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a b s t r a c t

Evidential Reasoning (ER) approach is a widely used information aggregation method to deal with
uncertain information in decision making. However, as decision-making problem becomes complicated,
it is usually difficult for experts to provide accurate belief degrees for each evaluation grade. In this
regard, the linguistic belief structure allows experts to give belief degrees with linguistic terms. In
this study, we extend the classical ER approach to the linguistic belief-based ER (LB-ER) approach in
which the hesitancy degrees are introduced to determine the weights of experts. Afterwards, the LB-
ER approach is further enhanced to deal with multi-expert multi-criteria decision-making (MEMCDM)
problems, where the best worst method (BWM) is introduced to generate the weights of criteria.
Finally, to verify the practicability of the proposed method, we implement the method in lung cancer
diagnosis.

Crown Copyright© 2022 Published by Elsevier B.V. All rights reserved.
1. Introduction

As a cancer with increasing morbidity and mortality, lung
ancer has become a great threat to human life [1]. Since the
ymptoms of lung cancer in early stage are not obvious, when
linical symptoms appear, most patients with lung cancer are at
he middle or late stage, which greatly reduces the cure rate [2].
LST (National Lung Screening Trial) has shown that the low-
ose CT can effectively identify early lung cancer patients, so as to
ake sure that patients obtain timely treatment and reduce mor-

ality.1 Most existing researches [1,2] focused on computer-aided
iagnosis systems to identify CT images, and strived to replace
octors. However, due to the diversity of personal conditions,
sing a unified recognition program of computer-aided diagnosis
ystem to judge all patients is likely to increase the rate of misdi-
gnosis. Considering this, the role of doctors is still irreplaceable.
his paper is devoted to exploring the decision-making model to
ssist doctors in diagnosing lung cancer patients, so as to provide
eference for inexperienced doctors.

The diagnosis of lung cancer can be divided into two stages:
1) multiple radiologists screen high-risk groups of lung cancer
ccording to the characteristics of low-dose CT images; (2) the
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E-mail addresses: liaohuchang@163.com (H.C. Liao), fangran999@163.com

R. Fang), jian-bo.yang@manchester.ac.uk (J.B. Yang), Ling.Xu@manchester.ac.uk
D.L. Xu).
1 https://www.cancer.gov/types/lung/research/nlst.
ttps://doi.org/10.1016/j.knosys.2022.109559
950-7051/Crown Copyright © 2022 Published by Elsevier B.V. All rights reserved.
attending physician of individual patients determines the possi-
bility of lung cancer according to the patient’s own conditions [3].
Both the radiologists in the first stage and the attending physician
in the second stage need to comprehensively consider several
criteria when making judgments. Therefore, the first stage can be
regarded as a multi-expert multi-criteria decision-making (MEM-
CDM) problem, and the second stage can be regarded as an MCDM
problem [4–6]. In addition, in the first stage, the characteristics of
CT images are difficult to be accurately characterized by numer-
ical values, and in the second stage, the information provided by
patients is usually vague, so radiologists and attending physician
tend to use linguistic terms to give diagnostic results, for example,
‘‘the patient’s grandfather died of lung cancer, so from a family
history perspective, the patient is quite possible to suffer from lung
cancer ’’. The MCDM is a special case when there is only one expert
in MEMCDM, so the same MEMCDM method can be applied
to deal with the decision-making problems in the two stages,
which can reduce decision-making time and improve treatment
efficiency. Besides, due to the fuzziness of linguistic terms and
the incompleteness of information, the diagnosis of lung cancer
can be regarded as dealing with uncertain MEMCDM problems. In
this regard, how to solve such uncertain MEMCDM problems with
linguistic information is the main research issue of this paper.

As an MCDM method, evidential reasoning (ER) approach can
deal with linguistic information well by introducing linguistic
evaluation grades and the belief structure [7], which makes the ER
approach and its extensions have been implemented to deal with
MCDM problems in several fields ranging from risk analysis [8],
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ata classification [9,10], to cancer diagnosis [11,12]. The original
R approach [7] allows experts to use linguistic evaluation grades,
ut requires them to provide precise belief degrees, which cannot
lways be satisfied due to the complexity of decision-making.
n this regard, some efforts have been made to extend the ER
pproach. Lee et al. [13] proposed the interval value belief struc-
ure, which has been developed by some researchers [14–17].
n addition, Chen et al. [18] introduced a discrete belief structure,
llowing experts to hesitate between multiple belief values. How-
ver, when some known information is fuzzy and insufficient,
t is not easy for experts to provide quantitative belief degrees
nd tend to give linguistic forms, which is general but has not
een considered in the existing ER approach and its extensions.
imilar linguistic belief structures can be found in the dual lin-
uistic term set proposed by Wang, Huang and Cai [19] based
n the probabilistic linguistic term set (PLTS), where linguistic
robability can be regarded as linguistic belief degree. However,
his method cannot directly deal with incomplete belief struc-
ures. For example, a piece of diagnostic information as ‘‘since the
patient’s family history is incomplete, there is only slightly possible
to suffer from lung cancer for this patient ’’. It is obvious that the
diagnostic information shows there is only a small possibility of
suffering from lung cancer for the patient. But since there are
no other possible situations in this diagnostic information, the
dual linguistic term set normalized the information to ‘‘must be
suffering from lung cancer ’’, which obviously distorts the original
evaluation information. ER approach can deal with this kind of
incomplete evaluation information well by assigning the belief
degree to the ignorant information directly by adding ‘‘more
other possibilities cannot be determined’’ to the original incomplete
information. Therefore, how to deal with linguistic belief degrees
accurately in the ER approach is the first research challenge of
this paper.

Since it can deal with fuzzy linguistic evaluation and incom-
plete belief structure, the ER approach has been widely used to
solve MEMCDM problems [20–22]. How to objectively determine
expert weights is a key problem in the application of ER approach
to MEMCDM. To reflect the different professional backgrounds
and knowledge of experts, Fu, Yang and Yang [20] and Zhou
et al. [21] proposed the expert reliability to quantify the relative
importance of experts. However, the methods proposed in [20,21]
determine the weight of an expert by calculating the similarity
between the evaluation given by the expert and that given by
other experts, which requires that the group of experts is large
enough and artificially reduces the influence of a few experts
with different opinions. In addition, Ren, Liao and Fang [22]
calculated the amount of information contained in the evaluation
by introducing entropy, so as to determine the weights of experts.
However, this method only considers the number of linguistic
evaluation grades and quantitative belief degrees, ignoring that
different linguistic terms have different semantic values. This
issue can be well solved by introducing the hesitancy degrees
of experts proposed by Liao et al. [23] in the probabilistic lin-
guistic environment. However, this method also requires experts
to provide quantitative belief structure, and cannot deal with
linguistic belief degrees. Therefore, how to measure the weights
of expert based on their hesitancy degrees in the ER approach
with linguistic belief degrees is the second research challenge of
this paper.

In the ER approach, the assumption that the weights of cri-
teria are usually given directly by experts [7], requires experts
to not only comprehensively understand all criteria, but also
be rational enough and have strong judgment ability, which is
difficult to achieve in actual decision-making. Considering this,
to determine the weights of criteria based on the weight range

given by experts in advance, Wang et al. [24] established two

2

programming models to maximize the utility of alternatives and
minimize the utility of alternatives respectively; Zhou et al. [25]
established a programming model to minimize the differences
between the alternatives and the ideal solution. However, these
methods deduce the appropriate criteria weight to obtain a pre-
set result, so the programming models established for different
decision-making problems are also different, and the generality
is insufficient. As a method of weight acquisition, the best worst
method (BWM) method establishes a programming model by
minimizing the difference between the determined weights and
the limitations provided by experts in advance, which has strong
generality [26]. In addition, since the BWM only requires experts
to select the best and worst criteria and provide the paired
comparison information between the two and other criteria, it
is relatively simple and allows less time to improve the decision-
making efficiency [27]. However, there is still a lack of research
on applying BWM to the ER approach to determine the weights
of criteria, which is the third research challenge of this paper.

To address the aforementioned research challenges, in this pa-
per, we introduce a linguistic belief-based ER (LB-ER) approach to
solve uncertain MEMCDM problems with linguistic information
and apply it in the diagnosis of lung cancer. Considering that
doctors tend to use uncertain linguistic expressions to express
diagnosis results, we use the LB-ER approach to model uncer-
tain linguistic information. To represent different perceptions of
experts on linguistic terms, three linguistic scale functions are
introduced to determine the hesitancy degrees of experts and
then generate the weights of experts. In addition, we apply the
BWM to determine criteria weights in the ER approach. The
contributions of this study are highlighted as:

(1) The LB-ER approach is proposed to solve uncertain MEM-
CDM problems with linguistic information.

(2) The hesitancy degrees of experts are considered based on
three linguistic scale functions when generating the weights of
experts, which improves the accuracy of decision results.

(3) The BWM method is introduced to generate the weights of
criteria in the ER approach.

(4) The LB-ER approach is implemented in the diagnosis of
lung cancer to provide an accurate diagnosis report for the at-
tending physician, based on which the final diagnosis of the
patient can be obtained in accordance with external conditions.

This paper is arranged as follows: Section 2 reviews the ER
approach and linguistic scale functions. Section 3 proposes the
LB-ER approach for MEMCDM. Section 4 gives a numerical study.
Section 5 ends the paper.

2. Preliminaries

This paper is carried out under the framework of the ER
approach. In this approach, it is essential to determine experts’
weights according to the linguistic scale functions of linguistic
terms and the hesitancy degrees of experts. Therefore, this section
recalls the advances of the ER approach and reviews linguistic
scale functions.

2.1. A brief description of the ER approach

The ER approach, as an information aggregation method, can
analyze MCDM problems with uncertainties in the forms of ran-
domness, ignorance and fuzziness. Due to its distributed ex-
pression of belief degrees in evaluation, the ER approach has
been widely applied in various fields in the past two decades.
Table 1 lists 15 selected papers which applied the ER approach
practically.

As can be seen from Table 1, scholars have made lots of efforts

to implement the ER approach to practical applications ranging
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Table 1
The ER approach and its variations.
Reference Forms of evaluation grades Forms of belief

degree
Weight determining
method

Group decision Application

This paper Independent linguistic
terms

Linguistic terms BWM
√

Diagnosis aiding of lung cancer

Dymova, Kaczmarek &
Sevastjanov [28]

Interval-valued intuitionistic
fuzzy sets

Interval values Belief rule base Expert system Diagnosis of the type 2
diabetes

Wang & Yu [29] Independent linguistic
terms

Interval values Subjective single values × Sustainable operation of
Shanghai rail transit system
assessment

Diao et al. [10] Independent linguistic
terms

Single values Machine learning × Data classification

Fu et al. [9] Independent linguistic
terms

Single values Machine learning × Data classification

Fu, Liu & Chang [12] Independent linguistic
terms

Single values Machine learning × Diagnosis of thyroid cancer

Chen et al. [11] Independent linguistic
terms

Single values Machine learning × Prediction of lymph node
metastasis in head and neck
cancer

Chen et al. [18] Independent linguistic
terms

Discrete value sets Subjective single values
√

Doctoral dissertations
assessment

Zhang et al. [30] Independent linguistic
terms

Interval values Subjective interval values × Partner selection

Zhou et al. [25] Hesitant fuzzy linguistic
terms

Value sets Subjective interval values × Engine assessment

Wang et al. [24] Independent linguistic
terms

Triangular
intuitionistic fuzzy
numbers

Subjective single values × Car assessment

Tang et al. [8] Independent linguistic
terms

Single values Belief rule base Expert system Risk analysis

Guo et al. [31] Independent linguistic
terms

Interval values Subjective interval values × Car assessment

Wang et al. [17] Independent linguistic
terms

Single values Subjective single values × Environmental impact
assessment

Liu et al. [32] Independent linguistic
terms

Single values Belief rule base Expert system Safety analysis

Xu, Yang & Wang [7] Independent linguistic
terms

Single values Subjective single values Intelligent
decision system

Self-assessment
m

m

m

w
p
a
p
t
b

a

m

m

m

from industrial fields to management fields over the past two
decades. Originally, evaluation grades in the ER approach can
only be expressed by independent linguistic terms. To expand
the application scopes of the ER approach, evaluation grades were
extended to be expressed by linguistic terms that intersect with
each other [33]. Subsequently, to generalize the expression forms,
evaluation grades were further developed to several linguistic
terms [7], and then to hesitant fuzzy linguistic elements [25].
In addition, researchers extended the form of the belief degrees
from numerical values to intervals [17,31], then to intuitionistic
fuzzy numbers [24,34] and several discrete values [18]. Although
scholars have extended the ER approach to various forms, there
are still issues that cannot be modeled well.

To facilitate further presentation, we briefly review the origi-
al ER approach [7]. Suppose that there is an MCDM problem in
hich M alternatives aj (j = 1, 2, . . . ,M) are evaluated regard-

ng L criteria ei (i = 1, 2, . . . , L). The weight vector of criteria is
ω1, ω2, . . . , ωL)T , satisfying 0 ≤ ωi ≤ 1 (i = 1, 2, . . . , L) and

L
i=1 ωi = 1. Suppose that all alternatives are evaluated based

n a frame of discernment H = {H1,H2, . . . ,HN} where Hn(n =

, 2, . . . ,N) are collectively exhaustive and mutually exclusive
ith each other. βn,i(aj) is the belief degree assigned to grade
n for alternative aj on criterion ei, satisfying βn,i(aj) ≥ 0 and
N
n=1 βn,i(aj) ≤ 1. In the recursive ER algorithm [7], the basic

robability assignments are calculated based on belief degrees:

(a ) = ω β (a ) (1)
n,i j i n,i j

3

H,i(aj) = m̃H,i(aj) + m̄H,i(aj) (2)

˜ H,i(aj) = ωi

(
1 −

N∑
n=1

βn,i(aj)

)
(3)

¯ H,i(aj) = 1 − ωi (4)

here mn,i(aj) is the basic probability mass, representing the
robability assigned to grade Hn under criterion ei for alternative
j. mH,i(aj) is the remaining probability mass, representing the
robability unassigned to any evaluation grade, which includes
wo parts: m̃H,i(aj) caused by ignorance in ei and m̄H,i(aj) caused
y the weight of ei.
For Hn(n = 1, 2, . . . ,N), the masses of the first i + 1 criteria

re combined by

n,I(i+1) = KI(i+1)[mn,I(i)mn,i+1 + mH,I(i)mn,i+1 + mn,I(i)mH,i+1] (5)

For H ,

H,I(i) = m̃H,I(i) + m̄H,I(i) (6)

˜ H,I(i+1) = KI(i+1)[m̃H,I(i)m̃H,i+1 + m̄H,I(i)m̃H,i+1 + m̃H,I(i)m̄H,i+1] (7)

m̄ = K
(
m̄ m̄

)
(8)
H,I(i+1) I(i+1) H,I(i) H,i+1
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here KI(i+1) =

[
1 −

∑N
t=1
∑N

n=1
n̸=t

mt,I(i)mn,i+1

]−1

, mn,I(1) = mn,1

and mH,I(1) = mH,1. KI(i+1) is a normalization coefficient to make
sure

∑N
n=1 mn,I(i+1) + m̃H,I(i+1) + m̄H,I(i+1) = 1.

The belief degree of aj assigned to grade Hn and H can be
generated by

βn(aj) = mn,I(L)(aj)
/
(1 − m̄H,I(L)(aj)) (9)

βH (aj) = m̃H,I(L)(aj)
/
(1 − m̄H,I(L)(aj)) (10)

The ER approach has been applied in a variety of fields owing
to its ability in handling uncertain linguistic information. How-
ever, this method requires experts to provide precise numerical
belief degrees, which is not easy for experts. In this regard,
this paper considers to introduce linguistic beliefs to in the ER
approach, which will be presented in Section 3.

2.2. A brief description of linguistic scale functions

Suppose that S =
{
sα
⏐⏐α = 1, 2, . . . , 2τ + 1

}
is an LTS where τ

is a positive integer, and g (sα) is the semantic function of sα(α =

1, 2, . . . , 2τ + 1). There are three linguistic scale functions [23]
considering balanced and unbalanced semantic distribution.

(1) If the semantics of linguistic terms are evenly distributed,
then,

g(sα) = (α−1)
/
2τ (11)

here experts are neutral and have no bias on extreme and
edian values.
(2) If the deviation between the semantics of adjacent lin-

uistic terms increases as the distance from sτ+1 increases, that
is, experts are conservative in judging linguistic semantics and
sensitive to extreme values, then,

g(sα) =

⎧⎪⎪⎨⎪⎪⎩
ψτ

− ψ−α+τ+1

2ψτ − 2
, if α = 1, 2, . . . , τ + 1

ψτ
+ ψα−τ−1

− 2
2ψτ − 2

, if α = τ + 1, . . . , 2τ + 1
(12)

here ψ > 1 is a threshold associated to specific problems.
(3) If the deviation between the semantics of adjacent linguis-

ic terms decreases as the distance from sτ+1 increases, that is,
xperts are radical in judging linguistic semantics and sensitive
o median values, then,

(sα) =

⎧⎪⎨⎪⎩
τ ς − (−α + τ + 1)ς

2τ ς
, if α = 1, . . . , τ + 1

τ ξ + (α − τ − 1)ξ

2τ ξ
, if α = τ + 1, . . . , 2τ + 1

(13)

here ς, ξ ∈ (0, 1] are set based on different problems. ς and ξ
espectively refers to the attitude parameter of ‘‘bad’’ and ‘‘good’’.

These three linguistic scale functions can reflect the psychol-
gy of experts when giving information. If experts are insensitive
o semantic values, then choose Eq. (11) as the semantic scale
unction; if experts are sensitive to extreme values, then we can
hoose Eq. (12); if experts are sensitive to median values, then we
an choose Eq. (13). In this paper, we introduce these linguistic
cale functions to reflect the hesitancy degrees of expert so as
o determine the weights of experts, which will be presented in
ection 3.2.

. The linguistic belief-based evidential reasoning approach
or MCDM with multiple experts

The original ER approach and its extensions can model un-
ertain information in MCDM problems, but there is no relevant
esearch for the uncertain MEMCDM problems with linguistic
 g

4

nformation. To fill this gap, the LB-ER approach for uncertain
EMCDM problems is proposed in this section. We model lin-
uistic evaluation given by multiple experts, and form decision
atrices with linguistic belief degrees (Section 3.1). Afterwards,
e determine the weights of experts by considering hesitancy
egrees of experts, and then aggregate the evaluations of experts
o form a collective decision matrix with numerical belief degrees
ased on linguistic scale function (Section 3.2). The weights of
riteria are obtained by the BWM (Section 3.3). Finally, the com-
rehensive evaluation results of alternatives are obtained by the
R approach (Section 3.4). The algorithm of the LB-ER approach
or MEMCDM is given in Section 3.5. The framework of the LB-ER
pproach for MEMCDM with linguistic belief information can be
emonstrated intuitively in Fig. 1.

.1. Generating individual decision matrices

For an MCDM problem that Q experts ({cq|q = 1, 2, . . . ,Q })
re invited to evaluate alternatives under different criteria, ex-
erts may have different standards for the distribution of belief
egrees. Individual LTSs S(q) = {s(q)θ |θ = 1, 2, . . . , 2δ + 1}
ith δ being a positive integer for expert cq (q = 1, 2, . . . ,Q )

are proposed to represent individual linguistic belief degrees. For
example, expert c1 may use S(1) = {Impossible, Slightly possible,
Possible, Quite possible, Must be} to represent linguistic degrees,
while expert c2 may use S(2) = {Impossible, Possible, Must be}. It
is difficult to aggregate the values of criteria based on individual
linguistic belief degrees with different standards. In this regard,
there is a need to unify all linguistic belief degrees based on a
unified scale. Motivated by [7], individual linguistic terms can be
transformed to be covered in a unified LTS S by:

sθ,i(q) = {(sα,i(q), γα,i(q))|α = 1, 2, . . . , τ , . . . , 2τ + 1; sα,i(q) ∈ S}

(14)

here sθ,ic ∈ S(q), and γα,i(q) represents the degree to which sθ,i(q)
aps to sα,i(q) under criterion ei for expert cq, with γα,i(q) ≥ 0 and∑2τ+1
α=1 γα,i

(q)
= 1.

If all experts give evaluations based on the same LTS, we have

sθ,i(q) = {(sα,i(q), γ
(q)
α,i )|γα,i

(q)
= 1, α = θ, sα,i(q) ∈ S} (15)

We denote an evaluation as

(ei(aj))(q) = {(Hn, sθ,i(q))|n = 1, 2, . . . ,N; sθ,i(q) ∈ S(q)} (16)

By Eq. (14), the evaluation given as Eq. (16) can be transformed
o

(ei(aj))(q) = {(Hn, γα,i
(q)sα,i(q))|n = 1, 2, . . . ,N; sα,i ∈ S} (17)

In this way, experts can express their belief degrees of evalu-
tions by linguistic terms with personal preferences. Then, indi-
idual decision matrices with linguistic beliefs can be generated
s D(q)g = (S(ei(aj))(q))L×M (q = 1, 2, . . . ,Q ).

.2. Generating a collective decision-making matrix

To form a collective decision matrix, owing to different pref-
rences for semantics and different professional degrees of ex-
erts, we need to consider linguistic scale functions and hesitancy
egrees of experts.
The semantics of linguistic terms should be quantified to num-

ers that can be regarded as belief degrees. The linguistic scale
unctions for different LTSs mentioned in Section 2.2 provide a
ood way to develop the transformation. The semantic of lin-

(q) (q)
uistic terms in S can be expressed as g(sθ,i ) based on Eqs.
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Fig. 1. Framework of the LB-ER approach for uncertain MEMCDM problems with linguistic information.
(

S

r
o

11)–(13). Then, the semantics of the elements in the decision
atrix Dg

(q) can be determined by

(γα,i(q)sα,i(q)) = γα,i
(q)g(sθ,i(q)) (18)

Since it is difficult for experts to give an accurate evaluation
grade for each alternative, experts are usually hesitant among
several evaluation grades. It is necessary to consider the hesi-
tancy degree of experts when determining the weights of experts.
Considering this point, this paper extends the hesitancy degree
function proposed by Liao et al. [23] to calculate the hesitancy
degree of a piece of evaluation as

HD(S(ei(aj))(q)) =
T (Hn,i

(q)) ln(T (Hn,i
(q)))

N lnN
(19)

where T (Hn,i
(q)) is the cardinality of Hn in S(ei(aj))(q) with given

sθ,i(q). For example, for S(e1(a1)) = {(H1, s2), (H2, s2)}, T (Hn,i) = 2.
HD(S(ei(aj))(q)) satisfies: (1) HD(S(ei(aj))(q)) = 0, if and only if

there is a sole evaluation grade in S(ei(aj))(q); (2) HD(S(ei(aj))(q)) =

1, if and only if all grades are included in S(ei(aj))(q); (3) HD
(S(ei1 (aj1 ))

(q1)) ≤ HD(S(ei2 (aj2 ))
(q2)), if T (Hn,i1

(q1)) ≤ T (Hn,i1
(q1)).

Similar to the score of a hesitant fuzzy linguistic element
(HFLE) [23], the score of the linguistic term can be generated as

E(sα,i(q)) = (1 − HD(S(ei(aj))(q))) × g(sα,i(q)) (20)

Considering all the hesitancy degrees of evaluations given by
expert cq, the hesitancy degree of cq can be obtained as

CHD(q)
=

1
M × L

M∑
i=1

L∑
j=1

HD(S(ei(aj))(q)) (21)

Then, based on the hesitancy degree, we can obtain the weight
of expert cq by

w(q)
= (µ− CHD(q))

/ Q∑
q=1

(µ− CHD(q)) (22)

where µ is a normalization parameter such that
∑Q

q=1w
(q)

=

1. The hesitancy degrees of experts obtained by Eqs. (19)–(21)
are relatively small. To reflect the difference between experts’
hesitancy degrees without over-amplifying the difference, we set
µ = 0.5 in this paper [23].

Example 1 shows how to obtain expert weights based on
hesitancy degrees.

Example 1. Two doctors (c1, c2) are invited to diagnose two
patients (a1, a2) under two criteria (e1, e2), with the evaluation
values being provided as:

e1 e2

c1 :

a1 [{(H1, s1), (H3, s4)} {(H3, s5)}
{(H , s )} {(H , s ), (H , s )}

]
,

a2 2 1 2 4 3 2

5

e1 e2

c2 :
a1

a2

[
{(H3, s3)} {(H3, s3)}
{(H4, s2)} {(H2, s3)}

]
. By Eq. (20), the hesitancy de-

gree HD(S(ei(aj))(q)) of each evaluation can be obtained as:
e1 e2

c1 :
a1

a2

[
0.1290 0
0.1290 0.1290

]
,

e1 e2

c2 :
a1

a2

[
0 0.1290
0 0

]
. By Eq. (21),

the hesitancy degrees of experts (c1, c2) can be generated as
CHD(1)

= 0.0967 and CHD(2)
= 0.0322. By Eq. (22), the weights of

experts (c1, c2) can be determined asw(1)
= 0.46 andw(2)

= 0.54.

With expert weights, we can generate the collective linguistic
score of alternative aj on criterion ei as

E(sα,i) =

Q∑
q=1

w(q)E(s(q)α,i) (23)

Considering the weights of experts, we transform the decision
matrix with linguistic belief degrees Dg

(q)
= (S(ei(aj))(q))L×M

to the decision matrix with numerical belief degrees as Dg =

S(ei(aj)))L×M , where

(ei(aj)) = {(Hn, βn,i(aj)), n = 1, 2, . . . ,N} (24)

For the evaluation S(ei(aj)) in Dg with
∑N

n=1 βn,i(aj) > 1, we
normalize it to S(ei(aj)) with β ′

n,i(aj) = βn,i(aj)
/∑N

n=1
βn,i(aj); for the evaluation S(ei(aj)) in Dg with

∑N
n=1 βn,i

(aj) < 1, we regard it as incomplete value where the remaining
belief is 1 −

∑N
n=1 βn,i(aj) > 0.

3.3. Generating criteria weights by the BWM

The original ER approach does not give a specific method to
determine criteria weights. In this section, the BWM [18] is intro-
duced to generate the weights of criteria in the ER approach. In
the BWM, only referred comparisons are needed, which reduces
the difficulty of expert judgments and increases the accuracy of
weight determination. By selecting the best and the worst criteria
and comparing them with other criteria, a corresponding non-
linear programming model is formed, and then the weight vector
of criteria can be obtained. The process is organized as follows:

Step 1. Experts are invited to select the best criterion eB and
the worst criterion eW . If there are two or more best or worst
criteria, the best and worst criterion can be selected arbitrarily.

Step 2. Compare the best criterion eB with the other criteria
espectively by the 1–9 scale. In this way, we establish the best to
thers vector as: BO =

(
aB1, aB2, . . . , aBj, . . . , aBL

)T with aBi ≥ 1,
where aBi is the preference degree of the best criterion eB over
criterion ei.

Step 3. Compare the worst criterion eW with the other crite-

rion respectively by the 1–9 scale. In this way, we establish the
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thers to the worst vector as: OW = (a1W , a2W , . . . , aiW , . . . ,
aLW )T with aiW ≥ 1, where aiW is the preference degree of
riterion ei over the worst criterion eW . Here, L − 2 pairwise
omparisons are done since aBW is obtained in BO.
Step 4. To generate the weight vector of criteria, a nonlinear

rogramming model can be built as:

in ξ

.t. :
L∑

i=1

ωi = 1,

ωi ≥ 0, i = 1, 2, . . . , L

|ωB/ωi − aBi| ≤ ξ

|ωi/ωW − aiW | ≤ ξ

(25)

here ξ denotes the maximum absolute difference and can be de-
ermined for specific problems. By solving this model, the weight
ector of criteria could be generated as ω = (ω1, ω2, . . . , ωL)T

.4. Calculating the values of alternatives

To rank all alternatives, we assign a value function [7] to
valuation grades, and aggregate final synthesis results to get the
alues of alternatives.
Based on the belief decision matrix and criteria weights, the

ombined belief degrees βn(aj) and βH (aj) can be calculated by
he ER algorithm defined by Eqs. (1)–(10). Then, we can get the
alue of each alternative by

(s(y(aj))) =

N∑
n=1

βn(aj)u(Hn) (26)

here u(Hn)(n = 1, 2, . . . ,N) is the value of Hn, and u(Hn) <
(Hn+1) when Hn+1 is preferred over Hn.
If βH (aj) > 0, it means that there is the global ignorance in

he evaluation, and the belief degree βH (aj) could be reassigned to
ny evaluation grade. Based on this, we can get an interval value
f alternative aj as [umin(aj), umax(aj)] by assigning the remaining
elief to the worst and the best evaluation grade respectively,
here

min(aj) =

N∑
n=1

βn(aj)u(Hn) + βH (aj)u(H1) (27)

max(aj) =

N∑
n=1

βn(aj)u(Hn) + βH (aj)u(HN ) (28)

To show the value of aj directly, we calculate the average value
s

avg (aj) =
umin(aj) + umax(aj)

2
(29)

If βH (aj) = 0, there lies umin(aj) = umax(aj) = uavg (aj).
The three types of utilities given above represent three typi-

cal levels of optimism for the decision makers. In the decision-
making problem in which the larger the utility value means the
better the result, umax is chosen for the extremely optimistic
case, umin for the extremely pessimistic case, and uavg for the
indifference case.

3.5. Algorithm of the LB-ER approach for MEMCDM

To concretize the application of the LB-ER approach for uncer-
tain MEMCDM problems. We give the algorithm of the approach
as Algorithm I.
6

Algorithm I (The LB-ER Approach for MEMCDM).
Step 1. Invite Q experts to evaluate alternatives under criteria

and then form individual decision-making matrices with linguis-
tic belief degrees as Dg

(q)
= (S(ei(aj))(q))L×M (q = 1, 2, . . . ,Q ). Go

to the next step.
Step 2. Determine the hesitancy degrees of experts by Eqs.

(11)–(24), and generate the collective decision matrix as Dg =

(S(ei(aj)))L×M . Go to the next step.
Step 3. Use the BWM to obtain the weight vector ω =

(ω1, ω2, . . . , ωL)
T of criteria by Eq. (25). Go to the next step.

Step 4. Apply Eqs. (1)–(10) to generate the combined belief
degrees of alternative aj as βn(aj) and βH (aj), which are assessed
to Hn or H , respectively. Go to the next step.

Step 5. If there is a need to rank alternatives, go to the next
step; if not, the evaluation grade with the maximum belief degree
is what the alternative belongs to, and the algorithm ends.

Step 6. To rank alternatives, we obtain three different values of
alternatives by Eqs. (26)–(28) and then terminate the algorithm
by ranking alternatives according to utility values.

In the proposed LB-ER approach, the linguistic evaluation in-
formation given by experts can be modeled to form individual
linguistic belief decision matrices. Then, considering the decision
preference and hesitancy degrees of experts, the comprehensive
decision matrix with numerical belief degrees is obtained. The
weight vector of criteria is obtained by the BWM. Then alter-
natives are sorted according to the results by the ER approach.
The LB-ER approach makes it possible to model linguistic belief
information.

The hesitancy degrees of experts are considered to determine
the weight vector of experts, through different sensitivity of
experts denoted by three linguistic scale functions, which en-
hances the accuracy in the decision-making process. In addition,
the BWM is introduced to determine the weights of criteria,
which brings a fresh way to establish criterion weights in the ER
approach.

4. Application to the diagnosis of lung cancer

In this section, the LB-ER approach is applied to aid the di-
agnosis of lung cancer, which can provide an accurate diagnosis
report for attending physicians and an effective decision-making
method for lung cancer diagnosis.

4.1. Background of the diagnosis of lung cancer

Lung cancer has become the most susceptible cancer to human
beings in recent years. The Global Cancer Statistic 2018 [35]
published by CA: A Cancer Journal for Clinicians, showed that
lung cancer remains the main cause of cancer morbidity and mor-
tality worldwide. The ELCAP (Early Lung Cancer Action Project)
results [36] showed that early diagnosis and treatment of lung
cancer plays a crucial role in improving cure rate and prognosis.
The 5-year survival rate of patients with early lung cancer was
90%, that of patients with stage I lung cancer was 60%, and
with stage II–IV decreased from 40% to less than 5%. Therefore,
striving for ‘‘early detection, early diagnosis and early treatment ’’
is an important measure to reduce the mortality rate of lung
cancer [37]. As a result, more and more attention has been paid
to the early diagnosis of lung cancer.

There are several clinical diagnostic methods for lung can-
cer, which can be divided into histological diagnosis and imag-
ing diagnosis [3]. Histological diagnosis methods include sputum
cytology, bronchoscopy, and needle biopsy. Imaging diagnosis
methods include chest X-ray, CT, MR (Magnetic Resonance), and
PET (Positron Emission Tomography) thoracic scanning imag-
ing. Histological diagnostic methods except sputum cytology, and
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ther examinations cause pain or infection of pulmonary haem-
rrhage. Not all types or stages of lung cancer cells can appear
n sputum. In addition, the imaging diagnosis can make people
irectly observe the size, shape and location of the lesion tissue,
nd will not bring sufferings to patients like invasive examination.
herefore, although the results of histological diagnosis can be
sed as gold standard, most early lung cancer diagnosis methods
re still imaging diagnosis methods. With the rapid development
f imaging technology, its application is more and more wide.
oreover, the National Lung Cancer Screening Test (NLST) in

he United States confirmed that, compared with routine chest
-ray, the low-dose CT screening in high-risk groups can detect
nd treat 20% of patients early, thus reducing the mortality of
ung cancer [38–40]. Therefore, CT imaging has become the best
ethod for early screening of lung cancer owing to its good
ensity resolution for various lung diseases [41].
Thousands of CT images have been generated in CT imaging

xamination, and relevant and clear images of lungs can be se-
ected for observation and then to generate diagnostic reports.
ifferent image features can produce different diagnostic results,
hile the same features may be caused by different diseases.
herefore, it is not easy for doctors to fully determine the illness
f patients only based on the CT image information. At the same
ime, due to the incompleteness of information, it is difficult
or doctors to give a numerical value or numerical range of the
ossibility of diseases. Often, doctors provide diagnostic reports
n the form of linguistic terms. It is reasonable to apply the LB-ER
pproach to model the generation process of diagnostic reports,
nd provide accurate diagnostic information for radiologists and
he attending physician.

.2. modeling the CT diagnostic process of lung cancer

There are two stages from detection in CT images to disease
iagnosis. First of all, radiologists need to select clear and crit-
cal CT images of patients for detection, and write CT detection
eports. Then, the patient’s attending physician makes final diag-
osis according to patient’s own conditions and his/her CT test
eport obtained in the previous step. The whole process is fixed
nd full of uncertainty. Doctors cannot always and completely
e in a rational state. Providing doctors with auxiliary diagnostic
nformation can reduce the burden of doctors and increase the
ccuracy of diagnostic results. In this case study, we apply the
B-ER approach to model the two stages separately. First, we
ntroduce the model of the first stage in the CT diagnosis in detail.

The key and clear CT images are first selected by radiologists
or observation. In this paper, three images of patients are taken
s aj(j = 1, 2, 3). According to the literature [4,5], four character-

istic factors which have great significance in differentiating lung
cancer in CT images are mediastinal lymph nodes, speculations,
edge features and small bubble sign, which can be regarded
as four criteria of CT image observation. They are recorded as
ei(i = 1, 2, 3, 4). In addition, due to the complexity of human
lung structure, lung health condition can be roughly divided into
six possibilities, H = {Hn|n = 1, 2, . . . , 6} = {Disease-free, Be-
nign tumors, Pneumonia, Pulmonary tuberculosis, Lung cancer, Other
pulmonary diseases}. All the belief degrees can be denoted by
S = {sα|α = 1, 2, . . . , 5} = {Impossible, Slightly possible, Possible,
Quite possible, Must be}. According to different image features, the
diagnostic results are also different. To minimize the influence of
individual subjective factors and provide accurate and objective
diagnostic information, three radiologists cq (q = 1, 2, 3) are in-
ited to observe three CT images respectively and give diagnostic
nformation. The following are specific steps to solve this case
tudy by our proposed method.
Step 1. Collect evaluations and build individual decision ma-

trices as Table 2. For example, the radiologist c give evaluation
1

7

based on the edge features e3 for the CT image a3 as ‘‘The margin
features of the pulmonary nodule in this image show that the patient
is slightly possible pulmonary tuberculosis, slightly possible lung
cancer, and impossible other pulmonary disease’’, which can be
modeled by the LB-ER approach as {(H4, s2), (H5, s2), (H6, s1)}.

Step 2. Generate the collective decision matrix. To provide
accurate diagnostic results through generating diagnostic reports,
we consider the preference types in linguistic judgments, such as
conservative, neutral or radical. In this case, to show the univer-
sality of the application of the proposed approach, it is assumed
that the three radiologists are of three different types, and the
semantic judgment values of each radiologist for linguistic terms
can be calculated by Eqs. (11)–(13). The results are:

g(s(1)α ) = {0, 0.25, 0.5, 0.75, 1}; g(s(2)α ) = {0,
1
3
,
1
2
,
2
3
, 1};

g(s(3)α ) = {0, 0.15, 0.5, 0.85, 1}.

The decision matrices with linguistic belief degrees can be
transformed into the ones with numerical belief degrees as
Table 3.

To make decisions accurately, the weights of radiologists
should be considered. Due to the influence of external factors and
the complexity of human thoughts, the weights of radiologists
vary from time to time. It will take a lot of time and energy to
obtain radiologist weights through a series of complex tests and
calculations before each decision. In medical diagnosis, time is
life, and any delay by seconds may lead to catastrophic conse-
quences in patient survival. Therefore, we introduce the concept
of expert hesitancy degrees to obtain the weights of radiologists
quickly and shorten the diagnosis time.

By Eqs. (14)–(21), the hesitancy degrees of radiologists can be
obtained as:

CHD(1)
= 0.141; CHD(2)

= 0.152; CHD(3)
= 0.137

According to the hesitancy degrees of radiologists, their
weights can be further generated by Eq. (22):

w(1)
= 0.335; w(2)

= 0.325; w(3)
= 0.339

By Eqs. (23)–(24), we can obtain the collective decision matrix
as Table 4.

Step 3. Generate criteria weights by the BWM.
Based on the statistical analysis of historical data or expe-

rience, radiologists can compare and analyze the criteria, and
choose e4 (small bubble sign) as the best criterion eB and e1
(mediastinal lymph nodes) as the worst criterion eW . In this case,
the comparison vectors are given by the radiologists with a scale
of 1–9. BO = (4, 2, 2, 1)T can be obtained by comparing the best
criterion eB with each criterion, and OW = (1, 3, 2, 4)T can be
obtained by comparing each criterion with the worst criterion eW .

According to Eq. (25), the following non-linear programming
models can be constructed:
min ξ

s.t. :
4∑

i=1

ωi = 1,

ωi ≥ 0, i = 1, 2, 3, 4

|ω4/ω1 − 4| ≤ ξ, |ω4/ω2 − 2| ≤ ξ

|ω4/ω3 − 2| ≤ ξ, |ω2/ω1 − 3| ≤ ξ

|ω3/ω1 − 2| ≤ ξ

Solving this linear programming model, we obtain the weight
vector of criteria as ω = 0.1, 0.27, 0.19, 0.44 T .
( )
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Table 2
The individual decision matrices.

e1 e2 e3 e4
c1 a1 {(H1, s1), (H6, s2)} {(H5, s4)} {(H1, s1), (H4, s2), (H5, s3)} {(H3, s2), (H4, s2)}

a2 {(H3, s2), (H4, s2), (H5, s2)} {(H3, s2), (H4, s3)} {(H6, s2)} {(H3, s3), (H4, s4)}
a3 {(H6, s3)} {(H5, s4), (H6, s2)} {(H4, s2), (H5, s2), (H6, s1)} {(H3, s4), (H4, s3)}

c2 a1 {(H5, s2), (H6, s2)} {(H4, s2), (H5, s2), (H6, s2)} {(H4, s3), (H5, s2)} {(H3, s3), (H4, s2)}
a2 {(H5, s3)} {(H3, s3), (H4, s2)} {(H5, s2), (H6, s2)} {(H3, s3), (H4, s3), (H5, s2)}
a3 {(H4, s2), (H5, s3), (H6, s2)} {(H5, s3)} {(H4, s2), (H5, s3)} {(H3, s4), (H4, s2)}

c3 a1 {(H4, s2), (H5, s4)} {(H4, s3), (H5, s4)} {(H4, s4), (H5, s2)} {(H3, s4), (H4, s2), (H5, s3)}
a2 {(H5, s3), (H6, s2)} {(H5, s2)} {(H5, s3), (H6, s4)} {(H4, s2), (H5, s3)}
a3 {(H4, s3), (H5, s3)} {(H5, s3), (H6, s2)} {(H5, s4)} {(H3, s2), (H4, s3), (H5, s2)}
Table 3
The transformed individual decision matrices.

e1 e2 e3 e4
c1 a1 {(H6, 0.25)} {(H5, 0.75)} {(H4, 0.25), (H5, 0.5)} {(H3, 0.25), (H4, 0.25)}

a2 {(H3, 0.25), (H4, 0.25), (H5, 0.25)} {(H3, 0.25), (H4, 0.5)} {(H6, 0.25)} {(H3, 0.5), (H4, 0.75)}
a3 {(H6, 0.5)} {(H5, 0.75), (H6, 0.25)} {(H4, 0.25), (H5, 0.25)} {(H3, 0.75), (H4, 0.5)}

c2 a1 {(H5, 1/3), (H6, 1/3)} {(H4, 1/3), (H5, 1/3), (H6, 1/3)} {(H4, 1/2), (H5, 1/3)} {(H3, 1/2), (H4, 1/3)}
a2 {(H5, 1/2)} {(H3, 2/3), (H4, 1/2)} {(H5, 1/3), (H6, 1/3)} {(H3, 1/2), (H4, 1/2), (H5, 1/3)}
a3 {(H4, 1/3), (H5, 1/2), (H6, 1/3)} {(H5, 1/2)} {(H4, 1/2), (H5, 1/3)} {(H3, 2/3), (H4, 1/3)}

c3 a1 {(H4, 0.15), (H5, 0.85)} {(H4, 0.5), (H5, 0.85)} {(H4, 0.85), (H5, 0.15)} {(H3, 0.85), (H4, 0.15), (H5, 0.5)}
a2 {(H5, 0.5), (H6, 0.15)} {(H5, 0.15)} {(H5, 0.5), (H6, 0.85)} {(H4, 0.15), (H5, 0.5)}
a3 {(H4, 0.5), (H5, 0.5)} {(H5, 0.5), (H6, 0.15)} {(H5, 0.85)} {(H3, 0.15), (H4, 0.5), (H5, 0.15)}
Table 4
The collective decision matrix.

e1 e2 e3 e4
a1 {(H4, 0.04), (H5, 0.35), (H6, 0.17)} {(H4, 0.22), (H5, 0.58), (H6, 0.08)} {(H4, 0.45), (H5, 0.25)} {(H3, 0.41), (H4, 0.20), (H5, 0.12)}
a2 {(H3, 0.06), (H4, 0.06), (H5, 0.37), (H6, 0.04)} {(H3, 0.26), (H4, 0.29), (H5, 0.05)} {(H5, 0.24), (H6, 0.43)} {(H3, 0.26), (H4, 0.38), (H5, 0.22)}
a3 {(H4, 0.22), (H5, 0.22), (H6, 0.24)} {(H5, 0.53), (H6, 0.12)} {(H4, 0.20), (H5, 0.44)} {(H3, 0.44), (H4, 0.36), (H5, 0.04)}
S
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Step 4. βn(aj) and βH (aj) can be generated by Eqs. (1)–(10). The
results are

S(a1) = {(H3, 0.19), (H4, 0.25), (H5, 0.31), (H6, 0.03), (H, 0.22)}

S(a2) = {(H3, 0.21), (H4, 0.29), (H5, 0.21), (H6, 0.07), (H, 0.22)}
S(a3) = {(H3, 0.23), (H4, 0.25), (H5, 0.26), (H6, 0.05), (H, 0.22)}

Step 5. Obviously, there is no need to sort the three CT images,
where the combined results are the diagnostic results obtained
from the three CT images. For the same clear and critical CT
images, the importance should be the same. Therefore, the final
diagnostic result of CT images can be obtained by calculating the
arithmetic average of diagnostic results.

S(a) = {(H3, 0.21), (H4, 0.26), (H5, 0.26), (H6, 0.05), (H, 0.22)}

Finally, a corresponding CT examination report can be gener-
ated. From the CT images, the lung of the patient is problematic;
the possibility is that he has ‘‘Pulmonary tuberculosis’’ or ‘‘Lung
cancer ’’, also has the possibility of ‘‘Pneumonia’’, and very small
may belong to ‘‘Other pulmonary lung diseases’’. Next, the at-
tending physician needs to make a final diagnosis based on the
CT diagnosis results and report information, in accordance with
the patient’s external factors, such as smoking history, history of
tumors or family history of lung cancer.

4.3. Modelling the diagnostic process of lung cancer

According to the CT test report in the first stage generated
in Section 4.2, the attending physician needs to make a final
diagnosis by considering the patient’s conditions.

As mentioned above, the possible results of diagnosis are H =

{Hn|n = 1, 2, . . . , 6} = {Disease-free, Benign tumors, Pneumonia,
Pulmonary tuberculosis, Lung cancer, Other pulmonary diseases}. Six

factors of great significance [6] in accordance with the patient’s

8

conditions for differentiating lung cancer together with CT im-
ages can be regarded as seven criteria for diagnosis, which are
recorded as O = (op

⏐⏐p = 1, 2, . . . , 7) = {CT diagnosis report, smok-
ing history, long-term residential air quality, occupational exposure,
history of malignant tumors, family history of lung cancer, history of
chronic lung diseases}. The specific steps to make a final diagnosis
by the LB-ER approach are as follows:

Step 1. Generate the individual evaluation of the attend-
ing physician as S(a)e1 = {(H3, 0.21), (H4, 0.26), (H5, 0.26), (H6,

0.05)}, S(a)e2 = {(H4, s2), (H5, s4)}, S(a)e3 = {(H3, s2), (H4, s3)},
(a)e4 = {(H4, s2), (H5, s4)}, S(a)e5 = {(H5, s3)}, S(a)e6 = {(H4, s3)},
nd S(a)e7 = {(H3, s2), (H4, s3)}.
Step 2. Generate the decision matrix with numerical belief

egrees.
The attending physician is supposed to have enough experi-

nce, who can make objective judgments and is neutral in the
xpression of semantics. According to Eq. (11), we can obtain
(sα) = {0, 0.25, 0.5, 0.75, 1}.
In addition, we need to consider the hesitancy degree of

he attending physician. According to Eqs. (19)–(20), we can
et the corresponding semantic scores. For the convenience of
alculation, the scores of linguistic belief degrees can be regarded
s the numerical form of belief degrees, shown as S(a)e1 =

(H3, 0.21), (H4, 0.26), (H5, 0.26), (H6, 0.05)}, S(a)e2 = {(H4, 0.22),
H5, 0.65)}, S(a)e3 = {(H3, 0.22), (H4, 0.44)}, S(a)e4 = {(H4, 0.22),
(H5, 0.65)}, S(a)e5 = {(H5, 0.5)}, S(a)e6 = {(H4, 0.5)}, and S(a)e7 =

{(H3, 0.22), (H4, 0.65)}.
Step 3. Generating the weights of criteria by the BWM.
Through statistical analysis of historical data or experience of

attending physician, the criteria can be compared and analyzed,
and then the best criterion e1 (CT diagnostic report) and the worst
criterion e3 (long-term residential air quality) can be selected.
In this case, the criterion comparison vectors are given by the

T
attending physician with a scale of 1–9. BO = (1, 3, 4, 2, 2, 3, 3)
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Table 5
The collective decision matrix without considering hesitancy degrees of experts.

e1 e2 e3 e4
a1 {(H4, 0.05), (H5, 0.39), (H6, 0.19)} {(H4, 0.27), (H5, 0.62), (H6, 0.11)} {(H4, 0.53), (H5, 0.03)} {(H3, 0.53), (H4, 0.24), (H5, 0.17)}
a2 {(H3, 0.08), (H4, 0.08), (H5, 0.42), (H6, 0.05)} {(H3, 0.25), (H4, 0.27), (H5, 0.45), (H6, 0.03)} {(H5, 0.28), (H6, 0.48)} {(H3, 0.31), (H4, 0.43), (H5, 0.26)}
a3 {(H4, 0.28), (H5, 0.28), (H6, 0.28)} {(H5, 0.58), (H6, 0.13)} {(H4, 0.25), (H5, 0.48)} {(H3, 0.51), (H4, 0.44), (H5, 0.05)}
can be obtained by comparing the best criterion with each cri-
terion, and OW = (4, 2, 1, 2, 3, 2, 3)T is obtained by comparing
ach criterion with the worst criterion.
According to Eq. (25), the following non-linear programming

odels can be established:
in ξ

.t. :
7∑

i=1

ωi = 1,

ωi ≥ 0, i = 1, 2, . . . , 7

|ω1/ω2 − 3| ≤ ξ, |ω1/ω3 − 4| ≤ ξ

|ω1/ω4 − 2| ≤ ξ, |ω1/ω5 − 2| ≤ ξ

|ω1/ω6 − 3| ≤ ξ, |ω1/ω7 − 3| ≤ ξ

|ω2/ω3 − 3| ≤ ξ, |ω4/ω3 − 3| ≤ ξ

|ω5/ω3 − 3| ≤ ξ, |ω6/ω3 − 3| ≤ ξ

|ω7/ω3 − 3| ≤ ξ

Solving this nonlinear programming model, we can get the
weight vector of criteria as:

ω = (0.24, 0.11, 0.05, 0.19, 0.19, 0.11, 0.11)T

Step 4. By Eqs. (1)–(10), the reasoning result can be generated
by the ER approach as:

S(a) = {(H3, 0.09), (H4, 0.31), (H5, 0.36), (H6, 0.01), (H, 0.23)}

Step 5. According to the aggregation results, we can conclude
that there are health problems in the lungs of this patient. It is
very likely that he has ‘‘Pulmonary tuberculosis’’ and ‘‘Lung cancer ’’,
and more likely to have ‘‘Lung cancer ’’. Relatively speaking, ‘‘Other
pulmonary diseases’’ are less likely to occur. In addition, due to the
limitation of knowledge and medical level at the present stage, as
well as the diversity of human individuals and the complexity of
lung structure, there is still a considerable amount of uncertainty
in the process of diagnosis. But, with the progress of science and
technology, many medical problems are getting solved.

4.4. Comparative analyses and discussions

(1) The first comparative analysis
In the first model, we explore the influence of hesitancy de-

grees on decision-making results. Since there is no special ex-
planation in the case that radiologists have different degrees of
importance, we compare the collective decision matrix generated
by our proposed method and that generated by the method pro-
posed in [42]. The only difference between these two methods is
the way to aggregate experts’ evaluations. The method proposed
in [42] integrates all experts’ evaluations without considering
different importance of experts, that is, the weight vector of
experts is w1

=
( 1
3 ,

1
3 ,

1
3

)T
. Then, by normalizing the evaluations

ith
∑N

n=1 β > 1 in the collective decision matrix through
he transformation function β ′

n = βn/
∑N

n=1 βn, the collective
ecision matrix without considering the hesitancy degrees of
xperts can be obtained as shown in Table 5.
Next, based on the weight vector of criteria, ω = (0.1, 0.27,

0.19, 0.44 T , generated in Section 4.3, the reasoning results can
)
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Fig. 2. The three decision results.

be generated by the ER approach as S1(a) = {(H3, 0.25),
(H4, 0.30), (H5, 0.32), (H6, 0.06), (H, 0.07)}, whose remaining be-
lief degree (the belief degree assigned to H) is quite different
from that in the original decision result S(a) = {(H3, 0.21),
(H4, 0.26), (H5, 0.26), (H6, 0.05), (H, 0.22)}.

(2) The second comparative analysis
In the second model, to explore the influence of retaining

remaining belief on decision-making results, we normalize the
incomplete assessments, where

∑N
n=1 βn < 1. Firstly, for the

collective decision matrix shown as Table 4, which considers the
hesitancy degrees of experts, we introduce the method of nor-
malizing incompleteness in [42]. Through replacing all the belief
degrees in each assessment via the transformation function β ′′

n =

βn/
∑N

n=1 βn, the collective decision matrix without considering
incompleteness can be obtained as Table 6.

Next, based on the weight vector of the criteria ω = (0.1,
0.27, 0.19, 0.44)T , the weighted average operator in [39] is in-
troduced to aggregate assessments and we obtain the reasoning
results as S2(a) = {(H3, 0.25), (H4, 0.31), (H5, 0.35), (H6, 0.09)},
which is quite different from the original decision result S(a) =

{(H3, 0.21), (H4, 0.26), (H5, 0.26), (H6, 0.05), (H, 0.22)}.
(3) Discussions
The decision results obtained by the proposed method and

the first model are uncertain, where the remaining belief can be
assigned to each evaluation grade respectively. The results are
shown in Fig. 2. In this case study, the best result is reassigning
all the belief degrees of HtoH1 (Disease-free) and the worst result
is reassigning all the belief degrees of HtoH5 (Lung cancer). The
original, best and worst results obtained by the proposed method
and two comparative methods are shown in Table 7.

It is worth noting that the differences in the results of the
three methods come from two aspects: (1) the original belief
distributions are different; (2) the decision-making methods are
different. Here, we are conducting different decision analysis in
the same case study, that is, the original belief distributions are
the same, and the decision methods are different, so the pros and
cons of the result can reflect the pros and cons of decision-making
methods. When screening high-risk groups for lung cancer, the
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Table 6
The collective decision matrix without considering incompleteness.

e1 e2 e3 e4
a1 {(H4, 0.07), (H5, 0.63), (H6, 0.30)} {(H4, 0.25), (H5, 0.66), (H6, 0.09)} {(H4, 0.64), (H5, 0.36)} {(H3, 0.56), (H4, 0.27), (H5, 0.16)}
a2 {(H3, 0.11), (H4, 0.11), (H5, 0.70), (H6, 0.08)} {(H3, 0.43), (H4, 0.48), (H5, 0.08)} {(H5, 0.36), (H6, 0.64)} {(H3, 0.30), (H4, 0.44), (H5, 0.26)}
a3 {(H4, 0.32), (H5, 0.32), (H6, 0.35)} {(H5, 0.82), (H6, 0.18)} {(H4, 0.31), (H5, 0.69)} {(H3, 0.52), (H4, 0.43), (H5, 0.05)}
Table 7
The results of three methods.

The proposed method The first comparative method The second comparative method

The original
result

S(a) = {(H3, 0.21), (H4, 0.26), (H5, 0.26),
(H6, 0.05), (H, 0.22)}

S1(a) = {(H3, 0.25), (H4, 0.30), r(H5, 0.32),
(H6, 0.06), (H, 0.07)}

S2(a) = {(H3, 0.25), (H4, 0.31),
(H5, 0.35), (H6, 0.09)}

The best result S(a)best = {(H3, 0.43), (H4, 0.26), (H5, 0.26),
(H6, 0.05)}

S1(a)best = {(H3, 0.32), (H4, 0.30), (H5, 0.32),
(H6, 0.06)}

S2(a)best = {(H3, 0.25), (H4, 0.31),
(H5, 0.35), (H6, 0.09)}

The worst
result

S(a)worst = {(H3, 0.21), (H4, 0.26), (H5, 0.48),
(H6, 0.05)}

S1(a)worst = {(H3, 0.25), (H4, 0.30), (H5, 0.39),
(H6, 0.06)}

S2(a)worst = {(H3, 0.25), (H4, 0.31),
(H5, 0.35), (H6, 0.09)}
worst results are usually considered to avoid delays in treatment.
For this case study, if all the remaining belief is assigned to H5
Lung cancer) in S(a), S1(a) and S2(a), the worst decision results
an be obtained as S(a)worst = {(H3, 0.21), (H4, 0.26), (H5, 0.48),
H6, 0.05)}, S1(a)worst = {(H3, 0.25), (H4, 0.30), (H5, 0.39),
H6, 0.06)} and S2(a)worst = S2(a) = {(H3, 0.25), (H4, 0.31),
H5, 0.35), (H6, 0.09)}. For the proposed method, it is obvious that
he belief of suffering from ‘‘Lung cancer ’’ in the worst result is
uch higher than those of other situations. Therefore, the patient

s usually advised to go to the hospital for further examination
s soon as possible. In contrast, there is little difference between
he belief of ‘‘Lung cancer ’’ and the belief of ‘‘Pneumonia’’ and
‘Pulmonary tuberculosis’’ in both the decision results generated by
he comparative models. In this situation, the patient is advised
o observe himself for one year before another CT examination.
owever, if the patient is actually suffering from lung cancer,
he treatment may be delayed due to the lack of considering the
xpert hesitancy or uncertainty, which may seriously affect the
urvival rate of the patient.
To sum up, considering the hesitancy degrees of experts and

he uncertainty of evaluation, the method proposed in this paper
s more flexible and accurate than the two comparative methods.
ifferent decision-making problems have different emphases, one
ay value the best result, some may value the worst result,
nd some may value the average result. Different methods to
eassign the remaining belief match to different decision-making
roblems.

.5. Practical management implications

From the managerial point of view, the introduction of the
B-ER approach can improve the efficiency of diagnosis. It is
eneficial to optimize the allocation of limited medical resources.

(1) Firstly, based on the powerful historical database and the
rich experience of professional doctors, the programmed
assistant diagnosis process can quickly provide accurate
and objective assistant diagnosis results for inexperienced
doctors as a reference, so as to reduce the burden of doc-
tors and improve the accuracy and comprehensiveness of
diagnosis.

(2) Secondly, the time saved from the diagnosis process en-
ables patients to be treated as early as possible to re-
duce mortality, and doctors can provide more patients with
diagnostic opportunities.

(3) In addition, distributed diagnostic results can provide in-
formative advice for patients. Those with serious illness
are advised to be treated in large hospitals, while other
patients can be diverted to smaller hospitals in order to
10
optimize the allocation of limited medical resources and
alleviate the phenomenon of ‘‘overcrowding of third-class
A hospitals and no one visiting county-level hospitals’’ in
society.

5. Conclusions

With the rapid development of artificial intelligence, decision-
making with the ER approach has obtained more and more atten-
tion. Since experts tend to express their views with qualitative
information, it is necessary to provide belief degrees with linguis-
tic terms to extend the ER approach. In this regard, we introduced
the LB-ER approach in this paper. Firstly, the hesitancy degrees
of experts and three different linguistic scale functions were
considered to determine experts’ weights in uncertain MEMCDM
problems with liguistic information. The BWM was introduced
to generate the weights of criteria. The proposed method gave
a good attempt to solve uncertain linguistic decision-making
problems. Besides theoretically filling in the gap of the ER ap-
proach in solving MEMCDM problems with linguistic information,
the application of the LB-ER approach in lung cancer diagnosis
also confirmed the practicability, which provided accurate and
effective auxiliary diagnosis, reduced the burden of doctors and
improved the efficiency of diagnosis.

There are still some issues that need to be further studied.
In this paper, we suppose that the set of criteria is complete
enough to evaluate all alternatives and the criteria are not related
to each other. However, it is difficult to determine such a set of
criteria in practical decision-making problems. In addition, this
paper only considered a simple case study for aiding the diagnosis
of lung cancer. In the future, we will apply the LB-ER approach to
deal with more practical problems, such as screening of high-risk
population for other cancers and evaluating the rehabilitation of
patients.
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