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Abstract: This study aims to explore a novel method for determining attribute weights, which is a key issue in 
constructing and analyzing multiple-attribute decision-making (MADM) problems. To this end, a hybrid approach 
combining the data envelopment analysis (DEA) model without explicit inputs (DEA-WEI) and a two-layer minimax 
optimization scheme is developed. It is demonstrated that in this approach, the most favorable set of weights is first 
considered for each alternative or decision-making unit (DMU) and these weight sets are then aggregated to 
determine the best compromise weights for attributes, with the interests of all DMUs simultaneously considered in 
a fair manner. This approach is particularly suitable for situations where the preferences of decision-makers (DMs) 
are either unclear or difficult to acquire. Two case studies are conducted to illustrate the proposed approach and its 
use for determining weights for attributes in practice. The first case concerns the assessment of research strengths of 
24 selected countries using certain measures, and the second concerns the analysis of the performance of 64 selected 
Chinese universities, where the preferences of DMs are either unknown or ambiguous, but the weights of the 
attributes should be assigned in a fair and unbiased manner.  
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1. Introduction  

Multiple-attribute decision-making (MADM) prevails in engineering, social, and economic fields. It is used to 
solve the problem of selecting or ranking in multiple schemes. The attribute set or solution set is an indispensable 
element of MADM. The solution of MADM should formulate decision rules and reflect the preferences of decision-
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making units (DMUs) or decision-makers (DMs) so that the result may be scientifically selected. In the process of 
formulating decision rules, the determination of attribute weights is usually a necessary task and thus has become 
an important part of MADM problems. 

Several methods for determining weights in MADM have been proposed. For example, Eckenrode (1965) 
suggested six techniques for collecting the judgments of DMs concerning the relative values of attributes, namely, 
ranking, rating, three versions of paired comparisons, and a method of successive comparisons. Hwang and Yoon (1981) 
proposed four techniques for weight assignment in MADM, namely, the eigenvector method, the weighted least 
squares (WLS) method, the entropy method, and the linear programming (LP) technique for multidimensional analysis 
of preference (LINMAP). Ma et al. (1999) proposed an integrated subjective and objective approach to determine 
attribute weights. It uses subjective information provided by DMs and objective information based on a decision matrix 
to form a two-objective programming model for integrating the subjective considerations of DMs and the objective 
measures of attribute importance. However, Xu (2004) noted that the weights thereby obtained can be quite different 
from other objective weights, e.g., entropy weights. Shirland et al. (2003) proposed a goal programming model for 
determining constrained regression estimates of attribute weights using pairwise comparisons by means of triads of 
attributes. Wang and Lee (2009) proposed an extension of the TOPSIS approach that integrates subjective and objective 
weights. Their approach is not only based on DMs’ judgments but also calculates subjective weights based on Shannon’s 
entropy. Shannon’s entropy has also been applied to calculate subjective weights in group decision-making problems. Yang 
et al. (2017) proposed a three-stage approach for weight assignment in MADM to support the solution of such MADM 
problems as performance assessment and policy analysis, where (a) the preferences of DMs are either unclear and partial 
or difficult to acquire and (b) there is a need to consider the best “will” of each DMU in the sense that the DMU’s individual 
way to achieve its best performance should be respected and duly taken into account when its performance is assessed 
alongside other DMUs.  

Yang et al. (2017) summarized the existing main approaches for determining attribute weights and pointed out that, 
in general, there may be three types of approaches for weight assignment, depending on the information provided and 
used to identify the weights: (1) subjective approaches, e.g., the simple multi-attribute rating technique (SMART) 
(Edwards, 1977; Edwards and Barron, 1994), the point allocation method (Doyle et al., 1997), the analytic hierarchy process 
(AHP) (Saaty, 1980 & 1986; Forman and Gass, 1999), rank order distribution weights (Roberts and Goodwin, 2002), and 
the Delphi method (e.g. Hwang and Yoon, 1981); (2) objective approaches, e.g., the entropy method (Hwang and Yoon, 
1981; Zeleny, 1982), principal component analysis (Jolliffe 1986), the WLS method (Chu et al., 1979), the projection method 
(Yue, 2012), the standard deviation integrated approach (Wang and Luo, 2010), and the weight assignment approach based 
on the quantification of the contrast intensity and the conflicting character of the evaluation criteria (Diakoulaki et al., 1995); 
(3) hybrid approaches, e.g., the integrated subjective and objective approach (Ma et al., 1999), the goal programming model 
based on pairwise comparisons between attributes (Shirland et al., 2003), the integer linear goal-programming technique 
based on a training set of choices (Choo and Wedley, 1985), the UTilités Additives (UTA) method (e.g. Jacquet-Lagrèze and 
Siskos, 1982; Siskos et al., 2005), the extended TOPSIS approach integrating subjective and objective weights (Wang and 
Lee, 2009), LP for estimating attribute weights by pairwise preference comparisons (Horsky and Rao, 1984), the LP 
technique for criteria weights (Horowitz and Zappe, 1995), and the minimax disparity approach (Wang and Parkan, 2006; 
Amin and Emrouznejad, 2006; Amin, 2007; Emrouznejad and Amin, 2010). See also Yang et al. (2017) for a more detailed 
literature review.  

Subjective approaches reflect the subjective judgment or intuition of DMs; however, the analytical results or 
rankings of alternatives based on weights can be influenced by the lack of experience or knowledge. Objective 
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approaches determine weights by making use of mathematical models or statistical methods, but they often focus 
on differences in the values of attributes. For instance, in the entropy method, the decision matrix contains a certain 
amount of information for a set of alternatives or DMUs. The hybrid approach combines the advantages of both the 
subjective and the objective approaches to determine the weights of attributes in MADM.  

The relationship between data envelopment analysis (DEA) without explicit inputs (WEI) and utility theory has 
been studied by Yang et al. (2014), where the authors investigated the relationship between extended utility functions 
and DEA-WEI. Specifically, it was argued that the objective function of DEA-WEI resembles the classic utility 
function, and the link between utility theory in MADM and DEA-WEI was established.  

In several real MADM problems, however, for example, the assessment of the academic impact of national research 
institutes and the assessment of academic capacity of countries, subjective approaches are not applicable because there are 
no obvious DMs who can provide subjective judgments or intuition on the relative importance of attributes in such 
problems. Although most of the existing objective approaches can determine weights based on the decision matrix and do 
not depend on the subjective judgments of DMs, they rely solely on data and do not take into consideration the “will” of 
DMUs, i.e., a set of the most favorable weights for each DMU. Yang et al. (2017) proposed a new three-stage approach, 
whereby a set of preliminary weights as well as the most favorable set of weights for each DMU are first considered using 
a DEA-WEI model, and then these weight sets are aggregated to obtain the best compromise weights for attributes, with 
the interests of all DMUs taken into account fairly and simultaneously.  

However, in the study by Yang et al. (2017), there are two proposed processes that may not match reality, and 
thus there may pose problems in its application: First, the use of the entropy method to obtain the preliminary 
weights double counts the role of an attribute and may violate the claimed fairness principle. Secondly, the formation 
of each DMU’s “right to speak” is defined as the gap between the DMU’s utility based on preliminary weights and 
the maximized utility based on an DEA-WEI-like LP model, which is a somehow arbitrary definition and only takes 
into indirect consideration the DMU’s “will” of using its most preferred weights for performance assessment. This 
may result in deviations from the optimal weight assignment in the sense of genuinely treating each DMU’s best 
“will” fairly. Furthermore, the compromise solution in Yang et al. (2017) in stage 3 is based on an ideal utility vector 
for all attributes, which is minimized for every DMU, with no special treatment for any DMU to reflect the fairness 
principle. However, the best approach is to obtain the compromise solution by minimizing the maximum deviation 
(∞-norm) of the different weight assignment schemes from all DMUs.  

Taking into account the above considerations, this study aims to investigate a novel approach for determining 
the weights of attributes based on a DEA-WEI-like LP model and a two-layer minimax optimization scheme, and to 
solve the two above-mentioned problems by abandoning the use of the entropy method and the “right to speak”, 
redesigning the model in a sensible and fair manner. In this new approach, a set of the most favorable weights for 
each DMU is considered, and then these weight vectors are aggregated to obtain the best compromise solution using 
two-layer minimax optimization as the final attribute weights so that the best interests of all DMUs are taken directly 
into account fairly and simultaneously. 

The remainder of the paper is organized as follows: In Section 2, preliminaries and notations are introduced. 
Furthermore, DEA, DEA-WEI, and several secondary models in DEA-WEI are briefly reviewed. The new hybrid 
approach for determining attribute weights is then proposed. In Section 3, Monte Carlo simulation is also conducted to 
test the characteristics of the proposed approach. Moreover, two case studies are presented to demonstrate the features 
of the proposed approach, namely the assessment of the research strengths of 24 selected countries/regions and the 
performance analysis of 64 selected Chinese universities. In Section 4, the paper is concluded.  
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2. Materials and Methods  

2.1. Preliminaries and Notations 

In this study, the following notations are used to represent a MADM problem:  

S = DMU&, j = 1,2, … , n : a discrete group of n possible DMUs or alternatives.  
Y = Y., Y/, … , Y0 : a set of s attributes. It is assumed without loss of generality that the attributes are additively 

independent to simplify the discussion.  
W2 = w.,w/, … , w0

2 : the weight vector of attributes (or weights thereafter), which satisfies w4 =0
45.

1 , w4 ≥ 0. It should be noted that the superscript “T” represents a vector transpose.  
A = a&4 ;×0

: the decision matrix, where a&4 denotes the value of DMU j on attribute r which is non-negative 
for j = 1,2, … , n and r = 1,2, … , s.   

As in Yang et al. (2017), the decision matrix A is normalized by transforming each of its elements into a 
corresponding element in the normalized (value) matrix D = b&4 ;×0

 using the following linear formula:  

 
Benefit	attribute:	b&4 =

HIJ
HJKLM ,

Cost	attribute:	b&4 =
HJKPQ

HIJ
	or	1 −

HIJ
HI
KLM						

 (1) 

When there is no obvious DM to provide value functions for attributes, a piecewise linear value function is 
defined for each attribute. Let MIN4	and MEDIAN4 be the minimal and median values, respectively, of the attribute 
r	 r = 1, … , s . Then, without loss of generality, let  

 
V MIN4 = MIN4

V MEDIAN4 = 1 + V(MIN4) 2
V 1 = 1

 (2) 

Figure 1 illustrates a piecewise linear value function V b&4 , where b&4 denotes the attribute's value after the 
normalization by formula (1).  

0 bjr

yjr

1
•

•1

• •
•

(1+V(MINr))/2• •

•

•

MINr

MEDIANr

 
Figure 1. Illustration of a Piecewise Linear Value Function1 

                                                             
1 Figure 1 illustrates only, for example, a risk averse value function.  
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Mathematically, the value function shown in Figure 1 can be given by y&4 = V b&4 	as follows:  

 y&4 = V b&4 =

.[\]^J
/× \_`]a^J[\]^J

b&4 +
/×\_`]a^J[\]^J[.
/× \_`]a^J[\]^J

×MIN4, if	b&4 ∈ MIN4, MEDIAN4 																			(3a)
.[\]^J

/× .[\_`]a^J
b&4 +

.[/×\_`]a^Jd\]^J
/× .[\_`]a^J

, if	b&4 ∈ MEDIAN4, 1 																																(3b)
 (3) 

It can be verified that when b&4 = MEDIAN4, the results of formulas (3a) and (3b) are the same. The normalized 
matrix DV = y&4 ;×0

	generated using the value function (3) will be used as the dataset for the analysis. This value 

function assumes that DMUs or alternatives with median achievements on attributes are given average value. Even 
though other assumptions may also be made, a more appropriate approach is to obtain as much preference 
information from DMs as possible, if it is at all possible. 

One of the most widely used MADM methods is the simple additive value method, which leads to the overall 
value of a DMU as follows:    

 Utility DMU& = w4v&(b4&)0
45. , j = 1,2, … , n. (4) 

Keeney and Raiffa (1976) showed that the theoretical foundation of this method is utility theory.    

2.2. Combining DEA-WEI and Two-Layer Minimax Optimization 

In Equation (4), a key issue is how to fairly and consistently define the weight w4, which poses a challenge when 
there is no obvious decision maker who can provide his/her preferences or when preferences are difficult to obtain 
clearly. To address this issue, a novel approach is proposed combining DEA-WEI and a two-layer minimax 
optimization technique to determine weights for multiple attributes.  

The first stage in this approach is to use DEA-WEI models to generate a set of attribute weights most favored by 
each DMU. This set represents the best “will” of each DMU. In the second stage, the most favorable weights of each 
DMU are aggregated to obtain the best compromise solution as the common attribute weights recommended for all 
DMUs, where the best “will” of each DMU is respected equally and simultaneously. In the third stage, a two-layer 
minimax optimization formulation is proposed to obtain the best compromise solution for all DMUs, thus 
determining the final weights for the attributes. 

To test the robustness of the proposed method, Monte Carlo simulation is used to test the ability of the model in 
the solution process from different perspectives in Section 3.1. To improve the adaptability of the proposed method, 
in Section 3.2, it is adjusted when there is priori information. 

2.2.1. Generating Optimal Weights for Each DMU Based on DEA-WEI Model 

DEA was originally developed by Charnes et al. (1978); it is a mathematical programming method for efficiency 
analysis or performance assessment of DMUs with multiple inputs and multiple outputs. DEA has been widely used 
in efficiency analysis and performance evaluation of various business and non-profit organizations. The essence of 
DEA is the principle that each DMU is allowed to generate its most favorable weights for its performance assessment. 
That is, a DEA model provides the weighting coefficients so that each DMU can assign weights for its best benefit in 
terms of maximizing its efficiency score. Therefore, each DMU is free to value better whatever it is best at and to 
ignore the variables with which it does not perform well. In the past several decades, there have been several specific 
DEA models, the most well-known being the CCR model (Charnes et al., 1978) and the BCC model (Banker et al., 
1984). Moreover, the related additive model (Charnes et al., 1985) and the weight-restricted model (Dyson and 
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Thanassoulis, 1998; Allen et al., 1997) should be mentioned. Systematic reviews on DEA theory and its applications 
can be found in several studies, e.g., Cooper et al. (2004, 2006), Cook et al. (2009), and Liu et al. (2013).  

However, as argued in, e.g., Yang et al. (2014&2017), in several real applications, there are no explicit input data 
available. It is difficult or sometimes impossible to reformulate data into original inputs and outputs and then apply 
the classic DEA models to measure the performance of DMUs. In particular, in MADM problems, attributes are 
normally divided into benefit and cost attributes rather than inputs and outputs in the DEA framework. After the 
transformation by formula (1), the normalized decision matrix with the highest value of an attribute being preferred 
is obtained. In this sense, the values of attributes can be regarded as outputs in the context of DEA. Accordingly, 
Adolphson et al. (1991) first developed DEA models without inputs. Lovell and Pastor (1999) and Caporaletti et al. 
(1999) systematically studied these DEA models without inputs. Liu et al. (2011) conducted systematic studies on 
this group of DEA models, which are called DEA-WEI models. Toloo (2013) proposed a new approach for the most 
efficient unit without explicit inputs. Yang et al. (2014) investigated and linked the DEA-WEI model with quadratic 
terms to the extended utility function.  

In general, DEA-WEI is used for evaluation purposes and does not reflect the technical efficiency of the input-output 
system of DMUs, which is the normal function of DEA. Yang et al. (2014) investigated the link between the DEA-WEI 
model and multi-attribute utility theory and noted that the functional form of its objective function resembles the 
traditional utility function. The DEA-WEI model is different from a classic utility function in that only the functional form 
of an objective function is determined by the DMs to reflect a subjective emphasis on assessment. The coefficients of the 
objective function in the DEA-WEI model are determined by a DMU to ensure the most favorable evaluation for this DMU 
(Yang et al. 2014; Yang et al. 2017).  

Yang et al. (2017) showed that the DEA-WEI model can generate an optimal weight vector for each DMU. This 
weight vector reflects the best “will” of an assessed DMU. In MADM, however, preferential or cognitive constraints 
may be imposed on the relative importance of each attribute. For instance, as in the AHP method (e.g. Saaty 1980 & 
1986), the ratio range of weights of one attribute A1 to another A2 can be set to .

h
, 9 . Therefore, the DEA-WEI model 

can be more generally reformulated as follows:  

 max θm = u4y4m0
45. u4y4& ≤ 10

45. , j = 1,2, … , n; u4 ∈Ω, r = 1,2, … , s , (5) 

where the symbol	Ω refers to the set of preferential and cognitive constraints on attributes in model (5), and y4m 
denotes the attribute value of the assessed DMUm. When there are no explicit DMs, for example, Ω could be defined 
as Ω = uq u& qr&

∈ .
h
, 9 , i, j = 1,2, … , s . When there are explicit DMs, Ω may be the set denoting the DMs’ prior 

preference information or value judgments, e.g., Ω = uq ≥ u&, i ≠ j . As previously discussed, the essence of DEA 
or DEA-WEI is that each DMU can provide flexible weights for its inputs/outputs. Therefore, the aim is to obtain the 
optimal weights for DMUm as (u.m∗, u/m∗, … , u4m∗)2, which is the optimal solution of model (5). See Yang et al. (2017) 
for details.  

2.2.2. Selecting Optimal Weights by Secondary Model 

There is the problem that alternative optimal attribute weights commonly exist in the DEA-WEI model (5). A 
secondary goal can be introduced for obtaining a unique optimal solution for a DMU, such as an aggressive or 
benevolent goal, which can minimize or maximize the utility of the composite DMUs constructed for other DMUs 
compared to DMUm. The aggressive model is given as follows:  
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 min
uJ

u4 y4&;
&5.,&rm

0
45.   s. t.

u4y4m0
45. = θm∗ 	

u4y4&0
45. ≤ 1, j = 1,2, … , n; j ≠ 0

u4 ∈Ω, r = 1,2, … , s
 (6) 

where θm∗  is the score of DMUm derived from model (5). The subscript j ≠ 0 indicates that the assessed DMUm is 
excluded from the sequence j = 1,2, … , n. It can be seen that this model attempts to minimize the utilities of other 
DMUs and simultaneously maintain the utility of the assessed DMUm.   

The benevolent formulation is achieved by replacing min with max in the objective function of model (6) as 
follows:  

 max
uJ

u4 y4&;
&5.,&rm

0
45. s. t.

u4y4m0
45. = θm∗

u4y4&0
45. ≤ 1, j = 1,2, … , n; j ≠ 0

u4 ∈Ω, r = 1,2, … , s
 (7) 

where the subscript “0” denotes the assessed DMUm, and similarly hereinafter.  
From the objective function of model (7), the benevolent model intends to maximize the utilities of other DMUs 

and simultaneously maintain the utility of the assessed DMUm.  
Furthermore, Liang et al. (2008) proposed three other alternative secondary goals, namely, minimizing total 

deviation from the ideal point (total deviation model), minimizing the maximum deviation (maximum deviation 
model), and minimizing the mean absolute deviation (absolute deviation model). In fact, the total deviation model 
can be easily seen to be equivalent to model (7). The maximum deviation model and the absolute deviation model 
are presented in Appendix A. There are also some other alternative secondary goals, such as those in the methods 
proposed in Wang and Chin (2010 & 2011) and Sexton et al. (1986).  

Using the secondary goal model to obtain a unique optimal solution is not the same as to add weight restrictions 
because the secondary goal model is used to obtain a unique optimal solution in the existing feasible region instead 
of reducing the feasible region, as is the case with weight restriction. The secondary goal model is used to ensure the 
uniqueness of the most favorable weights of the assessed DMU. However, as pointed out by Lin et al. (2016), the 
secondary models (6), (7), (A1), and (A3) may theoretically exhibit non-uniqueness. However, when the secondary 
goals mentioned above are used, most cases with multiple optimal solutions can be avoided in real applications. 
Thus, the secondary LP models have been adopted in this study.  

2.2.3. Two-Layer Minimax Optimization for Weight Assignment 

Herein the most favorable weight vectors previously generated for individual DMUs are aggregated to obtain the 
best compromise solution as the common weights of attributes recommended for all DMUs. In the aggregation process, 
the individual most favorable weight vector U&∗ = (u.

&∗, u/
&∗, … , u0

&∗)2 , which is obtained from Section 2.2.1 after 
normalization, i.e., u4

&∗ = 10
45. , for DMU&  is represented as a reference point. The distance between the best 

compromise solution and reference point j for DMU& is measured by the ∞-norm, so that the difference between the 
best compromise weight and the reference weight of each attribute is taken into account fairly in the sense that all DMUs 
are assumed to be collectively cooperative in terms of minimizing the maximum deviation from any DMU’s reference 
point, or that no DMU is allowed to take advantage over another DMU in this weight aggregation process. That is, this 
minimax optimization process for weight aggregation operates as an equalizer, so that the difference on any attribute 
for each DMU is taken into account equally or fairly (Yang, 2000; Yang and Xu, 2014). The best compromise solution is 
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defined as that minimizing the maximum distances for all DMUs, so that the interests of all DMUs are simultaneously 
taken into consideration without bias. Under this definition, the best compromise solution can be obtained by solving 
the following two-layer minimax optimization problem:  

 

		

min 	τ = max
&5.,…,;

t& = max
45.,/,…,0

w4 − u4
&∗ 	 	s. t.

w4 = 10
45.

w4 ∈ψ
w4 ≥ 0, r = 1,2, … , s

 (8) 

where w4 ≥ 0 denotes the compromise weight for the r-th attribute, and ψ = wP
wI
∈ .

h
, 9

qr&
, i, j = 1,2, … , s . 2 It is 

worth emphasizing that the two-layer minimax optimization model (10) can be used to fairly generate the final 
attribute weights for all DMUs. This is due to the fact that the inner-layer of the model functions as an equalizer (Yang, 
2000; Yang and Xu, 2014), so that the maximum difference between the best compromise weight and the reference 
weight for all attributes is minimized for every DMU with no weight difference unfairly given any special treatment 
for any DMU. Furthermore, the out-layer of the model also functions as an equalizer, so that the maximum distance 
for all DMUs is minimized, with no distance unfairly given any special treatment for any DMU. This fairness 
principle is considered to be appropriate for weight assignment in MADM, in particular when there are no obvious 
DMs.  

Figure 2 shows the rationale of the above two-layer minimax optimization approach. It is assumed that there are 
only two attributes, whose weights are denoted by w. and w/, and there are three DMUs, namely, DMU. (Point 

A), DMU/ (Point B) and DMUx (Point C). Thus, by formula (8), we have t. = A′P, where A′P is the distance 

between point A’ and point P, and similarly t/ = B′P and tx = C′P. As for every DMU the maximum difference 
between the best compromise weight and the reference weight for all attributes is minimized and there is no special 
treatment for any DMU, there are at least two DMUs with the same maximum distance measured by the ∞-norm 
when an optimal solution is obtained. In this figure, it can be seen that t. = tx > t/ is the optimal solution, which is 
a fair principle without bias on any DMU.  

w1

w
2

w1/w2=1/9

w1/w2=9

•

• •
•

CB

A

P

A’

B’

•

••
C’

 
Figure 2. Illustration of Two-Layer Minimax Optimization   

Model (8) is a nonlinear non-smooth programming problem and can be equivalently transformed into the 
following model:  

                                                             
2 Here, the symbol ψ is used to denote the constraints on the attribute's weight, which is different from Ω.  
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 min τ 		s. t.

w4 − u4.∗ ≤ τ, r = 1,2, … , s
w4 − u4/∗ ≤ τ, r = 1,2, … , s

⋮
w4 − u4;∗ ≤ τ, r = 1,2, … , s

w4 = 10
45.

w4 ∈ψ
w4 ≥ 0, r = 1,2, … , s

  (9) 

The non-smooth constraint w4 − u4
&∗ ≤ τ	(j = 1,2, … , n) can be simply replaced by the equivalent smooth 

constraints	 w4 − u4
&∗ ≤ τ and	 w4 − u4

&∗ ≥ −τ. Thus, model (9) can be transformed into the following model, 
which is a standard LP problem and can be easily solved using existing optimization software packages:   

 min τ 				s. t.

w4 − u4.∗ ≤ τ, r = 1,2, … , s
w4 − u4.∗ ≥ −τ, r = 1,2, … , s
w4 − u4/∗ ≤ τ, r = 1,2, … , s
w4 − u4/∗ ≥ −τ, r = 1,2, … , s

⋮
w4 − u4;∗ ≤ τ, r = 1,2, … , s
w4 − u4;∗ ≥ −τ, r = 1,2, … , s

w4 = 10
45.

w4 ∈ψ,
w4 ≥ 0, r = 1,2, … , s
τ ≥ 0, j = 1,2, … n

 (10) 

Intuitively, it can be deduced from these models that the weight of one attribute, if generated in this weight 
aggregation process, will be probably larger if all DMUs perform relatively better on this attribute than others. Thus, 
we have the following hypothesis:  

H1: Given that each attribute is normalized to take values in the interval [0, 1], the weight of an attribute with greater 
expected value is larger than that of attributes with lower expected values. 

In summary, the rationale behind this new approach is that the weights of attributes are generated by a three-
stage process. The first stage is to allow each DMU to propose its most favorable weight vector of attributes to 
maximize its own utility through the DEA-WEI model. The second stage is to use a properly selected secondary 
model for obtaining the unique weight vector of attributes for each DMU individually to avoid multiple solutions in 
the first stage. Which secondary model should be selected depends on whether DMUs are individually cooperative, 
non-cooperative, or equalitarian-minded when generating their individual most favorable weights. The third stage 
is to obtain the best compromise solution that minimizes the maximum ∞-norm distances to each unique most 
favorable weight vector for each DMU found in the second stage.  

3. Results 

3.1 Numerical Simulations 

Monte Carlo simulation is a widely used method for testing the statistical properties of models (e.g., Smith, 1997). 
Herein, Monte Carlo simulation is used to test the relations between the weights determined by the proposed approach 
and the characteristics of the existing data (including the expected value and variance) and secondary models.  

Without loss of generality, it may be assumed that there are five attributes. Furthermore, Cooper et al. (2000) 
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proposed a rule of thumb for the number of DMUs required in DEA models, namely, n ≥ max m×s, 3 m + s , 
where n is the number of DMUs, and m and s are the number of inputs and outputs, respectively. Dyson et al. 
(2001) argued that the number of DMUs should be n ≥ 2(m×s) to achieve a reasonable level of discrimination. To 
ensure the reliability of the numerical simulations, the minimal number of DMUs was doubled with respect to the 
number of attributes suggested by Cooper et al. (2000), and it is assumed that there are 30 DMUs.  

Experiment 1. Relationship between weights and expectation of attributes’ values 
For each attribute of these 30 DMUs, data were generated from a half-normal distribution with different 

combinations of expected value and variance. That is, for these five attributes, data were generated in the range of (0, 
1] by a normal distribution, and the corresponding expected values and variances were (0.1, 0.5), (0.3, 0.5), (0.5, 0.5), 
(0.7, 0.5), and (0.9, 0.5). Thus, the weights for attributes can be obtained using formulas (5) and (10) in a two-stage 
procedure.  

The above numerical experiments were repeated 1000 times, and the average weights for attributes were as follows:  

Table 1. Average Attribute Weights  

Attributes Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 

Expected value 0.1 0.3 0.5 0.7 0.9 

Variance 0.5 0.5 0.5 0.5 0.5 

Average weights (models 5 and 10) 0.1942 0.1926 0.1989 0.2030 0.2113 

 
From Table 1, it can be seen that the weights of attributes increase as the expected value of these attributes 

increases. Therefore, there is clear statistical evidence to support hypothesis H1.  
Experiment 2. Relationship between weights and variance of attribute values 
The variance of attribute values may also affect the weight assignment. To test this, further numerical 

experiments were conducted, and data were generated from a half-normal distribution with different combinations of 
variance and fixed expected value. Likewise, for these five attributes, data were generated in the range of (0, 1] by a 
normal distribution, and the corresponding expected values and variances were (0.5, 0.1), (0.5, 0.3), (0.5, 0.5), (0.5, 0.7), 
and (0.5, 0.9). Thus, the weights for attributes can be obtained using formulas (6) and (10). The numerical experiments 
were repeated 1000 times, and the average weights for attributes are given in Table 3.   

Table 2. Average Attribute Weights  

Attributes Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 

Expected value 0.5 0.5 0.5 0.5 0.5 

Variance 0.1 0.3 0.5 0.7 0.9 

Average weights (models 5 and 10) 0.2110 0.1821 0.2005 0.1999 0.2065 

Average weights (models 5,6,10) 0.2091 0.1874 0.1993 0.2031 0.2011 

Average weights (models 5,7,10) 0.2787 0.1747 0.1766 0.1883 0.1817 

Average weights (models 5, A1,10) 0.2816 0.1746 0.1759 0.1863 0.1816 

Average weights (models 5, A3,10) 0.2883 0.1722 0.1736 0.1860 0.1799 

As can be seen in Table 2, there is no obvious pattern between the variance of attribute values and the weight 
assignment. 
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Experiment 3. Relationship between weights and secondary goals 
As was discussed in Section 2.2.2, alternative attribute weights may exist. Thus, the relationship of the weights 

determined by the proposed approach with four alternative secondary goals and the expected value of the 
randomized data was further tested.  

The previous numerical experiments were repeated 1000 times for model (5) with secondary models (6), (7), 
(A1), and (A3),3 and then model (10) was used to obtain the final best compromise weights.  

The average weights for attributes are shown in Table 3. It can be seen that the average weights have a strong 
correlation with the expected values of these attributes for most secondary models (models 6, 7, A1, and A3). 
Furthermore, the results reveal that the average weights for each attribute are different when different secondary 
models are used. This demonstrates the importance of examining the situation where performance assessment or 
policy analysis is conducted, so that a right secondary model can be selected to generate an appropriate unique 
reference point for each DMU.   

Table 3. Average Attribute Weights  

Attributes Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 

Expected value 0.1 0.3 0.5 0.7 0.9 

Variance 0.5 0.5 0.5 0.5 0.5 

Average weights (models 5,6,10) 0.2117 0.2023 0.1933 0.1899 0.2029 

Average weights (models 5,7,10) 0.1471 0.1757 0.1986 0.2259 0.2527 

Average weights (models 5, A1,10) 0.1488 0.1769 0.1984 0.2248 0.2511 

Average weights (models 5, A3,10) 0.1505 0.1763 0.1976 0.2247 0.2509 

 
It should be noted that according to Lin et al. (2016), the use of secondary models in this experiment may 

occasionally not ensure the uniqueness of the attributes weights. However, from a practical viewpoint, this possibility 
is relatively low. As the numerical experiments were repeated 1000 times, the possible occurrence of multiple optimal 
weights would have little impact on the average weights. Thus, the robustness and reliability of simulation results 
can be ensured, and Experiment 3, aiming at determining the influence of choosing different secondary models on 
attribute weights, is statistically meaningful. Interested readers can refer to Lin et al. (2016) for an iterative method 
for determining the unique optimal weights.  

3.2. Preliminary Weights as Inputs to the Two-Layer Minimax Model 

If there is no prior information or DM’s preference, it is suggested that the preliminary weights be equally set on 
attributes (ω4 = 1 s , r = 1,2… , s), as in Sections 2.2.1–2.2.3 and 3.1, to ensure the fairness of the weighting process 
because there is no prior information on preference. 

However, in real MADM problems, preliminary weights may be provided by DMs or may be generated. Herein, 
it is demonstrated how the proposed approach can be modified when there is prior information. Let ω4 be the 
preliminary weight of attribute r and ω4 = 10

45. . Therefore, model (8) can be reformulated as follows:    

                                                             
3 The details of secondary models (A1) and (A3) are represented in Appendix A. 
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 min 	τ = max
&5.,…,;

t& = max
45.,/,…,0

ω4 w4 − u4
&∗ 	 	

		

s. t.
w4 = 10

45.

w4 ∈ψ
w4 ≥ 0, r = 1,2, … , s

 (11)  

Consequently, model (11) can be transformed equivalently into the following model:  

 	min τ 				s. t.

ω4 w4 − u4.∗ ≤ τ, r = 1,2, … , s
ω4 w4 − u4.∗ ≥ −τ, r = 1,2, … , s
ω4 w4 − u4/∗ ≤ τ, r = 1,2, … , s
ω4 w4 − u4/∗ ≥ −τ, r = 1,2, … , s

⋮
ω4 w4 − u4;∗ ≤ τ, r = 1,2, … , s
ω4 w4 − u4;∗ ≥ −τ, r = 1,2, … , s

w4 = 10
45.

w4 ∈ψ,
w4 ≥ 0, r = 1,2, … , s

τ ≥ 0

 (12) 

Using model (12), the weight assignment for attributes in MADM problems can be obtained.  

3.3. Case Studies 

Two cases were investigated to illustrate the proposed approach for determining attribute weights in MADM. The 
first is the assessment of the research strength of 24 countries/regions to illustrate the comparative advantages of these 
countries/regions. The second example is the assessment of 64 selected universities under the direct management of the 
Ministry of Education (MOE) of China. In contrast with the first case, in the second case, there is an explicit DM, which is 
the MOE, whose prior preference or pre-judgment information could be incorporated for attribute weights.   

3.3.1. Assessment of Research Strength of 24 Selected Countries/Regions  

Herein, a case study is conducted to apply the proposed weight assignment approach and assess the research 
strength of 24 countries/regions on nine disciplines4 related to medical science of the Essential Scientific Indicators 
(ESI) from Thomson Reuters. See Table 4 for details on these disciplines and their abbreviations.   

Table 4. 9 ESI Disciplines and Their Abbreviations 

Abbreviations Disciplines 

BB Biology & Biochemistry 

CM Clinical Medicine 

Immu. Immunology 

Mic. Microbiology 

MG Molecular Biology & Genetics 

  

                                                             
4 There are 22 disciplines in Essential Scientific Indicators (ESI). Among them, there are nine disciplines related to medical science.  
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Table 4. Cont. 

Abbreviations Disciplines 

NB Neuroscience & Behavior 

PT Pharmacology & Toxicology 

PA Plant & Animal Science 

PP Psychiatry/Psychology 

 
The numbers of SCI papers in these nine disciplines were used to indicate their capacity of publication; thus, the 

nine indicators refer to the number of SCI papers for each discipline. To achieve a reasonable level of discrimination, 
according to Dyson et al. (2001), 24 countries/regions whose numbers of SCI papers in each discipline in ESI were 
among the top 40 were selected. The dataset was from ESI, and the time window was 10 years (from Jan., 2002 to 
Sept., 2013). The detailed data are shown in Table B1.  

In this case study, there is no obvious DM who can provide the weight information on these disciplines, and this 
type of study is for general policy analysis. In such cases it is difficult or even impossible to have prior information 
on attribute weights from potential DMs. Thus, it is suitable to use existing data and the proposed approach to 
generate weights for each attribute (discipline).  

First, it was assumed that these nine attributes are all benefit attributes, and the dataset was normalized using 
formulas (1)–(3) to form a normalized decision matrix and the corresponding matrix after the transformation by 
value functions.  

Secondly, the preliminary weights for the nine attributes were equally distributed, as there is no explicit DM 
who can provide prior preferential or cognitive information. See Table 5.  

Table 5. Preliminary Weights for Nine ESI Disciplines  

Discipline BB CM Immu. Mic. MG NB PT PA PP 

Preliminary 
weights 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 

 

Thirdly, model (5) was used with Ω = uP
uI
∈ .

h
, 9 , i, j = 1,2, … , r, i ≠ j  and secondary models (6), (7), (A1), and 

(A3) to obtain the unique favorable weights for attributes that reflect the best “will” of each country/region.  
Fourthly, model (12) was used to determine the best compromise weights for these attributes as shown in Table 6, in 

which the weight vectors of model (5) and the four secondary models (6), (7), (A1), and (A3) are listed in detail.  

Table 6. Weights for Attributes of Countries/Regions 

Disciplines 
Weights 

(models 5,6,12) 

Weights 

(models 5,7,12) 

Weights 

(models 5, A1,12) 

Weights 

(models 5, A3,12) 

Biology & Biochemistry 0.1837 0.1837 0.1837 0.1837 

Clinical Medicine 0.0204 0.0204 0.0204 0.0204 

Immunology 0.0204 0.0204 0.0204 0.0204 
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Table 6. Cont. 

Disciplines 
Weights 

(models 5,6,12) 

Weights 

(models 5,7,12) 

Weights 

(models 5, A1,12) 

Weights 

(models 5, A3,12) 

Microbiology 0.1837 0.1837 0.1837 0.1837 

Molecular Biology & Genetics 0.0204 0.0204 0.0204 0.0204 

Neuroscience & Behavior 0.0204 0.0204 0.0204 0.0204 

Pharmacology & Toxicology 0.1837 0.1837 0.1837 0.1837 

Plant & Animal Science 0.1837 0.1837 0.1837 0.1837 

Psychiatry/Psychology 0.1837 0.1837 0.1837 0.1837 

 
Table 6 shows that the compromise weights for attributes by the four schemes are the same. This fact 

demonstrates that the results are rather robust. Therefore, using these weights, the utilities of the 24 countries/regions 
can be calculated as shown in Table 7. USA is ranked first. Japan, Germany, PRC, England, and France are ranked 
second to sixth. If equal weights are used in the comparison, then USA, Germany, Japan, England, PRC, and France 
are ranked first to sixth.  

Table 7. Utilities of 24 Countries/Regions and Their Ranks 

Countries/Regions 
Compromise Weights Equal Weights 

Utility Rank Utility Rank 

USA 1.0000  1 1.0000  1 

JAPAN 0.5899  2 0.5820  3 

GERMANY 0.5893  3 0.5894  2 

PEOPLES R CHINA 0.5845  4 0.5688  5 

ENGLAND 0.5779  5 0.5798  4 

FRANCE 0.5474  6 0.5476  6 

CANADA 0.5469  7 0.5450  7 

ITALY 0.5332  8 0.5367  8 

SPAIN 0.5283  9 0.5225  9 

AUSTRALIA 0.5072  10 0.5110  10 

BRAZIL 0.4646  11 0.4499  12 

NETHERLANDS 0.4338  12 0.4678  11 

INDIA 0.4186  13 0.3553  16 

SOUTH KOREA 0.3983  14 0.4007  13 

SWITZERLAND 0.3338  15 0.3920  14 

SWEDEN 0.3128  16 0.3661  15 

BELGIUM 0.2734  17 0.2668  17 
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Table 7. Cont. 

Countries/Regions 
Compromise Weights Equal Weights 

Utility Rank Utility Rank 

SCOTLAND 0.1936  18 0.1914  18 

POLAND 0.1875  19 0.1688  21 

TURKEY 0.1856  20 0.1865  19 

TAIWAN 0.1731  21 0.1742  20 

DENMARK 0.1412  22 0.1634  22 

MEXICO 0.0865  23 0.0601  24 

FINLAND 0.0841  24 0.0978  23 

 

3.3.2. Assessment of 64 Chinese Universities  

In China, the MOE is the authority that manages Chinese universities, with 64 directly managed universities as 
its sub-affiliations. The indicators in “Science & Technology (S&T) statistics compilation in 2014”, which is published 
by the MOE of China and Thomson Reuters were used as the data source for analyzing the performance of the S&T 
activities of the 64 universities.  

The attributes used in this case were student per capita (SPC), paper per capita (PPC), patent per capita (PAPC), 
and technology transfer income per capita (TTIPC). These per capita indicators were obtained from “student”, 
“paper”, “patent”, and “technology transfer income” after division by “staff”. Specifically, “student” denotes the 
total number of Ph.D. candidates, master students, and undergraduates in a statistical year. “paper” refers to the 
number of publications in important international and domestic SCI/SSCI journals in a statistical year. “patent” 
denotes the total number of patent applications and authorized patents in a statistical year. “technology transfer 
income” refers to the total income from the process of technology transfer in a university in a statistical year. In 
addition, “staff” refers to the number of employees registered in the statistical year in the universities engaged in 
teaching, research and development, application of research and development results, and scientific and 
technological services, as well as those employees supporting these activities. 

As the values of attributes differ greatly, the data were normalized and transformed by the value function using 
formulas (1)–(3) to avoid distortion of the results. The standard decision matrix after normalization and 
transformation by the value function is shown in Table B2.  

Furthermore, it was assumed that there is no prior preference information from DMs, and the preliminary 
weights were set equally for attributes as follows:  

Table 8. Preliminary Weights for Four Attributes  

Attributes SPC (Number/Staff) PPC (Number/Staff)  
PAPC 

(Number/Staff) 
TTIPC (RMB in Thousands/Staff)  

Preliminary weights 0.25 0.25 0.25 0.25 
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The DEA-WEI model (5) with Ω = uq u& qr&
∈ .

h
, 9 , i, j = 1,2, … , s 	was used to obtain the weight vector for 

each DMU. Furthermore, different secondary models5 (models 6, 7, A1, and A3) were used to avoid alternative 
solutions in model (5). Model (12) was used to obtain the final compromise weights. The results are shown in Table 
9.  

Table 9. Attribute Weights  

Attributes SPC (Number/Staff) PPC (Number/Staff)  
PAPC 

(Number/Staff) 
TTIPC (RMB in Thousands/Staff)  

Compromised weights 

(models 5,6,12) 
0.1045 0.4015 0.3340 0.1600 

Compromised weights 

(models 5,7,12) 
0.1793 0.4418 0.1585 0.2204 

Compromised weights 

(models 5, A1,12) 
0.1793 0.4418 0.1585 0.2204 

Compromised weights 

(models 5, A3,12) 
0.1623 0.4326 0.1985 0.2066 

 
In late 2015, the Chinese central government issued the “Notice of the State Council on Issuing the Overall Plan 

for Co-ordinately Advancing the Construction of World First-class Universities and First-class Disciplines”, where it 
was announced that China would focus on the construction of a group of world first-class universities. Following 
this important policy, the importance of scientific publications should be emphasized in the sample universities of 
this case study, which are representatives of Chinese high-level universities.  

Under these circumstances, the DMs in MOE are assumed to have a new preference, namely, to require that the 
ratio of SPC to PPC and the ratio of PPC to TTIPC should satisfy	w. ≥ w/ ≥ w~. This implies that the staff of the 64 
Chinese universities should pay more attention to student training and scientific publications than technology 
transfer to achieve the goal “world first-class universities”.   

Hence, the MOE’s prior preference information w. ≥ w/ ≥ w~ was incorporated into model (12) to obtain the 
final compromise weights, as shown as in the following model:    

 min τ 				s. t.

ω4 w4 − u4.∗ ≤ τ, r = 1,2, … , s
ω4 w4 − u4.∗ ≥ −τ, r = 1,2, … , s
ω4 w4 − u4/∗ ≤ τ, r = 1,2, … , s
ω4 w4 − u4/∗ ≥ −τ, r = 1,2, … , s

⋮
ω4 w4 − u4;∗ ≤ τ, r = 1,2, … , s
ω4 w4 − u4;∗ ≥ −τ, r = 1,2, … , s

w4 = 10
45.

w. ≥ w/ ≥ w~

w4 ∈ψ, w4 ≥ 0, r = 1,2, … , s

 (13) 

                                                             
5 The properties of different secondary models are shown in Section 2.2.2.  
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The results are shown in Table 10. Moreover, the approach in Yang et al. (2017) incorporating w. ≥ w/ ≥ w~ 
was used to compare the results (see row 6 in Table 10). The comparison clearly demonstrates the robustness of the 
proposed approach and that the weight of the first indicator (SPC) was double counted and may violate the claimed 
fairness principle in the approach in Yang et al. (2017).  

Table 10. Attribute Weights  

Attributes SPC 
(Number/Staff) 

PPC 
(Number/Staff)  

PAPC 
(Number/Staff) 

TTIPC (RMB in 
Thousands/Staff)  

Compromise weights 
(models 5,6,13) 

0.3351 0.2316 0.2096 0.2237 

Compromise weights 
(models 5,7,13) 

0.3900 0.2865 0.0448 0.2787 

Compromise weights 
(models 5, A1,13) 

0.3900 0.2865 0.0448 0.2787 

Compromise weights 
(models 5, A3,13) 

0.3775 0.2740 0.0824 0.2661 

Weights using the approach in Yang et 
al. (2017)  

0.4990  0.2356  0.1000  0.1654  

 
In this case, it was further assumed that the universities were cooperative, and the maximum deviation model 

(A1) was selected as the secondary model to derive a set of multipliers that assigns the maximum possible score to 
the worst-utility DMU. Therefore, the final results can be obtained using the compromise weights generated from 
models (5), (A1), and (13), as shown by the blue line in Figure 3. DMU31 is one of the most famous universities in 
China and is ranked first. Although DMU1 is also one of the most well-known universities in China, the performance 
of its four attributes was relatively poor because it had an overly large number of employees registered for research 
related activities in the statistical year. It is interesting to see that DMU6 is ranked second in this assessment. This is 
due to the fact that this university performed excellently on at least such attributes as SPC and PPC.  

 
Figure 3. Comparison of Ranks in This Study and the Approach in Yang et al. (2017)  

Moreover, the results in this study were compared with the results in Yang et al. (2017) by incorporating the MOE’s 
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prior preference information w. ≥ w/ ≥ w~ into the compromise stage. See model (14) in Yang et al. (2017). Figure 3 
shows the comparison of different ranks in this study and the approach in Yang et al. (2017). It can be seen that the double 
counted weight on SPC causes the rank changes for a number of universities. For example, DMU3 performs relatively 
worse on SPC (0.1351), which leads to low ranking if the approach in Yang et al. (2017) is used, which assigns double 
counted weight on this attribute (0.4990). The ranking changes of other DMUs can be similarly analyzed.  

4. Discussion 

A hybrid DEA-WEI and two-layer minimax optimization approach was proposed to determine attribute 
weights for MADM that overcomes the insufficiencies related to double counts and indirect reflection of DMU’s “will” 
in Yang et al. (2017). It comprises multiple main stages. First, each DMU proposes its own most favorable weight 
vector based on its DEA-WEI model. Second, different secondary models suitable for different cases can be explored 
to select the optimal attribute weights. Third, a two-layer minimax optimization formulation was proposed to obtain 
the best compromise solution for all DMUs and determine the final weights for the attributes.  

The simulation experiments demonstrated that the weight of an attribute with greater expected value was larger 
than those of other attributes with lower expected values, and the secondary models had significant impact on the 
weight assignment. Even though the proposed approach was developed to support weight assignment in situations 
where the preferences of DMs are either unclear or difficult to acquire, if there are preliminary weights available, the 
weights can be set as inputs to the new two-layer minimax model so that the variations of alternative values on 
attributes can be taken into account for more effective alternative ranking.  

In addition, two case studies were conducted to illustrate the use of the proposed approach for determining weights. 
In these case studies, it was demonstrated that the proposed approach provides a fair and flexible method for weight 
generation, whereby the DM’s preferences on weights and different behaviors can be taken into consideration in the 
process. Furthermore, the analysis demonstrated that different secondary models can lead to different most favorable 
weight vectors for each DMU and thus different compromise weight vectors, which can lead to different rankings. 
Consequently, the behavioral implications of these secondary models should be properly understood before a final 
compromise weight vector is decided. Nevertheless, analyzing the variations of weight and ranking by exploring different 
behaviors and preferences in MADM should be beneficial. 
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Appendix A  

Herein, the following alternative secondary models are presented. 
(a) Minimizing maximum deviation (maximum deviation model) 

In this approach, the maximal deviation ∝&
′ is minimized. The main concept of this approach is to derive a set 

of multipliers that assigns the maximum possible score to the worst-utility DMU, that is, to improve the worst-utility 
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DMU as much as possible; the utility of other DMUs may decrease to reduce variations. The secondary goal in this 
approach can be expressed as follows:  

 min
uJ,∝I

′
δ   s. t.

u4y4m0
45. = θm∗

u4y4&0
45. +	∝&

′= 1, j = 1,2, … , n

	δ−∝&
′≥ 0, j = 1,2, … , n

∝&
′≥ 0, u4 ∈Ω, r = 1,2, … , s; r = 1,2, … , s

 (A1) 

This approach may be suitable in the case where DMUs are assumed to be cooperative when they set their 
individual best weights. An example would be the output evaluation of universities with one single headquarter.  

(b) Minimizing the mean absolute deviation (absolute deviation model).  
In this approach, the following model is proposed to minimize the mean absolute deviation of DMUs, which 

attempts to decrease the utility difference among DMUs. Its objective function shows that in this approach, it is 
attempted to make all DMUs as close as possible to have equal utilities.  

 min
uJ,∝I

′

.
;

∝&
′−∝′;

&5.   s. t.

u4y4m0
45. = θm∗

u4y4&0
45. +	∝&

′= 1, j = 1,2, … , n

∝&
′≥ 0, u4 ∈Ω, r = 1,2, … , s; r = 1,2, … , s

 (A2) 

where ∝′= .
;

∝&
′;

&5. .   

By letting a&
′ = .

/
∝&
′−∝′ +∝&

′−∝′  and b&
′ = .

/
∝&
′−∝′ − ∝&

′−∝′ , model (A2) can be 

transformed into the following LP problem: 

 min
uJ,∝I

′

.
;

a&
′+ b&

′;
&5.   s. t.

u4y4m0
45. = θm∗

u4y4&0
45. +	∝&

′= 1, j = 1,2, … , n

a&
′− b&

′ =∝&
′− .

;
	∝&
′;

&5. , j = 1,2, … , n

∝&
′≥ 0, a&

′ ≥ 0, b&
′ ≥ 0, u4 ∈Ω, r = 1,2, … , s

 (A3) 

In the case that an equalitarian principle should be demonstrated, this approach is more suitable than others 
because it attempts to decrease the utility difference among DMUs.  

Appendix B  

Table B1. Data on Publications in Nine ESI Disciplines for 24 Selected Countries/Regions 

Countries/Regions BB CM Immu. Mic. MG NB PT PA PP 

USA 201 787 827 183 57 666 60 652 136 001 136 124 59 649 160 253 139 283 

BRAZIL 14 469 55 009 3191 5993 6398 8204 6985 35 977 3025 

PEOPLES R CHINA 48 021 116 413 6942 14 230 24 306 15 397 21 188 41 868 5275 

Table B1. Cont. 
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Countries/Regions BB CM Immu. Mic. MG NB PT PA PP 

SPAIN 18 869 72 317 4120 8855 10 597 10 838 6250 27 505 9408 

INDIA 19 547 39 280 2392 8085 5792 3766 11 850 22 799 970 

JAPAN 57 414 172 683 9469 14 423 26 148 24 325 21 121 39 749 5122 

GERMANY 46 185 199 385 10 904 16 395 30 450 32 342 14043 40 426 21 723 

FRANCE 33 245 128 820 8383 12 709 19 863 17 518 8446 28 660 7613 

ITALY 25 252 128 345 6938 6228 14 881 20 082 11373 22 209 7369 

CANADA 28 305 114 577 6273 7667 17 431 21 518 7085 34 080 21 349 

AUSTRALIA 17 048 85 931 5318 5662 9369 10 205 4836 29 526 15 289 

ENGLAND 40 063 194 089 11 471 12 397 27803 27 504 12 608 32 329 30 719 

SOUTH KOREA 18 877 61 027 2766 7795 7472 6088 9999 11 213 1972 

TURKEY 6523 64 128 875 1926 2132 3989 3014 13 548 2655 

NETHERLANDS 12 720 87 678 5369 5397 10 163 12 228 4824 13 159 14 254 

BELGIUM 7946 39 865 2401 3529 4664 4698 3258 10 590 4866 

MEXICO 4391 10 170 1035 2141 1499 2131 1606 12 152 1286 

POLAND 10 154 23 318 1733 1740 3490 3276 3457 14 368 1157 

DENMARK 8534 31 047 2209 2343 4076 3732 2221 7888 2087 

TAIWAN 8254 39 581 1685 2209 3606 3132 4101 5397 2660 

SWITZERLAND 11 049 52 480 4082 3853 8031 8075 3825 10 073 4978 

SWEDEN 13 208 52 942 4236 3287 6691 7382 3504 9992 4261 

FINLAND 5263 22 945 1313 1697 3160 3383 1680 6110 2676 

SCOTLAND 7278 26 342 1706 3255 5205 3664 1728 10 173 3767 

 

Table B2. Data of 64 Chinese Universities after Normalization and Transformation Using Value Function (3)  

Universities 

Ratio Indicators (Attributes) 

SPC (Number/Staff) PPC (Number/Staff)  
PAPC 

(Number/Staff) 

TTIPC 

 (RMB in Thousands/Staff)  

DMU1 0.0177 0.1263 0.1037 0.5013 

DMU2 0.7380 1.0000 0.1072 0.0000 

DMU3 0.1351 0.7187 0.5758 1.0000 

DMU4 0.5148 0.5646 0.5443 0.0486 

DMU5 0.3224 0.3627 0.5209 0.2677 

DMU6 0.5346 0.7768 0.6627 0.5957 

DMU7 0.5137 0.5371 0.5542 0.0529 

 
Table B2. Cont. 
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Universities 

Ratio Indicators (Attributes) 

SPC (Number/Staff) PPC (Number/Staff)  
PAPC 

(Number/Staff) 

TTIPC 

 (RMB in Thousands/Staff)  

DMU8 0.4489 0.6232 0.5367 0.5002 

DMU9 0.5081 0.5045 0.5073 0.4123 

DMU10 0.0627 0.1044 0.0128 0.0000 

DMU11 0.5110 0.7923 0.2780 0.5119 

DMU12 0.5567 0.0358 0.1198 0.0000 

DMU13 1.0000 0.2377 0.0000 0.0000 

DMU14 0.5200 0.3106 0.6136 0.1467 

DMU15 0.5182 0.3576 0.5136 0.0000 

DMU16 0.5088 0.5797 0.5259 0.1384 

DMU17 0.5105 0.6411 0.1688 0.5133 

DMU18 0.5112 0.7080 0.3514 0.6242 

DMU19 0.3969 0.6179 0.5998 0.5384 

DMU20 0.5084 0.6894 0.5328 0.5096 

DMU21 0.5147 0.4658 0.4656 0.1879 

DMU22 0.1837 0.3673 0.3081 0.0474 

DMU23 0.5580 0.6757 0.2788 0.0000 

DMU24 0.4888 0.2585 0.3385 0.5732 

DMU25 0.0285 0.5202 0.1678 0.0514 

DMU26 0.1563 0.5104 0.4409 0.1065 

DMU27 0.0133 0.5202 0.3073 0.5388 

DMU28 0.4935 0.6732 0.5272 0.6267 

DMU29 0.5149 0.5493 0.7783 0.5173 

DMU30 0.5255 0.7201 0.5060 0.3615 

DMU31 0.4892 0.9766 0.5281 0.5288 

DMU32 0.2062 0.5462 0.5878 0.6865 

DMU33 0.5101 0.3118 0.6418 0.5355 

DMU34 0.4976 0.3916 0.5884 0.1212 

DMU35 0.5119 0.5812 1.0000 0.5095 

DMU36 0.4809 0.5433 0.5007 0.5340 

DMU37 0.5093 0.6012 0.5048 0.5487 

DMU38 0.0210 0.4481 0.5028 0.5100 

 

Table B2. Cont. 
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Universities 

Ratio Indicators (Attributes) 

SPC (Number/Staff) PPC (Number/Staff)  
PAPC 

(Number/Staff) 

TTIPC 

 (RMB in Thousands/Staff)  

DMU39 0.5152 0.2267 0.4946 0.9825 

DMU40 0.5182 0.7386 0.5383 0.1894 

DMU41 0.2014 0.4911 0.3612 0.5145 

DMU42 0.4405 0.5257 0.2583 0.5105 

DMU43 0.2680 0.1058 0.5215 0.3097 

DMU44 0.1675 0.3072 0.2776 0.5021 

DMU45 0.1883 0.4903 0.3250 0.4874 

DMU46 0.4625 0.3878 0.2266 0.0000 

DMU47 0.5072 0.1452 0.4345 0.5241 

DMU48 0.5165 0.5644 0.4918 0.2709 

DMU49 0.5548 0.5788 0.1675 0.0460 

DMU50 0.5128 0.5595 0.5020 0.3882 

DMU51 0.1369 0.3251 0.1256 0.5081 

DMU52 0.0364 0.2657 0.0925 0.0126 

DMU53 0.4658 0.5918 0.6540 0.5913 

DMU54 0.5266 0.5895 0.5748 0.5159 

DMU55 0.5091 0.3846 0.3797 0.0627 

DMU56 0.1305 0.4131 0.2876 0.5566 

DMU57 0.4311 0.2664 0.5041 0.0138 

DMU58 0.5290 0.6153 0.5452 0.5228 

DMU59 0.0844 0.4668 0.3550 0.5174 

DMU60 0.4804 0.4886 0.5310 0.0049 

DMU61 0.5095 0.1081 0.6052 0.5412 

DMU62 0.2954 0.4019 0.2136 0.1334 

DMU63 0.5229 0.4382 0.3024 0.0747 

DMU64 0.4131 0.5834 0.1640 0.1484 
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