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Random Permutation Set Reasoning
Jixiang Deng, Yong Deng , Member, IEEE, and Jian-Bo Yang

Abstract—In artificial intelligence, it is crucial for pattern recog-
nition systems to process data with uncertain information, necessi-
tating uncertainty reasoning approaches such as evidence theory.
As an orderable extension of evidence theory, random permutation
set (RPS) theory has received increasing attention. However, RPS
theory lacks a suitable generation method for the element order
of permutation mass function (PMF) and an efficient determina-
tion method for the fusion order of permutation orthogonal sum
(POS). To solve these two issues, this paper proposes a reasoning
model for RPS theory, called random permutation set reasoning
(RPSR). RPSR consists of three techniques, including RPS gen-
eration method (RPSGM), RPSR rule of combination, and or-
dered probability transformation (OPT). Specifically, RPSGM can
construct RPS based on Gaussian discriminant model and weight
analysis; RPSR rule incorporates POS with reliability vector, which
can combine RPS sources with reliability in fusion order; OPT is
used to convert RPS into a probability distribution for the final
decision. Besides, numerical examples are provided to illustrate
the proposed RPSR. Moreover, the proposed RPSR is applied to
classification problems. An RPSR-based classification algorithm
(RPSRCA) and its hyperparameter tuning method are presented.
The results demonstrate the efficiency and stability of RPSRCA
compared to existing classifiers.

Index Terms—Classification, pattern recognition, random
permutation set (RPS), random permutation set reasoning (RPSR),
uncertainty reasoning.

I. INTRODUCTION

IN THE field of artificial intelligence, pattern recognition is
the cornerstone of interpreting data structures and identify-

ing complex patterns. This process, however, often encounters
uncertain and incomplete information, leading to the rise of un-
certainty reasoning. Uncertainty reasoning is a multifaceted field
that employs various theories and methods to deal with different
types of uncertainty present in data, including randomness,
vagueness, imprecision, etc. Notably, Bayesian inference [1],
fuzzy set theory [2], and possibility theory [3] address these
specific types of uncertainty and have proven indispensable in a
wide range of applications.
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As one of the approaches for uncertainty reasoning,
Dempster-Shafer evidence theory [4], [5], also known as ev-
idence theory, stands out as a robust method that relies less
on prior probabilities, efficiently aggregates different pieces of
information, and assesses the probability of events based on
belief and plausibility. Since evidence theory was first proposed
in 1967, many researchers have been promoting the development
of evidence theory. Cuzzolin proposed a geometric approach
to handle the uncertainty in evidence theory [6]. To measure
the uncertainty of a mass function, Deng proposed Deng en-
tropy [7], also called belief entropy, which is further developed
into information volume of mass function [8]. Deng and Jiang
presented a quantum representation of mass function, which pro-
vides a connection between mass function and mixed quantum
states [9]. By incorporating mass function with complex value,
complex evidence theory has been reported in [10], [11]. Deng
introduced the concept of order and permutation into evidence
theory and proposed random permutation set theory [12]. Due
to the efficiency in processing uncertain information, evidence
theory has many applications, such as decision making [11],
[13], data fusion [14], [15], uncertainty measures [16], [17],
fractals [18], [19], target classification [20], expert systems [21],
and incomplete pattern clustering [22].

In 1994, Yang and Singh proposed the evidential reasoning
(ER) approach [23], which can be used for knowledge represen-
tation and weighted evidence fusion in hybrid decision making
problems. Then, Yang and Sen developed a general multi-level
evaluation process based on ER approach [24], in which the
general form of ER algorithm were explored. In 2013, Yang and
Xu extended ER algorithm into ER rule [25], which combines
weighted belief distribution with reliability by considering both
evidence weight and evidence reliability. Besides, ER rule can
well solve the counter-intuitive problem of Dempster’s rule of
combination in the situation of high conflict. Also, ER rule
establishes a generic conjunctive probabilistic reasoning pro-
cess, which is a generalized form of Dempster’s rule [4] and the
original ER algorithm [23], [24]. ER approach and ER rule has
been applied in many fields, like data fusion [25], [26], [27],
[28], classification [29], [30], [31], decision making [23], [32],
[33], [34], fault diagnosis [35], [36], medical diagnosis [37],
expert system [38], [39], [40], and state assessment [41], [42].

Nevertheless, the concept of order is not considered in evi-
dence theory and ER approach, which involves two aspects [12].
(i) Order in data representation (element order): In evidence
theory and ER approach, because all propositions in a power
set are defined by sets, the hypotheses within a proposition
of a power set have no concept of order. For example, the
propositions {θ2, θ3} and {θ3, θ2} are completely equivalent,
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because there is no order of precedence between the hypotheses
θ2 and θ3. (ii) Order in fusion rule (fusion order): Since most of
the original evidence fusion rules, such as Dempster’s rule [4],
Yager’s rule [43], ER algorithm [23], and ER rule [25], are based
on the orthogonal sum operation, they satisfy the commutative
and associative laws. In other words, changing the order of
evidence combination does not affect the final fusion results,
which means that most evidence fusion rules do not take concept
of order into consideration.

The concept of order is useful in some cases, especially when
there exists relative importance between hypotheses or relative
reliability between information sources [12]. Taking the scenario
of product sales as an example, a company has developed three
prototypes for a product, denoted by Θ = {θ1, θ2, θ3}, which
have different profits and degrees of importance. Four product
managers with different professional levels need to choose the
most profitable prototype from the three as the final release
version of the product. Given two prototypes θ2 and θ3, if
a product manager is uncertain about which product is more
suitable, then according to the idea of evidence theory, the asso-
ciated belief degree can be assigned to the proposition {θ2, θ3}.
If the product θ3 is more important than θ2, how would this
situation be represented? Actually, this relative importance can
be represented by the order of the hypotheses, which involves
the concept of sets with order information, namely orderable
sets [44], [45]. In mathematics, a tuple is a ordered sequence of
elements and can be view as an orderable set, based on which, the
situation can be represented by (θ3, θ2). The reports of the four
product managers need to be fused to facilitate the final decision.
Because each manager has a different professional level, their
reports need to be fused in a particular order. Generally speaking,
the more professional reports should be considered first and have
a greater impact on the final fusion results, which requires a
fusion rule that does not satisfy the communicative law [12].

By considering the two aforementioned aspects of order, Deng
extended evidence theory and proposed random permutation set
(RPS) theory based on orderable sets and permutations [12].
An RPS consists of a permutation event space (PES) and a
permutation mass function (PMF). The PES of a frame of dis-
cernment Θ considers all the possible permutations ofΘ, named
as permutation events. Another important concept of RPS theory
is the fusion rule of RPS sources, called permutation orthogonal
sum (POS), including two types of rules: right orthogonal sum
(ROS) and left orthogonal sum (LOS). RPS theory can be viewed
as an orderable extension of evidence theory. If the order of
the element in permutation event is ignored, PES, PMF, and
POS will degenerated into power set, BPA, and Dempster’s
rule of combination, respectively. In RPS theory, permutation
serves to manage concepts related to order, which is also the
difference between RPS theory and the original evidence theory.
Specifically, RPS theory incorporates permutation events to
model the order of hypotheses, and utilizes POS to address
the issue in evidence fusion rules where the fusion order is
overlooked. Although several methods have been proposed to
deal with permutations [46] and orderable sets [44], [45], their
direct applications in evidence theory are often compromised
by compatibility issues. RPS theory successfully bridges this

gap, utilizing PES, PMF, and POS to provide a streamlined
and direct mechanism for managing permutations and modeling
order-related concepts. Consequently, RPS theory enhances the
practicality for real-world scenarios, especially when order in-
formation needs to be taken into account. Up till now, RPS theory
has been applied in risk analysis [12], uncertainty measure [47],
[48], and decision making [12].

As it stands however, RPS theory suffers from two major
deficiencies: (i) Although the existing RPS theory takes element
order into consideration, it lacks an efficient mechanism to con-
vert this order into PMFs; (ii) The existing RPS theory requires
a predefined fusion order to combine information sources based
on the POS, but this is often impractical since the fusion order
is usually unknown. The idea of evidence weight and evidence
reliability from Smarandache et al.’s work [49] and ER rule [25],
[50] imply a sense of relative order and may provide potential
solutions to the above two problems, whereas they cannot be
directly and effectively used in RPS theory.

In this paper, a reasoning model of RPS theory, called random
permutation set reasoning (RPSR), is proposed to address the
two aforementioned problems. RPSR includes RPS generation
method (RPSGM), RPSR rule of combination, and ordered prob-
ability transformation (OPT). Specifically, RPSGM efficiently
handles element order and constructs RPSs using Gaussian dis-
criminant model and weight analysis, which determines the rela-
tive importance of elements to notably enhance RPS generation;
RPSR rule incorporates POS with reliability vector, which can
combine RPS sources with reliability in the optimal fusion order,
thus facilitating the information fusion process; OPT is used to
convert RPS into a probability distribution for the final decision.
In addition, three numerical examples are shown to illustrate the
proposed RPSR. Furthermore, the proposed RPSR is applied
to classification problems and an RPSR-based classification
algorithm (RPSRCA) is presented. The experimental results
show RPSRCA’s superiority over other classifiers in terms of
accuracy and stability.

The rest of this article is as follows. Section II introduces some
preliminaries. Section III proposes RPSR, including RPSGM,
RPSR rule, and OPT. Section IV presents some numerical exam-
ple for illustration. Section V designs a classification algorithm
based on RPSR, which is further verified by several experiments.
Section VI makes a brief conclusion.

Abbreviations: For clarity, several abbreviations in this paper
are summarized as follows: Frame Of Discernment (FOD), Basic
Probability Assignment (BPA), Evidential reasoning (ER), Ran-
dom Permutation Set (RPS), Random permutation Set Reason-
ing (RPSR), Permutation Mass Function (PMF), Permutation
Orthogonal Sum (POS), RPS Generation Method (RPSGM),
Ordered Probability Transformation (OPT), and Gaussian Dis-
criminant Model (GDM).

II. PRELIMINARIES

A. Dempster-Shafer Evidence Theory

Dempster-Shafer evidence theory [4], [5], also called evi-
dence theory, is an efficient tool for dealing with uncertainty [7],
[23] and combining information sources [51], [52], [53]. In
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evidence theory, Frame of discernment (FOD) is a set of N
mutually exclusive and exhaustive elements, denoted by Θ =
{θ1, θ2, . . . , θN}. The power set ofΘ consists of all possible sub-
sets ofΘ, indicated by2Θ= {∅,{θ1},{θ2}, . . . , {θN},{θ1, θ2},
. . . , {θ1, θN}, . . . ,Θ}. A basic probability assignment (BPA)
is a mapping function m : 2Θ → [0, 1], which is constrained by
m(∅) = 0 and

∑
A∈2Θ m(A) = 1. Given two BPAsm1 andm2,

Dempster’s rule of combination m1 ⊕m2 is defined by

m(A) =

{
1

1−K
∑

B∩C=A m1(B)m2(C), A �= ∅
0, A = ∅ (1)

where A,B,C ∈ 2Θ and K =
∑

B∩C=∅m1(B)m2(C).

B. Evidential Reasoning Rule

Evidential reasoning (ER) approach and ER rule are pow-
erful methods for decision making [23], [24], [54] and expert
system [55], [56]. In this subsection, several basic concepts of
evidential reasoning (ER) rule [25] are introduced.

Assume the FOD is denoted by Θ = {θ1, θ2, . . . , θN}. A
piece of evidence is indicated by belief distribution:

ej =
{
(θ, pθ,j) | ∀θ ⊆ Θ,

∑
θ⊆Θ pθ,j = 1

}
(2)

where θ is a subset of Θ, pθ,j is the belief degree on proposition
θ, and (θ, pθ,j) is an element of evidence ej .

The ER rule takes evidence weight and evidence reliability
into consideration [25]. Let the weight and reliability of evidence
ej be represented bywj and rj , respectively. The weighted belief
distribution with reliability is defined by:

mj =
{
(θ, m̃θ,j) |∀θ ⊆ Θ;

(
P (Θ) , m̃P (Θ),j

)}
(3)

where m̃θ,j is referred to as the basic probability mass for θ
from ej with weight wj and reliability rj , calculated by:

m̃θ,j =

⎧⎨⎩0, θ = ∅
crw,jmθ,j , θ ⊆ Θ, θ �= ∅
crw,j (1− rj) , θ = P (Θ)

(4)

where mθ,j = wjpθ,j is called the weighted belief distribution
and crw,j = (1 + wj − rj)

−1 the normalization factor.
Given two pieces of independent evidence e1 and e2, the

combined belief degree pθ,e(2) that e1 and e2 jointly support
θ can be established based on:

pθ,e(2) =

{
0, θ = ∅

m̂θ,e(2)∑
D⊆Θ m̂D,e(2)

, θ ⊆ Θ, θ �= ∅

m̂θ,e(2) = [(1− r2)mθ,1 + (1− r1)mθ,2] +
∑

B∩C=θ

mB,1mC,2

(5)

where rj is the reliability of ej .

C. Random Permutation Set Theory

Random permutation set theory is distinct from the original
evidence theory, principally owing to its integration of permu-
tations to effectively handle concepts related to order. In the
process of data representation and information fusion, there
may exist implicit order-related information, such as the relative

importance among different elements and the relative reliability
of different information sources. These concepts of order may
facilitate more nuanced reasoning and enhance the practicality of
classification. RPS theory utilizes permutation events to model
the order of hypotheses, and employs POS to address the issue
in the original evidence fusion rules where the fusion order is
overlooked. By deploying PES, PMF, and POS, RPS theory
presents a comprehensive approach for managing permutations
and modeling order-related concepts, thereby enhancing its
practicality, especially in situations when order information is
critical. This subsection briefly reviews some definitions about
random permutation set theory [12].

Let the FOD be denoted as Θ = {θ1, θ2, . . . , θN}. The per-
mutation event space (PES) of Θ is defined as:

PES (Θ) = {Aij | i = 0, . . ., N ; j = 1, . . ., P (N, i) }
={∅, (θ1) , (θ2) , . . ., (θN ) , (θ1, θ2) ,(θ2, θ1) , . . ., (θN−1, θN ) ,

(θN , θN−1) , . . ., (θ1, θ2, . . ., θN ) , . . ., (θN , θN−1, . . ., θ1)}
(6)

which contains all possible permutations of Θ. P (N, i) =
N !

(N−i)! is the i-permutation of N . In PES, the element Aij is
a tuple called permutation event (PE).

Given a FOD Θ, its random permutation set (RPS) is a set of
pairs defined by:

RPS (Θ) = {〈A,M (A)〉 |A ∈ PES (Θ)} (7)

where M is called the permutation mass function (PMF),
which is mapping function M : PES(Θ)→ [0, 1], satisfy-
ing M (∅) = 0 and

∑
A∈PES(Θ) M (A) = 1. An RPS source

RPSi(Θ) can be written as RPSi when the FOD is defined and
there is no ambiguity.

Permutation orthogonal sum (POS) is the fusion rule of PMFs,
including two types of rules: right orthogonal sum (ROS) and left
orthogonal sum (LOS). Let X\\Y represent removing Y from
X . Given two PMFs M1 and M2, ROS and LOS are defined as
follows:
� ROS is denoted as M1

−→⊕M2 and calculated by:

MR(A) =

{ 1

1−−→K
∑

B
−→�C=A

M1(B)M2(C), A �= ∅
0, A = ∅

(8)
where

−→
K =

∑
B
−→�C=∅M1(B)M2(C); A,B,C ∈

PES(Θ); −→� indicates right intersection:B
−→�C =

C\\⋃θ∈C,θ/∈B {θ}.
� LOS is denoted as M1

←−⊕M2 and calculated by:

ML(A) =

{ 1

1−←−K
∑

B
←−�C=A

M1(B)M2(C), A �= ∅
0, A = ∅

(9)
where

←−
K =

∑
B
←−�C=∅M1(B)M2(C); A,B,C ∈

PES(Θ); ←−� indicates left intersection:B
←−�C =

B\\⋃θ∈B,θ/∈C {θ}.
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III. RANDOM PERMUTATION SET REASONING

In this section, several basic concepts of random permutation
set reasoning (RPSR) are proposed, including RPS generation
method, RPSR rule of combination, and ordered probability
transformation.

A. RPS Generation Method

The reasoning based on RPS theory starts with generating
RPS source. In particular, a suitable generation method for
element order of PMF is needed. This subsection proposes
RPS generation method (RPSGM), which is based on Gaussian
discriminant model and weight analysis.

Assume that the original dataset, containing N classes, is de-
noted by FOD Θ = {θi | i = 1, 2, . . . , N}. The original dataset
is divided into training set and test set. In the training set, the
training sample of class θi with K attributes is represented
by vector xi = [xij | j = 1, 2, . . . ,K]. The test set comprises
multiple test samples. For the purposes of our analysis, a single
test sample is represented by a vector denoted asx0 = [x0j | j =
1, 2, . . . ,K]. Then, RPSGM is detailed as follows.

Step 1: Establish Gaussian discriminant model (GDM), and
then construct membership vector based on the
GDM.
i) Let the number of training samples in the class

θi be Ni, and the l-th training sample in the
class θi be x

(l)
i . Calculate the mean value and

the standard deviation for the j-th attribute of the
training samples in class θi:

x̄ij =
1

Ni

Ni∑
l=1

x
(l)
ij (10)

σij =

√
1

Ni − 1

∑Ni

l=1

(
x
(l)
ij − x̄ij

)2
(11)

ii) For the j-th attribute of training samples in the
training set, build the corresponding GDM based
on x̄ij and σij :

fj(x) = [fij(x) | i = 1, 2, . . . , N ] (12)

where j = 1, 2, . . . ,K and fij(x) is Gaussian
distribution:

fij(x) =
1√

2πσij
2
exp

(
− (x− x̄ij)

2

2σij
2

)
(13)

iii) For the j-th attribute of a given test sample x0 =
[x0j | j = 1, 2, . . . ,K], the associated member-
ship vector (MV) is denoted as:

fj = [fij | i = 1, 2, . . . , N ] (14)

where j = 1, 2, . . . ,K and fij � fij(x)|x=x0j

is the membership degree between the GDM and
the test sample.

Step 2: Perform weight analysis for the test sample.

i) Normalize the MV based on f̃ij =
fij∑
i fij

, and
then obtain the normalized normalized member-
ship (NMV):

f̃j = [f̃ij | i = 1, 2, . . . , N ] (15)

where j = 1, 2, . . . ,K.
ii) Rank the elements f̃ij |Ni=1 of the j-th NMV in

decreasing order f̃Ord
iuj
|Nu=1, and then get ordered

normalized membership vector (ONMV):

f̃Ord
j = [f̃Ord

iuj
|u = 1, 2, . . . , N ] (16)

where j = 1, 2, . . . ,K.
iii) For the elements of ONMV f̃Ord

iuj
|Nu=1, let the

corresponding GDMs be f̃Ord
iuj

(x)|Nu=1 and the
associated mean values of GDMs be x̄Ord

iuj
|Nu=1.

Calculate supporting degree of the u-th GDM to
the j-th attribute of the test sample:

siuj = exp
(− ∣∣x0j − x̄Ord

iuj

∣∣) (17)

where u = 1, 2, . . . , N and j = 1, 2, . . . ,K. In
principle, a higher supporting degree indicates
a closer match between the GDM’s value and
the observed attribute value in the test sample,
suggesting stronger support by the GDM for this
particular attribute.

iv) Conduct weight analysis for the test sample, and
then obtain weight vector for the element order
in the j-th attribute:

wj=

[
w(i1...iu...iq)j

∣∣∣∣∣ q = 1, 2, . . ., N
u = 1, 2, . . ., q

(i1. . .iu. . .iq) ∈ APS(q)

]
(18)

where j = 1, 2, . . . ,K and w(i1...iu...iq)j is the
weight factor describing the relative importance
of all the permutation events in the j-th RPS:

w(i1...iu...iq)j =

q∏
u=1

siuj∑q
t=u sitj

(19)

APS(·) is the all permutation space (APS) de-
fined by:

APS(X) � {(12. . .X) , . . . , (21. . .X) , . . . ,

(X. . .21)} (20)

which contains all the possible permutation from
1 to X ≥ 1.

Step 3: Construct weighted PMF based on weight vector and
ONMV, and then generate weighted RPS.
i) Let the corresponding classes for the elements

of ONMV f̃Ord
iuj
|Nu=1 be denoted as θOrd

iu
|Nu=1.

For the j-th attribute of the test sample, build
weighted PMF Mw

j based on the weight vector

wj and the ONMV f̃Ord
j :

Mw
j

(
θOrd
i1

, . . ., θOrd
iu

, . . ., θOrd
iq

)
=
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{
w(i1...iu...iq)j · f̃Ord

iqj
, (i1. . .iu. . .iq) ∈ APS(q)

0, (i1. . .iu. . .iq) /∈ APS(q)

(21)

where j = 1, 2, . . .,K; q = 1, 2, . . ., N ; u =
1, 2, . . ., q; APS(·) is defined in (20).

ii) For the j-th attribute of the test sample, generate
weighted RPS based on the j-th weighted PMF:

RPSw
j =

{〈A,Mw
j (A)〉 |A ∈ PES (Θ)

}
(22)

where j = 1, 2, . . .,K.
Our RPSGM is based on the GDM due to its efficacy in

different scenarios, especially when data is normally distributed.
For non-normal data, it is recommended to use the Student-t dis-
tribution model. In network science, the Power-law distribution
model could be a viable alternative.

B. RPSR Rule of Combination

As mentioned in the introduction part, the original RPS theory
has not treated the fusion order of POS in detail, and its reliance
on a predefined fusion order hinders its practicality when such
order is not explicitly known. Additionally, POS assumes that
all RPS sources are fully reliable, which can be problematic
in the practical use of RPS theory. To resolve these practical
challenges, we propose RPSR rule of combination, which in-
tegrates a reliability vector into the POS and employs a novel
hyperparameter tuning method to determine the fusion order,
thus enabling the combination of RPS sources with reliability in
the fusion order.

Given K RPS sources RPSj |Kj=1 defined on FOD Θ, the
RPSR rule of combination is proceed as follows.

Step 1: Let fusion order of the RPS sources be:

F = (j1. . .jv. . .jK) ∈ APS(K) (23)

Fusion order indicates the order in which all RPS
sources are combined. Rank the K RPS sources
RPSj |Kj=1 according to F , and then obtain the
ranked RPS sources RPSjv |Kv=1. The fusion order
is one of the hyperparameters of RPSR rule, which
will be optimized in Section V-B.

Step 2: Let reliability vector be denoted as

r = [rv | v = 1, 2, . . . ,K] (24)

=

⎧⎪⎪⎨⎪⎪⎩
[rv |r1 ≥ r2 ≥ . . . ≥ rv ≥ . . . ≥ rK ]

(descending order)
[rv |r1 ≤ r2 ≤ . . . ≤ rv ≤ . . . ≤ rK ]

(ascending order)

(25)

where rv ∈ [0, 1] is called the reliability factor, repre-
senting the reliability of the v-th ranked RPS source
RPSjv . The higher the reliability factor, the more
reliable the RPS source is. It can be seen from (25),
the reliability factors of r can be in two types of
order, i.e., descending order and ascending order. The

reliability vector is also a hyperparameter of RPSR
rule, which will be further determined in Section V-B.

Step 3: For each RPS source RPSjv , produce RPS with re-
liability RPSr

jv
= {〈A,M r

jv
(A)〉 |A ∈ PES(Θ)}

based on PMF with reliability, calculated by:

M r
jv
(A)=

{
rv ·Mjv (A), |A| = 1

rv ·Mjv (A) +
(1−rv)

F (|Θ|)−|Θ|−1 , |A| > 1

(26)

where v = 1, 2, . . . ,K; rv is the v-th reliability fac-
tor of r; F (x) �

∑x
k=0

x!
(x−k)! is the sum of all the

permutation number of x elements.
Step 4: According to the order of the reliability factors in r,

combine theK PMFs with reliability M r
jv
|Kv=1 based

on LOS
←−⊕ or ROS

−→⊕ [12], and then obtain the fused
PMF:

M̂ =

{←−⊕K
v=1M

r
jv

(descending order)−→⊕K
v=1M

r
jv

(ascending order)
(27)

where LOS and ROS correspond to the fusion method
of descending order and ascending order, respec-
tively.

Step 5: Based on the fused PMF, output the fused RPS of the
K RPS sources:

̂RPS =
{
〈A, M̂ (A)〉 |A ∈ PES (Θ)

}
(28)

It should be noted that the fusion order F in (23) and the
reliability vector r in (24) are two hyperparameters to be de-
termined. In Section V-B, a hyperparameter tuning method for
optimizing r and F will be presented.

C. Ordered Probability Transformation

In the evidence theory-based classification algorithm [14]
and decision-making model [11], [20], the final step needs
to transform the mass function to facilitate discrimination or
decision-making. Typically, the mass function is converted into
a probability distribution.

In the model of RPSR, it is needed to design a transformation
method of RPS source. In this subsection, ordered probabil-
ity transformation (OPT) is proposed to convert PMF of RPS
source into a probability distribution. Given an RPS source
RPS(Θ) = {〈A,M (A)〉 |A ∈ PES(Θ)} defined on FOD Θ,
OPT is defined as:

POPT (θ) = M (θ) +
∑

θ ∈ A ∈ PES (Θ)
Last(A) �= θ
|A| > 1

M (A)

|A| − 1
(29)

where θ ∈ Θ and Last(A) denotes the last element of the
permutation event A. For example, assume a permutation event
be A = (θ2, θ3, θ1, θ4). Then, Last(A) is the element θ4.

To summarize, RPSR is constructed by the above three tech-
niques: RPSGM, RPSR rule of combination, and OPT, whose
flowcharts are illustrated in Fig. 1(a), (b), and (c) respectively.
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Fig. 1. Illustration of the proposed random permutation set reasoning (RPSR) framework, where (a) is the RPS generation method (RPSGM), (b) is the RPSR
rule of combination, (c) is the Ordered probability transformation (OPT), and (d) is the RPSR classification algorithm (RPSRCA).

TABLE I
MEAN VALUE AND STANDARD DEVIATION OF EACH GDM

IV. NUMERICAL EXAMPLES

In this section, some numerical examples based on the Iris
dataset are provided to demonstrate the calculation procedure of
the proposed RPSR. In the Iris dataset, there are three classes,
namely Setosa, Versicolour, and Virginica, which can be de-
noted by Θ = {θi | i = 1, 2, 3}. Each sample of the dataset has
four attributes, i.e., sepal length (SL), sepal width (SW), petal
length(PL), and petal width (PW). The sample of the i-th class
is indicated by xi = [xij | j = 1, 2, 3, 4]. The original dataset is
randomly split into training set and test set.

Example 1: Assume a test sample from the Iris dataset be
x0 = [6.3, 3.3, 4.7, 1.6]. The corresponding RPS sources of the
test sample can be generated based on RPSGM:

Step 1: Based on the training set, calculate the mean value and
standard deviation of the j-th attribute in class θi, which are listed
in Table I. Then, establish GDMs fj(x)|4j=1 for every attributes.
For each attribute of the test sample, obtain the associated MV.
Take the 4-th attribute of the test sample x04 = 1.6 cm as an
example. Based on the 4-th GDM (shown in Fig. 2), the MV can
be acquired: f4 = [2.04e-32, 0.8030, 0.4945].

Step 2: Take the 4-th attribute of the test sample as an ex-
ample. Normalize the MV and calculate NMV: f̃4 = [f̃i4 | i =

Fig. 2. Illustration of the 4-th GDM.

1, 2, 3] = [1.57e-32, 0.6189, 0.3811]. Then, rank f̃i4|3i=1 in de-
creasing order and get ONMV: f̃Ord

4 = [f̃Ord
iu4
|u = 1, 2, 3] =

[0.6189, 0.3811, 1.57e-32]. Based on ONMV, the associated
classes θOrd

iu
|3u=1 and mean values of GDMs x̄Ord

iu4
|3u=1 can

be obtained. Next, calculate the supporting degree to the 4-th
attribute: siu4|3u=1 = [0.7652, 0.6586, 0.2592]. Furthermore,
perform weight analysis and acquire the weight vector based on
(18) to (20). For the Iris dataset, the equations can be simplified
as:

w(i1...iu...iq)j =⎧⎪⎨⎪⎩
w(i1)j =

si1j

si1j
, (i1) ∈ APS(1)

w(i1i2)j =
si1j

∑2
t=1 sitj

· si2j

si2j
, (i1i2) ∈ APS(2)

w(i1i2i3)j =
si1j

∑3
t=1 sitj

· si2j
∑3

t=2 sitj
· si3j

si3j
, (i1i2i3)∈ APS(3)

(30)

Authorized licensed use limited to: University of Manchester. Downloaded on January 16,2025 at 11:33:17 UTC from IEEE Xplore.  Restrictions apply. 



10252 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 12, DECEMBER 2024

TABLE II
SUMMARY OF SEVERAL TERMS FROM EXAMPLE 1

TABLE III
WEIGHT FACTORS AND PMFS OF THE 4-TH ATTRIBUTE OF THE TEST SAMPLE

FROM EXAMPLE 1

According to (30), the weight factors w(i1...iu...iq)4 for the 4-
th attribute of the test sample are calculated in Table III. For
better understanding, several terms in Step 2 are summarized
and compared in Tables II and III.

Step 3: The associated classes θOrd
iu
|3u=1 for the elements of

ONMV f̃Ord
iuj
|3u=1 are shown in Table II. Based on the weight

vector and the ONMV shown in Table II, build weighted PMF for
the 4-th attribute of the test sample according to: (31), shown
at the bottom of this page. The results of the weighted PMF
are listed in Table III. Based on the weighted PMF, construct
RPS source for the 4-th attribute RPSw

4 . Next, based on Step
1 and Step 2, generate weighted RPS sources RPSw

j |4j=1 for
all the attribute of the test sample, which are summarized in
Table IV(a).

Example 2: Suppose RPSGM has generated four weighted
RPS sources, as shown in Table IV(a). These RPS sources can
be fused based on the RPSR rule of combination:

Step 1: Assume that the fusion order of the RPS sources is
F = (j1. . .jv. . .jK) = (4, 3, 1, 2). Then, rank the given RPS
sources RPSw

j |Kj=1 and acquire the ranked weighted RPS
sources RPSw

jv
|Kv=1:

RPSw
j1

= RPSw
4 ; RPSw

j2
= RPSw

3 ;

RPSw
j3

= RPSw
1 ; RPSw

j4
= RPSw

2 . (32)

Step 2: Let the reliability vector be in descending order: r =

[rv |rv = 1− (v−1)
12 ; v = 1, 2, 3, 4] = [1, 11

12 ,
5
6 ,

3
4 ].

Step 3: Based on weighted RPS source RPSw
jv

and reliability
factor rv , construct weighted RPS with reliability RPSw,r

jv
=

{〈A,Mw,r
jv

(A)〉 |A ∈ PES(Θ)} by:

Mw,r
jv

(A) =

{
rv ·Mw

jv
(A), |A| = 1

rv ·Mw
jv
(A) + (1−rv)

12 , |A| > 1
(33)

where v = 1, 2, 3, 4. The ranked weighted RPS sources with
reliability are shown in Table IV(b).

Step 4: Since the reliability factors are in descending order,
RPSR rule should use LOS

←−⊕ to combine RPS sources. Accord-
ing to (26), calculate the fused PMF based on:

M̂ = Mw,r
j1

←−⊕Mw,r
j2

←−⊕Mw,r
j3

←−⊕Mw,r
j4

= Mw,r
4
←−⊕Mw,r

3
←−⊕Mw,r

1
←−⊕Mw,r

2 (34)

Step 5: Based on M̂ , obtain the fused RPS source ̂RPS, as
shown in Table IV(c).

It should be pointed that in this example, the fusion order F
and the reliability vector r are assumed to be specific values.
However, in practice, F and r should be determined based
on hyperparameter tuning method, which will be presented in
Section V-B.

Example 3: Given a RPS source as listed in Table IV(c), its
associated probability distribution POPT can be calculated by
OPT. For example, POPT (θ2) can be calculated by:

POPT (θ2) = M̂ (θ2) +
M̂ (θ2θ1)

2− 1
+

M̂ (θ2θ3)

2− 1

+
M̂ (θ1θ2θ3)

3− 1

+
M̂ (θ2θ1θ3)

3− 1
+

M̂ (θ2θ3θ1)

3− 1
+

M̂ (θ3θ2θ1)

3− 1

= 0.8757 + 3.20e-35 + 0.0283 +
1

2
· 3.21e-36

+
1

2
· 4.97e-36 +

1

2
· 1.26e-35 +

1

2
· 1.13e-35

= 0.9040 (35)

Mw
j =⎧⎪⎪⎨⎪⎪⎩

Mw
j

(
θOrd
i1

)
= w(i1)j · f̃Ord

i1j
, (i1) ∈ APS(1)

Mw
j

(
θOrd
i1

, θOrd
i2

)
= w(i1i2)j · f̃Ord

i2j
, (i1i2) ∈ APS(2)

Mw
j

(
θOrd
i1

, θOrd
i2

, θOrd
i3

)
= w(i1i2i3)j · f̃Ord

i3j
, (i1i2i3) ∈ APS(3)

0, others

(31)
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TABLE IV
RPS SOURCES AND THEIR PMFS, INCLUDING WEIGHTED RPS, WEIGHTED RPS WITH RELIABILITY, AND FUSED RPS

Hence, POPT can be obtained: POPT (θ1) = 3.04e-34,
POPT (θ2) = 0.9040, POPT (θ3) = 0.0960.

V. APPLICATION OF RPSR IN TARGET CLASSIFICATION

In this section, the proposed RPSR is applied in classifica-
tion problems. First, an RPSR-based classification algorithm is
proposed. Then, several experiments are conducted to verify the
performance of the proposed algorithm compared with existing
classification methods.

A. Problem Statement

Target classification is one of the topics of pattern recog-
nition, which involves predicting the class of a given sample.
Researchers have proposed many classification algorithms based
on a variety of techniques, of which probability theory is the most
commonly used one [57], [58].

Due to the capabilities of uncertain information processing
and data fusion, evidence theory [4], [5] is also a useful tool for
target classification [59]. ER approach [23] and its variants [24],
[25], [26] are extensions of evidence theory that further improve
the performance of evidence theory in classification problems.
Classifiers based on evidence theory and ER approach have been
widely reported, such as complex mass function-based meth-
ods [14], [59], entropy-based methods [60], [61], multi-view
classifier [62], ER rule-based classifiers [29], [31], [63]. and
belief rule base (BRB) classifiers [64].

Typically, the framework of a classifier based on evidence
theory consists of the following three parts: (i) BPA generation
method for data representation, (ii) evidence combination, and
(iii) probability transformation for target identification. How-
ever, as mentioned in the introduction part, evidence theory and
ER approach do not consider the concept of order in terms of
the order in data representation and the order in fusion rule,
which leads to a certain loss of performance on classification
problems [12].

To overcome the above issue and enhance the efficiency of
evidential classification framework, the following subsection
aims to design a classification algorithm based on RPSR, which
consists of RPSGM, RPSR rule, and OPT.

TABLE V
INFORMATION OF THE DATASETS

B. RPSR-Based Classification Algorithm

By considering the concept of order, this subsection pro-
poses an RPSR-based classification algorithm (RPSRCA) that
includes: (i) RPSGM for data representation with element order,
(ii) RPSR rule for combining RPS sources with fusion order, and
(iii) OPT for transformation and identification.

Assume that the original dataset has N classes, which is
indicated by FOD Θ = {θi | i = 1, 2, . . . , N}. In the dataset,
each sample has K attributes. The original dataset is split into
training set Dtrain and test set Dtest. The proposed RPSRCA
aims to predict the label of each test sample, and its procedure
is listed in Algorithm 1.

In Algorithm 1, the fusion order F and the reliability vector
r are two hyperparameters. Their default values are assumed
to be F = [1, 2, . . .,K] (original order of attributes) and r =

[rv |rv = 1− 0.5(v−1)
K−1 ; v = 1, 2, . . .,K] (descending order), re-

spectively. For better classification performance of RPSRCA,
the hyperparameters should be further optimized. Hence, we
present a hyperparameter tuning method for searching the op-
timal values of F and r, as shown in Algorithms 2 and 3.
In practical use, it is recommended to use Algorithms 2 and 3
to determine the optimal F ∗ and r∗ first, and then apply Algo-
rithm 1 to the classification problems according to the optimal
hyperparameters.

To better understand, Fig. 1(d) shows the overall procedure of
the proposed RPSRCA (Algorithm 1) with the hyperparameter
tuning method (Algorithms 2 and 3).
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TABLE VI
PERCENTAGE OF CLASSIFICATION ACCURACY AND STANDARD DEVIATION BASED ON MACHINE LEARNING CLASSIFIERS AND RPSRCA UNDER FIVE-FOLD

CROSS-VALIDATION

TABLE VII
PERCENTAGE OF CLASSIFICATION ACCURACY AND STANDARD DEVIATION BASED ON EVIDENTIAL CLASSIFIERS AND RPSRCA UNDER FIVE-FOLD

CROSS-VALIDATION

C. Experiment and Result

In this subsection, RPSRCA is applied to classification prob-
lems and compared with several classifiers. The experiment
description is summarized as follows.

i) Datasets: We consider seven real-world datsets from
the UCI machine learning repository,1 including Iris,
Wine, Heart (Statlog), Ionosphere, Sonar (Sonar, Mines
vs. Rocks), Australian (Australian Credit Approval), and
Diabetes (Pima Indians Diabetes), whose information is
listed in Table V. Missing values are replaced by mode
values (for categorical attributes) or mean values (for
continuous attributes).

ii) Machine learning classifiers: Nine well-known ma-
chine learning classifiers are selected: Naive Bayes
(NB), Bayes Network (BayesNet), Support Vector Ma-
chine (SVM), SVM with Radial Basis Function (SVM-
RBF), C4.5 Decision Tree (DT), k-Nearest Neighbor-
hood (k-NN), AdaBoost with decision stump (AdaBoost),
Logistic Regression (LR), and Multilayer Perception
(MLP).

iii) Evidential classifiers: Five evidential classifiers are
chosen: Dempster’s rule of combination-based model
(DRCM) [4], ER rule-based model (ER rule) [25], Mur-
phy’s rule of combination-based model (MRCM) [65],
evidential distance-based model (EDM) [66], and be-
lief JS divergence-based model (BJSM) [60]. The

1http://archive.ics.uci.edu/ml/datasets

reliability and the weight of ER rule-based model
are determined by the evaluation method presented
in [29]. For better comparison, the following experi-
ments use the same BPA generation method and prob-
ability transformation for each evidential classifier, i.e.,
Xu et al.’s normal distribution-based method [67] and
Smet’s pignistic probability transformation (PPT) [68],
respectively.

iv) Implementations: The proposed RPSRCA is compared
with the selected machine learning classifiers and evi-
dential classifiers. All classifiers are performed on the
datasets and evaluated in terms of classification accuracy
by five-fold cross-validation for 100 times.

The experimental results of the classifiers are summarized in
Tables VI and VII, in which the results of the best performance
are shown in bold. It can be observed in Table VI that the pro-
posed RPSRCA is better than the machine learning classifiers on
the Heart dataset (85.7%), the Australian dataset (87.65%), and
the Diabetes dataset (77.31%). Especially on the Heart dataset,
RPSRCA surpasses the worst classifier (75.64%) by 10.06% and
the second-best classifier (84.07%) by 1.63%. Besides, the best
classifiers on Iris, Wine, Ionosphere, and Sonar are as follows:
SVM, BayesNet, MLP, and k-NN, respectively. Admittedly, on
the aforementioned four datasets, the performance of RPSRCA
is not the best, but RPSRCA has the highest average classifi-
cation accuracy on all seven datasets (86.86%), which shows
the efficiency of the proposed RPSRCA. Moreover, it is obvious
that, on all seven datasets, the standard deviation of RPSRCA is
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Algorithm 1: RPSR-Based Classification Algorithm (RP-
SRCA).

Input: Training set Dtrain, Test set Dtest (each sample has
K attributes).

Hyperparameter: Fusion order F (default value
= [1, 2, . . .,K]), Reliability vector r (default value
= [rv |rv = 1− 0.5(v−1)

K−1 ; v = 1, 2, . . .,K], descending
order).

Output: Predicted labels for all test samples PredLabel.
/* Initialization */
1: Initialize the list for predicted label: PredLabel← [ ].
2: Normalize Dtrain and Dtest.

/* RPS generation method */
3: for j = 1 to K do
4: Based on the j-th attribute of the samples in Dtrain,

establish the j-th GDM fj(x) according to (10) to
(13).

5: end for
6: for all test samples x ∈ Dtest do
7: for j = 1 to K do
8: Based on GDM fj(x), calculate the MV fj by (14).
9: Perform weight analysis and obtain the weight

vector wj by (15) to (20).
10: On the basis of wj , construct the weighted RPS

RPSw
j by (21) to (22).

11: end for
/* RPSR rule of combination */

12: Rank RPSw
j |Kj=1 according to the fusion order F ,

and then obtain the ranked weighed RPS sources
RPSw

jv
|Kv=1.

13: for v = 1 to K do
14: Based on RPSw

jv
and the v-th reliability factor rv

of reliability vector r, produce the weighted RPS
with reliability RPSw,r

jv
according to (26).

15: end for
16: According to (27) to (28), combine the K weighted

RPS with reliability RPSw,r
jv
|Kv=1, and then acquire

the fused RPS source ̂RPS.
/* Ordered probability transformation */

17: Convert ̂RPS into probability POPT by (29).
/* Classification */

18: Predict the label of the test sample:
θ̃ ← argmaxθ∈Θ POPT (θ).

19: Append θ̃ to PredLabel.
20: end for
21: return PredLabel

much lower than other machine learning classifiers, especially
on Iris dataset (0.13%), which proves the stability of RPSRCA
for classification problems.

As shown in Table VII, compared with the evidential clas-
sifiers, the classification accuracy of RPSRCA is the high-
est on Wine (98.04%), Heart (85.70%), Ionosphere (87.97%),
Sonar (75.39%), Australian (87.65%), and Diabetes (77.31%),
and the standard deviation of RPSRCA is the lowest on Iris

Algorithm 2: Hyperparameter Tuning Method for Reliabil-
ity Vector and Fusion Order.

Input: Training set Dtrain (each sample has K attributes).
Output: Optimal fusion order F ∗, Optimal reliability
vector r∗.
/* Initialization */

1: Initialize the past order list and the next order list for
F :
Past← [ ], Next← [1, 2, . . .,K].

2: Initialize the reliability vector r with coefficient η = 0:
r← [rv |rv = 1− η(v−1)

K−1 ; v = 1, 2, . . .,K].
/* Hyperparameter tuning for fusion order */

3: Invoke Algorithm 3 RecurFO(Past,Next), and
then obtain the optimal fusion order F ∗.
/* Hyperparameter tuning for reliability vector */

4: Set the accuracy list: AccList1 ← [ ].
5: for η ∈ {0.25, 0.5, 0.75, 1} do
6: According to 10-fold cross validation, randomly

split Dtrain into new training set Dtrain′ and
validation set Dvalid.

7: Based on Dtrain′ and Dvalid, randomly split obtain
the accuracy Acc of Algorithm 1, where the
reliability vector is calculated by η and the fusion
order uses F ∗.

8: Append Acc to AccList1.
9: end for

10: Acquire the optimal coefficient:
η∗ ← argmaxη AccList1.

11: Get the optimal reliability vector r∗ based on η∗.
12: return F ∗ and r∗

(0.13%), Ionosphere (0.51%), Australian (0.26%), and Diabetes
(0.47%). On the Iris dataset, the accuracy of ER rule (96.06%)
is higher than that of RPSRCA and other evidential classifiers.
In addition, RPSRCA performs well on the Australian dataset
(87.65%). RPSRCA is superior to the worst classifier (79.80%)
by 7.85% and the second-best classifier (81.48%) by 6.17%.
Furthermore, RPSRCA has the highest average classification
accuracy (86.86%) in comparison of the evidential classifiers.

To summarize, the proposed RPSRCA outperforms the se-
lected classifiers with the highest average classification accuracy
(86.86%) and the lowest average standard deviation (0.64%),
which demonstrates the efficiency and the stability of RPSRCA.
The main reason is that RPSRCA is designed based on the three
techniques of RPSR (RPSGM, RPSR rule, and OPT), which
comprehensively considers concept of order in two aspects,
namely the element order and the fusion order. Based on the
RPSR framework, the proposed RPSRCA is able to handle the
imprecision in the classification process and be less susceptible
to samples on imprecise boundaries, thereby enhancing the sta-
bility of classification. Additionally, RPSRCA offers additional
refinement of imprecise boundary by incorporating the concept
of order, leading to further enhancements in classification perfor-
mance and stability. Hence, RPSRCA can perform well in terms
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Algorithm 3: Recursive Procedure for Searching Optimal
Fusion Order RecurFO(Past,Next).

Input: Past order list Past, Next order list Next.
Output: Optimal fusion order F ∗;
/* Base case */
1: if Next is emtpy then
2: return Optimal fusion order F ∗ ← Past
3: end if

/* Recursive step */
4: Empty the accuracy list: AccList2 ← [ ].
5: for all elements in the next order list cur ∈ Next do
6: Remove cur from Next: Next′ ← Next\cur.
7: Concatenate the lists: F ′ ← [Past+ cur +Next′].
8: According to 10-fold cross validation, randomly

split Dtrain into new training set Dtrain′ and
validation set Dvalid.

9: Based on Dtrain′ and Dvalid, obtain the accuracy
Acc of Algorithm 1, where the reliability vector uses
the default value and the fusion order takes F ′.

10: Append Acc to AccList2.
11: end for
12: Acquire the current optimal element:

cur∗ ← argmaxcur∈Next AccList2.
13: Update the past order list and the next order list:

Past∗ ← [Past+ cur∗], Next∗ ← Next\cur∗.
14: return Invoke Algorithm 3 RecurFO(Past∗, Next∗)

of accuracy and stability, which further proves the efficiency of
the proposed RPSR.

VI. CONCLUSION

In artificial intelligence, evidence theory serves as an uncer-
tainty reasoning method for processing data characterized by
incompleteness and uncertainty. Recently, random permutation
set (RPS) theory has emerged as an orderable extension of ev-
idence theory and has attracted considerable interest. However,
it faces two main challenges: the lack of a generation method
for the element order in permutation mass function (PMF), and
the absence of an effective strategy to determine the fusion
order for permutation orthogonal sum (POS). To address the
two issues, this paper proposes an RPS theory-based reasoning
model, called random permutation set reasoning (RPSR). The
main contributions are summarized as follows:

i) RPSR is proposed, including RPS generation method
(RPSGM), RPSR rule of combination, and ordered prob-
ability transformation (OPT), which are illustrated by
several numerical examples.

ii) RPSGM can construct RPS based on Gaussian discrimi-
nant model and weight analysis; RPSR rule incorporates
POS with reliability vector, which can combine RPS
sources with reliability in fusion order; OPT is used to
convert RPS into a probability distribution for the final
decision.

iii) An RPSR-based classification algorithm (RPSRCA)
is proposed for classification problems and evaluated
through a series of experiments. The experimental results

show that RPSRCA is more efficient and stable than other
classifiers.

In future work, we aim to apply RPSR into other fields, such
as decision making and fault diagnosis. Besides, we intend to
study the properties of the proposed RPSR rule, especially the
relationship of Dempster’s rule, ER rule, and RPSR rule. More-
over, low-complexity reasoning methods and efficient conflict
management mechanisms of RPSR are also worth studying.
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