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Optimal Power System Dispatch With Wind Power
Integrated Using Nonlinear Interval Optimization and

Evidential Reasoning Approach
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Abstract—This paper presents the nonlinear interval opti-
mization (NIO) model to solve optimal power system dispatch
(OPSD) with uncertain wind power integrated. In this model, not
only the average of the dispatching objective, but its deviation
are also taken into account. Therefore, the NIO model based on
OPSD is formulated as a multi-objective optimization problem.
An optimization algorithm, group search optimizer with multiple
producers (GSOMP) is applied to obtain Pareto solutions, which
show the tradeoff relationship between the average and deviation
of the dispatching objective. Then, a decision-making method, the
evidential reasoning (ER) approach, is applied to determine the
final dispatch solution. Simulation results based on the modified
IEEE 30-bus system prove the applicability and effectiveness of
the NIO model to deal with the OPSD, considering the integration
of the uncertain wind power.
Index Terms—Evidential reasoning (ER), group search op-

timizer with multiple producers (GSOMP), multi-objective
optimization, nonlinear interval optimization (NIO), wind power.

I. INTRODUCTION

O PTIMAL power system dispatch (OPSD) is one of the
most important issues of power system analysis and con-

trol, mainly including the optimal power flow (OPF) and the
economic load dispatch (ELD) [1]. OPSD is targeted to obtain
the optimal dispatch solution of a specific objective function,
usually the total fuel cost of a power system. Essentially, it is a
constrained optimization problem, which can be solved by con-
ventional optimization techniques based on mathematical pro-
gramming [2] and evolutionary algorithms [3], [4]. In recent
decades, wind energy has been greatly pursued and utilized all
over the world, and there is no doubt that this kind of energy is
a good alternative to the traditional thermal power generation
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[5], [6]. However, the uncertainty of wind power leads to the
huge difficulty of its prediction [7], [8]. Therefore, it is difficult
to solve OPSD if the uncertain wind power is integrated into
power systems [6], [9]–[11].
Two main methodologies have been used to deal with OPSD

with wind power integrated, i.e., the fuzzy and the probabilistic
methods. In the fuzzy method, the wind power is regarded as
the fuzzy variable, and the fuzzy set theory is used to model the
corresponding issue by using membership functions [12]–[15].
The advantage of this method is that its solution can well re-
flect dispatchers' attitude, but in some cases it may be subjected
to strong subjectiveness, which cannot well adjust to the objec-
tive situation. Moreover, it is difficult to specify an appropriate
membership function when the fuzzy method is used [12], [13].
For the probabilistic method, wind speed, wind power, and

wind forecast error are regarded as random variables and their
probabilistic distributions are assumed to be known. For in-
stance, references [5], [6], and [16] assumed that the wind speed
follows the Weibull distribution. However, OPSD is usually
conducted in a short time, for example, OPF is usually con-
ducted within 60 min. Consequently, the Weibull distribution
is not suited to be used [7]. References [17] and [18] indicated
that the wind speed forecast error follows the Gaussian distri-
bution during a short time. Therefore, this distribution has been
widely applied in OPSD with uncertain wind power integrated
into a power system [7], [9], [10], [19].
The Monte Carlo (MC) method is often used to generate

wind speed or power samples using their probabilistic informa-
tion, then the stochastic optimization is conducted to obtain the
optimal solution [10], [20], [21] in the probabilistic method.
It is well known that the MC method applied for probabilistic
assessments is accurate, and it has been widely used in the
area of computational biology, computer graphics, finance,
and business [22]. However, this method is a scenario-based
approach for simulating uncertainties using probabilistic distri-
butions, and a large number of scenarios should be generated to
simulate the probabilistic characteristics of uncertain variables
[10], [23]. Therefore, it is time-consuming to obtain the optimal
dispatch solution when dealing with OPSD with wind power
integrated, as massive scenarios should be sampled according
to the probabilistic information of wind power or wind speed
[10], [19]–[21], [24].
Recently, wind power can be forecasted by another method,

i.e., the direct interval forecasting method, by which the actual
wind power is within the upper and lower forecasting bounds
[25]. It is well known that conducting OPSD needs the forecast
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information of load and wind power. Therefore, we attempt to
solve the problem of OPSD assuming the forecasting informa-
tion of wind power is obtained by the direct interval forecasting
method. In this way, wind power can be represented as an in-
terval variable for power system dispatching. Indeed, interval
variables have been used to solve some power system problems
with uncertainty [26]–[28]. However, to the best of the authors’
knowledge, very few papers have introduced interval variables
and the interval optimization approach [29], [30] to deal with
uncertain optimization problems in power system operations.
References [31] and [32] used the interval linear programming
to deal with unit commitment, considering the prediction of the
volatile ranges of wind and node loads. However, the work [31]
and [32] only considered the expected fuel cost, which means
the corresponding risk is not taken into account under the un-
certain environment.
In this paper, we attempt to use the interval optimization ap-

proach to solve OPSD for the first time, to the best of our knowl-
edge. As most OPSD problems are nonlinear, such as OPF,
we call the approach proposed in this paper as nonlinear in-
terval optimization (NIO) model. First, in this model, unlike
[31], not only the expected value of dispatching objective is
considered but its deviation (risk) is also taken into account.
Second, unlike [30], we directly solve the NIO model using a
multi-objective optimization approach, instead of converting it
to a single-objective optimization problem. The reason is that it
is difficult for dispatchers to determine the weighting factor be-
tween the average and deviation of the uncertain dispatching
objective. Then, Group Search Optimizer with Multiple Pro-
ducers (GSOMP) is used for obtaining Pareto solutions to reflect
the tradeoff relationship between the average and deviation. In
the end, power system dispatchers should determine the final
dispatch solution (only one chosen from Pareto solutions), and
this belongs to the multiple attribute decision analysis (MADA)
[33]. To well consider the uncertain cognition of dispatchers,
the evidential reasoning (ER) approach [34] is applied to con-
duct the decision making in this paper.
The remainder of this paper is organized as follows.

Section II introduces the OPF problem, and the NIO model
corresponding to OPF with uncertain wind power integrated.
Section III presents the multi-objective optimization algorithm,
i.e., GSOMP. Section IV adopts the decision making method,
the ER approach based on MADA, to determine the final
dispatch solution. Then, Section V carries out experiments and
discusses simulation results. In the end, Section VI draws the
conclusion.

II. NIO MODEL FOR OPF WITH WIND POWER INTEGRATED

A. OPF Problem Formulation

OPF is one of the most significant constrained optimization
problems in terms of power system dispatch, which can be for-
mulated as follows:

(1)

where is the objective function, and are the vectors of
state variables and decision variables, respectively, and and
represent the equality and inequality constrains of OPF, respec-
tively.
The objective function of OPF is usually the total fuel cost
, and the thermal generators are modelled as a quadratic cost

curve [1], [35], which can be represented as

(2)

where , and are fuel cost coefficients corresponding to the
th generator, respectively. is the real power output gener-
ated by the th generator, and is the total number of gener-
ator units.

is the vector of state variables, which can be presented as
follows:

(3)
where and are the slack bus active power and voltages
of load buses, and are generator reactive power outputs
and apparent power flows in the power network, respectively,
and is the total number of power network branches.

is the vector of decision variables, and it can be presented
as follows:

(4)

where and are generator active outputs and voltages, re-
spectively. and represent transformer tap ratios and shunt
device reactive power outputs, respectively. and are the
total numbers of transformer branches and shunt compensators,
respectively.
The equality constraints represents the requirements

of active and reactive power balance, and the inequality con-
straints demonstrates physical limits of electrical power
equipment, such as the working limits of generation units,
power transformers and shunt compensator, and power system
security constraints, such as the limits on bus voltages and
branch apparent power flow. The formulations of and

can be referred to [1], [35].

B. NIO Model for OPF With Wind Power Integrated

In contrast to the traditional thermal power generation, wind
power is volatile in its nature, which leads to its variability and a
high level of uncertainty for OPSD. It is evident that forecasting
wind power generation is critical for OPSD, for instance, OPF.
Recently, the direct interval forecasting method has been pro-
posed [25], by which the wind power generation can be pre-
dicted within the upper and lower forecasting bounds, as shown
in Fig. 1. Suppose when dispatchers determine the dispatch so-
lution at time , they should consider the forecasting information
of the uncertain wind power during dispatching period . If the
direct interval forecastingmethod is used, the actual wind power
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Fig. 1. Interval forecast of wind power.

is then formulated as an interval variable, within the upper
and lower forecasting bounds, and , i.e., .
In this way, when the wind power is integrated into a power

system, it evidently affects the power flow distribution, and fi-
nally the objective function of OPF, which then becomes an in-
terval function [29], [30], [36]. Therefore, how to conduct OPF,
i.e., optimizing the fuel cost considering nonlinear constraints,
refers to the NIO model essentially. This model can be formu-
lated as follows:

(5)

It can be easily seen that is an interval number
corresponding to a specific . Therefore, how to compare in-
terval numbers remains a problem. In [31], the averaged value
of fuel cost is optimized only by considering the expected load,
which means the averaged performance of a dispatch solution is
taken into account merely. However, it neglects the risk brought
by the solution under the uncertain environment, and risk anal-
ysis is quite significant in terms of uncertain optimization prob-
lems [37].
Consequently, reference [30] considers the minimization of

the averaged value and deviation of the uncertain objective
function, simultaneously. In this way, the risk of a solution
under an uncertain environment can be taken into account as
well. For instance, it can be seen from Fig. 2 that different
decision vectors , and correspond to different interval
objective values. If is adopted, the value of is then
bounded by and , and the average and deviation of
are and , respectively. Obviously,
the solution which has both the smaller averaged value and
deviation of the objective function has better performance. In
Fig. 2, solutions and outperform solution , because the
average and deviation of , and are more than those of

and . However, it is hard to tell whether outperforms
, as the average of , is higher while its deviation is

less than that of .
Aweighting factor was introduced [30] to convert the average

and deviation into a single value for the convenience of compar-
ison between different solutions. However, the exact weighting
factor is difficult to be obtained, especially in terms of engi-
neering problems, such as OPSD [38]. Consequently, in this
paper, we directly formulate the NIO model into a multi-ob-

Fig. 2. Intervals of objective function corresponding to different decision
vectors.

jective optimization problem to obtain Pareto solutions, con-
sidering both the average and deviation of the objective func-
tion without using a weighting factor. In this way, the compre-
hensive trade-off relationship between the average and devia-
tion can be obtained while avoiding the problem of selecting
the exact weighting factor. On the other hand, it is straightfor-
ward and convenient for dispatchers to compare these alterna-
tives (Pareto solutions) for decision making. Therefore, the NIO
model can be formulated as follows:

(6)

where and are the average
and deviation of the uncertain objective function .

and are the lower and upper bounds in terms of
when a dispatch solution is chosen as a specific .

It is noted that the double-fed induction wind power generator
with a constant power factor is studied in this paper. In this way,
a wind farm integrated into a power system is deemed as a PQ
bus [39].

III. GROUP SEARCH OPTIMIZERS WITH MULTIPLE PRODUCERS
The aim of formulations shown in (6) is to find the optimal

dispatch solutions (Pareto solutions), which should be obtained
by multi-objective optimization algorithms. Recently, a novel
one has been proposed, i.e., GSOMP [40]. This algorithm is
based on group search optimizer (GSO) [41], which is a novel
optimization algorithm proposed on the basis of swarm intelli-
gence. Moreover, GSOMP was proved to be better at searching
for Pareto solutions than other algorithms, such as Non-domi-
nated Sorting Genetic Algorithm-II (NSGA-II) [40]. Therefore,
we use GSOMP to solve the NIO model in our research, and
details of GSOMP are introduced as follows.

A. Producers
In GSOMP, producers are determined from a searching

group at the th iteration with the best fitness value
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for the th objective function. The th producer in
the searching group owns the best fitness values as for the th
objective function of a multi-objective optimization problem,
located in the best position at the th iteration. Then it uses
a scanning mechanism to randomly sample three positions. One
point ( ) is at the zero degree, the other two points ( and

) are on the right and left in the searching area, respectively.
It is shown as

(7)

where is a circular shifting operator used in [40],
is a standard normally distributed random number

and l is maximum pursuit distance. is the pro-
ducer's scanning angle, and is its corresponding unit
vector, which can be obtained from the method proposed in [40]
for simple computation. is a uniformly distributed
random sequence in the range of and and are
the maximum pursuit angle.

B. Scroungers and Rangers

In GSOMP, scroungers in the searching group always follow
a random producer based on the producer-scrounger model.
What is more, to maintain the diversity of Pareto solutions,
they are also attracted by a solution randomly selected from the
Pareto set, [40]. Then, the behavior of the
th scrounger at the th iteration can be formulated as follows:

(8)

where and are the positions of the th scrounger at the
th and th iteration, respectively. is a positive integer

randomly selected from and .
and are normally distributed random

numbers with mean 0 and standard deviation 1, respectively.
In addition to the producer and scroungers, other members

are rangers in the searching group, which adopt random walk
to resort to other resources, helping GSO escape local optima.
Therefore, the behavior of the th ranger at the th iteration can
be shown in the following equation:

(9)

where is a constant and is a uniformly random number
in the range of [40].

C. GSOMP Archive Update

To update the external archive of GSOMP, the fast nondom-
inated sorting approach [42] is used. Initially, the archive is set
to be empty, and the producers are added to it. Then at the end
of each iteration, the newly generated solutions by GSO are sent
to the archive, and the fast non-dominated sorting approach is
applied to select the new Pareto solutions. It is noted that the
number of elements in the repository is set to be a constant

Fig. 3. Computing procedure of NIO model using GSOMP.

number in this paper, using the crowding distance method to
save and discard some solutions [42]. Afterwards, the final so-
lutions saved in this repository are processed by a kind of deci-
sion making methods.
Consequently, the NIOmodel of OPF considering the integra-

tion of wind power can be solved by GSOMP as the following
steps, and the detailed computing procedure is shown in Fig. 3.
1) Step 1: Initialization: Input the power system data, such as

parameters of generators, power grid, and electricity load. Then,
initialize all of the group members and
the total number of iterations of GSOMP. Input the predicted
wind power (interval numbers).
2) Step 2: Pareto Solutions Update: At each iteration, the

group member (solution) is evaluated by (6). Afterwards, all
members are analyzed by the nondominated sorting to select
Pareto solutions, which are then saved into the GSOMP archive.
Moreover, GSOMP generates new members.
3) Step 3: Stopping Criterion: The procedure stops if the

iteration index of GSOMP reaches . Otherwise, it continues
from Step 2.
Furthermore, computation efforts required for solving this

optimization problem is discussed as follows. Firstly, it can be
seen from (6) that it is critical to calculate the upper and lower
bounds of the dispatching objective function, i.e., and

, using the interval forecast information . If is in a
large range, the values of and will be obtained
by greater computation efforts. Secondly, it is obvious that some
parameters of GSOMP directly affect the computation. For in-
stance, the number of group members can help find better Pareto
solutions, but increase computation efforts.

IV. EVIDENTIAL REASONING APPROACH

Dispatchers should determine a final dispatch solution by se-
lecting only one from the obtained Pareto solutions. It is re-
garding to theMADA [34], and an “attribute” is equivalent to an
“objective” or a “criterion”. However, such a MADA problem
of selecting a final dispatch solution is not yet well solved.
Most papers uses the Fuzzy Decision Making (FDM) method
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[43]–[46], which does not consider dispatchers' preferences to-
wards objectives and their uncertain cognition. Although Order
Preference Similar to an Ideal Solution (TOPSIS) adopts rel-
ative weights, assigned to multiple objectives, this technique
also ignores dispatchers' uncertain cognition [34], [40]. It is
noted that this kind of uncertainty plays an important role in
the process of decision making, which should not be neglected
[34]. For instance, in assessment of a dispatch solution, the dis-
patcher is 20% sure that the fuel cost is at the “average” level,
and 70% sure that it is at the “good” level. It is noted that in this
case the above assessment is incomplete, as the total possibility
of assessment is (the missing 10%
represents a degree of dispatchers' uncertain cognition [34]).
The ER approach can be used to process the decision makers'

uncertain cognition to support MADA. The kernel of this ap-
proach is the ER algorithm developed on the basis of an eval-
uation framework and the evidential combination rule of the
Dempster-Shafer (D-S) theory [47]. The ER approach has also
been successfully used for the condition assessment of power
transformers [48], environmental impact evaluation [49], engi-
neering design [50], etc. Therefore, in this paper, we use this
approach to select a final dispatch solution, considering the un-
certainty of dispatchers' cognition.

A. Evidential Reasoning Algorithm
To outline the ER algorithm, consider a three-level hierarchy

of attributes, with the overall evaluation at the top level and a
set of basic attributes at the bottom level, as shown in Fig. 4.
The set of basic attributes is presented as follows:

(10)

Each attribute is assigned with a corresponding weight
( ). The weights of attributes represent their rela-
tive importance during an evaluation process and is the total
number of attributes. A set of weights is defined as follows:

(11)

A set of predefined evaluation grades, shown in the middle
layer of Fig. 4, is used to assess the state of an attribute.

(12)

where is the total number of evaluation grades.
The generated assessment evaluated by the decision

maker for attribute is expressed as the following distribution
of degree of beliefs over different evaluation grades:

(13)

which means that attribute is assessed to grade with a
degree of belief of ( and ). The
assessment is complete if and incomplete
if .

Fig. 4. Overall evaluation using the ER approach.

Then an overall assessment for the general attribute can be
represented by the following distribution of degree of beliefs:

(14)

where denotes the aggregation of two attributes. is the ag-
gregated degrees of belief, which shows the decision maker has
the possibility to believe that the evaluated alternative solu-
tion belongs to the grade . is the unassigned degree of
belief, which represents the decision maker's uncertain cogni-
tion. Due to the limited space of this paper, we omit the detailed
ER algorithm here, which can be referred to [34].

B. Utility for Ranking
It can be seen that distributed descriptions shown in (14) are

not straight forward to show the difference between two alterna-
tives. To facilitate the direct comparison and rank alternatives,
the concept of utility was proposed in the ER approach [34].
Suppose is the utility of grade , and if is pre-
ferred to , then . can be estimated
using the probability assignment method [34]. shown in (14)
will be 0 if all assessments are complete and precise. In this case,
the utility of attribute can be used to rank alternatives, which
can be calculated in the following equation:

(15)

However, in most cases, assessments for a basic attribute are
incomplete, i.e., . Within the ER algorithm, repre-
sents the belief measure in the D-S theory and thus provides
the lower bound of the likelihood to which is assessed to ,
and the upper bound of the likelihood is given by .
Therefore, the likelihood to which is assessed to can be
represented by the belief interval [ ]. The ranking
between two alternatives and is based on their averaged
utilities, i.e., the alternative having the more averaged utility is
then selected as the better one. It is easy to obtain the minimum
and maximum utilities, formulated as follows [34]:

(16)
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Fig. 5. Modified IEEE 30-bus test system.

TABLE I
INTERVAL FORECASTING OF WIND POWER

suppose is the least preferred grade having the lowest utility
and is the most preferred grade having the highest utility,
i.e., .
Then, the average of utility is the expectation of the minimum

and maximum utilities, shown in the following equation:

(17)

if , then is preferred to . Oth-
erwise, is better than .

V. SIMULATION STUDIES

A. Simulation Settings

The NIOmodel of OPF is tested on the modified IEEE 30-bus
power system with wind power integrated, which is shown in
Fig. 5. The locations of wind farms are set to be on buses 7, 10,
16, 24, and 30, and it is assumed that the predicted wind power
is obtained by the direct interval forecasting method, given in
Table I.
In order to verify the effectiveness of the NIO model, it is

compared with the traditional interval optimization method
[29], which only optimizes the average of fuel cost. It is ev-
ident that the optimization of the fuel cost's averaged value
is a single-optimization problem, which can be solved by the
single-optimization algorithm, for instance, GSO.
Also, the performance of GSOMP is tested in comparison

with NSGA-II, which is one of the most widely used multi-
objective algorithms for power system optimization. These two
algorithms are evaluated in 30 independent runs, and the number
of function evaluations are set to be the same, i.e., 15 000, in
each run. The sizes of external repositories for GSOMP and
NSGA-II are both set to be 8.
Regarding the ER approach, the basic attributes are the av-

erage and the deviation of fuel cost in this paper. The relative
weights of these two attributes are set to be the same, i.e., 0.5.
Moreover, the evaluation grades consist of five categories, i.e.,

Fig. 6. Pareto solutions obtained by GSOMP and NSGA-II.

Fig. 7. Average and deviation of fuel cost as for .

poor (P), indifferent (I), average (A), good (G), and excellent
(E).

B. Simulation Results
Fig. 6 shows the two best Pareto fronts obtained by GSOMP

and NSGA-II in the 30 independent runs, which proves that
GSOMP obtains better converged and more evenly distributed
Pareto solutions. Moreover, the solutions found by GSOMP
spread over the range of [677.9, 722.1] [18.1, 45.3], which is
wider than that of NSGA-II, [680.9,718.1] [19.1,43.5].
The eight dispatch solutions obtained by GSOMP are donated

as , and the solution which only optimizes the av-
eraged fuel cost is donated as . Their corresponding average
and deviation of fuel cost are presented in Table II and Fig. 7. It
is obvious that the two objectives of the NIOmodel conflict with
each other, i.e., the higher average of fuel cost, the larger devi-
ation. This means that a solution that obtains the minimization
of the averaged value and deviation of fuel cost simultaneously
does not exist.
It is noted in Table II that GSO is used to obtain the optimal

dispatch solution by optimizing the averaged fuel cost, which
is 660.1 $/h. This value is much less than that of .
However, the corresponding deviation of fuel cost is as high
as 86.5 $/h, calculated by (6), if is adopted by dispatchers.
Therefore, can be viewed as an “aggressive” dispatch solu-
tion because it pursues just the least fuel cost without attempting
to reduce the dispatching risk (manifested by the deviation)
under the uncertain wind power environment. On the contrary,

can be deemed as a “conservative” dispatch solution, as it
can obtain the smallest deviation of fuel cost, compared with
other solutions. This means that is the least sensitive to the
uncertain wind power environment, and the corresponding av-
erage of fuel cost is around 722.1 $/h. It can be more obviously
seen from Fig. 8 that different dispatch solutions imply different
levels of deviation (risk), and ultimately different fuel cost under
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TABLE II
AVERAGE AND DEVIATION VALUES AS FOR

TABLE III
DISTRIBUTION ASSESSMENT MATRIX FOR THE NINE DISPATCH SOLUTIONS

Fig. 8. Interval fuel costs as for .

the uncertain wind power environment (i.e., the averaged values
plus/minus the corresponding deviations).
Therefore, we should take the average and deviation of fuel

cost into consideration simultaneously to obtain the most pre-
ferred dispatch solution. The ER approach is applied for this
purpose, and the subjective judgements for evaluation of these
9 dispatch solutions are presented in Table III, together with
their averaged utilities (AUs) and ranking. It can be seen that

gains the most AU, and it is therefore selected as the final
dispatch solution.
In order to further demonstrate the necessity of comprehen-

sive consideration of both the average and deviation of the
dispatching objective, Fig. 9 shows the samples of fuel cost
in terms of the “aggressive” solution , the selected solution
by the ER approach , and the “conservative” solution
corresponding to 400 different wind power samples randomly
obtained by the sampling method of Latin hypercube sampling
with Cholesky decomposition [38], using the interval data
shown in Table I. It is clear that, if solution is adopted by
the power system dispatcher, the expected fuel cost among the
400 wind samples is 660.1 $/h, better than those of and .
However, the deviation regarding solution is much higher,
which demonstrates that this solution does not adjust the wind
samples well. For instance, the fuel cost regarding many wind
samples are higher than those of solution , and even more
than those of the “conservative” solution . In this way, in the
perspective of operational risk, it is not reasonable to choose
solution .
On the other hand, the deviation of fuel cost as for solution
is much smaller, which proves it can adjust all the uncer-

tain wind power samples well, but the averaged value of fuel

Fig. 9. Fuel cost corresponding to wind power samples of .

cost is as high as 722.1 $/h. Therefore, it is not advisable for
power system dispatchers to choose this solution for the eco-
nomic reason. In this way, solution is selected as the final
dispatch solution by considering both the average and deviation
of fuel cost based on the NIO model.
Furthermore, two factors should be considered if the highly

accurate solution of a large-scale power system is expected to
be obtained. First, it is necessary to obtain the accurate interval
forecasting information of the large-scale power system. Be-
cause the solutions of the NIO model are obtained by trans-
forming the problem into two subproblems corresponding to the
upper and lower bounds of the dispatching objective function.
It can be seen from (6) that the two bounds are directly related
to the interval forecasting information. On the other hand, as
the OPF model is used in our paper, an accurate method used
for calculating the power flow of a large-scale power system is
needed.

VI. CONCLUSION
In this paper, the NIO model has been used to solve OPSD

with wind power integrated for the first time. The “profit” and
“risk” of dispatch solutions are manifested by the average and
deviation of the dispatching objective, respectively, under the
environment of uncertain wind power. As the profit and risk are
often in conflict with each other, we used the multi-objective
optimization approach to deal with the two criteria. Moreover,
a multi-objective optimization algorithm, GSOMP, was applied
to solve the NIO model. In this way, Pareto solutions can be
obtained by minimizing the average and deviation of fuel cost.
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Then, the ER approachwas used to process the dispatcher's pref-
erences and uncertain cognition toward the profit and risk. Sim-
ulation results based on the modified IEEE 30-bus system have
indicated the applicability and effectiveness of the NIO model,
by comparing the dispatching effects of the “aggressive” and
“conservative” solutions. In conclusion, both the profit and risk
of dispatch solutions should be taken into account when solving
OPSD with wind power integrated.
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