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a b s t r a c t

In some situations, such as the diagnosis of thyroid nodules, a decision maker considers observations on
multiple criteria to provide the overall assessments and advice on what will be done in the next step.
To guarantee the quality of the assessments and advice and their consistency with observations, this
paper proposes a method of learning the preferences of the decision maker from the observations on
multiple criteria and the overall assessments provided. The constraints on preferences are learned first
to avoid extreme and irrational preferences. Within the feasible region formed by the constraints, the
preferences are learned. When gold standards, which can be used to judge the correctness of the overall
assessments, are available, the issue of how to learn the constraints and the preferences that satisfy
the constraints is presented. With and without the consideration of gold standards, the way in which
solutions can be generated using the learned preferences is introduced. To demonstrate the process of
preference learning based on observations and overall assessments, a case study is conducted using
the examination reports generated by three radiologists from 2013 to 2017 in a hospital located in
Hefei, Anhui, China.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

In daily life, people often face the problems of selecting or
anking objects (or alternatives) from multiple perspectives (or
riteria), such as ranking MBA programs, schools, or univer-
ities [1], selecting interesting websites [2], selecting a sum-
er holiday destination [3], or choosing a film to watch [3].
his process is referred to as multiple criteria decision making
MCDM) [4–7].

With a view to facilitating the analysis of real-world MCDM
roblems, different types of traditional methods have been pro-
osed to show great performance when the assessments on each
riterion and the relevant decision parameters, such as criterion
eights, can be provided by a decision maker [8–12]. In a new
ra of Internet and big data, however, large amounts of data
ead to opportunities and challenges that coexist for MCDM.
n the one hand, the available data allow a decision maker to
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make assessments more objectively to avoid possible subjective
bias. On the other hand, the algorithms or tools to estimate
the decision maker’s preferences from the data are required so
that satisfactory and rational solutions to the problem can be
obtained. Under these conditions, preference learning has become
an important issue, which is the scientific problem of this paper.
Many attempts related to the problem have been made in existing
studies.

In machine learning, preference learning is the induction of
preference models from observed data that characterize decision
makers’ preferences and then the use of the models to predict
the decision makers’ preferences in new problems [1,13,14]. Two
modes of preference structures are usually learned or estimated
from the available data, which include value (or utility) functions
and binary preference relations [13,14]. The predicted decision
makers’ preferences are anticipated to be as close to the real ones
as possible. For this purpose, the predicted preferences dynami-
cally change with an increase in the available data on the decision
makers’ choices or evaluations. In recommender systems, prefer-
ence learning is the creation, storage, and dynamic updating of
decision makers’ preference profiles from their implicit or explicit
feedback as well as the prediction of the decision makers’ future

https://doi.org/10.1016/j.asoc.2021.107109
http://www.elsevier.com/locate/asoc
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elections [3,15–18]. After the decision makers’ selections are
ade, the over-ranked items and the selected items are used to
elp adapt the decision makers’ preference profiles to improve
he prediction accuracy in future recommendations [3]. Then, the
elected items and the updated preference profiles of the decision
akers are used to update the criterion weights for the same
urpose [17].
In MCDM, the preferences of a decision maker may be elicited

rom his or her past decisions in similar situations [1]. Given the
airwise preferences between the pairs of reference alternatives
nd the marginal evaluations of the alternatives on each criterion,
riterion weights are learned by means of maximum likelihood
stimation [19]. Different from machine learning and recom-
ender systems, the estimation of marginal preference structures
n each criterion is not easy, especially in uncertain contexts.
ven in very similar decision situations, a decision maker may
rovide different marginal evaluations on some or all criteria due
o controllable or uncontrollable factors, such as the change in the
xpertise and experience of the decision maker, the organization
nvironment, and the external environment. In addition, in some
ecision contexts, there is a one-to-one correspondence between
he observation and the assessment of an item. For example,
hen a radiologist diagnoses whether a thyroid nodule is can-
erous from the perspectives of margin, contour, echogenicity,
alcification, and vascularity, the observation on each criterion
an be directly transformed into the assessment of the nodule
n the criterion by using the common expertise and experience
f the ultrasonic department in which the radiologist works. In
his situation, the preferences of a decision maker are reflected by
riterion weights. In consideration of these facts, the preferences
f a decision maker in MCDM are characterized by criterion
eights in this study.
The purpose of this study is to learn the preferences of a

ecision maker in MCDM and then use the learned preferences
o generate solutions to new MCDM problems when historical
ecision data are available. For the preferences characterized
y criterion weights, historical data are composed of historical
ssessments on criteria and historical overall assessments. Note
hat MCDM in this study is not only to select the best option [20–
3], but also to help decide what will be done in the next step.
For the above purpose, this paper proposes a method of learn-

ng preferences in MCDM in the context of the evidential reason-
ng (ER) approach [24–26]. On the condition that the assessments
n criteria and the overall assessments provided are available, the
nterval of average similarity between the two types of assess-
ents are determined and used to help specify the constraints
n criterion weights. This is done to avoid extreme weights
hat are inconsistent with the historical assessments on criteria
nd the historical overall assessments. With the consideration of
he constraints, the average difference between the aggregated
ssessments derived from combining the assessments on criteria
hrough the ER rule [27] and the overall assessments provided
s minimized to generate the learned criterion weights. In an-
ther situation in which gold standards, which can be used to
udge the correctness of the overall assessments, are available,
he reliability of a decision maker is measured by the overall
ssessments and the gold standards. By considering the reli-
bility of the decision maker as his or her learning rate, the
onstraints on criterion weights and the criterion weights are
earned from the assessments on criteria, the overall assessments,
nd the gold standards. The issue of how to generate solutions
ith and without the consideration of gold standards is then

ntroduced, in which the effect of the learned criterion weights
s examined. To verify the effectiveness of the proposed method,
problem of learning radiologists’ preferences from historical ex-

mination reports is investigated to help the radiologists provide

2

the consistent diagnoses or improve their diagnostic capability.
The historical examination reports and the corresponding patho-
logic findings as gold standards from 2013 to 2017 associated
with three radiologists in the ultrasonic department of a tertiary
hospital located in Hefei, Anhui, China are collected. They are
used to demonstrate how to learn the preferences of the three
radiologists in diagnosing thyroid nodules.

The main contributions of this paper include the following: (1)
a method of learning a decision maker’s preferences from histor-
ical data in MCDM is proposed in the ER context; (2) preference
learning based on historical data in MCDM is conducted with
and without gold standards; (3) decisions through the learned
preferences are made with and without the consideration of
gold standards; and (4) the proposed method is used to help
radiologists diagnose thyroid nodules, in which the contributions
of the proposed method to the diagnosis of nodules are examined
and the separation-integration of historical data is discussed by
simulation.

The rest of this paper is organized as follows. Section 2 recalls
the ER approach. Section 3 presents preference learning in MCDM
when the assessments on criteria and the overall assessments
are available. Section 4 presents how to make decisions through
the learned preferences. A case study on the diagnosis of thyroid
nodules is conducted to demonstrate the preference learning and
the decision making from the learned preferences in Section 5.
Finally, the paper’s conclusions are presented in Section 6.

2. Preliminaries

As the method of learning preferences is developed in the con-
text of the ER approach [24–26], the approach is simply recalled
in the following.

Through a set of grades Ω = {H1, H2, . . . , HN } that is increasingly
ordered from worst to best, alternative al (l = 1, . . . , M) is
evaluated on criterion ei (i = 1, . . . , L) in the ER approach. The
tilities of grades u(Hn) (n = 1, . . . , N), which satisfy 0 = u(H1) <
(H2) < . . . < u(HN ) = 1 are used to reflect the difference among
rades. The evaluation is profiled by a belief distribution B(ei(al))

= {(Hn, βn,i(al)), n = 1, . . . , N; (Ω , βΩ,i(al))}, where βn,i(al) with
βn,i(al) ≥ 0 and

∑N
n=1 βn,i(al) ≤ 1 denotes the belief degree

assigned to grade Hn, and βΩ,i(al) = 1 -
∑N

n=1 βn,i(al) represents
the degree of global ignorance [28]. If βΩ,i(al) = 0, the assessment
is complete; otherwise, it is incomplete. The belief distribution of
each alternative on each criterion forms a belief decision matrix
SL×M .

Suppose that criterion weights are represented by w = (w1,
w2, . . . ,wL) such that 0 ≤ wi ≤ 1 and

∑L
i=1 wi = 1. Through

w and the ER rule [27], the assessments B(ei(al)) (i = 1, . . . ,
L, l = 1, . . . , M) are combined to generate the overall assess-
ment B(al) = {(Hn, βn(al)), n = 1, . . . , N; (Ω , βΩ (al))} (l = 1,
. . . , M). Similar to βΩ,i(al), βΩ (al) represents the degree of the
aggregated global ignorance. From the overall assessment B(al),
the minimum and maximum expected utilities of the alternative
al are calculated as u−(al)=

∑N
n=2 βn(al)u(Hn)+(β1(al)+βΩ (al))u(H1)

and u+(al)=
∑N−1

n=1 βn(al)u(Hn)+(βN (al)+βΩ (al))u(HN ).
The ER rule [27] is used to implement the combination of

assessments on criteria, which is simply presented as follows.

Definition 1 ([27]). Given the assessments B(ei(al)) (i = 1, . . . ,
L) and their weights wi, the combination result of the first i
assessments is defined as

{(Hn, βn,b(i)(al)), n = 1, . . .,N; (Ω, βΩ,b(i)(al))}, (1)

where, it is satisfied that 0≤βn,b(i)(al), βΩ,b(i)(al)≤1, and the de-
tailed explanation of Definition 1 is shown in Appendix A of the
supplementary material.
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. Preference learning in MCDM

In this section, how to learn the preferences of a decision
aker in MCDM as to criterion weights from historical data is
escribed.

.1. Preference learning without gold standards

In traditional MCDM with belief distributions, the assessments
f alternatives on each criterion are combined by using the ER
ule and criterion weights to generate the overall assessments of
lternatives. The resulting overall assessments are then used to
ompare alternatives and generate a solution. In practice, this is
ot always the case [20–23]. In addition to comparing alterna-
ives, the purpose of MCDM may also be to make judgments on
lternatives and provide service to the next decision. For example,
y observing the features (as well as the criteria) of an inpatient’s
odule and providing diagnostic opinions from the observations,
radiologist is required to provide the overall opinion about the
egree to which the nodule is a malignant lesion. A clinician (or
urgeon) decides how to handle the inpatient with the consider-
tion of the overall opinion of the radiologist. The two purposes
f MCDM are addressed in this paper.
Facing an MCDM problem with belief distributions, a decision

aker must provide the assessments of alternatives on each
riterion and synthetically consider the assessments to provide
he overall assessments of alternatives with the consideration
f criterion weights. Unlike traditional MCDM, it is not required
hat criterion weights are provided by the decision maker. It
s not possible to require the decision maker to generate the
verall assessment from the assessments on criteria precisely
ith the aid of criterion weights. However, this does not mean
hat criterion weights are not important in MCDM. In contrast,
riterion weights are important for helping a decision maker to
rovide the overall assessment from the assessments on criteria.
nspired by the importance of criterion weights, an interesting
ssue is to determine criterion weights in MCDM on the condition
hat they are not subjectively specified by a decision maker.

Suppose that a decision maker has handled the same type
f MCDM problems in the past, where different alternatives are
valuated by using the same set of grades on a common set of
riteria. Under this assumption, a number of historical decision
atrices and overall assessments are accumulated. The issue
f determining criterion weights is transformed into learning
riterion weights from historical decision matrices and overall
ssessments. The learned weights reflect the preferences of a
ecision maker because historical decision matrices and overall
ssessments are provided by the decision maker.
To learn criterion weights from historical decision matrices

nd overall assessments, constraints on weights are required first
o avoid extreme weights. By using extreme weights to generate
verall assessments, there are certainly some criteria on which
he assessments contribute little or nothing to the overall as-
essments. This may not be what is anticipated by a decision
aker. To obtain criterion weights that are consistent with what

s anticipated by a decision maker, constraints on weights are also
earned from historical decision matrices and overall assessments.
n theory, if the weight on a criterion is large, the contribution of
he assessment on the criterion to the overall assessment is large.
ithout knowing the decision maker’s subjective judgments on

riterion weights, a higher similarity between the assessment on
criterion and the overall assessment means a larger contribution
f the assessment on the criterion to the overall assessment.
y following this idea to learn constraints on criterion weights,
he similarity between the assessment on a criterion and overall
ssessment must be measured.
3

Assume that the overall assessment of alternative al provided
by a decision maker is represented by B̃(al) = {(Hn, β̃n(al)), n =

1, . . . , N; (Ω , β̃Ω (al))}. To learn constraints on criterion weights
from B(ei(al)) and B̃(al), the similarity between them is measured
by using the dissimilarity measure between two belief distribu-
tions developed by Fu et al. [29]. For simplicity, the situation of
complete B(ei(al)) and B̃(al) is considered first.

Definition 2 ([29]). Suppose that the distributed dissimilarity
between assessments B(ei(al)) and B̃(al) is defined as

GD(ei(al)) = {(Hn, βn,i(al) =
⏐⏐βn,i(al) − β̃n(al)

⏐⏐), n = 1, . . . ,N}.

(2)

Then, a dissimilarity measure between the two assessments is
constructed using GD(ei(al)) as

D(ei(al)) =

N−1∑
n=1

N∑
m=n+1

βn,i(al) · βm,i(al) · (u(Hm) − u(Hn)). (3)

In accordance with Definition 2, the similarity between B(ei(al))
and B̃(al) can be measured by

S(ei(al)) = 1 − D̃(ei(al)). (4)

As demonstrated in [29], both D̃(ei(al)) and S̃(ei(al)) are limited
to [0, 1]. Consider the union of historical decision matrices as a
historical decision matrix with M alternatives. From Eqs. (2)–(4),
the average similarity between the assessments of alternatives
on criterion ei and the overall assessments of the alternatives is
calculated as

S(ei) =

∑M
l=1 S̃(ei(al))

M
. (5)

When some (or all) assessments on criteria or the overall assess-
ments become incomplete, the average similarity S̃(ei) will be-
come an interval with lower and upper bounds S̃−(ei) and S̃+(ei),
which can be obtained from the following pair of optimization
problems.

MIN/MAX S̃(ei) =

∑M
l=1 S̃(ei(al))

M
(6)

s.t. βn,i(al)≤β∗

n,i(al)≤βn,i(al) + βΩ,i(al), (7)

β̃n(al)≤β̃∗

n (al)≤β̃n(al) + β̃Ω (al), (8)
N∑

n=1

β∗

n,i = 1, (9)

N∑
n=1

β̃∗

n = 1. (10)

In the pair of optimization problems, β∗

n,i(al) and β̃∗
n (al) rep-

resent decision variables. The process of calculating S̃(ei(al)) ac-
cording to Definition 2 is implicitly included in the optimization
problems. It is clear that [̃S−(ei), S̃+(ei)] ⊆ [0, 1]. Without loss of
generality, [̃S−(ei), S̃+(ei)] is used for the determination of con-
straints on the criterion weights by following the idea that higher
[̃S−(ei), S̃+(ei)] means a larger contribution of the assessments
on criterion ei to overall assessments for all alternatives. The
constraints can usually be expressed in a linear inequality way,
such as bounded constraint of weights (e.g., LBi ≤ wi ≤ UBi (i ∈

{1, . . . , L})), bounded ratio of weights (e.g., LBi ≤ wi/wj ≤ UBi (i, j ∈

{1, . . . , L})), and bounded difference of weights (e.g., LBi ≤ wi –
wj ≤ UBi (i, j ∈ {1, . . . , L})) [30]. Note that the constraints learned
from [̃S−(ei), S̃+(ei)] should be consistent with the preferences of
a decision maker unless such preferences are unavailable.
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Within the feasible region of criterion weights satisfying the
ormalized constraint

∑L
i=1 wi = 1 and the learned constraints,

he average difference between the overall assessments provided
nd the aggregated assessments generated from the assessments
n criteria is anticipated to be minimized. By following this
rinciple, an optimization model is constructed to learn criterion
eights.

IN F =

∑M
l=1 D̃(al)

M
(11)

.t. w∗
∈ C(w∗), (12)

0≤w∗

i ≤1, (13)
L∑

i=1

w∗

i = 1. (14)

In this model, D̃(al) represents the dissimilarity between the
ggregated assessment B(al) and the overall assessment provided

B(al) calculated by using Definition 2. Hereinto, the criterion
weights are involved in the process of calculating the aggregated
assessment B(al). In addition, w∗

i represents the decision variable
f the criterion weight and C(w∗) = {w∗

|A · w∗
≤ c} denotes

he learned constraints on criterion weights, where A is an R×L
atrix of coefficients, c is a column vector with R elements, and R

s the number of constraints. The combination of assessments on
riteria by using the ER rule shown in Definition 1 and criterion
eights is implicitly included in the model. It is clear that F is

imited to [0, 1]. Solving the model generates the optimal value
∗.

.2. Preference learning with gold standards

What has been discussed above is on the condition that there
s no gold standard for MCDM. The results of MCDM in this
ituation cannot be simply considered to be correct or incorrect.
n some MCDM problems, however, gold standards may be avail-
ble, which can be used to judge the correctness of the overall
ssessments and the decision results.
Gold standards represent the correct result of the decision

roblem. For example, pathologic findings using surgery or fine
eedle aspiration biopsy (FNAB) are gold standards of a radiol-
gist diagnosing thyroid cancer. For MCDM problems with gold
tandards, preference learning may be different from what is
resented in Section 3.1. Whether gold standards are involved in
reference learning is determined by the willingness of a deci-
ion maker. In theory, gold standards can help a decision maker
mprove decision capability. This is the case when the decision
aker wishes to analyze what might result in the difference
etween the overall assessments provided and gold standards.
t cannot be guaranteed that each decision maker is willing to
onduct such analysis.

ssumption 1. Facing MCDM problems with gold standards, a
ecision maker is willing to analyze the difference between his
r her overall assessments and gold standards so that he or she
an provide more correct assessments for future problems under
he same criterion framework.

Whether a decision maker’s preferences are learned from the
verall assessments provided is dependent on whether Assump-
ion 1 is satisfied. If Assumption 1 is not satisfied in consideration
f the decision maker’s willingness, the overall assessments and
heir corresponding assessments on criteria are used to learn the
references of the decision maker through what is presented in

ection 3.1. d

4

When a decision maker wishes to accept Assumption 1, the
eight of a criterion should characterize both the contribution
f the assessment on the criterion to overall assessment and
hat to gold standard denoted by

−→
B (al) = {(Hn,

−→
β n(al)), n =

, . . . , N; (Ω ,
−→
β Ω (al))}. In this situation, the average similarity

etween B(ei(al)) and B̃(al), i.e., S̃(ei(al)) and the one between
(ei(al)) and

−→
B (al), i.e.,

−→
S (ei(al)) are combined to form the ag-

regated average similarity [S−(ei), S+(ei)]. This can be obtained
with the following pair of optimization problems adapted from
the problems shown in Eqs. (6)–(10).

MIN/MAX S(ei) = (1 − η) ·

∑M
l=1 S̃(ei(al))

M
+ η ·

∑M
l=1

−→
S (ei(al))

M
(15)

.t. βn,i(al)≤β∗

n,i(al)≤βn,i(al) + βΩ,i(al), (16)

β̃n(al)≤β̃∗

n (al)≤β̃n(al) + β̃Ω (al), (17)
N∑

n=1

β∗

n,i = 1, (18)

N∑
n=1

β̃∗

n = 1. (19)

In the above problems, the parameter η represents the learn-
ing rate of the decision maker. It is also satisfied that [S−(ei),
S+(ei)] ⊆ [0, 1]. The larger the value of η, the stronger the
willingness of the decision maker to improve his or her deci-
sion capability with the aid of gold standards. By following this
idea, the decision maker’s capability to make correct or rational
decisions can be used to calculate the value of η. To facilitate
quantifying the capability, the reliability of the decision maker
is defined as

R = 1 −

∑M
l=1

−→
D̃ (al)

M
, (20)

here
−→
D̃ (al) represents the dissimilarity between the overall

ssessment B̃(al) and gold standard
−→
B (al) calculated by using

efinition 2. The value range of R is included in [0, 1]. There are
wo special situations in which the value of R is equal to 1 and
, respectively. R = 1 means the decision maker is fully reliable,
nd R = 0 means the decision maker is fully unreliable. In other
ituations, the decision maker is partially reliable. When it is
ccepted that a decision maker with higher reliability is capable
f making more correct decisions, the reliability of the decision
aker can be regarded as an indicator of his or her learning rate,

.e.,

= R. (21)

here may be other indicators of the decision maker’s learn-
ng rate. The learning rate shown in Eq. (21) is generated from
istorical overall assessments provided by the decision maker
nd gold standards. It can objectively reflect the willingness of
he decision maker to improve his or her decision capability
hrough gold standards. Constraints on criterion weights can then
e learned from [S−(ei), S+(ei)]. Within the feasible region of

criterion weights satisfying the normalized constraint
∑L

i=1 wi =

and the learned constraints, the average difference between
he overall assessments B̃(al) and the aggregated assessments
enerated from the assessments on criteria B(al) and the average
ifference between gold standards

−→
B (al) and the aggregated as-

essments B(al) are anticipated to be minimized. The two average
ifferences are balanced by the learning rate η. The following
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ptimization model is constructed to learn criterion weights by
arrying out the minimization.

IN G = (1 − η) ·

∑M
l=1 D̃(al)

M
+ η ·

∑M
l=1

−→
D (al)

M
(22)

.t. w∗
∈ C(w∗), (23)

0≤w∗

i ≤1, (24)
L∑

i=1

w∗

i = 1. (25)

In this model,
−→
D (al) represents the dissimilarity between the

ggregated assessment B(al) and gold standard
−→
B (al) calculated

by using Definition 2. The aggregated assessment is generated by
using the ER rule shown in Definition 1 and the criterion weights.
Similar to the optimization model shown in Eqs. (11)–(14), G in
this model is limited to [0, 1], and its optimal value is denoted by
G∗.

Note that when a decision maker does not accept Assump-
tion 1, the situation presented in Section 3.1 can be seen as a
special case of what is discussed in Section 3.2. On the condition
that Assumption 1 is accepted by the decision maker, the process
of learning criterion weights in Section 3.1 is different from that
in Section 3.2. This is because it is impossible to find a fully
unreliable decision maker in practice and set his or her learning
rate as 0. As a result, gold standards have a significant influence
on preference learning when they are available and accepted by
a decision maker.

4. Decision making through the learned preferences

The purpose of preference learning is to objectively determine
criterion weights from historical decision data and then aid a de-
cision maker in making future decisions that are consistent with
his or her preferences to a maximum extent. For this purpose,
this section presents how to generate a solution from the learned
criterion weights.

4.1. Generation of a solution without the consideration of gold stan-
dards

To be consistent with Section 3, the situation where gold
standards are not available is considered first. Solving the op-
timization model shown in Eqs. (11)–(14) generates F∗ and a
set of criterion weights. In a new MCDM problem, the set of
criterion weights learned from historical decision data can be
used to combine the assessments of an alternative on criteria
to generate the aggregated assessment of the alternative. The
ER rule shown in Definition 1 is applied in the combination
process. In some situations, the aggregated assessment B(al) is
sufficient for a decision maker to make judgments on alternative
al and provide service to the next handling of the alternative
with the aid of a specific principle. For example, a radiologist can
generate the diagnosis of an inpatient’s thyroid nodule from the
aggregated assessment through the principle of maximum belief
degree. In detail, given the aggregated assessment B(al) = {(Hn,
n(al)), n = 1, . . . , N}, the principle of maximum belief degree

is used to transform B(al) into the diagnosis {(Hn̂, 1)} where n̂ =
rgmax{βn(al), n = 1, . . . , N}. Such a diagnosis aids a clinician in
nowing how to handle the inpatient.
Appropriate principles are not always available to aid a de-

ision maker in generating a solution from the aggregated as-
essment. To address this situation, the aggregated assessment
an be combined with utilities of grads u(H ) (n = 1, . . . , N)
n

5

to generate the minimum and maximum expected utilities of
each alternative [u−(al), u+(al)], as presented in Section 2. The
emainder is how a decision maker generates a solution from the
xpected utilities [u−(al), u+(al)]. It is usually a problem-specific
rocess. With the sufficient consideration of the characteristics of
he decision problem, the decision maker can select to directly
enerate a solution from [u−(al), u+(al)] or do it with the aid
f appropriate decision rules. For example, the decision maker
an generate a solution from [u−(al), u+(al)] through the Hurwicz
ule [30]. The prerequisite is that the decision maker is required
o specify the optimism degree γ to transform [u−(al), u+(al)] into
he expected utility E(al), i.e.,

(al) = γ · u+(al) + (1 − γ ) · u−(al). (26)

ere, γ is limited to [0,1].
In addition to aiding a decision maker in generating solu-

ions to new MCDM problems, the effect of the learned criterion
eights can be examined when historical data are sufficient.
uppose that a historical decision matrix with M alternatives

is used to learn criterion weights and another matrix with M1
alternatives is used to examine the effect of the learned criterion
weights. Under this assumption, the effect is measured by the
average similarity between the aggregated assessments of the M1
alternatives derived from the learned criterion weights and the
overall assessments of the M1 alternatives, which is

AR = 1 −

∑M1
l=1 D̃(al)

M1
. (27)

Here, AR is limited to [0, 1]. AR = 1 means that the aggregated
assessments generated by using the ER rule and the learned
criterion weights are completely consistent with the overall as-
sessments provided by a decision maker, while AR = 0 means that
the aggregated assessments of all alternatives and their overall
assessments are in two extreme situations. In most cases, AR is
within (0, 1).

4.2. Generation of a solution with the consideration of gold stan-
dards

The above discussion is about the process of how to generate
a solution when gold standards are unavailable. In the following,
how to generate a solution from the learned criterion weights
with the consideration of gold standards will be discussed.

The question of whether gold standards influence decisions
depends on whether a decision maker accepts Assumption 1. If
a decision maker makes the same decision regardless of whether
he or she knows the gold standards, the optimization model
shown in Eqs. (11)–(14) is solved to generate F∗ and a set of
criterion weights. The aggregated assessment of each alternative
in a new MCDM problem is then produced by using the ER rule
shown in Definition 1 and the set of learned criterion weights.
In consideration of the characteristics of the decision problem,
the decision maker can select to generate a solution from the
aggregated assessment with the aid of specific principles. He or
she can also choose to generate a solution from the expected
utilities with the aid of specific decision rules, in which the
expected utilities are derived from the aggregated assessments
and utilities of the grades.

For a decision maker with a willingness to improve his or her
decision capability derived from gold standards, the optimization
model shown in Eqs. (22)–(25) is solved to generate G∗ and
a set of criterion weights. The aggregated assessment of each
alternative in a new MCDM problem is obtained and used to
generate a solution to the problem with the help of appropriate
principles or decision rules, which is similar to the situation in
which the decision maker does not accept Assumption 1.
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Sufficient historical data allow the decision maker to examine
he effect of the learned criterion weights. When the set of
riterion weights is learned from the optimization model shown
n Eqs. (11)–(14) or from the model shown in Eqs. (22)–(25), the
xamination of its effect can also be conducted by using Eq. (27),
hich is similar to the situation where gold standards are not
vailable.
Sections 3 and 4 indicate that the preference learning and the

ecision making through the learned preferences in this study
re different from those in machine learning and those in recom-
ender systems. The preference learning in this study is not to
stimate the marginal preference structures on criteria or adapt a
ecision maker’s preference profile from his or her feedback. It is
o learn the preferences of a decision maker in MCDM in the ER
ontext when historical decision data are available. Specifically,
he purpose of MCDM in this study is not only to compare
lternatives but also to help decide what will be done in the next
tep. These analyses clarify the boundary of this study.

. Case study

Ultrasonic examination is an important imaging technique for
dentifying thyroid nodules and diagnosing whether the nodules
re malignant or benign lesions. As ultrasonic examination does
ot involve radiation, it is a popular technique for patients, and a
arge number of relevant data have been accumulated in clinical
ractices. The accumulated data reflect the expertise and expe-
ience of radiologists. Nevertheless, radiologists rarely apply the
ata in real diagnoses of thyroid nodules due to lack of effective
ays to analyze their historical diagnostic data. They usually
ely on representative cases and basic expertise to diagnose nod-
les. This makes it difficult for radiologists to provide consistent
iagnoses, and it significantly devalues historical diagnostic data.
Clinical features (or observations) on some criteria are usu-

lly included in historical diagnostic data. This indicates that
he diagnosis of thyroid nodules can be considered an MCDM
roblem and then the proposed method of learning preferences in
CDM in the ER context can be used to help radiologists diagnose

hyroid nodules with the consideration of their expertise and
xperience. The detailed process is presented as follows.

.1. Modeling of diagnosis of thyroid nodule

In clinical practice, some criteria are identified to aid ra-
iologists in diagnosing thyroid nodules such as halo, margin,
ize, contour, vascularity, tallness, solid component, calcification,
nd echogenicity [31–34]. However, radiologists generally con-
ider some criteria rather than all of them when diagnosing
hyroid nodules. The selection of criteria is related to hospi-
als and their regions. In different hospitals located in different
egions, different sets of criteria may be selected.

Through the expertise and experience of the third author and
he analysis of historical examination reports from 2013 to 2017
n the ultrasonic department of a tertiary hospital located in
efei, Anhui, China, five criteria are identified to help diagnose
hyroid nodules. They are margin, contour, echogenicity, calci-
ication, and vascularity, and they are denoted by ei (i = 1,
. . , 5). In the process of identifying the five criteria, the third
uthor also communicated with the representative radiologists
n the department to make the criteria commonly accepted. A
adiologist observes the nodule of a patient on the five criteria
o comprehensively provide the extent to which he or she has a
uspicion that the nodule is a malignant lesion. It is difficult for a
adiologist to provide a precise possibility that the identified nod-
le is a malignant lesion. To facilitate the diagnosis of a thyroid

odule, the imaging reporting and data system (TIRADS) [34–37]

6

as been developed based on Horvath et al.’s TIRADS. The relevant
etails about the TIRADS are presented in Table B.1 of Appendix
of supplementary material.
The TIRADS shown in Table B.1 builds a bridge between ra-

iologists and clinicians. With the aid of the TIRADS shown in
able B.1, a radiologist provides any of the TIRADS categories as
is or her overall assessment, i.e., the overall diagnosis of the
odule identified for a patient. A clinician understands the overall
iagnosis provided by the radiologist through the findings, cancer
isk, and recommendations shown in Table B.1. The description of
linical features (or observations) associated with the identified
hyroid nodule in an examination report reflects the assessments
or the nodule, i.e., the diagnoses of the nodule on the five criteria.
acing an examination report, a clinician does not decide what
ill be done for the patient associated with the report simply

rom the overall diagnosis provided by a radiologist. The clinician
onducts it by considering the overall diagnosis and the diagnoses
n the five criteria. The clinician proceeds in this way because he
r she aims to avoid potential incorrect operations caused by the
nconsistency between the aggregation of the diagnoses on the
ive criteria and the overall diagnosis. In the hospital, clinicians
ave generally collaborated with radiologists for a long time,
sually more than 2-to-5 years, and thus they are familiar with
he radiologists. Under such conditions, when facing examination
eports with similar diagnoses on the five criteria and different
verall diagnoses provided by a radiologist, a clinician is not
illing to believe the overall diagnoses in the reports and has
ifficulties in handling the patient with the identified nodule.
eanwhile, a radiologist may provide different overall diagnoses
hen facing similar nodules. It is difficult for the radiologist to
ecall similar cases and their corresponding diagnoses to provide
he overall diagnosis to the nodule observed currently within a
imited time. This gives rise to an important issue about how to
mprove the consistency between the aggregation of the assess-
ents transformed from observations on the five criteria and the
verall assessment provided.
To address this issue, the proposed method of learning prefer-

nces in MCDM in the ER context presented in Section 3 is used
o learn the criterion weights of the radiologists in the multi-
riteria diagnosis of thyroid nodules. For this purpose, both the
ssessment on each of the five criteria and the overall assessment
re expressed as belief distributions on the set of grades Ω = {H1,
2, . . . , H8} = {TIRADS 3, TIRADS 4A-1, TIRADS 4A-2, TIRADS 4B-1,
IRADS 4B-2, TIRADS 4B-3, TIRADS 4C, TIRADS 5}. As mentioned
bove, TIRADS categories are used to characterize the overall
ssessments, thus they can be represented by {(Hn, 1)} (n ∈ {1,

. . . , 8}). However, the assessments on the five criteria are not
provided by the radiologists. They can be transformed from the
observations recorded in the examination reports.

Guided by the expertise and experience of the third author
and his communication with the representative radiologists in the
department, effective clinical features associated with nodules
are identified from historical examination reports in the period
from 2013 to 2017. The relationships between the clinical fea-
tures of a nodule and TIRADS categories are also constructed
in a similar way to transform the observations of the nodule
into its assessments. To save space, the constructed relationships
are not presented. Through the relationships, the assessments
on criteria can also be represented by {(Hn, 1)}. Note that the
reason why the assessments are not represented by general belief
distributions with nonzero belief degrees on multiple grades is
that the radiologists cannot accept it. As shown in Table B.1, the
cancer risk of each TIRADS category is an interval instead of a
precise number. If the radiologists use general belief distributions
to describe the overall assessments of nodules, the clinicians will
find it very difficult to understand the assessments and judge the
cancer risk of the nodules, and thus they will be unsure about

what should be done for the patients with the nodules.
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.2. Learning of the preferences of radiologists

On the condition that the assessments of the thyroid nodules
n the five criteria and the corresponding overall assessments
re obtained from historical examination reports, it is feasible to
earn the criterion weights of the radiologists in terms of what is
resented in Section 3.
In this study, the examination reports of three radiologists in

he department from 2013 to 2017 are collected, in which the
escription of clinical features of inpatients’ nodules, the over-
ll assessments of the three radiologists, and the corresponding
athologic findings are included. Pathologic findings are regarded
s the gold standards for the diagnosis of thyroid nodules, which
re generated when inpatients undergo FNAB. Under the con-
itions, what is presented in Section 3.2 is used to learn the
references of the three radiologists and the effect of the learned
references is examined.
The policies of the hospital encourage the radiologists to mon-

tor and improve their own diagnostic performance. As a result,
he three radiologists are willing to analyze the difference be-
ween the overall assessments and the pathologic findings to
mprove their diagnostic capability. Assumption 1 is satisfied and
he pathologic findings are involved in learning the preferences
f the three radiologists. To facilitate the preference learning,
he malignant and benign findings confirmed by FNAB are repre-
ented by {(H8, 1)} and {(H1, 1)}, respectively. Meanwhile, through
he expertise and experience of the third author and his commu-
ication with the three radiologists, the probability assignment
pproach [38] is used to set the utility of each grade Hn, which is
(Hn) (n = 1, . . . , 8) = (0, 1/7, 2/7, 3/7, 4/7, 5/7, 6/7, 1).
Suppose that the three radiologists are represented by Dj (j =

, 2, 3), their examination reports from 2013 to 2016 are used
o learn their criterion weights, and their examination reports in
017 are used to examine the effect of their learned criterion
eights. The number of diagnostic records of thyroid nodules
rovided by the three radiologists in each of the five years is
resented in Table B.2. For each radiologist, only 5 samples of
he diagnostic records of thyroid nodules and the corresponding
athologic findings are presented as examples to save space, as
hown in Table B.3.
To learn the criterion weights of the three radiologists from

heir diagnostic records in the period from 2013 to 2016, their
earning rates are first calculated by using Eqs. (20)–(21), which
re presented in Table 1. It can be known from Section 5.1 that
he assessments on the five criteria and the overall assessments
rovided are complete. This indicates that S(ei) (i = 1, . . . , 5)

can be directly obtained from Eq. (15) rather than by solving
the optimization model shown in Eqs. (15)–(19). To facilitate the
determination of the criterion weights, S(ei) is normalized to be
S(ei). Considering S(ei), the three radiologists offer the constraints
n the five criteria through their expertise and the help of the
hird author. The constraints and the relevant S(ei) and S(ei) for
the three radiologists are presented in Table 1.

The obtained constraints on the criterion weights from the
three radiologists can be incorporated into the optimization model
shown in Eqs. (22)–(25) to learn the criterion weights. This is
feasible in theory but irrational in practice. As presented in Sec-
tion 5.1, the overall assessments are provided by the radiologists
as {(Hn, 1)}. The aggregated assessments are used as recommen-
dations to aid the radiologists in diagnosing thyroid nodules,
thus, they also should be expressed as {(Hn, 1)}. For this purpose,
after a discussion of the third author with the three radiologists,
the principle of maximum belief degree is adopted to transform
the aggregated assessments into those expressed as {(Hn, 1)}.
The details can be found in Section 4.1. When the principle of
maximum belief degree is followed by the optimization model
7

shown in Eqs. (22)–(25), solving the model generates G∗ and the
orresponding set of criterion weights, as presented in Table 2.
To examine the effect of their learned criterion weights, the

eights are used to combine the assessments on the five criteria
erived from the examination reports in 2017. By following the
rinciple of maximum belief degree, the aggregated assessments
f thyroid nodules are transformed into those expressed as {(Hn,
)}. From the transformed aggregated assessments and the overall
ssessments provided by the three radiologists, the AR of the
hree radiologists is calculated by using Eq. (27) and presented in
able 4. Suppose that the AR of the three radiologists is denoted
y ARj (j = 1, 2, 3). It is easily found that AR2 > AR1 > AR3.
eanwhile, suppose that the learning rates of the three radiol-
gists are denoted by ηj (j = 1, 2, 3). Then it can be known
rom Table 2 that η2 > η1 > η3. This seems to mean that the
tronger the capability of a radiologist to learn from pathologic
indings, the better the effect of learning criterion weights from
he examination reports of the radiologist in the period from 2013
o 2016. In other words, the transformed aggregated assessments
enerated using the learned criterion weights and the principle
f maximum belief degree may be preferable to reflect the real
ssessments of a radiologist with a high learning rate in the
eriod from 2013 to 2016.
Note that the transformed aggregated assessments are only

onsidered as recommendations to aid the radiologists in diag-
osing thyroid nodules rather than to replace radiologists. The
inal overall assessments are provided by the radiologists in ac-
ordance with their expertise and experience. The benefits of
earning the criterion weights from the historical diagnoses of
he radiologists and generating diagnostic recommendations are
o help the radiologists offer the overall diagnoses consistent
ith their historical diagnoses and to effectively avoid incorrect
r irrational diagnoses that are clearly inconsistent with their
xpertise and experience. Specifically, when a radiologist faces
new case that he or she has rarely or never encountered, the

ecommendations derived from his or her historical examina-
ion reports may mislead the radiologist and be meaningless. In
eneral, more historical examination reports could generate rec-
mmendations that are more satisfactory to radiologists because
large number of different types of cases are covered by the

eports.

.3. Partition of historical examination reports

Table 2 shows that learning the criterion weights of the three
adiologists is not conducted on a large scale. If a large number
f historical examination reports are accumulated and collected
o learn the criterion weights of a radiologist, directly solving
he optimization model shown in Eqs. (22)–(25) may be very
ime-consuming. A feasible approach in this situation is to split
istorical examination reports into several parts and learn the set
f criterion weights from each part of the reports through the
odel. Multiple sets of criterion weights are then combined for
pplication in generating recommendations for the radiologists.
o demonstrate the idea of separation-integration, the examina-
ion reports of the three radiologists in the period from 2013 to
016 are split into two parts, i.e., the reports in the period from
013 to 2014 and those in the period from 2015 to 2016.
By respectively applying the reports in the period from 2013

o 2014 and those in the period from 2015 to 2016 to learn
he criterion weights of the three radiologists, relevant results
re obtained and presented in Tables 3 and 4. For simplicity,
he constraints on the criterion weights of the three radiologists
re omitted. The effects of the criterion weights of the three
adiologists learned from their reports in the period from 2013
o 2014 and from those in the period from 2015 to 2016 are
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able 1
he constraints on the criterion weights of the three radiologists and the relevant intermediate results.

Radiologists η S(ei) S(ei) C(w)

D1 0.7888 (0.7053, 0.8036, 0.6503, 0.7415, 0.5422) (0.2049, 0.2334, 0.1889, 0.2154, 0.1575) {w2 ≤ 2· w5 , w5 ≤ w3 , w3 ≤ w1 , w1 ≤ w4 , w4 ≤ w2}
D2 0.8275 (0.7611, 0.7793, 0.5470, 0.7278, 0.6120) (0.2221, 0.2274, 0.1596, 0.2124, 0.1786) {w2 ≤ 2· w3 , w3 ≤ w5 , w5 ≤ w4 , w4 ≤ w1 , w1 ≤ w2}
D3 0.7507 (0.7714, 0.7877, 0.6772, 0.6999, 0.6006) (0.2181, 0.2227, 0.1915, 0.1979, 0.1698) {w2 ≤ 2· w5 , w5 ≤ w3 , w3 ≤ w4 , w4 ≤ w1 , w1 ≤ w2}
Table 2
The learned criterion weights of the three radiologists and the relevant examination results from their
examination reports in the period from 2013 to 2016.
Radiologists G∗ Learned criterion weights AR

D1 0.1944 (0.1667, 0.3332, 0.1667, 0.1667, 0.1667) 0.8273
D2 0.1954 (0.2848, 0.2856, 0.1428, 0.144, 0.1428) 0.8619
D3 0.1917 (0.2012, 0.2643, 0.20115, 0.2012, 0.132152) 0.8124
Table 3
The learned criterion weights of the three radiologists and the relevant results from their examination
reports in the period from 2013 to 2014.
Radiologists η G∗ Learned criterion weights AR

D1 0.7873 0.1774 (0.2104, 0.2458, 0.2104, 0.2104, 0.123) 0.7965
D2 0.7996 0.2106 (0.2134, 0.2698, 0.1517, 0.2134, 0.1517) 0.8595
D3 0.7086 0.1911 (0.205, 0.2466, 0.205, 0.205, 0.1384) 0.8124
Table 4
The learned criterion weights of the three radiologists and the relevant results from their examination
reports in the period from 2015 to 2016.
Radiologists η G∗ Learned criterion weights AR

D1 0.7904 0.2107 (0.17135, 0.3146, 0.17135, 0.17135, 0.17135) 0.8273
D2 0.847 0.1797 (0.2806, 0.2832, 0.1442, 0.1478, 0.1442) 0.8619
D3 0.7808 0.2058 (0.25, 0.25, 0.125, 0.25, 0.125) 0.7547
examined, and the relevant results are also presented in Tables 3
and 4. It can be found from Table 3 that η2 > η1 > η3 and AR2 >
R1 > AR3 hold simultaneously. However, Table 4 shows that η2 >
1 > η3 and AR2 > AR3 > AR1. The findings shown in Tables 3 and
mean that the relationship between η and AR is associated with
ata collected in a specific period.
Suppose that the learned criterion weights of the three ra-

iologists in Table 3 are denoted by w34
j (j = 1, 2, 3) and

hose in Table 6 by w56
j (j = 1, 2, 3). Assume that the numbers

f diagnostic records of thyroid nodules provided by the three
adiologists in the period from 2013 to 2014 are denoted by N34

j
j = 1, 2, 3) and those in the period from 2015 to 2016 by
56
j (j = 1, 2, 3). The aggregated criterion weights of the three
adiologists are then calculated as

36
j,i = w34

j,i ·
N34

j

N34
j + N56

j
+w56

j,i ·
N56
j

N34
j + N56

j
, j = 1, 2, 3, i = 1, . . ., 5.

(28)

ote that the aggregation of w34
j and w56

j is under the assumption
that the contributions of w34

j and w56
j to w36

j,i are proportional to
34
j and N56

j . When other assumptions are accepted by the three
radiologists, other ways will be developed to aggregate w34

j and
56
j . The effects of the aggregated criterion weights of the three

radiologists are examined by using their examination reports in
2017. The relevant results are shown in Table 5.

Making a comparison between Tables 2 and 5, it is found
hat AR1 and AR2 decrease but AR3 increases after the process
of separation-integration. This highlights the influence of the
process of separation-integration on the value of AR.

An interesting issue is whether different divisions of histor-
ical examination reports result in different aggregated criterion
weights and different effects of the weights. To address this issue,
the examination reports of radiologist D in the period from 2013
1

8

Table 5
The aggregated criterion weights of the three radiologists and the relevant
examination results.
Radiologists Aggregated criterion weights AR

D1 (0.1917, 0.2787, 0.1917, 0.1917, 0.1462) 0.8105
D2 (0.2529, 0.2777, 0.1473, 0.1748, 0.1473) 0.8499
D3 (0.2312, 0.2486, 0.1584, 0.2312, 0.1306) 0.8124

to 2016 are split into the reports in the period from 2013 to 2015
and those in 2016. The reports in these two parts are used to
learn the criterion weights of radiologist D1, and the effects of
the learned weights are examined by using the reports of D1 in
2017. The relevant results are shown in Table 6.

Through Eq. (28), the aggregated criterion weights of radiol-
ogist D1 is obtained as (0.1665, 0.3327, 0.1665, 0.1678, 0.1665),
whose effect is examined to generate AR1 = 0.8273. The aggre-
gated criterion weights derived from the division of the exami-
nation reports in 2013–2015 and 2016 are different from those
shown in Table 5 and very close to the learned criterion weights
shown in Table 2. This explains why AR1 is different from that
shown in Table 6 and the same as that shown in Table 2. These
analyses indicate that different annual divisions of examination
reports result in different criterion weights and different effects
of the weights. The question of how to split examination reports
is dependent on their time characteristic. By analyzing the other
characteristics of the examination reports, other ways to split
examination reports may be found. Which division is better is
closely associated with the expertise and experience of the radi-
ologists because the purpose of splitting the examination reports
is to learn the preferences of the radiologists.

Another interesting issue is how to split examination reports
when there is no clear characteristic or no characteristic that is
accepted by the radiologists. Randomly splitting the examination
reports may be a feasible choice in this situation. Similar to the
division by considering the time characteristic, different random
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Table 6
The learned criterion weights of radiologist D1 and the relevant results.
Division of reports η G∗ Learned criterion weights AR

2013–2015 0.7864 0.1791 (0.1667, 0.3332, 0.1667, 0.1667, 0.1667) 0.8273
2016 0.793 0.2211 (0.1661, 0.332, 0.1661, 0.1697, 0.1661) 0.8273
Table 7
The learned criterion weights of radiologist D1 and the relevant results from the random divisions of the radiologist’s diagnostic
records in the period from 2013 to 2016.
No Records η G∗ Learned criterion weights AR

1 172 0.8056 0.0983 (0.1429, 0.2857, 0.14285, 0.2857, 0.14285) 0.7974
1 177 0.7724 0.1014 (0.1758, 0.3242, 0.1621, 0.1758, 0.1621) 0.8273
2 193 0.7728 0.1105 (0.1667, 0.3332, 0.1667, 0.1667, 0.1667) 0.8273
2 156 0.8086 0.084 (0.162, 0.3239, 0.162, 0.1901, 0.162) 0.8273
3 183 0.7736 0.1028 (0.1667, 0.3332, 0.1667, 0.1667, 0.1667) 0.8273
3 166 0.8055 0.0851 (0.199, 0.2825, 0.1586, 0.2057, 0.1542) 0.8105
4 169 0.7929 0.0912 (0.1667, 0.3332, 0.1667, 0.1667, 0.1667) 0.8273
4 180 0.7849 0.1071 (0.1454, 0.2819, 0.1454, 0.2819, 0.1454) 0.7955
5 174 0.812 0.0887 (0.1864, 0.2204, 0.1864, 0.2204, 0.1864) 0.774
5 175 0.7657 0.1054 (0.1667, 0.3332, 0.1667, 0.1667, 0.1667) 0.8273
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Table 8
The aggregated criterion weights of radiologist D1 and the relevant results from
he random divisions of the radiologist’s diagnostic records in the period from
013 to 2016.
No Aggregated criterion weights AR

1 (0.1596, 0.3052, 0.1526, 0.23, 0.1526) 0.8161
2 (0.1646, 0.329, 0.1646, 0.1772, 0.1646) 0.8273
3 (0.1821, 0.3091, 0.1628, 0.1852, 0.1608) 0.8105
4 (0.1557, 0.3068, 0.1557, 0.2261, 0.1557) 0.8161
5 (0.1765, 0.277, 0.1765, 0.1935, 0.1765) 0.8105

divisions of the examination reports may result in different ag-
gregated criterion weights and different effects of the weights. To
verify this, it is necessary to redo the experiments by randomly
splitting the examination reports of radiologist D1 in the period
rom 2013 to 2016 into two parts five times. The learned criterion
eights and their effects are shown in Table 7, in which the rel-
vant results are also presented. Table 7 shows that the criterion
eights learned from one part of each division are different from
hose from the other part; however, the weights learned from
ome parts of different divisions may be equal to one another.
ore interestingly, the same criterion weights result in the same
ffect although different weights may also generate the same
ffect.
Through Eq. (28), the criterion weights learned from the two

arts of each division are combined to generate the aggregated
riterion weights of each division. The weights and their effects
re presented in Table 8. By observing Tables 7 and 8, it can be
ound that the effect of the aggregated criterion weights falls in
etween the effects of two sets of weights learned from the two
arts in a random division. For the choice of random divisions,
arger effect of the aggregated criterion weights is preferred. More
mportantly, the size of the reports for learning criterion weights
etermines how many parts into which the reports should be
ivided. The learning process must be completed within a limited
r acceptable period. Otherwise, random division will not be very
eaningful. All these are problem-specific.
Observing Tables 2 and 8, it is found that the effects of the

ggregated criterion weights shown in Table 8 are less than the
ffect of radiologist D1 shown in Table 2. A hypothesis arises from
his observation, which is the effect of the aggregated criterion
eights derived from a random division is always less than or
qual to the effect of each of the three radiologists shown in Ta-
le 2. As mentioned above, large effect of the aggregated criterion
eights derived from a random division is preferred. Following
his principle, it can be derived that the largest one among the
9

Fig. 1. The experimental effects of radiologist D1 from 100 times of random
ivisions.

ffects of the aggregated criterion weights derived from random
ivisions is the most desirable and may be equal to the effect of
ach of the three radiologists shown in Table 2 if the hypothesis is
onfirmed. Because the hypothesis is associated with the exami-
ation reports of the three radiologists in the period from 2013 to
016, theoretical confirmation may be difficult. In this situation,
imulation experiments are conducted to confirm the hypothesis.
or each of the three radiologists, 100 times of random divisions
re performed to generate the aggregated criterion weights and
he corresponding effects. The experimental effects of the three
adiologists are plotted in Figs. 1–3, respectively.

Figs. 1–3 show that the experimental effects of the three
adiologists are always less than or equal to the effects of the
hree radiologists shown in Table 2. Meanwhile, the effects of the
hree radiologists shown in Table 2 are reached many times in
imulation experiments. The findings confirm the hypothesis. In
eneral, simulation based on random divisions offers an effective
ay to estimate the effect of a radiologist when it is difficult to
stimate the effect based on the collected data of the radiologist
n a specific period.

. Conclusions

To aid a decision maker in providing consistent overall assess-
ents, this paper proposes a method of learning the preferences
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Fig. 2. The experimental effects of radiologist D2 from 100 times of random
ivisions.

Fig. 3. The experimental effects of radiologist D3 from 100 times of random
ivisions.

f the decision maker from the observations on each criterion and
he overall assessments provided. On the condition that the as-
essments on criteria can be transformed from the corresponding
bservations, how to learn the constraints on criterion weights
rom the assessments on criteria and the overall assessments and
ow to learn criterion weights within the feasible region formed
y the learned constraints are presented. In another situation in
hich gold standards are available, such as pathologic findings for
he diagnoses of thyroid nodules, the learning of the constraints
n criterion weights and the learning of criterion weights are
lso presented. The generation of solutions from the learned
riterion weights and the examination of the effect of the learned
eights with and without the consideration of gold standards
re introduced. A case study is conducted to demonstrate the
pplication of preference learning in MCDM to the diagnosis of
hyroid nodules in the ultrasonic department of a tertiary hospital
ocated in Hefei, Anhui, China.

The above analysis of the main work indicates that this study
ocuses on the preference learning in MCDM in the ER context
nd the application of MCDM to both comparing alternatives
nd deciding what will be done in the next step when historical
ecision data are available. This differentiates this study from
xisting studies on preference learning and MCDM.
10
Based on the above analysis of the main work, the implications
of this study are summarized as follows. (1) Data can reflect
the expertise and experience of a decision maker, which are
characterized by the preferences of the decision maker. The accu-
mulation of data is helpful to learn the preferences of the decision
maker to make decisions consistent with his or her expertise and
experience. (2) When there exist gold standards for a specific
decision problem, which indicate the correct result of the deci-
sion problem, the gold standards corresponding to the historical
decision data of a decision maker should be collected and used to
help improve the decision maker’s capability to make correct or
rational decisions. (3) Large volumes of data may make preference
learning uneasy. The regular separation-integration strategy is
encouraged to be adopted to conduct preference learning if the
characteristics of the data associated with data separation are
available and accepted by the decision maker. Otherwise, the ran-
dom separation-integration strategy is encouraged to be adopted
when there are sufficient computational resources and relatively
loose constraints on computation time.

In the future, the work in this paper will be extended from
the theoretical and applicable perspectives. In theory, preference
learning in group decision making in the ER context will be
investigated when gold standards are available or unavailable.
In application, the proposed method of learning preferences in
MCDM in the ER context will be used to help generate the
consistent diagnoses of other diseases, such as breast cancer, liver
cancer and lung cancer. To facilitate the application, large vol-
umes of diagnostic data will be collected and then the extraction
of the disease features and the transformation of the features into
the assessments on criteria will be investigated.
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