
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 1

A Matrix-Cube-Based Estimation of Distribution
Algorithm for No-Wait Flow-Shop Scheduling

With Sequence-Dependent Setup Times
and Release Times

Bin Qian , Zi-Qi Zhang , Rong Hu, Huai-Ping Jin, and Jian-Bo Yang

Abstract—The no-wait flow-shop scheduling problem (NFSSP)
with sequence-dependent setup times (SDSTs) and release
times (RTs) is applicable in many areas, such as steel produc-
tion, food processing, and chemical processing. Estimation of the
distribution algorithm (EDA) has recently been recognized as
a prominent metaheuristic methodology in the field of evolu-
tionary computation due to its excellent performance of global
exploration. In this article, an innovative matrix-cube-based (i.e.,
3-D) EDA (MCEDA) is first proposed to minimize the total ear-
liness and tardiness (TET) of the NFSSP with SDSTs and RTs.
This problem is NP-hard in the strong sense. First, a 3-D matrix
cube is devised to learn the valuable information from promis-
ing solutions or excellent individuals. Second, an EDA model
or probabilistic model based on the matrix cube and a special
sampling method is presented to perform effective exploration
in solution space and find promising regions. Third, based on
a series of newly defined subneighborhoods, a new local search
with both a speed-up scanning method and one search strat-
egy is developed to execute exploitation from promising regions.
Fourth, a speed-up evaluation method based on the problem’s
property is designed to reduce the computational complexity for
calculating criterion and accelerate the search process. Owing
to the reasonable hybridization of exploration and exploitation,
MCEDA can perform very efficient search in solution space.
Extensive test results on instances of such a just-in-time problem
first show that MCEDA can achieve better solution than state-of-
the-art algorithms in obviously less computation time. Additional
experiments on instances of various NFSSPs further confirm the
efficiency and robustness of MCEDA.

Index Terms—Estimation of distribution algorithm (EDA),
exploration and exploitation, fast local search, no-wait flow-shop
scheduling problem (NFSSP), probabilistic model.

Manuscript received 12 March 2022; accepted 10 August 2022. This
work was supported in part by the National Natural Science Foundation of
China under Grant 62173169, Grant 61963022, and Grant 51665025; and
in part by the Basic Research Key Project of Yunnan Province under Grant
202201AS070030. This article was recommended by Associate Editor S. Xie.
(Corresponding author: Rong Hu.)

Bin Qian, Zi-Qi Zhang, Rong Hu, and Huai-Ping Jin are with the School
of Information Engineering and Automation, Kunming University of Science
and Technology, Kunming 650500, China (e-mail: ronghu@vip.163.com).

Jian-Bo Yang is with the Alliance Manchester Business School, The
University of Manchester, Manchester M13 9SS, U.K.

This article has supplementary material provided by the
authors and color versions of one or more figures available at
https://doi.org/10.1109/TSMC.2022.3198829.

Digital Object Identifier 10.1109/TSMC.2022.3198829

I. INTRODUCTION

W ITH the acceleration of economic globalization and the
popularity of Internet, more and more enterprises are

aware of the importance of quickly responding to customer
needs and requirements. As an effective operation management
approach, the just-in-time (JIT) system has been employed
by many enterprises for maintaining customer satisfaction and
reducing extra costs. In JIT environment, jobs which are com-
pleted earlier than their due dates may result in inventory hold-
ing costs, opportunity costs, and deterioration of perishable
goods. Contrarily, jobs which are tardy may cause lost sales,
contract penalties, and backlogging costs [1]. Nowadays, JIT
management plays an important role in production, service,
and manufacturing systems. Meanwhile, proper scheduling
leads to increased efficiency and profitability [2], [3], [4], [5].
So, it is important to develop effective and efficient scheduling
algorithms to minimize the total earliness and tardiness (TET).

The no-wait flow-shop scheduling problem (NFSSP) is
a kind of broadly studied production scheduling problem
with a strong engineering background. To fulfill the no-wait
restrictions, each job is required to be processed continu-
ously from start to end without waiting either on or between
machines. In many real-life NFSSPs, sequence-dependent
setup times (SDSTs) and release times (RTs) are two very
common constraints, which have received increasing attention
over the past decade [6], [7], [8]. An example of the NFSSP
with SDSTs and RTs arises in the downstream process of
some chinese steel enterprises, where ingots produced in the
upstream plants are transported to a downstream plant (i.e.,
a hot rolling plant) and then undergo several uninterrupted
operations, i.e., reheating, rough rolling, and precision rolling.
The RT of each ingot is its transport arrival time. Each machine
needs to be adjusted before processing different jobs. The
adjusting time or setup time depends on material and final
product of the current job and its previous one. Despite its
important practical applications, there is less research consid-
ering the NFSSP with SDSTs and RTs [9], [10]. Thus, this
article aims to minimize the TET for such problem.

Since the single machine scheduling problem with the TET
criterion is NP-hard in the strong sense [11] and it reduces to
the TET-NFSSP with SDSTs and RTs, the latter problem is
also strongly NP-hard. The analyses of problem complexity
can be found in Part 1 of the online supplementary material

2168-2216 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Manchester. Downloaded on November 06,2022 at 12:19:55 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0048-1487
https://orcid.org/0000-0001-9024-900X
https://orcid.org/0000-0001-8953-1550

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

(see the website address in Section IV-A). Standard mathe-
matical algorithms, such as mixed integer programming and
dynamic programming for NP-hard discrete problems are often
of limited use because of their long running time. As a result,
metaheuristic algorithms have been proposed, which provide
satisfactory solutions in reasonable running time. However,
when explaining why metaheuristic algorithms can obtain
satisfactory solutions by using a small number of individ-
uals to run tens or hundreds of generations, the existing
literature only mentioned the mechanism and characteristics
of each algorithm, but ignored the important influence of
the permutation-based model on the solution quality. This
leads many new researchers to pursue innovations in unim-
portant techniques too much. In fact, the effectiveness of
metaheuristic algorithms is decided by the solution space
of the permutation-based model and the mechanism of each
algorithm.

In terms of the solution space of the permutation-based
model, the variation range of the objective value of the
scheduling problem is far smaller than the scale of the solu-
tion space. For example, for the FSSP with the objective of
minimizing the makespan or Cmax (i.e., the most studied
scheduling problem in the literature), if there are 60 jobs and
5 machines, and the processing time of each job is a ran-
dom number evenly distributed between [1, 100], then the
objective value is in the range (64, 6400), and the scale of
the solution space is 60!. Here, 64 and 6400 are the objec-
tive values when each job’s processing time is set to 1 and
100, respectively. In fact, since each job’s processing time is
a random number between [1, 100], the actual range (a, b)
of the objective values of any concrete instance of the FSSP
above is covered by (64, 6400). That is, each specific objective
value corresponds to more than 1.31×1078 (i.e., 60!/(b-a)>
60!/(6400-64)≈1.31×1078) different permutations or solutions
on average. This indicates that a large number of different
solutions has the same objective value. For other types of
scheduling problems (including the problem considered in this
article), the above situation also exists.

Because of the “extremely flat” property of the above solu-
tion space, any stochastic search only needs a short time to
search very small regions in the entire space (similar to the
area of a needle in football field), but it can reach a wide
range of objective values. Each metaheuristic algorithm adds
its own optimization mechanism on the basis of stochastic
search, so that it can not only search a wide range of objective
values in a short time, but also its inherent optimization mech-
anism can promote it to search different regions with smaller
objective values. Metaheuristic algorithms can obtain smaller
objective values in a wider range by searching very limited
regions in the solution space of the permutation-based model.
This is the essential reason for its effectiveness. However, it
is difficult for mathematical algorithms that need to traverse
or partially traverse the solution space to do this. Thus, it
is reasonable to design metaheuristic algorithms for NP-hard
problems.

Estimation of distribution algorithm (EDA) is one of the
effective metaheuristic algorithms. This algorithm is based on
a probability model constructed from a population of excellent

individuals, which has a good ability of guiding the search
to the promising regions of solution space [2]. Nowadays,
EDA has already been extensively applied to deal with differ-
ent kinds of optimization problems [12]. The literature review
on EDA for scheduling problems can be found in Part 2 of
the online supplementary material (see the website address in
Section IV-A).

From the literature review, it can be seen that the exist-
ing EDA-based algorithms usually adopt a 2-D probabilistic
model to accumulate the information of the blocks and the
jobs from each excellent individual. Here, any two consec-
utive jobs in an individual constitute one block. However,
the 2-D structure has no extra space to preserve the position
information of each block and the whole order information
of all jobs. As a result, when generating a new individ-
ual, it is difficult for the sampling procedure to place the
blocks in their correct positions. Moreover, the solution space
determined by some specific neighborhoods or operators (i.e.,
Insert, Interchange, Swap, etc.,) has a big-valley landscape,
where a large number of local optima is relatively close to
each other and surround global optima at the bottom part of
big valley [2], [13], [14], [15]. This indicates excellent indi-
viduals usually have partially similar patterns. Obviously, it
is crucial and challenging to build a more reasonable struc-
ture for learning the valuable information to guide the global
search direction. Hence, we devise a novel matrix-cube-based
EDA (MCEDA) for the TET-NFSSP with SDSTs and RTs.

The main contributions of this article are as follows.
1) The profound reason why metaheuristic algorithms are

effective is pointed out, and the role of each part
in MCEDA is deeply analyzed. This is conducive to
the further development of metaheuristic algorithms for
discrete optimization problems.

2) A novel probabilistic model constructed from a devised
matrix cube and a special sampling method is presented
to generate new population. This design can quickly
guide the global search to promising solutions or
regions.

3) Different from most of existing local searches that are
based on several common neighborhoods, a new Insert-
based local search with one strategy is proposed by using
a set of subneighborhoods to execute a narrow but rich
exploitation.

4) Based on the problem’s properties, a speed-up evaluation
method and a speed-up scanning method is designed.
The former is used to reduce TET’s computational com-
plexity (CC), while the latter is used to accelerate the
speed of scanning subneighborhoods in local search.

5) As for the theoretical analyses, the concept of Turing
reduction is utilized to prove that the problem considered
is strongly NP-hard, and the CC of MCEDA is analyzed
in detail.

The remainder of this article is organized as follows.
Section II introduces the model of the TET-NFSSP with
SDSTs and RTs. Section III details the implementation of
MCEDA. Extensive comparisons are presented and discussed
in Section IV. Finally, Section V provides some concluding
remarks.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Manchester. Downloaded on November 06,2022 at 12:19:55 UTC from IEEE Xplore. Restrictions apply.

QIAN et al.: MCEDA FOR NO-WAIT FLOW-SHOP SCHEDULING WITH SDSTs AND RTs 3

Fig. 1. Gantt chart of the NFSSP with SDSTs when n = 3 and m = 3.

II. PROBLEM DESCRIPTIONS

The permutation-based model of the NFSSP with SDSTs
and RTs is given below. There are n jobs to be processed
sequentially on m machines. At any moment, each machine
can only process one job and preemption is prohibited. Each
machine processes all jobs in the same order, and any two
consecutive machines must process the same job without
interruption. The setup times depend on the previous and the
current jobs at each machine. In addition, an idle machine can-
not process the job until it is released. The detailed notations
adopted in this model are listed in Table I.

A. NFSSP With SDSTs

In the NFSSP with SDSTs, MLji,l can be calculated as
follows:

MLji,l =
{

max
{
sji−1,ji,1 + pji,1 − pji−1,2, sji−1,ji,2

} + pji,2, l = 2

max
{
MLji,l−1 − pji−1,l, sji−1,ji,l

} + pji,l, l = 3, . . . , m.

(1)

Then, Cji can be calculated as follows:

Cji =
i∑

k=1

MLjk,m, i = 1, . . . , n. (2)

Accordingly, Lji−1,ji can be calculated as follows:

Lji−1,ji = MLji,m + spji−1 − spji . (3)

Fig. 1 shows a Gantt chart of the NFSSP with SDSTs when
n = 3 and m = 3.

B. TET-NFSSP With SDSTs and RTs

In the NFSSP with SDSTs and RTs, Stji can be written as
follows:

Stji =
{

max
{
MLji,m − spji , rji

}
, i = 1

Stji−1 + max
{
Lji−1,ji , rji − Stji−1

}
, i = 2, . . . , n.

(4)

Hence, Cji , Eji , Tji , and TET(π) of the NFSSP with SDSTs
and RTs can be calculated as follows:

Cji = Stji + spji , i = 1, . . . , n (5)

Eji = max(dji − Cji , 0), i = 1, . . . , n (6)

Tji = max(Cji − dji , 0), i = 1, . . . , n (7)

TET(π) =
n∑

i=1

(
Eji + Tji

)
. (8)

The criterion is to obtain a schedule π∗ in the set of all
schedules

∏
such that

TET(π∗) = min
π∈∏TET(π). (9)

TABLE I
NOTATIONS APPLIED IN OPTIMIZATION MODEL

Equations (1)–(9) give the model of the TET-NFSSP with
SDSTs and RTs. The constraints are included in (1) and (4).
More precisely, (1) requires that each job must be processed
without interruptions between consecutive machines (no-wait
constraint), and (4) ensures that the time for each job to start
being processed on the first machine is not less than its RT
(RT constraint). The decision variables are expressed as a job
permutation π . If the jobs in π are different and the number
of jobs is n, π is a feasible solution.

III. MCEDA FOR TET-NFSSP WITH SDSTS AND RTS

This section details the implementation of the proposed
MCEDA, including the speed-up evaluation method, the
matrix-cube-based global search, the problem-dependent local
search, and the process of MCEDA. Meanwhile, the CC of
MCEDA is analyzed. To better understand our contributions,
the novelties and merits of its global and local search are also
analyzed in depth.

A. Speed-Up Evaluation Method

In accordance with the no-wait property of the permutation-
based model for the TET-NFSSP with SDSTs and RTs in
Section II, it is clear that Lji−1,ji in (3) is only decided by both
job ji−1 and job ji. Therefore, a speed-up evaluation method
can be designed to reduce the CC of evaluating TET(π). That
is, Lji−1,ji and spji (ji−1, ji ∈{1, . . . , n}) can be calculated and
reserved at the initial phase of the algorithm. In the global
search and local search phases, they can be used as constant
values. Based on the (3)–(8), the CC of calculating TET(π)

can be reduced from O(nm) to O(n).
Actually, since the commonly used criterion to be mini-

mized is always a function of Cji (ji ∈{1, . . . , n}) and Cji of
each kind of NFSSPs can be calculated by using Lji−1,ji and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Manchester. Downloaded on November 06,2022 at 12:19:55 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

spji [see (4) and (5)], the CC of calculating any common
criterion (e.g., makespan, total completion time, total weighted
ET, and total tardiness) for each specific NFSSP can also be
reduced from O(nm) to O(n). Hence, the speed-up evalua-
tion method is applied to all compared algorithms for solving
different NFSSPs in Sections IV-B and IV-C.

B. Matrix-Cube-Based Global Search

A matrix-cube-based global search is presented to exe-
cute exploration in solution space. Two key components, i.e.,
a matrix cube and a matrix-cube-based probabilistic model, are
designed at first. Then, the overall procedure of global search
is described. The notations used in the presented global search
but not defined in the text are provided in Table II.

1) Matrix Cube: A 3-D matrix cube MCgen
n×n×n is devised

to record the valuable information of excellent individuals.
This matrix cube is important for designing a probabilistic
model. The details of MCgen

n×n×n are given as follows:

OneS_MCgen,w
n×n×n(x, y, z) =

{
1, if y = SubB_jgen,w

x , z = SubB_jgen,w
x+1

0, else

x = 1, . . . , n − 1, y, z = 1, . . . , n (10)

MCgen
n×n×n(x, y, z) =

sbpopsize∑
w=1

OneS_MCgen,w
n×n×n(x, y, z),

x = 1, . . . , n − 1, y, z = 1, . . . , n (11)

MCgen
n×n×n (x) =

⎡
⎢⎢⎣

MCgen
n×n×n(x, 1, 1) · · · MCgen

n×n×n(x, 1, n)

.

.

.
. . .

.

.

.

MCgen
n×n×n(x, n, 1) · · · MCgen

n×n×n(x, n, n)

⎤
⎥⎥⎦

n×n

(12)

MCgen
n×n×n(x, y) = [

MCgen
n×n×n(x, y, 1), MCgen

n×n×n(x, y, 2), . . .

MCgen
n×n×n(x, y, n)

]
1×n,

x = 1, 2, . . . , n − 1, y = 1, 2, . . . , n (13)

MCgen
n×n×n = [

MCgen
n×n×n(1), MCgen

n×n×n(2), ..., MCgen
n×n×n (n)

]
. (14)

In (11), the element MCgen
n×n×n(x, y, z) can save the occur-

rence frequency that the job SubB_jgen,w
x+1 appears imme-

diately after the job SubB_jgen,w
x when SubB_jgen,w

x is at
the xth position of SubB_πgen,w, and its subscripts x and
(y, z) record the ordinal number of job (i.e., the position of
SubB_jgen,w

x in SubB_πgen,w) and the corresponding block
(i.e., [y = SubB_jgen,w

x , z = SubB_jgen,w
x+1]), respectively.

Thus, the subscripts of elements greater than 0 in the 2-D
matrix MCgen

n×n×n (x) reserve all the ordinal numbers of
jobs and the corresponding blocks at the xth positions of
individuals in SubBestPop(gen). Moreover, the hierarchi-
cal structure of the 3-D matrix cube MCgen

n×n×n reserves
the whole order information of jobs in SubBestPop(gen)

by means of a series of position-based submatrices, i.e.,
MCgen

n×n×n(1), MCgen
n×n×n(2), . . . , MCgen

n×n×n (n). Therefore,
the valuable information of excellent individuals at genera-
tion gen can be learned and reserved in an intuitive way. An
example of the above explanations can be found in Part 3 of
the online supplementary material (see the website address in
Section IV-A).

2) Matrix-Cube-Based Probabilistic Model: The 3-D prob-
ability model Pro_MCgen

n×n×n is designed to save the valuable
information (i.e., the blocks with their corresponding positions

TABLE II
SOME NOTATIONS APPLIED IN MATRIX-CUBE-BASED

PROBABILISTIC MODEL

and the total order of jobs) from MCgen
n×n×n. This model has

a significant effect on the performance of the global explo-
ration. The update equation of Pro_MCgen

n×n×n is determined
by the generation gen. When gen = 0, Pro_MC0

n×n×n is
updated by

Pro_MC0
n×n×n(x, y, z) =

{
0, x = 1;y, z = 1, . . . , n
1/n2, x = 2, . . . , n − 1;y, z = 1, . . . , n.

(15)

When gen = 1, Pro_MC1
n×n×n is updated by

Pro_MC1
n×n×n(x, y, z) = Pro_MC0

n×n×n(x, y, z)+MC0
n×n×n(x, y, z)

SumPro_MC0(x)+SumMC0(x)
,

x = 1, 2, . . . , n − 1 and y, z = 1, . . . , n. (16)

When gen > 1, Pro_MCgen
n×n×n is updated by

Pro_MCgen
n×n×n

(x, y, z) = (1 − r) × Pro_MCgen−1
n×n×n

(x, y, z)

+ r × MCgen−1
n×n×n

(x, y, z)/SumMCgen−1(x),

x = 1, 2, . . . , n − 1, and y, z = 1, 2, . . . , n. (17)

It is noteworthy that all elements in Pro_MC0
n×n×n(1) are

set to 0 instead of 1/n2, which is helpful for increasing the
selection probability of blocks in excellent individuals at initial
stage. Equations (16) and (17) are used to accumulate valuable
information from MCgen

n×n×n. An illustration on the update of
Pro_MCgen

n×n×n can be found in Part 4 of the online supplement-
ary material (see the website address in Section IV-A).

3) Global Search: MCEDA’s global search is executed by
sampling the probability model to generate new solutions in
solution space. At the initial phase, all individuals in Pop(0)

are randomly generated. Then, at the evolutionary phase,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Manchester. Downloaded on November 06,2022 at 12:19:55 UTC from IEEE Xplore. Restrictions apply.

QIAN et al.: MCEDA FOR NO-WAIT FLOW-SHOP SCHEDULING WITH SDSTs AND RTs 5

Algorithm 1 Job Selection Function

Step 1: Set R = Pro_MCgen
n×n×n(i − 1, jgen,q

i−1).
Step 2: Set h = jgen,q

t and Rh = 0, t = 1, 2, . . . , i − 1.
Step 3: Set sumR = ∑n

h=1 Rh and Rh = Rh/sumR, h = 1, . . . , n.
Step 4: Get a job CJ by using the roulette wheel selection rule on
R. Generate a random value r, r ∈ [0, sumR).

Step 4.1: If r ∈ [
0, R1), then set CJ = 1 and go to Step 5.

Step 4.2: If r ∈
[∑t

h=1 Rh,
∑t+1

h=1 Rh

)
and t ∈ {1, . . . , n − 1},

then set CJ = t + 1.
Step 5: Return CJ.

Algorithm 2 First Position Limited Sampling Strategy
Step 1: Set R1y = ∑n

z=1 Pro_MCgen(1, y, z), y = 1, . . . , n.
//Assign the cumulative probability of each row vector in
//Pro_MCgen

n×n×n(1) to the corresponding element in R1.

Step 2: Generate a random value r, r ∈
[
0,

∑n
y=1 R1y

)
.

Step 2.1: If r ∈ [
0, R11), then set CJ = 1 and go to Step 3.

Step 2.2: If r ∈
[∑t

y=1 R1y ,
∑t+1

y=1 R1y

)
and t ∈ {1, . . . , n − 1},

then set CJ = t + 1.
Step 3: Set jgen,q

1 = CJ.
Step 4: Set CJ = SelectJob(πgen,q, 2). //Algorithm 1
Step 5: Set jgen,q

2 = CJ.

Algorithm 3 Population Generation
Step 1: Set q = 1 and

R1y =
n∑

z=1

Pro_MCgen(1, y, z), y = 1, . . . , n.

Step 2: Generate a new individual πgen,q.
Step 2.1: Determine the job jgen,q

1 and the job jgen,q
2 by means of

FPLSS. //Algorithm 2 without its Step 1.
Step 2.2: Set i = 3.
Step 2.3: Set CJ = SelectJob(πgen,q, i). //Algorithm 1
Step 2.4: Set jgen,q

i = CJ.
Step 2.5: Set i = i + 1.
Step 2.6: If i ≤ n, then go to Step 2.3.

Step 3: Set q = q + 1.
Step 4: If q ≤ popsize, then go to Step 2.
Step 5: Output Pop(gen).

new individuals at generation gen are obtained by sampling
Pro_MCgen

n×n×n.
Let πgen,q = [jgen,q

1 , jgen,q
2 , . . . , jgen,q

n] denotes the qth
individual in Pop(gen), R = [R1, R2, . . . , Rn] denotes the
temporary row vector, R1 = [R1, R2, . . . , Rn]T denotes the
temporary column vector, and SelectJob(πgen,q, i) (i > 1)

denotes the function of selecting a job CJ at the ith position of
πgen,q by sampling R. The procedure of SelectJob(πgen,q, i)
is given in the following Algorithm 1.

Due to the virtuality of the job jgen,q
0 , the first job jgen,q

1
of πgen,q cannot be chosen by using SelectJob(πgen,q, i). To
reasonably select the first two jobs (i.e., the first block) of
πgen,q, the first position limited sampling strategy (FPLSS) is
specially designed in the following Algorithm 2.

Steps 2 and 3 apply the roulette wheel selection rule to R1
to choose the first job jgen,q

1 . The procedure for generating new
individuals is given in the following Algorithm 3.

TABLE III
SOME NOTATIONS APPLIED IN THE LOCAL SEARCH

It should be pointed out that steps 2.3 and 2.4 are utilized
to build the promising block (i.e., [jgen,q

i−1 , jgen,q
i]) at positions

i−1 and i via applying the roulette wheel selection rule on the
row vector Pro_MCgen

n×n×n(i − 1, jgen,q
i−1). Step 2 can link these

promising blocks at different positions together to generate
a new individual. Since the large values and their correspond-
ing subscripts in Pro_MCgen

n×n×n are decided by the excellent
individuals [see Section III-B2)], each new individual contains
some promising blocks or patterns. This means that MCEDA’s
global search can be quickly driven to promising regions. The
analyses of the CCs of Algorithms 1–3 can be found in Part
5 of the online supplementary material (see the website address
in Section IV-A).

C. Problem-Dependent Local Search

It is well known that the neighborhood structures
have a significant effect on the performance of local
exploitation [2], [16], [17], [18], [19]. Although the Insert-
based neighborhood has been widely studied and uti-
lized in designing local search for different schedul-
ing problems, most of existing studies focused on its
common or general form and paid less attention to
the problem’s properties [2], [9], [20], [21], [22], [23]. This
causes the proposed algorithms are effective, but not efficient.

In this section, we divide the common Insert-based neigh-
borhood into a series of subsets and build a novel variable
neighborhood search by means of these subsets or subneigh-
borhoods. Moreover, the general property of the permutation-
based model is utilized to design a speed-up scanning method
to accelerate the neighbor search process. Then, a new Insert-
based local search incorporating with this novel neighborhood
search is proposed to perform exploitation efficiently in solu-
tion space. The notations used in the proposed local search
but not defined in the text are provided in Table III.

1) Insert-Based Subneighborhoods: The Insert-based
neighborhood of π can be presented as

NInsert(π) =
{
πn,i,l = Insert(π , i, l)|l
�= i, i − 1 and i, l = 1, 2, . . . , n

}
(18)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Manchester. Downloaded on November 06,2022 at 12:19:55 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 2. Example of πn,i,l when n = 10, i = 4, l = 7, and s = min{i, l} = 4.

where πn,i,l is a neighbor of π and l �= i−1 is due to πn,i−1,i =
πn,i,i−1. That is, NInsert(π) corresponds to the set of neigh-
bors reachable through all possible insertions. Fig. 2 shows
a small example of πn,i,l when n = 10, i = 4, l = 7, and
s = min{i, l} = 4.

Accordingly, for a fixed value of i (i = 1, 2, . . . , n), the
subneighborhood of NInsert(π) can be expressed as

NInsert(π ,i) =
{
πn,i,l = Insert(π , i, l)|l

�= i, i − 1 and l = 1, 2, . . . , n
}
. (19)

Hence, it holds that

NInsert(π) = NInsert(π ,1) ∪ NInsert(π ,2) ∪ · · · ∪ NInsert(π ,n).

(20)

Apparently, the neighbor size of NInsert(π) is (n−1)2 and that
of NInsert(π ,i) is n − 1 if i = 1 and n − 2 otherwise.

Based on the above definitions, the neighbor-
hood search of NInsert(π) can be implemented by
searching the subneighbor- hoods in the sequence of
NInsert(π ,1), NInsert(π ,2), . . . , NInsert(π ,n). In each NInsert(π ,i)
(i = 1, . . . , n), the search is performed by visiting each
neighbor πn,i,l for l = 1, . . . , n except l = i, i − 1. This
through search mode is important for designing an efficient
neighborhood search.

2) Small Versus Large Neighborhood Search: The exist-
ing Insert-based local searches iterate between a perturbation
phase and an exploitation phase. During their exploitation
phases, these local searches repeat a greedy search pro-
cess (GSP), which uses a kind of Insert-based neighborhood
search to obtain one neighbor and replaces π with this neigh-
bor if it is better than π . In this repeated GSP (RGSP), the
total repeated times of the GSP are usually set to a poly-
nomial function of the problem size n. The commonly used
Insert-based neighborhood searches in GSP are the small
neighborhood search based on N1

Insert(π) (see Table III) and
the large neighborhood based on NInsert(π) [see (18)]. The
neighborhood search of N1

Insert(π) is performed by visit-
ing one randomly selected neighbor in NInsert(π). The large
neighborhood search of NInsert(π) is performed by visiting
all neighbors in NInsert(π) to find the local best neighbor
πbest.

Since the landscape induced by Insert operator is
smooth [15] and the distance between π and its best neighbor
πbest is one, the difference between TET(π) and TET(πbest)

are usually small. This causes the search process of NInsert(π)

is time consuming. Hence, if a better neighbor can be reached
quickly after several random insertions [15], [24], it is suit-
able to execute the RGSP using the small neighborhood
search [i.e., the neighborhood search of N1

Insert(π)]. However,
if the number of better neighbors in NInsert(π) is very lim-
ited or zero (i.e., the current π is a local optimum) [13],
[14], [25], the RGSP using the small neighborhood search
is less effective due to the randomness of insertions, but
the RGSP using the large neighborhood search can restrict
the insertion times for finding a better neighbor of π to no
more than (n − 1)2 and can detect whether π is a local
optimum.

To overcome the defects of both the small and large neigh-
borhood searches and improve search efficiency, an efficient
RGSP using a novel neighborhood search is devised in the
upcoming three sections. In Sections III-C3 and III-C4, a novel
neighborhood search based on the defined subneighborhoods
and the problem’s properties, namely, FastS_NInsert(π , KK),
is designed. In Section III-C5, an efficient RGSP using
FastS_NInsert(π , KK) is devised as the exploitation process in
a new Insert-based local search.

3) Speed-Up Scanning Method: In FastS_NInsert(π , KK),
a speed-up scanning method based on the general property
of the permutation-based model is presented to accelerate the
neighbor search process.

For π = [j1, . . . , js, . . . , jn], πn,i,l = [j′1, . . . , j′s, . . . , j′n] and
s = min {i, l}, it is obvious that we can obtain jk = j′k, Ej′k +
Tj′k = Ejk + Tjk ,and

∑s−1
k=1(Ej′k + Tj′k) = ∑s−1

k=1(Ejk + Tjk) when
s = 2, . . . , n−1 and k = 1, . . . , s−1 (see Fig. 2). So, according
to (8), it holds that

TET
(
πn,i,l

)
=

s−1∑
k=1

(
Ej′k + Tj′k

)
+

n∑
k=s

(
Ej′k + Tj′k

)

=
s−1∑
k=1

(
Ejk + Tjk

) +
n∑

k=s

(
Ej′k + Tj′k

)
,

i, l = 1, . . . ,n and l �= i, i − 1. (21)

So, in FastS_NInsert(π , KK), Stjs−1 , and
∑s−1

k=1(Ejk + Tjk)

(s − 1 = 1, . . . , n − 2) of π are directly calculated by uti-
lizing Lji−1,ji and spji that are saved at the initial phase of
MCEDA (see Sections II and III-A), and they should be
reserved at first before scanning or visiting each neighbor
πn,i,l in NInsert(π). Then, they are treated as constant when
calculating TET(πn,i,l). In other words, if s > 1, Stj′s−1

and∑s−1
k=1(Ej′k + Tj′k) of πn,i,l need not to be computed and are

replaced with Stjs−1 and
∑s−1

k=1(Ejk + Tjk) of π , respectively.
Then, Ej′s + Tj′s of πn,i,l is computed directly from Stjs−1 of
π by means of (4)–(7). As a result, the computing complex-
ity of FastS_NInsert(π , KK) can be reduced to some extent.
Note that this scanning method is easy to be implemented
by adding a global array in the procedure to save Stjs−1 and∑s−1

k=1(Ejk + Tjk) (s − 1 = 1, . . . , n − 2). The subneighbor-
hood search with the speed-up scanning method is denoted by
FastSubS_NInsert(π , i).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Manchester. Downloaded on November 06,2022 at 12:19:55 UTC from IEEE Xplore. Restrictions apply.

QIAN et al.: MCEDA FOR NO-WAIT FLOW-SHOP SCHEDULING WITH SDSTs AND RTs 7

Algorithm 4 Novel Neighborhood Search

Step 1: Calculate and save Stjs−1 and
∑s−1

k=1(Ejk + Tjk) of π for
s − 1 = 1, . . . , n − 2.
Step 2: Set i = KK, πbetter = π , Stjbetter

s−1
= Stjs−1 , and∑s−1

k=1(Ejbetter
k

+ Tjbetter
k

) = ∑s−1
k=1(Ejk + Tjk) for s − 1 = 1, . . . , n − 2.

Step 3: π temp = FastSubS_NInsert(πbetter, i).
Step 4: If TET(π temp) < TET(πbetter), then πbetter = π temp,
Stjbetter

s−1
= Stjtemp

s−1
and

∑s−1
k=1(Ejbetter

k
+ Tjbetter

k
) = ∑s−1

k=1(Ejtemp
k

+Tjtemp
k

)

for s − 1 = 1, . . . , n − 2.
Step 5: If i < n, then i = i + 1 and go to Step 3.
Step 6: Output πbetter.

Although the speed-up scanning method presented here is
for the TET-NFSSP with SDSTs and RTs, it is easy to see that
by setting some processing restrictions (i.e., RTs, SDSTS, and
SISTs) to 0 and changing the criterion, this method can also
be applied to each kind of NFSSPs with any common criterion
(e.g., makespan and total completion time). So, this method is
still used in MCEDA’s FastSubS_NInsert(π , i) when comparing
different algorithms in Section IV-C.

4) Novel Neighborhood Search With Subneighborhoods
and the Promising Region Search Strategy: As mentioned in
Section III-C2, if there are a certain number of better neighbors
in NInsert(π), the small neighborhood search is more suit-
able, but if the number of better neighbors in NInsert(π) is
very limited or zero, the large neighborhood search is a bet-
ter choice. Thus, an important and difficult problem faced by
the researchers is how to adaptively execute suitable neigh-
borhood search during local search process. Here, a novel
neighborhood search FastS_NInsert(π , KK) is designed to cope
with this problem. Its procedure is given in the following
Algorithm 4.

KK (KK ∈ {1, . . . , n}) is an input variable which is used
to control the actual subneighborhoods searched in NInsert(π)

when applying the speed-up scanning method. The default
value of KK is set to 1. Since Stjbetter

s−1
and

∑s−1
k=1(Ejbetter

k
+

Tjbetter
k

) of πbetter are updated at steps 2–4, they can be
used as constants in FastSubS_NInsert(πbetter, i). The designed
FastS_NInsert(π , KK) has threefold features.

The first feature is that the large neighborhood search mode
that searches the subneighborhoods one by one is reserved.
When there is no better neighbor of π , FastS_NInsert(π , KK)

can perform a thorough search in NInsert(π) to identify π as
a local optimum.

The second feature is that the subneighborhood NInsert(π ,i)
and the promising region search strategy are combined to
reduce the search scope in NInsert(π) containing some better
neighbors. The promising region search strategy is adopted
for reaching more promising regions within a certain time
limit. That is, the permutation π in FastSubS_NInsert(π , i) is
replaced by the current better neighbor πbetter (see steps 3
and 4 in Algorithm 4). Fig. 3 gives the search process in
FastS_NInsert(π , KK) (KK = 1), which is a key component
in our proposed local search (see Algorithm 5).

It can be seen from 1 in Fig. 3, that if the best neigh-
bor π1 in NInsert(π , 1) is better than the current π , the latter

Algorithm 5 Local Search
Step 1: Select an individual π i_0 from the population.
Step 2: Perturbation Phase.
Set π i_t = π i_0.
For k = 1 to 5

Randomly select u and v, where |u − v| > n/3;
π i = Interchange(π i_t, u, v);
π i_t = π i ;

End.
Step 3: Exploitation Phase. //The RGSP
Set loop = 0;
Repeat

π i_1 = FastS_NInsert(π i, KK); //Algorithm 4
If TET(π i_1) < TET(π i)
π i = π i_1;
Else //A local optimum is detected.
loop + +;
End;

Until loop = 1. //When a local optimum is detected, the
//RGSP is terminated.

Step 4: If TET(π i) ≤ TET(π i_0), then π i_0 = π i.
Step 5: Output the updated job permutation π i_0.

Fig. 3. Illustration on the search process in FastS_NInsert(π , KK = 1).

is updated by the former and the search in NInsert(π) stops
and moves to NInsert(π

1, 2) in NInsert(π
1). It can also be seen

from 3 in Fig. 3, that if the best neighbor in NInsert(π
2, 3)

is not better than the current π2, the later keeps unchange-
able, and the search in NInsert(π

2) continues and executes
in the next subneighborhood NInsert(π

2, 4). Unlike the large
neighborhood search mode that always keeps the search in n
subneighborhoods of one fixed neighborhood [i.e., NInsert(π)],
FastS_NInsert(π , KK) (see Fig. 3 and steps 3–5 of Algorithm 4)
performs the search in n subneighborhoods scattered in k+1 (k
is larger than 2 in most cases) different neighborhoods [i.e.,
NInsert(π), NInsert(π

1),. . . , NInsert(π
k)]. Since π1 is better than

π and π l is better than π l−1 (l = 2, . . . , k), these rich neigh-
borhoods can guide the search to more and more promising
regions. That is, FastS_NInsert(π , KK) can not only narrow

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Manchester. Downloaded on November 06,2022 at 12:19:55 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

the search scope of single neighborhood to avoid unneces-
sary time consumption but also drive the local exploitation to
many different and more promising neighborhoods or regions.
This means that FastS_NInsert (π , KK) can perform a narrow
but rich search.

The third feature is that the speed-up evaluation method
in Section III-A and the speed-up scanning method in the
above section are utilized to evaluate more neighbors in
FastS_NInsert(π , KK) within a limited time. By utilizing these
methods, the efficiency of the local search can be improved.

In the existing Insert-based neighborhoods, the small
neighborhood search [26], [27], [28], [29] (see N1

Insert(π) in
Table III) and the large neighborhood search [18], [30], [31]
have already got wide applications. FastS_NInsert(π , KK) (see
Fig. 3) is quite different from these two kinds of neighborhood
searches. It will inherits the merits of both the small and large
neighborhood searches, and can adaptively execute suitable
neighborhood search throughout the exploitation phase.

5) New Insert-Based Local Search: The above designed
FastS_NInsert(π , KK) is utilized to construct a RGSP in the
exploitation process of the following new Insert-based local
search (i.e., MCEDA’s problem- dependent local search). The
procedure of this new local search is summarized in the
following Algorithm 5.

In Algorithm 5, step 2 is a common perturbation phase,
which is used to avoid cycling search and overcome local
optima. Step 3 is a special devised exploitation phase, which
constructs an efficient RGSP to perform exploitation. If a local
optimum is detected, the RGSP in step 3 terminates. Then,
the whole search of MCEDA resorts to EDA-based global
search and step 2 to overcome the current local optimum
and move closer to global optima. The analyses of the CCs
of Algorithms 4 and 5 can be found in Part 5 of the
online supplementary material (see the website address in
Section IV-A).

D. MCEDA

The devised MCEDA is given in the following Algorithm 6.
In the above procedure, not only does MCEDA use the

matrix-cube-based global search to execute exploration to find
promising regions in solution space, but it also adopts the
problem-dependent local search with both a speed-up scan-
ning method and one strategy to perform exploitation in these
promising regions. Moreover, a speed-up evaluation method
based on the no-wait property of the considered problem is
utilized to reduce TET’s CC. In addition, the implementation
of MCEDA is easy, because the detailed pseudocode of it is
only one-third the length of this section. The detailed analy-
ses of the CC of each step in Algorithm 6 can be found in
Part 5 of the online supplementary material (see the website
address in Section IV-A).

Let TCC denotes the total CC of Algorithm 6, K2(p, gen)

the repeat times of executing FastS_NInsert(π i, KK) in step 5
of Algorithm 6 at generation gen for the problem p, and
K2(p) = ∑maxgen

gen=1 K2(p, gen). Because K2(p, gen) depends on
the landscape of p and is always larger than or equal to one,
we have K2(p) =∑maxgen

gen=1 K2(p, gen) ≥ maxgen. Moreover,

Algorithm 6 MCEDA
Step 0: Parameter Initialization. Set the start running time Start_RT
to the current system time of the computer. Set the critical parameters
popsize, ϕ (sbpopsize = ϕ×popsize), and r.
Step 1: Calculate and save Lji−1,ji (ji−1, ji ∈ {1, . . . , n}) and spji (ji ∈
{1, . . . , n}) for using the speed-up evaluation method to evaluation
individuals.
Step 2: Population Initialization. Generate a population randomly,
and then evaluate its individuals to obtain the global best individual
π

g
best and SubBestPop(0).

Step 3: Initialize Pro_MC0
n×n×n via Eq. (15) and setgen = 1.

Step 4: Global Exploration. //Subsection III-B
Step 4.1: UpdatePro_MCgen

n×n×n via Eq. (16) when
gen = 1 or Eq. (17) when gen > 1.

Step 4.2: Generate population at generation gen by
sampling Pro_MCgen

n×n×n. //Algorithm 3
Step 4.3: Evaluate the new individuals to update π

g
bestand

SubBestPop(gen).

Step 5: Local Exploitation. //Subsection III-C
Perform the Insert-based local search to π

g
best and update

π
g
best. //Algorithm 5

Step 6: Set gen = gen + 1. Set the end running time End_RT to the
current system time of the computer. If gen ≤ maxgen or (End_RT −
Start_RT) < the maximum running time, go to Step 4.
Step 7: Return the best solution π

g
best found so far.

n is usually larger than m. From Algorithm 6, TCC can be
expressed as

TCC = O

⎛
⎝maxgen∗(n2m + n3 + popsize∗n2

⎞
⎠

+
maxgen∑
gen=1

K2(p, gen)∗n2l̃ogn

⎞
⎠

= O
(

maxgen∗(n3 + popsize∗n2
)

+ K2(p)∗n2l̃ogn
)
(22)

where l̃ogn is less than n. From the above analyses, it can
be found that the computational cost of MCEDA is not high
since the highest degree of the polynomial maxgen∗(n3 +
popsize∗∗n2) + K2(p)∗n2l̃ogn is three.

IV. COMPUTATIONAL COMPARISONS AND

STATISTICAL ANALYSES

A. Experimental Setup

Some randomly generated instances are adopted to test the
performance of MCEDA. That is, fifteen different {n × m} in
{20, 30, 50, 70, 100}×{5, 10, 20} are considered. The process-
ing time pji,l and the setup time sji−1,ji,l are randomly generated
from a uniform distribution in the range [1, 100] and a uni-
form distribution in the range [0, 100], respectively. The job
RT rji is an integer that is randomly generated from a uniform
distribution in the range [0, 150nα], where the parameter α is
used to control the speed of each job’s RT and the interval
between rji and rji−1 . The level values of α are set as 0, 0.2,
0.4, 0.6, 0.8, 1, and 1.5, respectively. Then, we have a total of
105 different instances. The specific setting of each job’s due

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Manchester. Downloaded on November 06,2022 at 12:19:55 UTC from IEEE Xplore. Restrictions apply.

QIAN et al.: MCEDA FOR NO-WAIT FLOW-SHOP SCHEDULING WITH SDSTs AND RTs 9

TABLE IV
COMPARISON RESULTS OF MCEDA AND SEVEN ALGORITHMS ON METRICS ARPD AND SD (ρ = 2, TET-NFSSP WITH SDSTS, AND RTS)

date dp,ji and the reason why the values of α and dp,ji are set
in such way can be found in Part 6 of the online supplemen-
tary material (see the following website). All of the testing
instances and the supplementary material can be downloaded
from the website (i.e., https://pan.baidu.com/s/1J_cqvhmi-
0rCxkmBRkhjZg, password: TSMC).

The performance metrics are given as follows. Let
TET(π(α)) denotes the total earliness and tardness of the
permutation π(α) at α level, SD(α) denotes the standard devi-
ation of TET(π(α)) at α level, Sα denotes the set of all
values of α, |Sα| denotes the number of different values in
Sα , TETavg(π(α)) denotes the average value of TET(π(α)),
TET∗(π(α)) denotes the best TET(π(α)) obtained by all com-
pared algorithms after running a long time (ρ ≥ 100), and
ARPD(α) denotes the average relative percentage deviation
over TET∗(π(α)). The formulation of ARPD(α) is given as
follows:

ARPD(α) = TETavg(π(α)) − TET∗(π(α))

TET∗(π(α))
× 100%. (23)

Then, two metrics are used to evaluate the average
performance of all algorithms under different α, which are
given as follows:

ARPD =
∑
α∈Sα

ARPD(α)/|Sα| (24)

SD =
∑
α∈Sα

SD(α)/|Sα|. (25)

The smaller the values of the above two metrics are, the better
the performance of the corresponding algorithm is.

All algorithms have been coded in Delphi XE8 and experi-
ments have been executed on an Intel 2.6 GHz PC server. Each
algorithm is independently run 30 times on each instance and
its maximum running time is set as ρ × n × (m/2) millisec-
onds, where ρ is the running time factor. Hence, there are
30 × |Sα| = 30 × 7 = 210 results for each value of ARPD
and also for each value of SD. In Tables IV and V, the best,
the second-best, and the third-best values in each row are rep-
resented by using the bold, the bold and underlined, and the
italic and underlined fonts, respectively.

Due to space limitations, the following Sections IV-B and
IV-C only provide the brief comparison results. The extended
Section IV has 23 double-column pages and is Part 6 of
the online supplementary material, which can be downloaded
from the above website. This extended version adds five
new sections to calibrate MCEDA’s parameters and mani-
fest the effectivenesses of the speed-up evaluation method,
MCEDA’s global search strategies, global search ability, and
local search components. It also gives the parameter settings
of each algorithm and the detailed results of the following two
sections.

B. Comparisons of MCEDA and Existing Algorithms

The algorithms for the considered problem are very lim-
ited. For new problems or less studied problems, the existing
literature usually compares the designed algorithm with the
existing algorithms for solving similar problems. Therefore, to
show the effectiveness and efficiency of the proposed MCEDA,
MCEDA is tested against six related state-of-the-art algo-
rithms, i.e., MCPSO [21] for the Cmax-NFSSP with SDSTs,
ISA_2 [26] for the TotalC-NFSSP with SISTs, BIH [9] for
the Cmax-NFSSP with SDSTs and RTs, TMIIG [30] for the
Cmax-NFSSP, IG_LS [23] for the Cmax-FSSP with SDSTs,
and HDTPL [32] for the Cmax-NFSSP. MCEDA is also com-
pared with a state-of-art EDA-based algorithm, i.e., effective
EDA (EEDA) [33], which is presented for the distributed FSSP
with the criterion of minimizing Cmax. According to the test
results in [32], HDTPL is the most effective algorithm so far
to deal with the NFSSP.

All steps of these compared algorithms are strictly imple-
mented according to the literature, except that TMIIG’s
specific accelerating techniques for the Cmax-NFSSP are
removed and EEDA’s decoding scheme and search opera-
tors are only performed on one factory. We just replace
their evaluation functions with the TET criterion presented
in Section II. Since the speed-up evaluation method presented
in Section III-A is a general one, all compared algorithms
utilize it to calculate TET and keep their names unchange-
able. The parameters of these compared algorithms are directly
taken from the original literature and properly calibrated. The

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Manchester. Downloaded on November 06,2022 at 12:19:55 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE V
COMPARISON RESULTS OF MCEDA AND SEVEN ALGORITHMS ON AVERAGE ARPD AND SD (ρ = 2, NINE TYPES OF PROBLEMS)

final parameters are listed in the extended Section IV on the
website.

The statistical results under the running time factor ρ = 2, 4
and 6 are obtained and listed in the extended Section IV on the
website. The means plots with 95% Tukey’s HSD confidence
intervals for MCEDA and seven compared algorithms are also
shown in the extended Section IV on the website. Here, the
results under ρ = 2 are reported in Table IV. From the corre-
sponding results and plots on the website as well as Table IV,
it can be easily seen that the ARPD values of MCEDA under
each ρ are better than those of the other compared algorithms
under the same ρ for all instances, and the ARPD values of
MCEDA under ρ = 2 are better than all the ARPD values of
the other compared algorithms under ρ = 6. Moreover, the
SD values of MCEDA are still the best ones for all instances,
from which it is concluded that MCEDA is also a robust
one. In addition, from Tables VII and IX in the extended
Section IV on the website, it is clear that MCEDA outper-
forms MCEDAnls (i.e., MCEDA without local search). This
means that the proposed local search can execute a very deep
exploitation from the promising regions.

C. Comparisons of Algorithms for the NFSSP With SDSTs,
the NFSSP With SISTs, and the NFSSP

Since the NFSSP with SDSTs, the NFSSP with SISTs,
and the NFSSP have been widely studied in the compared
algorithms in the above section, it is meaningful to test
MCEDA for these problems. In this section, MCEDA is also
compared with seven existing state-of-the-art algorithms in
Section IV-B to testify its effectiveness for addressing the
above three kinds of problems with five criteria, i.e., the
TET, the TWET_(0.3*E+0.7*T), the TWET_(0.7*E+0.3*T),
the total completion time (TotalC), and the Cmax. That is,
there are fifteen types of problems for testing. All compared
algorithms are used to solve each of these problems after
replacing their original evaluation functions with the new eval-
uation function of the corresponding problem. The speed-up
evaluation method for each type of problem is modified and
used in the new evaluation functions of these algorithms (see
Section III-A). Besides, MCEDA’s speed-up scanning method
is also used in its FastSubS_NInsert(π , i) by changing (21) to
the corresponding criterion [see Section III-C3)]. TMIIG adds
its accelerating techniques when solving the Cmax-NFSSP.

The comparison results under ρ = 2, 4, and 6 for fifteen dif-
ferent problems are listed in the corresponding fifteen tables of
the extended Section IV on the website. The means plots with
95% Tukey’s HSD confidence intervals for these algorithms
under each problem are also given in the extended Section IV
on the website. As here, the average results under ρ = 2 for
nine problems are reported in Table V. The average results
for these nine problems under ρ = 4 and 6 as well as the rest
six problems under ρ = 2, 4, and 6 are omitted but provided
in Part 7 of the online supplementary material. In Table V, Pi

denotes the i-th problem (see the notes below Table V), ARPD
is the average ARPD under the same ρ, and SD is the aver-
age SD under the same ρ. Specifically, each row in Table V is
equal to the “Average” row in the corresponding nine tables of
the extended Section IV on the website (like the Average row
in Table IV). That is, there are a total of 15 × 210 results for
each ARPD or SD in Table V. From the corresponding results
and plots on the website as well as Table V, it is obvious that
under the same ρ MCEDA statistically outperforms all the
others except HDTPL for P15. Moreover, except for HDTPL
under ρ = 6 for P2, P7 (i.e., TWET_(0.3*E + 0.7*T)-NFSSP
with SISTs) and P15, MCEDA under ρ = 2 outperforms the
others under any ρ. Hence, we can conclude that MCEDA has
a powerful search engine for tackling these problems.

According to the test results in Sections IV-B and IV-C,
MCEDA can achieve the best performance on most instances
with one-third of the running time of the compared algo-
rithms. The reason is that MCEDA’s global search provides
more effective guidance of search toward global optima and
its local search uses the subsets of the Insert-based neighbor-
hood and the problem’s properties to perform more efficient
exploitation. Furthermore, TMIIG, HDTPL, and IG_LS are
better than MCPSO, BIH, and EEDA for most instances. The
common characteristic of these better algorithms lies in the uti-
lization of the Insert-based neighborhood for executing local
search.

It is worth pointing out that all compared algorithms
have similar ordinal relationships in their performance (i.e.,
MCEDA’s ARPD value < HTDPL’s ARPD value < TMIIG’s
ARPD value < · · ·) when solving the above sixteen types
of problems. This verifies that the impact of the problem
type on the performance of each above algorithm is not as
big as we thought. Because the geometric structures of these
scheduling problems (belonging to nonconvex problems) are

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Manchester. Downloaded on November 06,2022 at 12:19:55 UTC from IEEE Xplore. Restrictions apply.

QIAN et al.: MCEDA FOR NO-WAIT FLOW-SHOP SCHEDULING WITH SDSTs AND RTs 11

still unknown [34], and most of the above algorithms only use
general operations and frameworks, these algorithms have very
limited performance changes when solving different NFSSPs.

V. CONCLUSION AND FUTURE RESEARCH

This article proposes a novel MCEDA for addressing the
NFSSP with SDSTs and RTs. The criterion is to minimize the
TET. The test results validate the efficiency and robustness of
MCEDA. This is the first report on the EDA-based algorithm
for the NFSSPs.

Most of the existing literature on metaheuristic algorithms
only gives a description of the specific steps of the algorithm
and lacks a substantial analysis, which makes it difficult for
other researchers, especially new researchers, to understand the
reason for designing such algorithms. Therefore, many studies
in recent years have merely combined lots of different existing
steps or operations in a complicated way to obtain a so-called
hybrid algorithm. This trend is not conducive to the further
development of metaheuristic algorithms. This article gives an
in-depth analysis of MCEDA, which helps readers to truly
understand the role of each operation so that they can reason-
ably choose relevant operations or correctly design effective
operations in their own algorithms.

In the future, we would like to design a suitable machine
learning scheme to learn the dependency relationships among
the variables in solution space and then add these relation-
ships into the matrix cube to further improve the global search
ability.

REFERENCES

[1] C.-J. Liao and C.-C. Cheng, “A variable neighborhood search for min-
imizing single machine weighted earliness and tardiness with common
due date,” Comput. Ind. Eng., vol. 52, no. 4, pp. 404–413, 2007.

[2] Z. C. Li, B. Qian, R. Hu, L. L. Chang, and J. B. Yang, “An eli-
tist nondominated sorting hybrid algorithm for multi-objective flexible
job-shop scheduling problem with sequence-dependent setups,” Knowl.
Based Syst., vol. 173, no. 1, pp. 83–112, 2019.

[3] B. Zhang, Q.-K. Pan, L. Gao, L.-L. Meng, X.-Y. Li, and K.-K. Peng,
“A three-stage multiobjective approach based on decomposition for an
energy-efficient hybrid flow shop scheduling problem,” IEEE Trans.
Syst., Man, Cybern., Syst., vol. 50, no. 12, pp. 4984–4999, Dec. 2020.

[4] F. Yang et al., “Efficient approach to scheduling of transient processes
for time-constrained single-arm cluster tools with parallel chambers,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 50, no. 10, pp. 3646–3657,
Oct. 2020.

[5] X. Li, L. Gao, Q. Pan, L. Wan, and K.-M. Chao, “An effective hybrid
genetic algorithm and variable neighborhood search for integrated pro-
cess planning and scheduling in a packaging machine workshop,” IEEE
Trans. Syst., Man, Cybern., Syst., vol. 49, no. 10, pp. 1933–1945,
Oct. 2019.

[6] W. H. M. Raaymakersa and J. A. Hoogeveen, “Scheduling multipur-
pose batch process industries with no-wait restrictions by simulated
annealing,” Eur. J. Oper. Res., vol. 126, no. 1, pp. 131–151, 2000.

[7] A. Allahverdi, C. T. Ng, T. C. E. Cheng, and M. Y. Kovalyov, “A survey
of scheduling problems with setup times or costs,” Eur. J. Oper. Res.,
vol. 187, no. 3, pp. 985–1032, 2008.

[8] A. Allahverdi, “A survey of scheduling problems with no-wait in
process,” Eur. J. Oper. Res., vol. 255, no. 3, pp. 665–686, 2016.

[9] L. Bianco, P. Dell’Olmo, and S. Giordani, “Flow shop no-wait schedul-
ing with sequence dependent setup times and release dates,” Inf. Syst.,
vol. 37, no. 1, pp. 3–18, 1999.

[10] P. M. França, G. Tin, Jr., and L. S. Buriol, “Genetic algorithms for
the no-wait flowshop sequencing problem with time restrictions,” Int.
J. Prod. Res., vol. 44, no. 5, pp. 939–957, 2006.

[11] L. Wan, and J. Yuan, “Single-machine scheduling to minimize the total
earliness and tardiness is strongly NP-hard,” Oper. Res. Lett., vol. 41,
no. 4, pp. 363–365, 2013.

[12] J. Ceberio, E. Irurozki, A. Mendiburu, and J. A. Lozano, “A review on
estimation of distribution algorithms in permutation-based combinatorial
optimization problems,” Progr. Artif. Intell., vol. 1, no. 1, pp. 103–117,
2012.

[13] C. R. Reeves and T. Yamada, “Genetic algorithms, path relinking,
and the flowshop sequencing problem,” Evol. Comput., vol. 6, no. 1,
pp. 45–60, Mar. 1998.

[14] C. R. Reeves, “Landscapes, operators and heuristic search,” Ann. Oper.
Res., vol. 86, no. 1, pp. 473–490, 1999.

[15] J. Humeau, A. Liefooghe, E.-G. Talbi, and S. Verel, “ParadisEO-MO:
From fitness landscape analysis to efficient local search algorithms,”
J. Heuristics, vol. 19, no. 6, pp. 881–915, 2013.

[16] Y. Hou, Y.-S. Ong, L. Feng, and J. M. Zurada, “An evolutionary transfer
reinforcement learning framework for multiagent systems,” IEEE Trans.
Evol. Comput., vol. 21, no. 4, pp. 601–615, Aug. 2017.

[17] W. E. Hart, N. Krasnogor, and J. E. Smith, Recent Advances in Memetic
Algorithms. Berlin, NY, USA: Springer, 2004.

[18] Y.-S. Ong, M.-H. Lim, N. Zhu, and K.-W. Wong, “Classification of
adaptive memetic algorithms: A comparative study,” IEEE Trans. Syst.,
Man, Cybern. B, Cybern., vol. 36, no. 1, pp. 141–152, Feb. 2006.

[19] T. Schiavinotto and T. Stützle, “A review of metrics on permutations
for search landscape analysis,” Comput. Oper. Res., vol. 34, no. 10,
pp. 3143–3153, 2007.

[20] M. S. Nagano, A. A. Da Silva, and L. A. N. Lorena, “An evo-
lutionary clustering search for the no-wait flow shop problem with
sequence dependent setup times,” Expert Syst. Appl., vol. 41, no. 8,
pp. 3628–3633, 2014.

[21] H. Samarghandi and T. Y. ElMekkawy, “Solving the no-wait flow-shop
problem with sequence-dependent set-up times,” Int. J. Comput. Integr.
Manuf., vol. 27, no. 3, pp. 213–228, 2014.

[22] H. Samarghandi, “Studying the effect of server side-constraints on the
makespan of the no-wait flow-shop problem with sequence-dependent
set-up times,” Int. J. Prod. Res., vol. 53, no. 9, pp. 2652–2673,
2015.

[23] R. Ruiz and T. Stützle, “An iterated greedy heuristic for the sequence
dependent setup times flowshop problem with makespan and weighted
tardiness objectives,” Eur. J. Oper. Res., vol. 187, no. 3, pp. 1143–1159,
2008.

[24] M.-E. Marmion, C. Dhaenens, L. Jourdan, A. Liefooghe, and S. Verel,
“On the neutrality of flowshop scheduling fitness landscapes,” in
Proc. Int. Conf. Learn. Intell. Optim., Berlin, Germany, 2011,
pp. 238–252.

[25] H. H. Hoos and T. Stützle, Stochastic Local Search: Foundations
and Applications. Amsterdam, The Netherlands: Elsevier, 2004,
pp. 61–112.

[26] A. Allahverdi and H. Aydilek, “Total completion time with makespan
constraint in no-wait flowshops with setup times,” Eur. J. Oper. Res.,
vol. 238, no. 3, pp. 724–734, 2014.

[27] Q.-K. Pan and R. Ruiz, “An estimation of distribution algorithm for lot-
streaming flow shop problems with setup times,” Omega Int. J. Manag.
Sci., vol. 40, no. 2, pp. 166–180, 2012.

[28] B. Qian, L. Wang, R. Hu, W.-L. Wang, D.-X. Huang, and X. Wang, “A
hybrid differential evolution method for permutation flow-shop schedul-
ing,” Int. J. Adv. Manuf. Technol., vol. 38, nos. 7–8, pp. 757–777,
2008.

[29] B. Liu, L. Wang, Y. Liu, B. Qian, and Y.-H. Jin, “An effective hybrid
particle swarm optimization for batch scheduling of polypropylene
processes,” Comput. Chem. Eng., vol. 34, no. 4, pp. 518–528, 2010.

[30] J.-Y. Ding, S. Song, J. N. D. Gupta, R. Zhang, R. Chiong, and C. Wu,
“An improved iterated greedy algorithm with a Tabu-based reconstruc-
tion strategy for the no-wait flowshop scheduling problem,” Appl. Soft
Comput., vol. 30, pp. 604–613, May 2015.

[31] B. Qian, L. Wang, R. Hu, D. X. Huang, and X. Wang, “A DE-based
approach to no-wait flow-shop scheduling,” Comput. Ind. Eng., vol. 57,
no. 3, pp. 787–805, 2009.

[32] W. Shao, D. Pi, and Z. Shao, “A hybrid discrete optimization algorithm
based on teaching–probabilistic learning mechanism for no-wait flow
shop scheduling,” Knowl. Based Syst., vol. 107, pp. 219–234, Sep. 2016.

[33] S.-Y. Wang, L. Wang, M. Liu, and Y. Xu, “An effective estimation of
distribution algorithm for solving the distributed permutation flow-shop
scheduling problem,” Int. J. Prod. Econ., vol. 145, no. 1, pp. 387–396,
2013.

[34] D. S. Chen, R. Batson, and Y. Dang, Applied Integer Programming. New
York, NY, USA: Wiley, 2010.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Manchester. Downloaded on November 06,2022 at 12:19:55 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Bin Qian received the B.Sc. degree in automation
from Donghua University, Shanghai, China, in 1998,
the M.Sc. degree in control theory and its applica-
tions from the Kunming University of Science and
Technology (KMUST), Kunming, China, in 2004,
and the Ph.D. degree in control science and engi-
neering from Tsinghua University, Beijing, China,
in 2009.

He is currently a Professor with KMUST. He
has published over 120 referred papers. His current
research interests include intelligent optimization
and scheduling.

Zi-Qi Zhang received the M.Sc. degree in control
theory and control engineering from the Kunming
University of Science and Technology, Kunming,
China, in 2017, where he is currently pursuing the
Ph.D. degree.

His current research interests include evolutionary
computation and scheduling.

Rong Hu received the B.Sc. degree in thermal
energy and dynamic engineering from Southeast
University, Nanjing, China, in 1997, and the M.Sc.
degree in control science and engineering from
Tsinghua University, Beijing, China, in 2004.

She is currently an Associate Professor with the
Kunming University of Science and Technology,
Kunming, China. She has published over 70 referred
papers. Her current research interests include intel-
ligent optimization and machine learning.

Huai-Ping Jin received the B.Sc. degree in process
equipment and control engineering and the Ph.D.
degree in control science and engineering from the
Beijing Institute of Technology, Beijing, China, in
2010 and 2016, respectively.

He is currently an Associate Professor with the
Kunming University of Science and Technology,
Kunming, China. He has published over 30 referred
papers. His current research interests include data-
driven soft computing and scheduling.

Jian-Bo Yang received the B.Sc. and M.Sc.
degrees in control and aerospace engineering from
Northwestern Polytechnic University, Xi’an, China,
in 1981 and 1984, respectively, and the Ph.D. degree
in systems science and engineering from Shanghai
Jiao Tong University, Shanghai, China, in 1987.

He is currently a Chair Professor with the
University of Manchester, Manchester, U.K., and the
Visiting Changjian Chair Professor with the Hefei
University of Technology, Hefei, China. He has pub-
lished 4 books and over 400 papers in journals and

conferences. His current research interests include artificial intelligence and
decision systems.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Manchester. Downloaded on November 06,2022 at 12:19:55 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

