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ABSTRACT:  
Focusing on the human beings and the organisations, this paper aims to contribute to offshore safety 
assessment by proposing a methodology to model causal relationships. The methodology is proposed in a 
general sense that it will be capable of accommodating modelling of multiple risk factors considered in 
offshore operations and will have ability to deal with different types of data which may come from different 
resources. Reason’s “Swiss cheese” model is used to form a generic offshore safety assessment framework 
and Bayesian Network (BN) is tailored to fit into the framework to construct a causal relationship model. 
The proposed framework uses a five-level-structure model to address latent failures within the causal 
sequence of events. The five levels include Root causes level, Trigger events level, Incidents level, 
Accidents level and Consequences level. To analyse and model a specified offshore installation safety, a 
BN model will be established following the guideline of the proposed five-level framework.  A range of 
events will be specified, and the related prior and conditional probabilities regarding the BN model will be 
assigned based on the inherent characteristics of each event. This paper shows that James Reason’s “Swiss 
cheese” model and BN can be jointly used in offshore safety assessment. On the one hand, the five-level 
conceptual model is enhanced by BNs that are capable of providing graphical demonstration of inter-
relationships as well as calculating numerical values of occurrence likelihood for each failure event. 
Bayesian inference mechanism also makes it possible to monitor how safety situation changes when 
information flows travel forwards and backwards within the networks. On the other hand, BN modelling is 
heavily relied on experts’ personal experiences and is therefore highly domain specific. “Swiss cheese” 
model is such a theoretic framework that it is based on solid behavioural theory and therefore can be used 
to provide roadmap for BN modelling. A case study of the collision risk between a Floating Production, 
Storage and Offloading (FPSO) unit and authorised vessels caused by human and organisational factors 
(HOFs) during operations is used to illustrate the application of the proposed methodology. 
 
Keywords: Safety assessment, Offshore safety, Human error, Bayesian networks. 
 
1. Introduction 
In the UK it is estimated that about 26,000 people work offshore on a regular basis on 
fixed production platforms, mobile drilling rigs, or FPSOs (UK Jobs4U, 2006). Over the 
past two decades, a number of serious accidents including the Piper Alpha tragedy that 
claimed 165 lives have attracted public concerns to offshore safety and reliability. The 
studies on how similar accidents may be prevented have been actively carried out at both 
the national and international levels.  
 
Surveys conducted by different individuals and safety bodies have revealed that about 75-
96% of marine casualties are fully/partially contributed to human and organizational 
errors (Rothblum, 2000). Studies (Bryant, 1991; UK. P&I Club, 1992; Cormier, 1994; 
Transportation Safety Board of Canada, 1994) have shown that HOFs contribute to: 
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• 75% of fires and explosions. 
• 75% of allisions. 
• 89-96% of collisions. 
• 79% of towing vessel groundings. 
• 84-88% of tanker accidents. 

 
Accidents are not usually caused by a single failure or mistake, but by the confluence of a 
whole series, or chain, of errors. In offshore operations, accidents are often initiated by 
errors induced by technical failures, human and organisational factors (HOFs) or a 
combination of both. To reduce the risk, some risk and reliability analysis techniques 
have been used in the UK offshore industry for almost 20 years, and have contributed to 
the reduction of the incidence rate of severe accidents in many circumstances. These 
techniques, however, have traditionally focused more on technical aspects of design, 
construction and operation, than on human and organisational aspects. They mainly use 
descriptive, not predictive models, and are thus not very effective in determining how to 
prevent accidents. Therefore, there is a need for rethinking the methodology of offshore 
safety assessment.  
 
The nature of offshore safety is that the causes of an accident on an offshore installation 
may be found in the complexity of the relationships implicit in the design, procedures, 
equipment, environment, operations, etc. In order to gain a full understanding and 
comprehensive awareness of safety in a given situation, it is necessary to use a systemic 
approach to consider all the aspects that may lead to hazardous events. In offshore safety 
assessment, a systemic approach means considering all functional entities that constitute 
the offshore system as a whole, exploring patterns and inter-relationships within 
subsystems and seeing undesired events as the products of the working of the system 
(Beard, 1989). 
 
However, applying a holistic risk analysis to offshore installations could have some 
hurdles. Particularly, in dealing with HOFs, there are some difficulties: 

• It is hard to agree on what HOF really means. This is because the definition of 
HOF varies considerably. HOF may concentrate on aspects of manpower, 
organisation, management, allocation of responsibility, automation, 
communication, skills, training, health, safety, and the prevention of errors or 
accidents, or any one of a number of other possibilities. 

• It is hard to measure HOFs as to what measures can be used and how those 
measures are inter-related to form a proper assessment framework. 

• It is hard to collect empirical data from industry. There is often inadequate data or 
imprecise information available when carrying out HOFs analysis. Although 
several maritime accident databases have been built up, the data contained in them 
are only marginally relevant to the human and organizational errors.  

• It is hard to establish a uniformed framework to model HOFs related offshore 
safety issues. This is because offshore safety assessment must take all major risk 
factors into account. When those factors involve HOFs, modelling becomes very 
complicated e.g. exploring the relationships among HOFs needs a deep 
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understanding of offshore safety issues and may involve domain experts’ personal 
experiences that are difficult to be treated in a comprehensive way.  

• It is hard to use conventional assessment approaches to deal with HOFs.  
Conventional assessment approaches often fall short in their ability to permit the 
incorporation of subjective and/or vague terms.   

By focusing on the human beings and the organisations as well as the technology in 
offshore safety assessment, this paper aims to contribute to offshore safety assessment by 
proposing a methodology to model causal relationships. Such a methodology will be 
proposed in a general sense that it will be capable of accommodating modelling of 
multiple risk factors considered in offshore operations and will have ability to deal with 
different types of data which may come from different resources. When such a 
framework is applied to a particular offshore installation, risk factors specific to the 
installation investigated can be added to the generic framework to model the actual 
situations.  Reason’s “Swiss cheese” model is used to form a generic offshore safety 
assessment framework and BN is used to construct a causal relationship model. Based on 
the literature review, a five-level framework will be proposed to address latent failures 
within the causal sequence of events. The five-levels include Root causes level, Trigger 
events level, Incidents level, Accidents level and Consequences level. A range of events 
will be specified based on the inherent characteristics of each event. To analyse and 
model a particular offshore installation safety, a BN model will be established and the 
related prior and conditional probabilities regarding the model will also be investigated. 
A number of algorithms will be used to compute and analyse the experimental data.  
 
The objectives of this paper are therefore set up as follows: 

• Develop a framework to integrate all hazardous events into a multi-level model to 
produce an overall picture of the offshore operations safety. 

• Identify constituent levels of the framework and establish the causal relationships 
between the levels. 

• Identify latent errors (human error, equipment failure, etc.) of each level. 
• Investigate how to use BNs to establish causal relationship model. 
• Justify the proposed methodology by case study. 

The rest of this paper is organised as follows. Section 2 briefly reviews the major 
problems and methods in offshore risk analysis. Section 3 proposes a HOFs model and an 
offshore risk analysis flow diagram. Section 4 gives a case study of collision risk 
assessments between FPSO and authorised vessels during operations. Section 5 provides 
the conclusions of the paper. Appendices 1-3 give the background of fuzzy set theory, 
BN model, and f-weighted valuation function for data transformation, respectively. 
Appendix 4 provides the case study data and Appendix 5 gives the results of sensitivity 
analysis.  

2. Review of literature  
Human and organizational errors refer to unacceptable or undesirable performance on the 
part of an individual (human error) or a group (organizational error) that can result in 
unanticipated or undesirable effects (US Coast Guard, 2004). According to the UK 
CHIRP (Confidential Human Factors Incident Reporting Programme), the subject of 
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human factors deals with all the human elements of people in man-machine 
systems.  Therefore, it should cover aspects of manpower, organisation, management, 
allocation of responsibility, automation, communication, skills, training, health, safety, 
and the prevention of errors or accidents, as well as the traditional design and layout of 
equipment and workplaces. Thus the concept of a HOF is extremely broad, for example, 
the people concerned could be all those associated with the total system, not merely the 
crews, but also designers, equipment suppliers, maintainers, support personnel, 
instructors and so on.  
 
According to Senders & Moray (1991) human error is a result of observable behaviour 
originated from psychological processes on different levels, evaluated against some 
performance standards, initiated by an event in a situation where it was possible to act in 
another way considered to be right. Hollnagel (1998), however, pointed out that human 
errors cannot be observed directly. It is only possible to observe human errors indirectly 
by observation of human behaviours. Therefore a definition of human errors must include 
three parts: 

• Evaluation of human behaviour against performance standard or criterion. 
• Event which results in a measurable performance shortfall such that the expected 

level is not met by the acting agent. 
• A degree of volition such that the actor has the opportunity to act in a way that 

will not be considered erroneous. 
 
Human errors may cause accident but accident may not be caused purely by human errors. 
Accident is caused by the confluence of a whole chain of errors.  In order to reduce 
casualties, safety analysts must first identify the type of human and organizational errors 
that cause casualties and then study and determine how accidents happen. To identify and 
group HOFs are extremely difficult, because the type of human and organisational errors 
varies. For instance, Draper (2000) classified human and organisational errors into four 
categories:  

• Slips: Actual behaviour fails to conform to the intention/plan (wrong action).  
• Lapses: Actual behaviour fails to conform to the intention/plan (omitted action, 

memory failure).  
• Rule-based mistake: wrong rule selected for action i.e. behaviour conforms to 

immediate intention, but intention, while consistent with a viable rule for action, 
is inconsistent in this case with wider knowledge.  

• Knowledge-based mistake: error in generating a novel plan for a novel situation.  
 

From human behaviour and organisation theory point of view, some researchers 
investigated human and organisational error classification and grouped them into four 
basic categories: skill-based errors, decision based errors, perceptual errors and 
violation errors (Baker and MaCafferty, 2005). Each basic group could include some 
factors. Significant factors associated with skill-based errors, for example, may include 
Failed to prioritise attention, Inadvertent use of system controls, Omitted step in 
procedure, Omitted checklist item, Poor technique, Over-controlled the system. Decision 
based errors include Improper procedure, Misdiagnosed emergency, Wrong response to 
emergency, Exceeded ability, Inappropriate maneuver, Poor decision. Perceptual errors 
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happen due to Misjudged distance, Visual illusion. Violation errors may include Violated 
training rules, Failed to properly prepare for the mission, Not current/qualified for the 
mission, Intentionally exceeded the limits of the vessel.  
 
Recently many individuals and research bodies studied the major human and 
organisational errors in different industries. UK Energy Institute (2006), for instance, 
published top ten human and organisational factor issues facing onshore major hazards 
sites in the chemical and allied industries. In general, different domain experts may use 
different categories to classify human and organisational errors, each category may have 
different types of errors. This requires analysts to develop novel methods that are able to 
find a right balance in dealing with general safety assessment and domain specific 
analysis. In doing so, two popularly recognised methods are highlighted in this literature 
study. The rest of this Section is the discussion of the two methods: Reason’s “Swiss 
cheese” model and BN model. 
 
Based on human behaviour and organizations theory, Reason (1990) proposed the “Swiss 
cheese” model to study HOFs (see Figure 1). This model demonstrates how generic 
human and organisational errors can be decomposed into logical, mutually exclusive 
categories, each influencing the next. In the model, each slice of cheese represents a 
safety barrier or precaution relevant to a particular hazard. The holes in the cheese slices 
represent latent errors (human error, equipment failure, etc.) waiting to happen. The 
defensive barriers are like dynamic slices of Swiss cheese against accidents and incidents, 
with the holes constantly subject to changes in size and location. When the holes line up, 
meaning that all the defences fail and a system’s latent vulnerabilities are exposed, then 
an incident occurs. A significant attribute of Reason’s model is that each of the 
contributing factors is seen as necessary but not sufficient on its own to cause the 
occurrence of an accident. 
 
Following Reason’s “Swiss cheese” model, many researchers proposed similar 
taxonomies. For example, Swain and Guttman (1983) paid more attention on 
organizational conditions that contribute to human errors. Miller and Swain (1987) 
defined the term performance shaping factors which include: inadequate work space and 
work layout, poor environmental conditions, inadequate human engineering design, 
inadequate training and job aids, poor supervision. Boniface and Bea (1996) linked the 
concept of performance shaping factors to Reason’s human error framework and 
developed a tool for analysing maritime accidents. Other researchers (Perrow, 1984; 
Roberts, 1990; Sagan, 1994; Pauchant and Mitroff, 1992) studied the impact of 
organizational culture on the incidence of human errors.  
 
What makes the “Swiss cheese” model particularly useful is that it forces investigators to 
address latent failures within the causal sequence of events. However, this model is 
simply a theoretical framework, not a prescriptive investigation technique. It has few 
details on how to apply it in a real-world setting. One needs to find out what “holes” are, 
how big they are and how they are correlated, so that they can be detected and corrected 
before an accident occurs (Wiegmann and Shappell, 1997). 
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                             Figure 1. Reason’s model 
 
To make good use of Reason’s model, one way is to use quantitative analysis tool to 
enhance “Swiss cheese” model. Particularly in exploring causal relationships in offshore 
safety assessment, conventional tools have been widely used including Fault Tree 
Analysis (FTA), Event Tree Analysis (ETA), Failure Mode and Effects Analysis (FMEA), 
and Hazard and Operability Studies (HAZOP). However, all those methods may not be 
well suited for dealing with systems in situations of HOFs involved and thus having a 
high level of uncertainty.  
 
BN has been increasingly recognised as a powerful tool to support causal inference in 
situations where data for analysis is with a high level of uncertainty. BN is capable of 
replicating the essential features of plausible reasoning in a consistent, efficient and 
mathematically sound way. Critically it has the function to retract belief in a particular 
case when the basis of that belief is explained away by new evidence (Pearl, 1988). BN 
has been used in many different domains. In recent years, BN has attracted increasing 
attentions because of the new algorithms (Lauritzen and Spiegelhalter, 1998; Zhang, Bai 
et al. 2004). BN has several features: 
 

• It has the ability to incorporate new observations in the network and to predict the 
influence of possible future observations onto the results obtained (Heckerman 
and Breese, 1996). 

• It can not only let users observe the relationships among variables easily, but also 
give an understandable semantic interpretation to all the parameters in a BN 
(Myllymaki, 2005). This allows users to construct a BN directly using domain 
expert knowledge.  

• Furthermore, a BN has both a causal and probabilistic semantics, and thus it 
provides an ideal representation scheme for combining prior knowledge (which 
often comes in causal form) and data.  

• It can handle missing and/or incomplete data. This is because the model has the 
ability to learn the relationships among its nodes and encodes dependencies 
among all variables (Heckerman, 1997). 
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• It can conduct inference inversely.  
 
Many applications have proven that BN is a powerful technique for reasoning 
relationships among a number of variables under uncertainty. For example, BN has been 
applied to ecological risk assessment (Hayes, 1998). It has also been applied to fault 
diagnosis in complex nuclear power systems (Kang and Golay, 1999). However, when 
using BN in offshore safety assessment, there are some difficulties e.g. how to deal with 
incomplete and vague information that largely exists both at the early system design stage 
and during normal operations. In the prior research, approximate reasoning approaches 
have been proposed (Wang, Yang et al. 1995; Sii, Ruxton et al. 2001; Ren, Jenkinson et 
al. 2005). In dealing with HOFs in offshore safety assessment, however, BN is mainly 
criticised with the difficulty of modelling how HOFs are inter-related to form a logic 
chain/network and what is the underlying relationships between them. This difficulty is 
mainly caused by lack of guidelines which are based on human behaviours and 
organisation theories. Another difficulty is the utilisation of a probability measure to 
assess uncertainty. It arguably requires too much precise information in the form of prior 
and conditional probabilities, and such information is often difficult or impossible to 
obtain. In particular, in dealing with indirect relationships, even domain experts may find 
that it is usually difficult to make precise judgments with crisp numbers (i.e. to assign an 
exact value to the probability that consequences happen given the occurrence of an 
event). In many circumstances, a verbal expression (e.g. “very unlikely”) of probabilistic 
uncertainty may be more appropriate than numerical values. 
 
Therefore, the “Swiss cheese” model can act as a high level modelling methodology 
whilst BN can be used as a low level modelling technique. This provides a potential of 
combining the two tools that may overcome shortcomings of each. In fact, the “Swiss 
cheese” model is mainly criticised for being simply a conceptual model with few details 
on how to apply it in a real-world setting. This weakness will be overcome by BNs that 
are capable of providing graphical demonstration of inter-relationships as well as 
numerical values of occurrence likelihood for each failure event. Bayesian inference 
mechanism also makes it possible to monitor how a safety situation changes when 
information flows travel forwards and backwards within the network. On the other hand, 
BN is mainly criticised for lack of guidelines in establishing causal model, that is, 
modelling is heavily dependent on experts’ personal experiences and highly domain 
specific.  The “Swiss cheese” model is such a theoretical framework based on solid 
behavioural theory and therefore can be used to provide a roadmap for BN modelling 
(Ren, Wang et al. 2006). 
 
3. The HOFs model and offshore safety assessment framework  
This section proposes a five-level HOFs model and provides offshore safety assessment 
framework.   
3.1 The conceptual model for HOFs  
Derived from the literature, the proposed methodology is based on the following 
assumptions: 

• Accidents cannot be contributed to a single cause, but are the end result of a 
number of failures or mistakes, that is, they are caused by the confluence of a 
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whole chain of errors. The relationships between those causes can be represented 
by causal chains or networks. 

• Accidents are not caused by the occurrence of sudden unfavourable 
circumstances. Instead, they are mostly generated by HOFs which, under certain 
conditions, trigger an undesired event. 

• All accidents and incidents have their trigger causes and root causes. 
• Risk factors are dynamic in nature. Risk analysis must reflect their dynamic 

properties and therefore should be capable of dealing with dynamic information. 
 
A causal conceptual model is proposed in this section (see Figure 2). The model uses five 
levels of hierarchical abstraction to describe the causal chain of HOFs safety assessment, 
each level providing a different cause/contributory model. 

 
Level 1: The first level is about consequence. It describes the consequences of accident 
(e.g. personnel injury, loss of life, property damage, economic loss and environmental 
pollution).  

 
Level 2: The second level is about accident. It refers to the offshore accidents which may 
include collision, powered grounding, drift grounding, foundering, structural failure and 
fire/explosion. Any event in this level may cause consequences and thus it is the causal 
level of consequence level.  

 
Level 3: The third is the incident level. It includes all possible incidents that create an 
unsafe condition that may result in an accident. For instance, during a tandem offloading 
operation between an FPSO unit and a dynamically positioned (DP) shuttle tanker, drive-
off incident may occur and thus may cause collision (accident).  

 
Level 4: The fourth level is the trigger event level. Trigger events are those unsafe 
operator actions caused by human and organisational errors. Unsafe human actions, for 
example, may cause unexpected high hawser loads beyond the operational limits. Trigger 
events are immediate causes of an incident. They provide the conditions that allowed the 
events at the third level to occur. 

 
Level 5: The fifth level is the root cause level. The factors at this level are often referred 
to as the root causes or systemic factors of an accident.  Root causes affect trigger events. 
At this level, HOFs are the main concerns. 
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                                           Figure 2. The conceptual model for HOFs 
 
It should be noted that offshore accidents occur through the concatenation of multiple 
latent errors. An individual error may not be sufficient to cause severe consequences 
unless it occurs in combination with other latent errors. The above proposed framework 
demonstrates how root causes, trigger events, incidents, accidents and consequences are 
logically related, therefore it provides the potential of exploring the correlation between 
HOFs and severity consequences. In fact, the HOFs may be involved with operators, the 
managers and regulators. The propagation and escalation of HOFs often make it possible 
for combinations of these latent errors to build up over time and hence create the 
preconditions for failure. 
 
3.2 Offshore safety assessment framework 
To conduct offshore risk analysis, a uniformed framework is essential. Based on the 
literature review, a generic framework for offshore risk analysis is proposed and depicted 
in Figure 3. The framework consists of the following four major components: 
 
01. Identify potential failure factors. 
02. Categorise potential failure factors to form a risk analysis hierarchy. 
03. Establish BN model and estimate prior/posterior probabilities. 
04. BN inference and interpret analysis results. 
 
Each component of the framework is described in detail as follows: 
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                                      Figure 3. Offshore safety assessment framework 
 
Component 01: Identify potential failure factors. 
This component is the start point of the whole analysis process. All anticipated 
causes/factors to potential failures during offshore operations must be identified. In doing 
so, extensive literature studies and empirical investigations are essential.  
 
Component 02: Categorise potential failure factors to form  risk analysis hierarchies. 
In this component, all the identified potential factors need to be categorised according to 
their inherent characteristics. The proposed conceptual model (Figure 2) acts as the 
guidelines to formulate a hierarchical structure. 
 
Component 03: Establish BN model and estimate prior/posterior probabilities 
Following the guidelines proposed in the HOFs conceptual model and based on the 
identified risk factors, this component focuses on exploring and establishing the causal 
relationships among those risk factors. Using variables (nodes) to represent the identified 
potential failures, prior probability table (PPT) or conditional probability table (CPT) of 
each variable (node) will be specified. It should be noted that data obtained from 
available databases and data networks may not be complete and well presented. Data 
mining techniques may be used in such cases where, for instance, it is necessary to select 
suitable types of fuzzy membership function to delineate linguistic terms, and consult 
experts with interpretation of the fuzzy membership function. Transformation of 
fuzzy/linguistic data into crisp values is thus included in this component (Yager, 1999). 
 
Component 04: BN inference and interpret analysis results. 
This component conducts the BN inference and interprets the inference results. This is 
done by updating the values of all the nodes via calculating posterior probabilities. 
During the process, Bayesian Equations (i.e. Equations (1)–(4) in Appendix 2) must be 
used when new information is available.   
 
4. Offshore safety case study 
In this section, a case study is presented to demonstrate the application of the proposed 
methodology for conducting offshore safety assessment. This case study analyses the risk 
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of the collision between an FPSO and the shuttle tanker/support vessels during operation. 
For simplicity but without loss of generality, the following are assumed: 

• Only those risk factors that associated with HOFs are considered.  
• Three major types of HOFs are considered to be the root causes of accident. They 

are Rule-based errors, Knowledge-based errors and Safety culture based errors. 
• The values of prior and conditional probabilities are given by estimation rather 

than from real historical databases.  
• All fuzzy probabilities are represented by triangular form membership functions.  

 
The background knowledge of fuzzy set theory, BN inference algorithm and f-weighted 
valuation function for data transformation is given in Appendices 1-3. 
   
4.1. General description and BN model establishment 
An FPSO is one of the most popular floating systems used by the offshore oil and gas 
industry. In the UK, crude oil from an FPSO is normally transported to shore using 
shuttle tankers specially designed for dealing with the harsh weather conditions. Shuttle 
tankers equipped with a bow-loading system are connected to an FPSO unit or storage 
facilities by mooring hawser and loading hose through which cargo is offloaded. Tandem 
loading/offloading is a complex marine operation. It is with high risk due to the close 
proximity required between the two large vessels. In addition, FPSOs are also routinely 
serviced by support vessels. During the operation of service, support vessels could collide 
with FPSO units due to faulty positioning. In a generic scenario, FPSO units can collide 
with these ships. The consequence of the collision varies from minor contact to incidents 
that may cause personnel injury/loss, environment pollution and/or damage to the 
property.  

 
To avoid the occurrence of the incident and accident, it is necessary to find out the hidden 
root causes which may be indirectly linked to severe consequences. HOFs are the main 
concerns in this case study. Incorrect human intervention of the DP system, for example, 
is one reason that can result in a drive off or drift off situation with the risk of collision.  
Safety analysts are interested in exploring what HOFs have most impact on safety 
consequences, how sensitive those HOFs are when a situation changed.  
 
4.2. Offshore safety assessment  
The evaluation framework and BN model proposed in the previous sections are used to 
analyse the case example.  
 
Step 1: Identify potential failure factors  
Identification for potential failure factors must be based on empirical investigation and 
expert interviews. For demonstration purposes, this case study considers eleven factors: 
Personnel Injury/loss(PI), Shuttle Tanker collision with FPSO(ST), Support Vessel 
collision with FPSO(SP), Drive-off(DF), Miss Position(MP), Over Control of the 
vessel(OC), Improper procedure(IP), Misjudgement of the distance(MI), Rule-based 
errors(RB), Knowledge-based errors(KB)  and Safety Culture based errors(SC). 

 
Step 2: Categorise potential failure factors to form risk analysis hierarchy  
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The eleven factors are located at different levels of the proposed framework (see Figure 
4). On the consequence level, Personnel Injury/Loss is considered as the main 
consequence. On the accident level, Shuttle Tanker and Support Vessel collisions with 
FPSO are considered as the main constituents of this level. Drive-off and Miss Position 
are identified as the main causes of the accidents, these two factors are therefore located 
at the incident level. On the Trigger level, three events, namely Over Control of the vessel, 
Improper Procedure and Misjudgement of the distance are considered as the trigger 
events. The last level is root cause level. Here three HOFs are identified as the root 
causes in the case study: Rule-based errors, Knowledge-based errors and Safety culture 
based errors. The causal relationships among those eleven factors are addressed in a way 
that HOFs may trigger undesired events to happen. For example, rule-based errors may 
cause an improper procedure to handle emergency. When such an undesired event occurs, 
incident may happen resulting in shuttle tanker or support vessel being in a faulty 
position. Such a faulty position of the shuttle tanker or support vessel may cause collision 
with the FPSO, and thus may eventually cause personnel injury/loss. The causal 
relationships are demonstrated in Figure 4. As can be seen in Figure 4, the eleven nodes 
are organised by the acyclic arrows that represent the causal relationships among them. 
One of the most interesting questions is to find out that if there is a personnel injury/loss 
observed, then in what possibility it is caused by HOFs. 
 

 
 
 

Figure 4.  The BN model of the collision risk of an FPSO and the authorised vessels 
 
Step 3: Establish BN model and estimate prior/posterior probabilities 
Domain experts were asked to give judgments about the probabilities regarding all the 
nodes. Suppose they use fuzzy membership functions to describe the probabilities. For 
example, a probability value may be assigned with fuzzy membership function 
(0.09,0.10,0.11). Without loss of generality, in this case study triangular fuzzy number (a, 
b, c) is used where a, b and c represent the lower least likely value, the most likely value, 
and upper least likely value, respectively. A triangular fuzzy set is a special trapezoidal 
fuzzy set when the core set of the trapezoidal fuzzy set takes the form of a single point. In 
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Appendix 3, a trapezoidal fuzzy set is used to demonstrate how to conduct fuzzy-to-crisp 
value transformation. 

 
Table 1 gives the fuzzy prior probabilities of nodes RB (Rule-based errors), KB 
(Knowledge-based errors) and SC (Safety culture based errors). As shown in Table 1, 
there are two possible values for each of the three nodes: Yes or No. If RB is true (Yes), 
for example, it means that the event caused by Rule-based errors took place. The 
occurrence likelihood of the event was defined by domain experts as a triangular fuzzy 
number )( 1RBPf = (0.09, 0.10, 0.11) as shown in Table 1. From Table 1, one can see that 
the most likely value of )( 1RBPf  is 0.1, while 0.09 and 0.11 are the lower and upper least 
likely values of )( 1RBPf

, respectively.  
 
Table 1 Fuzzy prior probabilities  )(),(),( SCPKBPRBP fff            

Yes No RB 
(0.09,0.1,0.11) 
0.1 

(0.89,0.9,0.91) 
0.9 

  KB 
(0.09,0.1,0.11) 
0.1 

(0.89,0.9,0.91) 
0.9 

  SC 
(0.09,0.1,0.11) 
0.1 

(0.89,0.9,0.91) 
0.9 

 
Table 2 gives the conditional fuzzy probabilities of variable “Miss Position (MP)” given 
the states of nodes Over control of the vessel (OC), Improper Procedure (IP) and 
Misjudgement of the distance (MJ). In Table 2, a fuzzy probability is provided for each 
possible combination of states of nodes OC, IP and MJ (2× 2× 2× 2=16 in this case). The 
fuzzy probability value (MP1) under condition of OC1, IP2 and MJ2, for example, is shown 
in the fourth row and fifth column. The particular value suggests that the faulty position 
of shuttle tanker or support vessel is quite unlikely to happen with fuzzy probability 
(0.09,0.1,0.11). This is because when there is malfunction caused by Over control of the 
vessel, it is immediately sorted out by right procedure and right judgement of the 
distance. Otherwise, in this situation if there is a misjudgement of distance, the 
occurrence likelihood of a shuttle tanker or support vessel being in a faulty position is 
increased to even chance with fuzzy probability (0.49,0.5,0.51) (shown in the fourth row 
and fourth column of Table 2).  
 
Table 2 Fuzzy conditional probability ),,( MJIPOCMPPf  
 

OC Yes No 

IP Yes No Yes No 

MJ Yes No Yes No Yes No Yes No 

MP: 
Yes 

(0.69,0.7,0.71) 
0.7 

(0.49,0.5,0.51) 
0.5 

(0.49,0.5,0.51) 
0.5 

(0.09,0.1,0.11) 
0.1 

(0.49,0.5,0.51) 
0.5 

(0.09,0.1,0.11) 
0.1 

(0.09,0.1,0.11) 
0.1 

(0.001,0.001,0.001) 
0.001 

MP: 
No 

(0.29,0.3,0.31) 
0.3 

(0.49,0.5,0.51) 
0.5 

(0.49,0.5,0.51) 
0.5 

(0.89,0.9,0.91) 
0.9 

(0.49,0.5,0.51) 
0.5 

(0.89,0.9,0.91) 
0.9 

(0.89,0.9,0.91) 
0.9 

(0.9999,0.999,0.999) 
0.999 
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Tables 4–10 in Appendix 4 give the fuzzy conditional probabilities of other nodes, 
respectively. The meanings of each fuzzy conditional probability can be explained in a 
similar way to the one depicted above. 
 
Step 4: BN inference and  interpret analysis results 
In order to conduct Bayesian inference, it is necessary to transform fuzzy values into 
crisp values. In this paper fuzzy prior probabilities and fuzzy conditional probabilities are 
transformed into crisp numbers using transformation equations provided in Appendix 3.   
 
Fuzzy probability ),11.0,1.0,09.0()( 1 == RBRBPf for example, is transformed as follows 
(using Equation (7) in Appendix 3): 
 

2
2

11.009.0
2

1.01.0

)( 1

⎟
⎠
⎞

⎜
⎝
⎛ +

+⎟
⎠
⎞

⎜
⎝
⎛ +

== RBRBP  

 
                      1.02/)1.01.0( =+=  
 
The transformed values of other prior probabilities are represented with bold fonts shown 
in the body of Table 1. 
 
Similarly, the bold fonts in the bodies of Tables 4–10 in Appendix 4 are the transformed 
probabilities obtained by using Equation (7).  
 
The Bayesian inference mechanism can then be used to conduct various types of analysis.  
Suppose it is observed that there is human injury, and it is requested to inference the 
degree to which this disastrous consequence was related to HOFs. This needs to calculate 
posterior probability ),( 11 PIPISCSCP ==  )( 11 PIPIKBKBP == and 

)( 11 PIPIRBRBP == . By using Bayesian Equations ((1) – (4)) (a detailed description is 
presented in Appendix 2), the relevant calculation is: 
 
                                                                           
 
 
In fact: 
 
 
 
 
 
 
 
 
 
= 0.13 
The marginal probabilities of all the other nodes can be computed by using Bayesian 
Equation (3) (Hugin, 1998). Therefore: 

)(
);(

)(
1

11
11 PIPIP

PIPISCSCP
PIPISCSCP

=

==
===

);;();;( 122121 PIPISPSPSTSTPPIPISPSPSTSTP ===+===+

∑ ===
SPST

f PIPISPSTPPIPIP
,

11 );;()(

);;();;( 112111 PIPISPSPSTSTPPIPISPSPSTSTP ===+====
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=0.1570 
 
Similarly )( 11 PIPIKBKBP == and )( 11 PIPIRBRBP ==  can be computed as: 
 

)( 11 PIPIKBKBP == = 0.1576 
 

)( 11 PIPIRBRBP == = 0.1204 
 
Comparing the posterior probabilities ( )( 11 PIPIKBKBP == = 0.1576, 

)( 11 PIPIRBRBP == = 0.1204, )( 11 PIPISCSCP == = 0.1570) with prior 

probabilities ( ,10.0)( 1 == KBKBP ,10.0)( 1 == RBRBP  10.0)( 1 == SCSCP ), it 
can be seen that there is a significant change in the occurrence likelihood of KB and SC 
errors (increased 57% and 57.6%, respectively) when a personnel injury consequence has 
been observed. This might imply that node “Personnel Injury/Loss” is sensitive to nodes 
“Knowledge-based errors” and “Safety culture based errors”, that is, once a personnel 
injury/loss caused by collision of FPSO is observed, it is more likely that knowledge-
based and safety culture related errors are the main causes during operations. Meanwhile, 
node “Rule-based errors” is less sensitive to node “Personnel Injury/Loss”. When a 
personnel injury/loss consequence caused by collision of FPSO is observed, the 
likelihood of occurrence of “Rule-based errors” only increased 20.4%. 
 
The above results may suggest that in order to avoid severe consequences, it is crucial to 
provide education and training which broaden the staff’s knowledge, increase their job 
competencies and develop professional potential. In addition, developing and maintaining 
a safety culture is equally important. This may involve bringing appropriate concepts, 
practices and methodologies of safety and integrating them into the corporate culture of a 
company, so that safety is present at all levels. 
 
To further justify the above conclusions, sensitivity analysis will be conducted in the next 
section.  
 
4.3. Sensitivity analysis  
Sensitivity refers to how sensitive a model’s performance is to minor changes in the input 
parameters. Sensitivity analysis is particularly useful in investigating the effects of 
inaccuracies or incompleteness in the parameters of a BN model on the model’s output. 
The most natural way of performing sensitivity analysis is to change the parameters’ 
values and then, using an evidence propagation method, monitor the effects of these 
changes on the posterior probabilities. In this case study, the preliminary conclusion (i.e. 
node  “Personnel Injury/Loss” is quite sensitive to nodes “Knowledge-based errors” and 
“Safety culture based errors”, not so sensitive to node “Rule-based errors”) is drawn 

)(
);(

)(
1

11
11 PIPIP

PIPISCSCP
PIPISCSCP

=

==
===
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based on posterior probabilities e.g. )( 11 PIPIKBKBP == , )( 11 PIPIRBRBP == and 
)( 11 PIPISCSCP == . Thus one of the most important sensitivity analysis aspects is to 

analyse how they change when prior probabilities take different values.  
 
4.3.1 Sensitivity analysis at the HOFs level 
Without loss of generality, each of the fuzzy numbers 
( )( 1KBKBPf = , )( 1RBRBPf = and )( 1SCSCPf = ) takes five different values, 
ranging from (0.09, 0.10, 0.11) to (0.29,0.30,0.31) (see Table 3).  The sensitivity analysis 
results were shown in Table 3. As can be seen in the last column of Table 3, the change 
between prior and posterior probabilities clearly indicates that there is a significant 
change between )( 1KBKBPf =  and )( 11 PIPIKBKBP == (average change is 

48.40%), and also between )( 1SCSCPf =  and )( 11 PIPISCSCP == (average change 

is 47.89%). Meanwhile, the change between )( 1RBRBPf =  and 

)( 11 PIPIRBRBP == (average change is 17.74%) is less significant than those of KB 
and SC. Therefore there is a reason to believe that the conclusions made in Section 4.2 
are reliable.  
 
Table 3 Sensitivity analysis results between prior and posterior probabilities 
 Fuzzy prior 

probabilities 
Crisp prior probabilities and 
posterior probabilities  

Change between 
prior and posterior 
probabilities (%) 

No )( 1RBRBPf =  )( 1RBRBP =  )( 11 PIPIRBRBP ==   
1 (0.09,0.10,0.11) 0.10 0.1204 20.40 
2 (0.14,0.15,0.16) 0.15 0.1785 19.00 
3 (0.19,0.20,0.21) 0.20 0.2354 17.70 
4 (0.24,0.25,0.26) 0.25 0.2911 16.44 
5 (0.29,0.30,0.31) 0.30 0.3455 15.17 
   Average change (%)= 17.74 
No )( 1KBKBPf =  )( 1KBKBP =  )( 11 PIPIKBKBP ==   
1 (0.09,0.10,0.11) 0.10 0.1576 57.60 
2 (0.14,0.15,0.16) 0.15 0.2291 52.73 
3 (0.19,0.20,0.21) 0.20 0.2963 48.15 
4 (0.24,0.25,0.26) 0.25 0.3595 43.80 
5 (0.29,0.30,0.31) 0.30 0.4192 39.73 
   Average change (%)= 48.40 
No )( 1SCSCPf =  )( 1SCSCP =  )( 11 PIPISCSCP ==   
1 (0.09,0.10,0.11) 0.10 0.157 57.00 
2 (0.14,0.15,0.16) 0.15 0.2282 52.13 
3 (0.19,0.20,0.21) 0.20 0.2953 47.65 
4 (0.24,0.25,0.26) 0.25 0.3584 43.36 
5 (0.29,0.30,0.31) 0.30 0.418 39.33 
   Average change (%)= 47.89 
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4.3.2 Sensitivity analysis at the Trigger event level 
In order to examine how robust the proposed model is, it is essential to conduct 
sensitivity analysis at the key levels of the model. To analyse Trigger event level, for 
example, the first step to conduct sensitivity analysis is to change the likelihood of 
occurrence of each trigger event and analyse the corresponding change of posterior 
probabilities at the root cause level. When conditional probability ( ,),,( 1 SCKBRBOCOCPf =  

),,( 1 SCKBRBIPIPPf =  or ),,( 1 SCKBRBMJMJPf = ) changes with scale ,05.0±  ,10.0±  
and 15.0± once at a time, for example, sensitivity analysis will explore how posterior 
probabilities ),( 11 PIPIRBRBP == )( 11 PIPIKBKBP ==  and )( 11 PIPISCSCP == ) 
change in values, respectively. For each single change in parameter, the analysis results 
are shown in Tables 11-13 of Appendix 5, respectively. To give graphical demonstration, 
for example, Figure 5 is the corresponding figure in Tables 11-13 of Appendix 5. Each 
sub-figure in Figure 5 shows the three curves of the posterior probabilities. It is clear that 
with the increase of the occurrence likelihood of each trigger event, the corresponding 
posterior probability increases. This may imply that if there is close correlation between 
the Root causes level and the Trigger events level, the HOFs may have strong impact on 
the Consequences level. 
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Figure 5.  Sensitivity analyses at the Trigger event level 
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It can also be seen that all the curves in Figure 5 are flat, that is, the change of each 
posterior probability trend slope is very small. It means that the posterior probability 
trend is not so sensitive to the trigger event individually. 
 
The second step to conduct sensitivity analysis is to simulate different scenarios where all 
the sensitivity analysis parameters simultaneously change with different scales.  Table 14 
in Appendix 5 shows how ),( 11 PIPIRBRBP == )( 11 PIPIKBKBP ==  and 

)( 11 PIPISCSCP == change when ,),,( 1 SCKBRBOCOCPf = ),,( 1 SCKBRBIPIPPf =  

and ),,( 1 SCKBRBMJMJPf = change values. As expected, the posterior probabilities 
decrease when the values of occurrence likelihood of trigger events decrease. There is a 
clear trend that the posterior probabilities of KB and SC change faster than that of RB.  
 
Derived from the above sensitivity analysis, it can be concluded that the proposed model 
is reasonably robust and the assigned probabilities are rational. 
 
5. Conclusions 
This paper has presented an offshore risk analysis methodology, which focuses on 
modelling HOFs. Based on the literature review, a five-level framework has been 
proposed to address latent failures within the causal sequence of events. Guided by the 
five-level framework, hazardous events are identified and arranged to each of the five 
levels based on the inherent characteristics of the events. A BN model has been 
investigated to fit into the proposed framework.  

 
The case study shows that Reason’s “Swiss cheese” model and BN can be jointly used in 
offshore safety assessment. On the one hand, the five-level conceptual model is enhanced 
by BNs that are capable of providing graphical demonstration of inter-relationships as 
well as computing numerical values of occurrence likelihood for each failure event. 
Bayesian inference mechanism makes it possible to monitor how safety situation changes 
when information flows travel forwards and backwards within the network. On the other 
hand, BN modelling heavily relies on experts’ personal experiences and is therefore 
highly domain specific. The “Swiss cheese” model is such a theoretical framework based 
on solid behavioural theory and can be used to provide roadmap for BN modelling. 
Therefore it is believed that the proposed framework is a promising methodology to meet 
the challenges of modelling HOFs in offshore operations. 
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Appendix 1. Fuzzy set and fuzzy number 
Fuzzy sets were derived from generalizing the concept of set theory.  Fuzzy sets can be 
thought of as an extension of classical sets.  In a classical set or crisp set, the objects in a 
set are called elements or members of the set.  An element x belonging to a set A is 
defined as x ∈ A, an element that is not a member in A is noted as x ∉ A.  A characteristic 
function or membership function µA(x) is defined as an element in the universe U having 
a crisp value of 1 or 0.  For every x ∈ U,  
 

( )
⎩
⎨
⎧

∉
∈

=
A. for     0
A, for     1

x
x

xAµ  

 
this can also be expressed as ( ) { }1,0∈xAµ .  For the classical set or crisp set, membership 
functions take a value of 1or 0. However, for fuzzy sets, a membership function can take 
values in the interval [0,1].   The range between 0 and 1 is referred to as the membership 
grade or degree of membership.  A fuzzy set A is defined below: 
 

( )( ) ( ) [ ]{ }1,0,|, ∈∈= xAxxxA AA µµ  
 
where µA(x) is a membership function belonging to the interval [0,1].   
 
Fuzzy numbers are very special fuzzy subsets of the real numbers. The general definition 
of a fuzzy number X is a fuzzy subset of R. If the membership function of X is denoted as 

)(xXµ , X must meet the following conditions: 
  

(a) The core of X is non-empty, i.e. Rx∈∃  such that 1)( =xXµ . 
 
(b) α -cuts of X are all closed, bounded intervals. 
 
(c) It has a bounded support, i.e. RN ∈∃  such that  Rx∈∀ , if Nx ≥  then 0)( =xXµ . 

 
Note that an α-cut of a fuzzy number X is an interval number αX that contains all the 
values of real numbers that have a membership grade in X greater than or equal to the 
specified value of α.  This can be written as 
 
       αX  = [a, b] = {x∈ X|  Xµ (x) ≥ α}.     
 
Appendix 2. Bayesian network model  
A classical BN is a pair N={(V, E), P} where V and E are the nodes and the edges of a 
Directed Acyclic Graph (DAG), respectively, and P is a probability distribution over V. 
Discrete random variables };...;{ 21 nXXXV = are assigned to the nodes while the edges E 
represent the causal probabilistic relationship among the nodes. Each node in the network 
is annotated with a Conditional Probability Table (CPT) that represents the conditional 
probability of the variable given the values of its parents in the graph. The CPT contains, 
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for each possible value of the variable associated to a node, all the conditional 
probabilities with respect to all the combinations of values of the variables associated 
with the parent nodes. For nodes that have no parents, the corresponding table will simply 
contain the prior probabilities for that variable. The principles behind BN are Bayesian 
statistics and concentrate on how probabilities are affected by both prior and posterior 
knowledge.  
 
Inference in BN generally targets the calculation of some probability of interest. 
Inference algorithms are based on the following four equations: 
 
Conditional independence 

∏
=

=
n

i
iin XParentsXPXXXP

1
21 ))(|(),...,,(                                                      (1) 

  
Joint probability 
 

)|()(),( ijiij xXyYPxXPxXyYP ==⋅====                               (2) 
 
Marginalization rule 
 

∑ ==⋅===
i

ijij xXyYPxXPyYP )|()()(                               (3) 

 
Bayesian rule 
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)|()(

)|(
j

iji
ji yYP

xXyYPxXP
yYxXP

=

==⋅=
===                               (4) 

 
In order to use fuzzy numbers in the above Bayesian rules, a suitable transformation 
method from linguistic probabilities into crisp probabilities must be proposed. 
 
Appendix 3. Transformation from fuzzy to crisp values 
Several tools are available for fuzzy-to-crisp transformation such as Maximum 
Transformation Technique (MTT), Centroid Defuzzification Technique (CDT) and 
Weighted Average Technique (WAT) (Ross, 1995). Many existing techniques are 
suffering from information loss and being sensitive to single information that dominates 
the fuzzy set during the process that transforms a fuzzy number into a crisp value. This 
paper adopts f-weighted valuation function (Detynieckim and Yager, 2000; Yager, 1981) 
to decrease the degree of losing information and make the analysis results more 
reasonable and reliable. 
 
A generalized formulation for a class of valuations is as follows: 
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∫

∫ ×
= 1
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where )(FVal is a crisp value transformed from fuzzy membership function F; 

})(|{ αα ≥= xFxF is an α -level set of F; )( αFAverage  is the average of the elements in 
the α -level set. f is defined as f-weighted valuation function.   
 
When F takes the form of trapezoidal fuzzy set, for instance, it will have the membership 
function: 
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For the case of trapezoidal fuzzy set, the average of the elements in the α -level set can 
be computed as follows (Yager and Filev 1999): 
 

2
)( αα

α
vu

FAverage
+

=  

 
where αu  and αv are the horizontal axis values of intersection points between α -cut line 
and the left-hand side and right-hand side of the trapezoidal fuzzy set, respectively. They 
are calculated as follows: 
 

aabu +×−= αα )(  and  αα ×−−= )( cddv  
 
Then Equation (5) becomes:  
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Without loss of generality, let f-weighted valuation function 1)( =αf . Equation (6) 
becomes: 
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This shows that the transformed value is between the middle point of the core and the 
middle point of the support. 
 
Using f-weighted valuation function, experts are able to adjust subjective parameter 
values to make their judgements.  
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Appendix 4. Case study data 
 
Table 4 Fuzzy conditional probability ),( SPSTPIPf   
ST Yes No 
SP Yes No Yes No 
PI: Yes (0.09,0.1,0.11) 

0.1 
(0.049,0.05,0.051) 
0.05 

(0.049,0.05,0.051) 
0.05 

(0.001,0.001,0.001) 
0.001 

PI: No (0.89,0.9,0.91) 
0.9 

(0.94,0.95,0.96) 
0.95 

(0.94,0.95,0.96) 
0.95 

(0.9999,0.999,0.999) 
0.999 

 
 
Table 5 Fuzzy conditional probability ),( MPDFSTPf   
DF Yes No 
MP Yes No Yes No 
ST: Yes (0.09,0.1,0.11) 

0.1 
(0.049,0.05,0.051) 
0.05 

(0.049,0.05,0.051) 
0.05 

(0.001,0.001,0.001) 
0.001 

ST: No (0.89,0.9,0.91) 
0.9 

(0.94,0.95,0.96) 
0.95 

(0.94,0.95,0.96) 
0.95 

(0.9999,0.999,0.999) 
0.999 

 
 
 
Table 6 Fuzzy conditional probability ),( MPDFSPPf   
DF Yes No 
MP Yes No Yes No 
SP: Yes (0.09,0.1,0.11) 

0.1 
(0.049,0.05,0.051) 
0.05 

(0.049,0.05,0.051) 
0.05 

(0.001,0.001,0.001) 
0.001 

SP: No (0.89,0.9,0.91) 
0.9 

(0.94,0.95,0.96) 
0.95 

(0.94,0.95,0.96) 
0.95 

(0.9999,0.999,0.999) 
0.999 

 
Table 7 Fuzzy conditional probability ),,( MJIPOCDFPf   

OC Yes No 
IP Yes No Yes No 
MJ Yes No Yes No Yes No Yes No 
DF: 
Yes 

(0.69,0.7,0.71) 
0.7 

(0.49,0.5,0.51) 
0.5 

(0.49,0.5,0.51) 
0.5 

(0.09,0.1,0.11) 
0.1 

(0.49,0.5,0.51) 
0.5 

(0.09,0.1,0.11) 
0.1 

(0.09,0.1,0.11) 
0.1 

(0.001,0.001,0.001) 
0.001 

DF: 
No 

(0.29,0.3,0.31) 
0.3 

(0.49,0.5,0.51) 
0.5 

(0.49,0.5,0.51) 
0.5 

(0.89,0.9,0.91) 
0.9 

(0.49,0.5,0.51) 
0.5 

(0.89,0.9,0.91) 
0.9 

(0.89,0.9,0.91) 
0.9 

(0.9999,0.999,0.999) 
0.999 

 
Table 8 Fuzzy conditional probability ),,( SCKBRBOCPf   

RB Yes No 
KB Yes No Yes No 
SC Yes No Yes No Yes No Yes No 
OC: 
Yes 

(0.39,0.4,0.41) 
0.4 

(0.29,0.3,0.31) 
0.3 

(0.19,0.2,0.21) 
0.2 

(0.19,0.2,0.21) 
0.2 

(0.19,0.2,0.21) 
0.2 

(0.19,0.2,0.21) 
0.2 

(0.09,0.1,0.11) 
0.1 

(0.005,0.005,0.005) 
0.005 

OC: 
No 

(0.59,0.6,0.61) 
0.6 

(0.69,0.7,0.71) 
0.7 

(0.79,0.8,0.81) 
0.8 

(0.79,0.8,0.81) 
0.8 

(0.79,0.8,0.81) 
0.8 

(0.79,0.8,0.81) 
0.8 

(0.89,0.9,0.91) 
0.9 

(0.995,0.995,0.995) 
0.995 

 
 
Table 9 Fuzzy conditional probability ),,( SCKBRBIPPf   

RB Yes No 
KB Yes No Yes No 
SC Yes No Yes No Yes No Yes No 
IP: 
Yes 

(0.39,0.4,0.41) 
0.4 

(0.39,0.4,0.41) 
0.4 

(0.19,0.2,0.21) 
0.2 

(0.19,0.2,0.21) 
0.2 

(0.25,0.25,0.25) 
0.25 

(0.19,0.2,0.21) 
0.2 

(0.09,0.1,0.11) 
0.1 

(0.005,0.005,0.005) 
0.005 

IP: 
No 

(0.59,0.6,0.61) 
0.6 

(0.59,0.6,0.61) 
0.6 

(0.79,0.8,0.81) 
0.8 

(0.79,0.8,0.81) 
0.8 

(0.75,0.75,0.75) 
0.75 

(0.79,0.8,0.81) 
0.8 

(0.89,0.9,0.91) 
0.9 

(0.995,0.995,0.995) 
0.995 
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Table 10 Fuzzy conditional probability ),,( SCKBRBMJPf   
RB Yes No 
KB Yes No Yes No 
SC Yes No Yes No Yes No Yes No 
MJ: 
Yes 

(0.39,0.4,0.41) 
0.4 

(0.29,0.3,0.31) 
0.3 

(0.19,0.2,0.21) 
0.2 

(0.19,0.2,0.21) 
0.2 

(0.19,0.2,0.21) 
0.2 

(0.19,0.2,0.21) 
0.2 

(0.09,0.1,0.11) 
0.1 

(0.005,0.005,0.005) 
0.005 

MJ: 
No 

(0.59,0.6,0.61) 
0.6 

(0.69,0.7,0.71) 
0.7 

(0.79,0.8,0.81) 
0.8 

(0.79,0.8,0.81) 
0.8 

(0.79,0.8,0.81) 
0.8 

(0.79,0.8,0.81) 
0.8 

(0.89,0.9,0.91) 
0.9 

(0.995,0.995,0.995) 
0.995 

 
 

Appendix 5. Results of sensitivity analysis 
 

Table 11 Errors caused by Over Control (OC) sensitivity analysis 
 -15% Change -10% Change -5% Change Base results Change 5% Change 10% Change 15% Change
RB 11.94 -0.83% 11.97 -0.58% 12.00 -0.33% 12.04 0.00% 12.07 0.25% 12.11 0.58% 12.14 0.83%
KB 15.45 -1.97% 15.55 -1.33% 15.66 -0.63% 15.76 0.00% 15.87 0.70% 15.97 1.33% 16.07 1.97%
SC 15.38 -2.35% 15.49 -1.65% 15.59 -1.02% 15.75 0.00% 15.8 0.32% 15.90 0.95% 16.01 1.65%

 
Table 12 Errors caused by Improper Procedure (IP) sensitivity analysis 

 -15% Change -10% Change -5% Change Base results Change 5% Change 10% Change 15% Change
RB 11.95 -0.75% 11.98 -0.50% 12.02 -0.17% 12.04 0.00% 12.07 0.25% 12.11 0.58% 12.14 0.83%
KB 15.31 -2.86% 15.42 -2.16% 15.53 -1.46% 15.76 0.00% 15.87 0.70% 15.99 1.46% 16.07 1.97%
SC 15.25 -3.17% 15.36 -2.48% 15.36 -2.48% 15.75 0.00% 15.81 0.38% 15.91 1.02% 16.02 1.71%

 
Table 13 Errors caused by Miss Judgement (MJ) sensitivity analysis 

 
Table 14 Combined sensitivity analysis on Trigger events level 

 Base results: 
Posterior 

Probabilities Change 
Posterior Probabilities 
under (0%, 5%, 5%). Change

Posterior Probabilities 
under (5%, 5%, 5%). Change 

Posterior Probabilities 
under (5, 10%, 10%). Change 

RB 12.04 N/a 11.91 -1.09% 11.88 -1.33% 11.85 -1.58%
KB 15.76 N/a 15.49 -1.75% 15.39 -2.35% 15.22 -3.43%
SC 15.75 N/a 15.49 -1.69% 15.39 -2.29% 15.17 -3.68%

 

 
 

 -15% Change -10% Change -5% Change Base results Change 5% Change 10% Change 15% Change
RB 11.93 -0.91% 11.97 -0.58% 12.00 -0.33% 12.04 0.00% 12.07 0.25% 12.11 0.58% 12.14 0.83%
KB 15.43 -2.09% 15.55 -1.33% 15.66 -0.63% 15.76 0.00% 15.87 0.70% 15.97 1.33% 16.07 1.97%
SC 15.38 -2.35% 15.49 -1.65% 15.59 -1.02% 15.75 0.00% 15.80 0.32% 15.90 0.95% 16.01 1.65%


