,
non-cooperative, or equalitarian-minded when generating their individual most favorable weights. The third stage
is to obtain the best compromise solution that minimizes the maximum eo-norm distances to each unique most

favorable weight vector for each DMU found in the second stage.

3. Results

3.1 Numerical Simulations

Monte Carlo simulation is a widely used method for testing the statistical properties of models (e.g., Smith, 1997).
Herein, Monte Carlo simulation is used to test the relations between the weights determined by the proposed approach
and the characteristics of the existing data (including the expected value and variance) and secondary models.

Without loss of generality, it may be assumed that there are five attributes. Furthermore, Cooper et al. (2000)
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proposed a rule of thumb for the number of DMUs required in DEA models, namely, n > max{mxs, 3(m + s)},
where n is the number of DMUs, and m and s are the number of inputs and outputs, respectively. Dyson et al.
(2001) argued that the number of DMUSs should be n = 2(mxXs) to achieve a reasonable level of discrimination. To
ensure the reliability of the numerical simulations, the minimal number of DMUs was doubled with respect to the
number of attributes suggested by Cooper et al. (2000), and it is assumed that there are 30 DMUs.

Experiment 1. Relationship between weights and expectation of attributes’ values

For each attribute of these 30 DMUs, data were generated from a half-normal distribution with different
combinations of expected value and variance. That is, for these five attributes, data were generated in the range of (0,
1] by a normal distribution, and the corresponding expected values and variances were (0.1, 0.5), (0.3, 0.5), (0.5, 0.5),
(0.7, 0.5), and (0.9, 0.5). Thus, the weights for attributes can be obtained using formulas (5) and (10) in a two-stage
procedure.

The above numerical experiments were repeated 1000 times, and the average weights for attributes were as follows:

Table 1. Average Attribute Weights

Attributes Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5
Expected value 0.1 0.3 0.5 0.7 0.9
Variance 0.5 0.5 0.5 0.5 0.5
Average weights (models 5 and 10) 0.1942 0.1926 0.1989 0.2030 02113

From Table 1, it can be seen that the weights of attributes increase as the expected value of these attributes
increases. Therefore, there is clear statistical evidence to support hypothesis H1.

Experiment 2. Relationship between weights and variance of attribute values

The variance of attribute values may also affect the weight assignment. To test this, further numerical
experiments were conducted, and data were generated from a half-normal distribution with different combinations of
variance and fixed expected value. Likewise, for these five attributes, data were generated in the range of (0, 1] by a
normal distribution, and the corresponding expected values and variances were (0.5, 0.1), (0.5, 0.3), (0.5, 0.5), (0.5, 0.7),
and (0.5, 0.9). Thus, the weights for attributes can be obtained using formulas (6) and (10). The numerical experiments
were repeated 1000 times, and the average weights for attributes are given in Table 3.

Table 2. Average Attribute Weights

Attributes Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5

Expected value 05 05 05 05 05

Variance 0.1 03 05 0.7 09
Average weights (models 5 and 10) 0.2110 0.1821 0.2005 0.1999 0.2065
Average weights (models 5,6,10) 0.2091 0.1874 0.1993 0.2031 0.2011
Average weights (models 5,7,10) 0.2787 0.1747 0.1766 0.1883 0.1817
Average weights (models 5, A1,10) 0.2816 0.1746 0.1759 0.1863 0.1816
Average weights (models 5, A3,10) 0.2883 0.1722 0.1736 0.1860 0.1799

As can be seen in Table 2, there is no obvious pattern between the variance of attribute values and the weight
assignment.



86 JMSE 2018, 3(2), 76-100

Experiment 3. Relationship between weights and secondary goals

As was discussed in Section 2.2.2, alternative attribute weights may exist. Thus, the relationship of the weights
determined by the proposed approach with four alternative secondary goals and the expected value of the
randomized data was further tested.

The previous numerical experiments were repeated 1000 times for model (5) with secondary models (6), (7),
(A1), and (A3),® and then model (10) was used to obtain the final best compromise weights.

The average weights for attributes are shown in Table 3. It can be seen that the average weights have a strong
correlation with the expected values of these attributes for most secondary models (models 6, 7, Al, and A3).
Furthermore, the results reveal that the average weights for each attribute are different when different secondary
models are used. This demonstrates the importance of examining the situation where performance assessment or
policy analysis is conducted, so that a right secondary model can be selected to generate an appropriate unique
reference point for each DMU.

Table 3. Average Attribute Weights

Attributes Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5
Expected value 0.1 03 05 0.7 09
Variance 0.5 0.5 0.5 0.5 0.5
Average weights (models 5,6,10) 0.2117 0.2023 0.1933 0.1899 0.2029
Average weights (models 5,7,10) 0.1471 0.1757 0.1986 0.2259 0.2527
Average weights (models 5, A1,10) 0.1488 0.1769 0.1984 0.2248 0.2511
Average weights (models 5, A3,10) 0.1505 0.1763 0.1976 0.2247 0.2509

It should be noted that according to Lin et al. (2016), the use of secondary models in this experiment may
occasionally not ensure the uniqueness of the attributes weights. However, from a practical viewpoint, this possibility
isrelatively low. As the numerical experiments were repeated 1000 times, the possible occurrence of multiple optimal
weights would have little impact on the average weights. Thus, the robustness and reliability of simulation results
can be ensured, and Experiment 3, aiming at determining the influence of choosing different secondary models on
attribute weights, is statistically meaningful. Interested readers can refer to Lin et al. (2016) for an iterative method

for determining the unique optimal weights.

3.2. Preliminary Weights as Inputs to the Two-Layer Minimax Model

If there is no prior information or DM’s preference, it is suggested that the preliminary weights be equally set on
attributes (w, = 1/s,r = 1,2 ..., s), as in Sections 2.2.1-2.2.3 and 3.1, to ensure the fairness of the weighting process
because there is no prior information on preference.

However, in real MADM problems, preliminary weights may be provided by DMs or may be generated. Herein,
it is demonstrated how the proposed approach can be modified when there is prior information. Let w, be the
preliminary weight of attribute r and Y3_; w, = 1. Therefore, model (8) can be reformulated as follows:

3 The details of secondary models (A1) and (A3) are represented in Appendix A.
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) le*:lwr =1
. ]*
min T = max {t- = max |(W.|w,—1u } 11
j=1,..n ) r:1,2,...,s{ r| r r |} s.t. Wy S ( )
w,=0,r=12,..,s

Consequently, model (11) can be transformed equivalently into the following model:

w,w,—ul) <tr=12..,s
w,(w, —ul*) > -1t,r=12,..,s
w,(w, —u) <tr=12,..,s
w, (W, —u?) > -1,r=1.2,..,s

mint s.t{ o,(w,—u™®) <tr=12,..,s (12)
o (w,—u) = -1t,r=12,..,s
IS":1 Wy = 1
w,. € ¥,
w.=>0,r=12,..,s
=0

Using model (12), the weight assignment for attributes in MADM problems can be obtained.

3.3. Case Studies

Two cases were investigated to illustrate the proposed approach for determining attribute weights in MADM. The
first is the assessment of the research strength of 24 countries/regions to illustrate the comparative advantages of these
countries/regions. The second example is the assessment of 64 selected universities under the direct management of the
Ministry of Education (MOE) of China. In contrast with the first case, in the second case, there is an explicit DM, which is
the MOE, whose prior preference or pre-judgment information could be incorporated for attribute weights.

3.3.1. Assessment of Research Strength of 24 Selected Countries/Regions

Herein, a case study is conducted to apply the proposed weight assignment approach and assess the research
strength of 24 countries/regions on nine disciplines* related to medical science of the Essential Scientific Indicators
(ESI) from Thomson Reuters. See Table 4 for details on these disciplines and their abbreviations.

Table 4. 9 ESI Disciplines and Their Abbreviations

Abbreviations Disciplines
BB Biology & Biochemistry
CM Clinical Medicine
Immu. Immunology
Mic. Microbiology
MG Molecular Biology & Genetics

4 There are 22 disciplines in Essential Scientific Indicators (ESI). Among them, there are nine disciplines related to medical science.
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Table 4. Cont.

Abbreviations Disciplines
NB Neuroscience & Behavior
PT Pharmacology & Toxicology
PA Plant & Animal Science
PP Psychiatry/Psychology

The numbers of SCI papers in these nine disciplines were used to indicate their capacity of publication; thus, the
nine indicators refer to the number of SCI papers for each discipline. To achieve a reasonable level of discrimination,
according to Dyson et al. (2001), 24 countries/regions whose numbers of SCI papers in each discipline in ESI were
among the top 40 were selected. The dataset was from ESI, and the time window was 10 years (from Jan., 2002 to
Sept., 2013). The detailed data are shown in Table B1.

In this case study, there is no obvious DM who can provide the weight information on these disciplines, and this
type of study is for general policy analysis. In such cases it is difficult or even impossible to have prior information
on attribute weights from potential DMs. Thus, it is suitable to use existing data and the proposed approach to
generate weights for each attribute (discipline).

First, it was assumed that these nine attributes are all benefit attributes, and the dataset was normalized using
formulas (1)—(3) to form a normalized decision matrix and the corresponding matrix after the transformation by
value functions.

Secondly, the preliminary weights for the nine attributes were equally distributed, as there is no explicit DM

who can provide prior preferential or cognitive information. See Table 5.

Table 5. Preliminary Weights for Nine ESI Disciplines

Discipline BB CM Immu. Mic. MG NB PT PA rp
Prel@maw 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111
weights

Thirdly, model (5) was used with Q = {% € E, 9] J,j=12,..,r1,i# j} and secondary models (6), (7), (A1), and

]
(A3) to obtain the unique favorable weights for attributes that reflect the best “will” of each country/region.

Fourthly, model (12) was used to determine the best compromise weights for these attributes as shown in Table 6, in
which the weight vectors of model (5) and the four secondary models (6), (7), (A1), and (A3) are listed in detail.

Table 6. Weights for Attributes of Countries/Regions

Weights Weights Weights Weights
Disciplines
(models 5,6,12) (models 5,7,12) (models 5, A1,12) (models 5, A3,12)
Biology & Biochemistry 0.1837 0.1837 0.1837 0.1837
Clinical Medicine 0.0204 0.0204 0.0204 0.0204

Immunology 0.0204 0.0204 0.0204 0.0204
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Table 6. Cont.

Disciplines Weights Weights Weights Weights
(models 5,6,12) (models 5,7,12) (models 5, A1,12) (models 5, A3,12)

Microbiology 0.1837 0.1837 0.1837 0.1837
Molecular Biology & Genetics 0.0204 0.0204 0.0204 0.0204
Neuroscience & Behavior 0.0204 0.0204 0.0204 0.0204
Pharmacology & Toxicology 0.1837 0.1837 0.1837 0.1837
Plant & Animal Science 0.1837 0.1837 0.1837 0.1837
Psychiatry/Psychology 0.1837 0.1837 0.1837 0.1837

Table 6 shows that the compromise weights for attributes by the four schemes are the same. This fact
demonstrates that the results are rather robust. Therefore, using these weights, the utilities of the 24 countries/regions
can be calculated as shown in Table 7. USA is ranked first. Japan, Germany, PRC, England, and France are ranked
second to sixth. If equal weights are used in the comparison, then USA, Germany, Japan, England, PRC, and France

are ranked first to sixth.

Table 7. Utilities of 24 Countries/Regions and Their Ranks

Compromise Weights Equal Weights
Countries/Regions
Utility Rank Utility Rank
USA 1.0000 1 1.0000 1
JAPAN 0.5899 2 0.5820 3
GERMANY 0.5893 3 0.5894 2
PEOPLES R CHINA 0.5845 4 0.5688 5
ENGLAND 0.5779 5 0.5798 4
FRANCE 0.5474 6 0.5476 6
CANADA 0.5469 7 0.5450 7
ITALY 0.5332 8 0.5367 8
SPAIN 0.5283 9 0.5225 9
AUSTRALIA 0.5072 10 0.5110 10
BRAZIL 0.4646 11 0.4499 12
NETHERLANDS 0.4338 12 0.4678 11
INDIA 04186 13 0.3553 16
SOUTH KOREA 0.3983 14 0.4007 13
SWITZERLAND 0.3338 15 0.3920 14
SWEDEN 0.3128 16 0.3661 15

BELGIUM 0.2734 17 0.2668 17
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Table 7. Cont.

Compromise Weights Equal Weights
Countries/Regions
Utility Rank Utility Rank

SCOTLAND 0.1936 18 0.1914 18
POLAND 0.1875 19 0.1688 21
TURKEY 0.1856 20 0.1865 19
TAIWAN 0.1731 21 0.1742 20
DENMARK 0.1412 22 0.1634 22
MEXICO 0.0865 23 0.0601 24
FINLAND 0.0841 24 0.0978 23

3.3.2. Assessment of 64 Chinese Universities

In China, the MOE is the authority that manages Chinese universities, with 64 directly managed universities as
its sub-affiliations. The indicators in “Science & Technology (5&T) statistics compilation in 2014”, which is published
by the MOE of China and Thomson Reuters were used as the data source for analyzing the performance of the S&T
activities of the 64 universities.

The attributes used in this case were student per capita (SPC), paper per capita (PPC), patent per capita (PAPC),
and technology transfer income per capita (TTIPC). These per capita indicators were obtained from “student”,
“paper”, “patent”, and “technology transfer income” after division by “staff”. Specifically, “student” denotes the
total number of Ph.D. candidates, master students, and undergraduates in a statistical year. “paper” refers to the
number of publications in important international and domestic SCI/SSCI journals in a statistical year. “patent”
denotes the total number of patent applications and authorized patents in a statistical year. “technology transfer
income” refers to the total income from the process of technology transfer in a university in a statistical year. In
addition, “staff” refers to the number of employees registered in the statistical year in the universities engaged in
teaching, research and development, application of research and development results, and scientific and
technological services, as well as those employees supporting these activities.

As the values of attributes differ greatly, the data were normalized and transformed by the value function using
formulas (1)-(3) to avoid distortion of the results. The standard decision matrix after normalization and
transformation by the value function is shown in Table B2.

Furthermore, it was assumed that there is no prior preference information from DMs, and the preliminary

weights were set equally for attributes as follows:

Table 8. Preliminary Weights for Four Attributes

PAPC
Attributes SPC (Number/Staff) PPC (Number/Staff) TTIPC (RMB in Thousands/Staff)
(Number/Staff)

Preliminary weights 0.25 0.25 0.25 0.25
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The DEA-WEImodel (5) with Q = {(ui/u]-)#j € E , 9] ,L,j=12, .., s} was used to obtain the weight vector for

each DMU. Furthermore, different secondary models® (models 6, 7, Al, and A3) were used to avoid alternative

solutions in model (5). Model (12) was used to obtain the final compromise weights. The results are shown in Table
9.

Table 9. Attribute Weights

PAPC
Attributes SPC (Number/Staff) PPC (Number/Staff) TTIPC (RMB in Thousands/Staff)
(Number/Staff)
Compromised weights
0.1045 0.4015 0.3340 0.1600
(models 5,6,12)
Compromised weights
0.1793 0.4418 0.1585 0.2204
(models 5,7,12)
Compromised weights
0.1793 0.4418 0.1585 0.2204
(models 5, A1,12)
Compromised weights
0.1623 04326 0.1985 0.2066

(models 5, A3,12)

In late 2015, the Chinese central government issued the “Notice of the State Council on Issuing the Overall Plan
for Co-ordinately Advancing the Construction of World First-class Universities and First-class Disciplines”, where it
was announced that China would focus on the construction of a group of world first-class universities. Following
this important policy, the importance of scientific publications should be emphasized in the sample universities of
this case study, which are representatives of Chinese high-level universities.

Under these circumstances, the DMs in MOE are assumed to have a new preference, namely, to require that the
ratio of SPC to PPC and the ratio of PPC to TTIPC should satisfy w; = w, = w,. This implies that the staff of the 64
Chinese universities should pay more attention to student training and scientific publications than technology
transfer to achieve the goal “world first-class universities”.

Hence, the MOE’s prior preference information w; > w, = w, was incorporated into model (12) to obtain the

final compromise weights, as shown as in the following model:

w(w, —ul*) <1,r=1.2,..,5
w,w, —ul)>-1r=12,..,s
w,(w,—u?) <tr=12,..,5s
w,(w, —u?)>-1r=12,..,s

mint s.t (13)

w(w,—uM™ <tr=1.2,..,s
w(w, —uM) = -1r=12,..,s
N —_
Zrzlwr =1
Wi 2 Wy 2 W,

w. € b,w.>0,r=12..5s

5 The properties of different secondary models are shown in Section 2.2.2.
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The results are shown in Table 10. Moreover, the approach in Yang et al. (2017) incorporating w; = w, = w,
was used to compare the results (see row 6 in Table 10). The comparison clearly demonstrates the robustness of the
proposed approach and that the weight of the first indicator (SPC) was double counted and may violate the claimed
fairness principle in the approach in Yang et al. (2017).

Table 10. Attribute Weights

Attributes SPC PPC PAPC TTIPC (RMB in
(Number/Staff) (Number/Staff) (Number/Staff) Thousands/Staff)
Compromise weights
0.3351 0.2316 0.2096 0.2237
(models 5,6,13)
Compromise weights
0.3900 0.2865 0.0448 0.2787
(models 5,7,13)
Compromise weights
0.3900 0.2865 0.0448 0.2787
(models 5, A1,13)
Compromise weights
0.3775 0.2740 0.0824 0.2661
(models 5, A3,13)
Weights using the approach in Yang et 0.4990 0.2356 0.1000 0.1654

al. (2017)

In this case, it was further assumed that the universities were cooperative, and the maximum deviation model
(A1) was selected as the secondary model to derive a set of multipliers that assigns the maximum possible score to
the worst-utility DMU. Therefore, the final results can be obtained using the compromise weights generated from
models (5), (A1), and (13), as shown by the blue line in Figure 3. DMUs: is one of the most famous universities in
China and is ranked first. Although DMU: is also one of the most well-known universities in China, the performance
of its four attributes was relatively poor because it had an overly large number of employees registered for research
related activities in the statistical year. It is interesting to see that DMUs is ranked second in this assessment. This is
due to the fact that this university performed excellently on at least such attributes as SPC and PPC.
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Figure 3. Comparison of Ranks in This Study and the Approach in Yang et al. (2017)

Moreover, the results in this study were compared with the results in Yang et al. (2017) by incorporating the MOE's
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prior preference information w; = w, = w, into the compromise stage. See model (14) in Yang et al. (2017). Figure 3
shows the comparison of different ranks in this study and the approach in Yang et al. (2017). It can be seen that the double
counted weight on SPC causes the rank changes for a number of universities. For example, DMUs performs relatively
worse on SPC (0.1351), which leads to low ranking if the approach in Yang et al. (2017) is used, which assigns double
counted weight on this attribute (0.4990). The ranking changes of other DMUs can be similarly analyzed.

4. Discussion

A hybrid DEA-WEI and two-layer minimax optimization approach was proposed to determine attribute
weights for MADM that overcomes the insufficiencies related to double counts and indirect reflection of DMU’s “will”
in Yang et al. (2017). It comprises multiple main stages. First, each DMU proposes its own most favorable weight
vector based on its DEA-WEI model. Second, different secondary models suitable for different cases can be explored
to select the optimal attribute weights. Third, a two-layer minimax optimization formulation was proposed to obtain
the best compromise solution for all DMUs and determine the final weights for the attributes.

The simulation experiments demonstrated that the weight of an attribute with greater expected value was larger
than those of other attributes with lower expected values, and the secondary models had significant impact on the
weight assignment. Even though the proposed approach was developed to support weight assignment in situations
where the preferences of DMs are either unclear or difficult to acquire, if there are preliminary weights available, the
weights can be set as inputs to the new two-layer minimax model so that the variations of alternative values on
attributes can be taken into account for more effective alternative ranking.

In addition, two case studies were conducted to illustrate the use of the proposed approach for determining weights.
In these case studies, it was demonstrated that the proposed approach provides a fair and flexible method for weight
generation, whereby the DM'’s preferences on weights and different behaviors can be taken into consideration in the
process. Furthermore, the analysis demonstrated that different secondary models can lead to different most favorable
weight vectors for each DMU and thus different compromise weight vectors, which can lead to different rankings.
Consequently, the behavioral implications of these secondary models should be properly understood before a final
compromise weight vector is decided. Nevertheless, analyzing the variations of weight and ranking by exploring different
behaviors and preferences in MADM should be beneficial.
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Appendix A

Herein, the following alternative secondary models are presented.

(a) Minimizing maximum deviation (maximum deviation model)
In this approach, the maximal deviation o; is minimized. The main concept of this approach is to derive a set

of multipliers that assigns the maximum possible score to the worst-utility DMU, that is, to improve the worst-utility
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DMU as much as possible; the utility of other DMUs may decrease to reduce variations. The secondary goal in this
approach can be expressed as follows:

2r=1Uryro = 6
Yr=1 Upyyj + 0(]. =1,j=12,..,n
min§ = s.t.

Ur,;

o (A1)
60—, 20,j=1,2,..,n

; =>0,u. € Qr=12,..,s5r=12,..,s

This approach may be suitable in the case where DMUs are assumed to be cooperative when they set their
individual best weights. An example would be the output evaluation of universities with one single headquarter.

(b) Minimizing the mean absolute deviation (absolute deviation model).

In this approach, the following model is proposed to minimize the mean absolute deviation of DMUs, which
attempts to decrease the utility difference among DMUs. Its objective function shows that in this approach, it is
attempted to make all DMUs as close as possible to have equal utilities.

2r=1UrYro = 69
min %2}‘:1 |o<].’ —oc’ | s.t. 2r=1Wryy + % = 1,j=12,..,n (A2)

up,X;

) ; >0,u. € Q,r=1.2,..,s;r=1,2,..,s

1
where x = - ]?‘=
n

1 ocj’ .
= %(|oc].’ —oc_’| +o<].’ —oc_’) and ij = %<|oc]., —oc_’| - (ocj’ —oc_')> , model (A2) can be

By letting a

transformed into the following LP problem:

S —_ *
2r=1 Uryro = e0

2?:1 urYrj + OC]- = 1,j =12, ..,n

i=12..,n (A3)

. len (.
min ;2]-=1 (a.
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j
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In the case that an equalitarian principle should be demonstrated, this approach is more suitable than others
because it attempts to decrease the utility difference among DMUs.

Appendix B
Table B1. Data on Publications in Nine ESI Disciplines for 24 Selected Countries/Regions
Countries/Regions BB CM Immu. Mic. MG NB PT PA PP
USA 201787 827183 57 666 60 652 136 001 136 124 59 649 160 253 139 283
BRAZIL 14 469 55009 3191 5993 6398 8204 6985 35977 3025
PEOPLES R CHINA 48 021 116 413 6942 14230 24 306 15397 21188 41 868 5275

Table B1. Cont.
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Countries/Regions BB CM Immu. Mic. MG NB PT PA PP
SPAIN 18 869 72317 4120 8855 10 597 10838 6250 27 505 9408
INDIA 19 547 39280 2392 8085 5792 3766 11 850 22799 970
JAPAN 57 414 172 683 9469 14 423 26148 24325 21121 39749 5122
GERMANY 46 185 199 385 10904 16 395 30450 32342 14043 40426 21723
FRANCE 33245 128 820 8383 12709 19 863 17 518 8446 28 660 7613
ITALY 25252 128 345 6938 6228 14 881 20 082 11373 22209 7369
CANADA 28 305 114577 6273 7667 17 431 21518 7085 34 080 21349
AUSTRALIA 17 048 85931 5318 5662 9369 10 205 4836 29 526 15289
ENGLAND 40 063 194 089 11471 12397 27803 27 504 12 608 32329 30719
SOUTH KOREA 18 877 61027 2766 7795 7472 6088 9999 11213 1972
TURKEY 6523 64128 875 1926 2132 3989 3014 13 548 2655
NETHERLANDS 12720 87678 5369 5397 10163 12228 4824 13159 14 254
BELGIUM 7946 39 865 2401 3529 4664 4698 3258 10 590 4866
MEXICO 4391 10170 1035 2141 1499 2131 1606 12152 1286
POLAND 10154 23318 1733 1740 3490 3276 3457 14 368 1157
DENMARK 8534 31047 2209 2343 4076 3732 2221 7888 2087
TAIWAN 8254 39 581 1685 2209 3606 3132 4101 5397 2660
SWITZERLAND 11049 52480 4082 3853 8031 8075 3825 10073 4978
SWEDEN 13208 52942 4236 3287 6691 7382 3504 9992 4261
FINLAND 5263 22945 1313 1697 3160 3383 1680 6110 2676
SCOTLAND 7278 26 342 1706 3255 5205 3664 1728 10173 3767
Table B2. Data of 64 Chinese Universities after Normalization and Transformation Using Value Function (3)
Ratio Indicators (Attributes)
Universities PAPC TTIPC
SPC (Number/Staf PPC (Number/Staff (Number/Staff) (RMB in Thousands/Staff)
DMU: 0.0177 0.1263 0.1037 0.5013
DMU:2 0.7380 1.0000 0.1072 0.0000
DMUs 0.1351 0.7187 0.5758 1.0000
DMU. 0.5148 0.5646 0.5443 0.0486
DMUs 0.3224 0.3627 0.5209 0.2677
DMUs 0.5346 0.7768 0.6627 0.5957
DMU? 0.5137 0.5371 0.5542 0.0529

Table B2. Cont.
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Ratio Indicators (Attributes)

Universities PAPC TTIPC
SPC (Number/Staff) PPC (Number/Staf (Number/Staff) (RMB in Thousands/Staff)
DMUs 0.4489 0.6232 0.5367 0.5002
DMUo 0.5081 0.5045 0.5073 0.4123
DMUo 0.0627 0.1044 0.0128 0.0000
DMUu 0.5110 0.7923 0.2780 0.5119
DMUz 0.5567 0.0358 0.1198 0.0000
DMUis 1.0000 0.2377 0.0000 0.0000
DMUu 0.5200 0.3106 0.6136 0.1467
DMUis 0.5182 0.3576 0.5136 0.0000
DMUs1s 0.5088 0.5797 0.5259 0.1384
DMUy 0.5105 0.6411 0.1688 0.5133
DMUs 0.5112 0.7080 0.3514 0.6242
DMU?1 0.3969 0.6179 0.5998 0.5384
DMUz 0.5084 0.6894 0.5328 0.5096
DMUz 0.5147 0.4658 0.4656 0.1879
DMUz 0.1837 0.3673 0.3081 0.0474
DMUzs 0.5580 0.6757 0.2788 0.0000
DMU2 0.4888 0.2585 0.3385 0.5732
DMUzs 0.0285 0.5202 0.1678 0.0514
DMUzs 0.1563 0.5104 0.4409 0.1065
DMUz 0.0133 0.5202 0.3073 0.5388
DMU:s 0.4935 0.6732 0.5272 0.6267
DMUz 0.5149 0.5493 0.7783 0.5173
DMUso 0.5255 0.7201 0.5060 0.3615
DMUst 0.4892 0.9766 0.5281 0.5288
DMUz 0.2062 0.5462 0.5878 0.6865
DMUss 0.5101 0.3118 0.6418 0.5355
DMUs4 0.4976 0.3916 0.5884 0.1212
DMUss 0.5119 0.5812 1.0000 0.5095
DMUss 0.4809 0.5433 0.5007 0.5340
DMUs7 0.5093 0.6012 0.5048 0.5487
DMUss 0.0210 0.4481 0.5028 0.5100

Table B2. Cont.
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Ratio Indicators (Attributes)

Universities PAPC TTIPC
SPC (Number/Staff) PPC (Number/Staf (Number/Staff) (RMB in Thousands/Staff)
DMUs3 0.5152 0.2267 0.4946 0.9825
DMUuo 0.5182 0.7386 0.5383 0.1894
DMU4« 0.2014 0.4911 0.3612 0.5145
DMUx 0.4405 0.5257 0.2583 0.5105
DMUss 0.2680 0.1058 0.5215 0.3097
DMUu 0.1675 0.3072 0.2776 0.5021
DMUss 0.1883 0.4903 0.3250 0.4874
DMUss 0.4625 0.3878 0.2266 0.0000
DMUy 0.5072 0.1452 0.4345 0.5241
DMUss 0.5165 0.5644 04918 0.2709
DMUu 0.5548 0.5788 0.1675 0.0460
DMUso 0.5128 0.5595 0.5020 0.3882
DMUst 0.1369 0.3251 0.1256 0.5081
DMUs 0.0364 0.2657 0.0925 0.0126
DMUss 0.4658 0.5918 0.6540 0.5913
DMUs: 0.5266 0.5895 0.5748 0.5159
DMUss 0.5091 0.3846 0.3797 0.0627
DMUss 0.1305 04131 0.2876 0.5566
DMUs; 04311 0.2664 0.5041 0.0138
DMUss 0.5290 0.6153 0.5452 0.5228
DMUso 0.0844 0.4668 0.3550 0.5174
DMUs 0.4804 0.4886 0.5310 0.0049
DMUet 0.5095 0.1081 0.6052 0.5412
DMUe 0.2954 0.4019 02136 0.1334
DMUes 0.5229 0.4382 0.3024 0.0747
DMUs+ 04131 0.5834 0.1640 0.1484
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