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An Evidential-Reasoning-Interval-Based Method
for New Product Design Assessment

Kwai-Sang Chin, Jian-Bo Yang, Min Guo, and James Ping-Kit Lam

Abstract—A key issue in successful new product development is
how to determine the best product design among a lot of feasible
alternatives. In this paper, the authors present a novel rigorous
assessment methodology to improve the decision-making analysis
in the complex multiple-attribute environment of new product de-
sign (NPD) assessment in early product design stage, where several
performance measures, like product functions and features, man-
ufacturability and cost, quality and reliability, maintainability and
serviceability, etc., must be accounted for, but no concrete and reli-
able data are available, in which conventional approaches cannot be
applied with confidence. The developed evidential reasoning (ER)
interval methodology is able to deal with uncertain and incomplete
data and information in forms of both qualitative and quantita-
tive nature, data expressed in interval and range, judgment with
probability functions, judgment in a comparative basis, unknown
embedded, etc. An NPD assessment model, incorporated with the
ER-based methodology, is then developed and a software system is
built accordingly for validation. An industrial case study of electri-
cal appliances is used to illustrate the application of the developed
ER methodology and the product design assessment system.

Index Terms—Evidential reasoning (ER), multiple-attribute de-
cision analysis (MADA), new product development, product design
assessment.

I. INTRODUCTION

THERE is an increasing emphasis raised by both researchers
and practitioners to enhance product design assurance in

early design stages. They advocate to build in all the product
attributes of performance, quality, reliability, safety, maintain-
ability, serviceability, manufacturability, etc., during the product
design process. Hence, the product design process becomes an
increasingly complex decision-making problem in which one
must simultaneously cater, in a rational way, for many interre-
lated criteria of both quantitative and qualitative nature. It is also

Manuscript received August 1, 2006; revised January 1, 2007 and April 1,
2007. Current version published January 21, 2009. This work was supported
by the Research Grants Council of the Hong Kong Special Administrative
Region, China, under Project CityU-1123/03E and Project CityU-1203/04E, by
the City University of Hong Kong under SRG Project CityU-7001971, by the
U.K. Engineering and Physical Science Research Council under Grant EPSRC
GR/S85498/01, and by the National Natural Science Foundation of China under
Grant 70572033. Review of this manuscript was arranged by Department Editor
J. K. Pinto.

K.-S. Chin and J. P.-K. Lam are with the Department of Manufacturing Engi-
neering and Engineering Management, City University of Hong Kong, Kowloon,
Hong Kong (e-mail: mekschin@cityu.edu.hk; me.lam@cityu.edu.hk).

J.-B. Yang is with the Manchester Business School, The University of
Manchester, Manchester M15 6PB, U.K. (e-mail: jian-bo.yang@manchester.
ac.uk).

M. Guo is with the Department of Manufacturing Engineering and Engineer-
ing Management, City University of Hong Kong, Kowloon, Hong Kong, and
also with the Institute of Systems Engineering, Huazhong University of Science
and Technology, Wuhan 430074, China (e-mail: guomin_like@sina.com.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEM.2008.2009792

noted that the design decision analysis has to be conducted on
the basis of both precise numbers and subjective judgments that
are imprecise and vague (fuzzy) in nature. Such uncertainties
can be incurred due to a lack of evidence and understanding
or human’s inability of providing accurate judgments at early
design stage of novel new products. This reveals that a better
decision-making methodology is needed to facilitate product
design assessment in situations where several performance mea-
sures like product functions and features, manufacturability and
cost, quality and reliability, maintainability and serviceability,
etc., must be accounted for, but conventional approaches cannot
be applied with confidence.

The authors have looked into this problem and developed a
novel rigorous assessment methodology that can be used to fa-
cilitate the assessment of new product design (NPD) alternatives
in the early design stage. It allows the use of a combination of
precise, imprecise, and vague information from domain-specific
knowledge with acceptable confidence level. The developed
methodology is able to deal with uncertain data and information
in forms of both qualitative and quantitative nature, data ex-
pressed in interval and range, judgment with probability func-
tions, judgment in a comparative basis, unknown embedded,
etc. With the support of an electrical appliance manufacturer,
the developed assessement methodologies have been validated
with real-life data. Outcomes of the research are expected to
significantly improve the decision analysis in such a vague and
complex multiple-attribute environment, and they also enhance
the effectiveness of product design assessment in early product
design stage. This paper presents the developed methodologies
as well as the validation case in the following sections.

II. EVIDENTIAL REASONING (ER) APPROACH FOR

MULTIPLE-ATTRIBUTE DECISION ANALYSIS (MADA)

A. Basic ER Models for MADA

Basically, the NPD problem is a MADA problem. For
decades, many MADA methods have been developed, such as
the well-known analytical hierarchy process (AHP) [31]–[33]
and multiple-attribute utility theory [7], [23], [24], as well as
their extensions, such as the interval-valued assessments ap-
proach, especially in weight evaluation process [2], [3], [22],
[35], [36], [38], etc. In these methods, MADA problems are
modeled using decision matrices, in which an alternative is as-
sessed on each criterion by either a single real number or an
interval value. Unfortunately, in many decision situations, us-
ing a single number or interval to represent a judgement proves
to be difficult and sometimes unacceptable. Information would
have been lost or distorted in the process of preaggregating
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different types of information, such as a subjective judgement, a
probability distribution, or an incomplete piece of information.

Concerning the fuzziness of MADA problems, a large amount
of fuzzy MADA methods have been proposed in the literature,
such as fuzzy hierarchical aggregation methods [25], conjunc-
tion implication methods [6], [45]–[47], weighted average ag-
gregation methods [5], [15], [16], [40], and weighted average
aggregation with criteria assessment methods [48]. Neverthe-
less, these pure fuzzy MADA approaches are essentially based
on traditional evaluation methods and are unable to handle prob-
abilistic uncertainties such as ignorance as modeled in the belief
structure.

The ER algorithm is developed for aggregating multiple at-
tributes based on a belief decision matrix and the evidence com-
bination rule of the Dempster–Shafer (D-S) theory [14], [37],
[49]–[53]. Different from traditional MADA approaches that
describe a MADA problem using a decision matrix, the ER ap-
proach uses the belief decision matrix, in which each attribute
of an alternative is described by a distribution assessment using
a belief structure. The advantages of doing so is that using a
distribution assessment can both model precise data and capture
various types of uncertainties such as ignorance and vagueness
in subjective judgments [43].

Suppose a MADA problem has M alternatives al , l =
1, . . . , M , one upper level attribute, referred to as general at-
tribute, and L lower level attributes ei, i = 1, . . . , L, called basic
attributes. The relative weights of the L basic attributes are de-
noted by W = (w1 , . . . , wL ), which are supposed to be known
and satisfy the conditions 0 ≤ wi ≤ 1 and

∑L
i=1 wi = 1.

Suppose all M alternatives are assessed using the same
set of N assessment grades Hn, n = 1, . . . , N , which are re-
quired to be mutually exclusive and collectively exhaustive for
the assessment of all attributes. The following N assessment
grades formulate the frame of discernment in the D-S theory of
evidence:

H = {H1 , . . . , HN }. (1)

If alternative al is assessed to a grade Hn on an attribute ei

to a belief degree of βn,i , this assessment will be denoted by
S(ei(al)) = {(Hn, βn,i(al)), n = 1, . . . , N}.

The individual assessments of the M alternatives on the L
basic attributes can be represented by the belief decision matrix
Dg = (S(ei(al)))L×M .

Based on the earlier belief decision matrix and the evidence
combination rule of the D-S theory, both the recursive and an-
alytical ER algorithms have been developed to aggregate the L
basic attributes. The ER approach provides a nonlinear attribute
aggregation process in nature. In the rest of this section, we
briefly introduce the analytical ER algorithm to pave the way
for the later development of the new ER-interval-based model.

The ER algorithm first transforms the original belief degrees
into basic probability masses by combining the relative weights
and the belief degrees using the following equations:

mn,i = mi(Hn ) = wiβn,i(al), n = 1, . . . , N,

i = 1, . . . , L (2)

mH,i = mi(H) = 1 −
N∑

n=1

mn,i = 1 − wi

N∑
n=1

βn,i(al),

i = 1, . . . , L (3)

m̄H,i = m̄i(H) = 1 − wi, i = 1, . . . , L (4)

m̃H,i = m̃i(H) = wi

(
1−

N∑
n=1

βn,i(al)

)
, i= 1, . . . , L (5)

with mH,i = m̄H,i + m̃H,i and
∑L

i=1 wi = 1.
Note that the probability mass assigned to the whole set H ,

mH,i , which is currently unassigned to any individual grades,
is split into two parts: m̄H,i and m̃H,i , where m̄H,i is caused
by the relative importance of the attribute ei and m̃H,i by the
incompleteness of the assessment on ei for al .

Next, the basic probability masses on the L basic attributes
are aggregated into the combined probability assignments by
using the following analytical formulas:

{Hn} : mn = k

[
L∏

i=1

(mn,i + m̄H,i + m̃H,i)

−
L∏

i=1

(m̄H,i + m̃H,i)

]
, n = 1, . . . , N (6)

{H} : m̃H = k

[
L∏

i=1

(m̄H,i + m̃H,i) −
L∏

i=1

m̄H,i

]
(7)

{H} : m̄H = k

[
L∏

i=1

m̄H,i

]
(8)

where

k =

[
N∑

n=1

L∏
i=1

(mn,i + m̄H,i + m̃H,i)

− (N − 1)
L∏

i=1

(m̄H,i + m̃H,i)

]−1

. (9)

Finally, the combined probability assignments are normalized
into overall belief degrees by using the following equations:

{Hn} : βn =
mn

1 − m̄H
, n = 1, . . . , N (10)

{H} : βH =
m̃H

1 − m̄H
(11)

where βn and βH represent the overall belief degrees of the
combined assessments, assigned to the assessment grades Hn

and H , respectively. The combined assessment is also a dis-
tribution assessment, which can be denoted by S(y(al)) =
{(Hn, βn (al)), n = 1, . . . , N}.

The formulas (1)–(11) together constitute a complete ER an-
alytical algorithm. Compared with the evidence combination
rule of the D-S theory, the ER algorithm has at least the fol-
lowing features: 1) taking into account the relative importance
of evidence; 2) modeling ignorance clearly by breaking down
unassigned probability mass into two parts and treating them
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differently; and 3) generating rational conclusions in the combi-
nation of multiple pieces of conflict evidence [28] by employing
the two normalization operations on both the attribute weights
and the combined probability assignments.

However, the basic ER algorithm mentioned before does not
consider the uncertainty caused by interval-valued evaluations,
which are common in real MADA problems. So, in recent
years, the basic ER algorithm is extended to model two kinds of
interval-valued evaluations, interval grades and interval assess-
ment in possibilities, separately.

B. ER Extensions to Interval-Valued Evaluations

1) ER Extensions to Interval Possibility Assignments: The
ER methodology can be extended to model interval-valued dis-
tribution assessments [19], [43] in capturing ambiguity and
diversity in individual or group assessments. If alternative
al is assessed to a grade Hn on an attribute ei to a be-
lief degree interval of [β−

n,i , β
+
n,i ], or βn,i ∈ [β−

n,i , β
+
n,i ], with

β+
n,i ≥ β−

n,i ≥ 0, and ignorance is also given in interval values
[β−

H,i , β
+
H,i ], or βH,i ∈ [β−

H,i , β
+
H,i ], with 1 ≥ β+

H ≥ β−
H ≥ 0,

we denote this by S(ei(al)) = {(Hn, [β−
n,i(al), β+

n,i(al)]), n =
1, . . . , N ; (H, [β−

H,i(al), β+
H,i(al)])}, which is an interval-

valued distribution assessment vector. Note that precise belief
degree is a special case of interval belief degree with β−

n,i = β+
n,i

for every n = 1, . . . , N and β−
H,i = β+

H,i , i = 1, . . . , L.
If the original belief decision matrix Dg = (S(ei(al)))L×M

contains interval belief degrees, the following ER nonlinear
optimization models can be used to aggregate multiple interval
belief structures:

max/min βn (al) (for each n = 1, . . . , N) and βH (al)

(12)

s.t.: β−
n,i ≤ βn,i ≤ β+

n,i , n = 1, . . . , N, i = 1, . . . , L

(13)

β−
H,i ≤ βH,i ≤ β+

H,i , i = 1, . . . , L (14)

N∑
n=1

βn,i + βH,i = 1, i = 1, . . . , L (15)

where βn (al) (for n = 1, . . . , N ) and βH (al) are the functions
of βn,i and βH,i for n = 1, . . . , N, i = 1, . . . , L, generated us-
ing the analytical ER algorithm, as shown in formulas (6)–(11)
or the equivalent expressions shown in (16) and (17) at the
bottom of this page.

2) ER Extensions to Interval Grades Evaluations: Accord-
ing to Xu et al. [44], the performance of alternatives can be

assessed to an individual grade or a grade interval. The com-
plete set of all individual grades and grade intervals, denoted by
Ĥ , for assessing each attribute can be represented by

Ĥ =




H11 H12 · · · H1(N −1) H1N

H22 · · · H2(N −1) H2N

. . .
...

...

H(N −1)(N −1) H(N −1)N

HN N




(18)

where Hpp for p = 1, . . . , N is equivalent to Hp for convenience
in the expressions. Hpq for p = 1, . . . , N, q = p + 1, . . . , N ,
denotes the local uncertainty set that is the union of the basic
grade p to grade q, i.e., Hpq = Hpp ∪ Hp+1,p+1 ∪ · · · ∪ Hqq .
And H1N denotes the overall unknown set, which is equivalent
to the whole set H in formula (1). Note the difference between
the sets given by (1) and (18). The former is used in the basic
ER algorithm and is a subset of the latter.

Based on the earlier assumption, the assessment of an alter-
native on attribute al is then given by

S(al) = {(Hpq , βpq,i), p = 1, . . . , N,

q = p, . . . , N, i = 1, . . . , L} (19)

where
∑N

p=1
∑N

q=p βpq,i = 1 holds.
Similar to the basic ER algorithm, the mass functions are

defined as follows:

mpq,i = wiβpq,i , p = 1, . . . , N,

q = p, . . . , N, i = 1, . . . , L (20)

mH,i = 1 − wi, i = 1, . . . , L. (21)

According to the basic ER aggregation rules, the recursive
aggregation algorithms can be obtained as follows:

mpq,I (1) = mpq,1 (22)

mH,I (1) = mH,1 (23)

mpq,I (i+1) =
1

1 − KI (i+1)

[
− mpq,I (i)mpq,i+1

+
p∑

k=1

N∑
l=q

(mkl,I (i)mpq,i+1 + mpq,I (i)mkl,i+1)

+
p−1∑
k=1

N∑
l=q+1

(mkq,I (i)mpl,i+1 +mpl,I (i)mkq,i+1)

+ mH,I (i)mpq,i+1 + mpq,I (i)mH,i+1

]
(24)

βn (al) =
∏L

i=1 (wiβn,i + 1 − wi + wiβH,i) −
∏L

i=1 (1 − wi + wiβH,i)∑N
q=1

∏L
i=1 (wiβq,i + 1 − wi + wiβH,i) − (N − 1)

∏L
i=1 (1 − wi + wiβH,i) −

∏L
i=1 (1 − wi)

(16)

βH (al) =
∏L

i=1 (1 − wi + wiβH,i) −
∏L

i=1 (1 − wi)∑N
q=1

∏L
i=1 (wiβq,i + 1 − wi + wiβH,i) − (N − 1)

∏L
i=1 (1 − wi + wiβH,i) −

∏L
i=1 (1 − wi)

. (17)
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and the probability mass at large in H is given by

mH,I (i+1) =
mH,I (i)mH,i+1

1 − KI (i+1)
(25)

where KI (i+1) is the combined probability mass assigned to the
empty set {Φ}

KI (i+1) =
N∑

p=1

N∑
q=i

p−1∑
k=1

p−1∑
l=k

(mkl,I (i)mpq,i+1 +mpq,I (i)mkl,i+1).

(26)
The scaling factor 1/(1 − KI (i+1)) is used to make sure that∑N

p=1
∑N

q=i mpq,I (i+1) + mH,I (i+1) = 1.
The earlier aggregation process is applied recursively until all

the L basic attribute assessments are aggregated, and the overall
assessment of an alternative al can be expressed as

S(al) = {(Hpq , βpq (al)), p = 1, . . . , N, q = i, . . . , N}

with

βpq =
mI (L)(Hpq )

1 − mI (L)(U)
, p = 1, . . . , N, q = p, . . . , N.

(27)
Note that βH = β1N .

C. ER Extensions to Both Interval Grades and Possibility
Assignments

1) Combined Modeling Methodology of Both Interval
Grades and Possibility Assignments: If alternative al is assessed
to a grade Hpq on an attribute ei to a belief degree interval
of [β−

pq ,i , β
+
pq ,i ], or βpq,i ∈ [β−

pq ,i , β
+
pq ,i ], with β+

pq ,i ≥ β−
pq ,i ≥ 0,

we denote this by S(ei(al)) = {(Hpq , [β−
pq ,i(al), β+

pq ,i(al)]),
p = 1, . . . , N, q = p, . . . , N}, which is an interval-valued dis-
tribution assessment vector. Note that precise belief degree is
a special case of interval belief degree with β−

pq ,i = β+
pq ,i for

every p = 1, . . . , N, q = p, . . . , N , i = 1, . . . , L.
If the original belief decision matrix Dg = (S(ei(al)))L×M

contains interval belief degrees, the following ER nonlinear
optimization models can be used to aggregate multiple interval
belief structures:

max/minβpq (for each p = 1, . . . , N, q = p, . . . , N)

and βH (28)

s.t.: β−
pq ,i ≤ βpq,i ≤ β+

pq ,i , p = 1, . . . , N, q = p, . . . , N,

i = 1, . . . , L (29)

N∑
p=1

N∑
q=p

βpq,i = 1, i = 1, . . . , L (30)

where βpq (for each p = 1, . . . , N, q = p, . . . , N ) and βH are
the functions of βpq,i , βH,i for p = 1, . . . , N, q = p, . . . , N ,
i = 1, . . . , L, generated using the analytical Interval-based
Evidential Reasoning (IER) algorithm, as shown in formulas
(20)–(27).

2) Utility Estimation Models for Our Methodology: For
ranking alternatives, expected utility values can be calcu-
lated. Suppose u(Hpp) is the utility value of the grade Hpp

with u(Hp+1,p+1) > u(Hpp) as it is assumed that the grade
Hp+1,p+1 is preferred to Hpp . Because of interval uncertainty,
the maximum, minimum, and average expected utilities are cal-
culated. As the belief degree βpq could be assigned to the best
grade in the interval Hpq , which is Hqq , if the uncertainty turned
out to be favorable to the assessed alternative, then the utility
value could be calculated as

∑N
p=1

∑N
q=p βpqu(Hqq ). However,

if alternative al is assessed to a grade Hpq on an attribute ei to
a belief degree interval of [β−

pq ,i , β
+
pq ,i ], the result of βpq will

also appear in interval, so the maximal utility value could be
calculated as follows:

umax(al) = max
N∑

p=1

N∑
q=p

βpqu(Hqq )

s.t. formulas (29) and (30). (31)

Similarly, in the worst case, if the uncertainty turned out to
be against the assessed alternative, i.e., the belief degree βpq

assigned to Hpp , the worst grade in the interval Hpq , then the
minimum value would be given by

umin(al) = min
N∑

p=1

N∑
q=p

βpqu(Hpp)

s.t. formulas (29) and (30). (32)

The average of the two is given by

uavg(al) =
umax(al) + umin(al)

2
. (33)

III. NPD ASSESSMENT

A. Product Design Assessment Model

Facing the global competition, the trend of the industry is
moving toward the design and manufacture of more sophisti-
cated products with better and safer performance, higher qual-
ity and reliability, more environmental friendliness, and shorter
time. Such multiple criteria have to be considered and assessed
at the early product design stage. The difficulty in conducting the
assessment at early design stage comes from the fact that lim-
ited reliable data are available to measure and evaluate decision
criteria, though vague information or subjective judgements are
often used [12], [21], [26].

Previous researches have identified criteria for assessing
product design and measuring product development perfor-
mance [1], [4], [11], [12], [17], [18], [20], [27], [30], which pro-
vides a gauge for companies to assess design approaches and, in
turn, select the most suitable design. Most of the studies employ
simple qualitative assessment methods [13], [20], [27], [41], in
which a single value is assigned to assess product performance.
Another approach is to employ knowledge-based or case-based
support, which is based on qualitative judgment with experi-
ence of historical product design projects [8], [9], [54]. The
approaches, however, are not able to address the problem of
uncertainty and the involvement of both qualitative and quanti-
tative data that are common in NPD. Thus, this study is dedi-
cated to dealing with the deficiencies of the current assessment
methods. On the basis of the literature, this research proposes
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TABLE I
HIERARCHICAL PRODUCT DESIGN ASSESSMENT MODEL

a hierarchal product design assessment model that constitutes
three categories of criteria, namely product cost, project risk,
and customer satisfaction, as depicted in Table I. The model
elements are described in the following sections.

1) Product Cost: Product cost covers the cost of NPD project
activities, which has four components. The first component is re-
search and development cost that is associated with the activities
that realize the design idea and make it feasible for subsequent
production. The activities include developing product design,
process design, new equipment, and tools development or pur-
chase, as well as physical prototyping. The second component is
manufacturing cost that is associated with the manufacturing of
the product, which includes production and material costs. Qual-
ity cost is the third component, which is associated with evaluat-
ing the quality of the raw materials/components/parts/products,
and the activities resulting from the failure of products in meet-
ing quality requirements discovered prior to product delivery.
The fourth component is after-sale-services cost. It is the ex-
pense of providing services to the customers after product sale.

2) Project Risk: Project risk is the likelihood that the new
product development project will not be successfully completed
within specified time constraints, which is evaluated in three
aspects: research and development risk, supply risk, and pro-
duction risk. Research and development risk is the probability
that product requirements will not be realized on schedule due
to the insufficiency of research and development. Supply risk
deals with the chance that the suppliers will not be able to
delivery qualified raw materials/components/parts on schedule,
while production risk is the probability that the production re-
quirements will not be met within the specified time constraint.

3) Customer Satisfaction: Customer satisfaction evaluates
the degree to which the product design can meet customer re-
quirements and expectation in terms of three subcriteria, namely
product functions, product appearance, and product availabil-
ity. Product functions assess both the product’s primary operat-
ing characteristics, which deliver basic product functions, and

the product’s secondary operating characteristics, which sup-
plement the basic functions. Product appearance deals with the
visible characteristics of the product, which considers the beauty
or art of the product (aesthetic) and the extent to which the design
fits the customers’ human characteristics so that the customers
will use the product comfortably and safely (ergonomics). An-
other indicator of customer satisfaction is product availability
that is defined as the probability that the product will be avail-
able and capable of performing its intended functions for a given
period of time after the product delivery. Product availability is
evaluated in terms of product reliability, the probability that the
product will perform its intended functions for a given period of
time, and product maintainability, which is the probability that
the product will retain or can be restored to a specified condition
within a given period of time when maintenance is performed.

The assessment model constitutes critical criteria for product
design. However, in practice, the criteria may not be of equal
importance. The importance weightings of the criteria may vary
depending on such factors as companies’ marketing strategies
and financial ability. Thus, companies need to determine the
importance weightings of the model criteria according to their
own companies’ situations.

B. Product Design Decision-Making Process

This study also develops a decision-making process for con-
ducting the product design assessment. As depicted in Fig. 1,
the process begins with the collection of information that covers
all the criteria of the proposed assessment model to assess prod-
uct design. The proposed assessment methodology is capable
of handling various types of information inputs, viz., precise
numbers, interval numbers, belief structures, and comparison
numbers. Precise numbers are single or exact values, for ex-
ample, 3 out of a 1–7 Likert scale. Interval numbers express
judgments in ranges, for instance, estimated quality cost ranges
from $50 000 to $60 000. The third type of inputs is belief struc-
tures that represent an assessment as a distribution. For example,
an assessor judges supply risk to be 3 (probability = 40%) or 4
(probability = 60%) using a 1–7 scale. It should be noted that
the sum of the probability could be between 0 and 1. If sum = 1,
it indicates a complete assessment that the assessor is 100% sure
about the judgment. It is an incomplete assessment when sum <
1, which may reveal that the assessor is not fully confident
about the assessment due to a lack of evidence/understanding.
The fourth type of input is comparisons between design options,
for example, production risk of design A is at least 50% of that
of design B. Moreover, the proposed assessment methodology
is able to cater for judgments that constitute the natures of the
four types of inputs. For instance, an assessment on quality
cost could be $20 000–$22 000 (50%), $25 000–$26 000 (30%).
This feature well addresses the imprecise and vague natures
of assessment judgments, which can significantly help improve
assessment accuracy without having to making unnecessary as-
sumptions for incomplete or missing information.

The next step of the decision-making process is assessment
transformation. Inputs of different formats are transformed to
the ER format for subsequent assessment aggregation. Then, the
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Fig. 1. NPD decision-making process.

transformed inputs of all the assessment criteria are aggregated
using the ER algorithm to generate assessment results. Last,
based on the results, two sets of useful information can be ob-
tained: ranking of design options and information for redesign.
Companies can prioritize and select design options based on
their overall assessment scores. Moreover, the proposed method-
ology can also provide a distributed assessment structure that
depicts the performance of the design options in all the aspects
(criteria) of the assessment model. On the basis of the structure,
companies can readily identify areas where the design can be
improved.

In short, based on the proposed decision-making process,
we can use the assessment methodology to systematically and
rationally assess product design in order to prioritize design
options and obtain information for design improvement.

IV. VALIDATION CASE

A. Case Background

This section presents the validation of the developed ER-
interval-based assessment methodology, presented in Section II,
for assessing design options rationally and systematically. A
case study in a Hong Kong electrical appliance manufacturer
was conducted to demonstrate the applicability and potential
of the developed assessment methodology. The company is an
original design manufacture (ODM) manufacturer of high-end
torch products. Identifying customer needs is an integral part of
its concept development phase of the product development pro-
cess. The resulting customer needs are used to guide the product
designers establishing specifications, generating product con-
cepts, and selecting a product concept for further development.
It develops around only 20 new products per year, but it needs
to generate nearly 100 product concepts a year. Assessing and
selecting alternative product concepts are thus critical to the
company.

The developed ER-interval-based assessment methodology
was validated in the task of assessing alternative product de-
sign concepts during the early product design stage. The design

alternatives are more or less able to meet the customer needs,
at least the basic performance and functional requirements, and
the targeted price range. They may, however, differ in the ma-
terial used, manufacturing processes, optional functional and
aesthetic features, expected quality and reliability performance,
etc. The required information and knowledge were collected
from the industrial experts. In this validation, the rationality,
flexibility, and transparency of the decision analysis process for
an industrial product design were examined.

The validation consists of two steps. The first step is to deter-
mine the importance weightings with the AHP approach. With
the AHP, each assessment criterion of the developed hierarchi-
cal model, shown in Table I, is determined by the collaborating
company. The weightings reflect the company’s strategies and
emphasis on the product design evaluation, which may vary
from company to company. The second step is to assess the
product design alternatives by collecting the expert judgments
of each criterion, which, in turn, is transformed to a composite
index. The judgments are associated with uncertainties that may
be a combination of precise, imprecise, and vague information
from domain-specific knowledge. As discussed in Section II, the
developed methodology is able to deal with uncertain data and
information in forms of both qualitative and quantitative nature,
data expressed in interval and range, judgment with probability
functions, judgment in a comparative basis, unknown embed-
ded, etc.

B. Importance Weightings of Criteria

In determining the importance weightings of assessment
criteria, the AHP approach method is used. AHP is a well-
recognized decision-making technique developed by Saaty
[31]–[33] to tackle the complex problems of choice and prioriti-
zation, which enables better accuracy and consistency compared
to conventional scoring methods [29]. The AHP is designed
to decompose a complex, multicriteria problem into multiple
levels of hierarchy. Experts are interviewed and pairwise com-
parison judgments are applied to pairs of homogeneous criteria,
eventually to generate the overall priorities for ranking the alter-
natives [34]. The AHP is extensively applied in different areas
with different applications [42]. Priority and ranking is one of
the applications widely used in different areas, such as manu-
facturing and engineering, and is applied in this study [10], [39].
The Product Development Director of the company, who was
qualified and experienced in both strategic and technical ar-
eas, provided the expert opinion to determine the importance
weightings. The AHP results are depicted in Table II.

In level 1, the AHP result shows that when the company
evaluates different product design alternatives, they put more
emphasis on the project risks (0.429) and customer satisfaction
(0.429), rather than the product cost (0.142). Actually, it does
not imply that the cost element is not important in new product
development. As mentioned before, all the alternatives to be
evaluated are within the targeted cost range. Otherwise, they
should have been screened out earlier. The result reflects that the
company, within the acceptable cost range, pays more attention
to risks and customers aspects.
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TABLE II
IMPORTANCE WEIGHTING OF THE EVALUATION CRITERIA

The weightings are further established to the criteria in levels
2 and 3 respectively. In the product cost category, manufacturing
cost (0.056) and quality cost (0.056) are more important than
others, such as research and development cost (0.021) and after-
sale-service cost (0.009). This is typical in consumer product
manufacturing as the production is relatively in large volume.
In project risks category, research and development risk (0.231)
is of the highest importance, followed by supply risk (0.127) and
production risk (0.071). This reflects that the company is strong
in production and comparatively has more concern in research
and development than the supply aspect. In customer satisfaction
category, product appearance (0.240) is more important than
the other two factors, product functions (0.137) and product
availability (0.052). Torch is in a typical consumer household
product market, in which the availability is not as important
as the industrial product market. As mentioned before, all the
alternatives to be evaluated are more or less able to meet the basic
performance and functional requirements. Product appearance,
comparatively, is more influential to the customer satisfaction
in the torch market.

C. Evaluation on Product Design Alternatives

Having determined the importance weightings of assessment
criteria as described in Section IV-B, the developed ER as-
sessment methodology was used to assess two product design
alternatives of a 2AA minisport torch, as shown in Fig. 2. The
2AA torch is operated by two AA size batteries with a major
product requirement of minimum 5-m waterproof-ability.

There are two product concepts generated, one which is of a
rectangular shape, while another is cylindrical. The rectangular
one is a novel design of waterproof torch, while the cylindri-
cal design is traditional and well-proven in similar models in
the company. The waterproofness and manufacturability of the
rectangular design are not yet proved in mass production, so
more risks may be associated. Since there are fewer common
components available in the company, as compared with the
cylindrical design, the process design and equipment/tooling

Fig. 2. Product design alternatives of a 2AA minisport. (a) Concept 1: rectan-
gular shape. (b) Concept 2: cylindrical shape.

costs, as well as production costs for the rectangular design,
are higher. Nevertheless, as indicated from a preliminary mar-
ket survey, the rectangular design is more favorable because of
its novel appearance. The selection between these two product
concepts is thus a complex decision-making problem in which
we have to simultaneously evaluate many interrelated criteria
of both quantitative and qualitative nature. It is also noted that
uncertainties are incurred due to a lack of evidence of the novel
rectangular design at the early design stage.

According to the developed product design evaluation model,
as shown in Table II, and the developed ER-interval-based as-
sessment methodologies, described in Section II, data and expert
judgment for the two design alternatives on each criterion were
collected from the design teams of the company. The judgments
are associated with uncertainties that are a combination of pre-
cise, imprecise, and vague information in various forms from
domain-specific knowledge. Comparatively, more uncertainties
are noticed in the evaluation of the rectangular concept than the
cylindrical as the company does not have the experience with the
novel rectangular design as much as the cylindrical one. Typical
examples of the various formats of data and information are
described next.

1) The judgment is shown in a precise number, e.g., the es-
timated process design cost of the cylindrical concept is
$30 000.

2) The judgement is in interval value, e.g., the estimated
product design cost of the rectangular concept is $50 000–
$70 000, and the R&D capability rating of the cylindrical
concept is in the interval of 6–7 out of the 1–7 scale.

3) The judgment is presented in a belief structure, e.g., the
estimated unit production cost of the rectangular concept
is $12 of 30% probability, $12.5 of 50% probability, while
$13 of 20% probability. The sum of the probability is 1,
indicating that the assessor is fully confident about the
judgment.

4) The judgement is presented in a comparison basis. For
instance, in the product features aspect, the maximum
waterproofness of the cylindrical concept, based on the
performance of similar design in existing product lines, is
estimated to be 100% probability with 10 m, 80% prob-
ability with 12 m, and 20% with 15 m. The company
does not have the direct experience with this novel rect-
angular design, but its performance can be estimated by a
comparison with the cylindrical one. The maximum wa-
terproofness of the rectangular concept is estimated to be
100% probability with at least 50% of the performance of
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cylindrical concept, 20% probability with 60% of cylin-
drical performance, and 5% probability with 70% or more
of cylindrical performance.

According to the various formats of the collected data and
expert judgements about these two design alternatives, some
transformation techniques have to be established to convert all
the forms into the developed ER-based assessment methodol-
ogy. In the following section, we will discuss the proposed
transformation techniques and the data processing results.

V. DATA PROCESSING PROCEDURES AND RESULTS

A. Data Processing Procedures

1) Transformation Techniques for Quantitative Data:
a) In the subfactor “product design cost,” the evaluation scale

corresponding to seven evaluation grades are given as
20 000–80 000, where 20 000 corresponds to the best grade
(H7), 30 000 to H6 , . . . , and 80 000 to the worst grade
(H1) (see Fig. 3). Since the evaluation values of “rect-
angle light” is 50 000–70 000, the corresponding grades
interval is H2,4 , so these evaluations can be expressed in
ER formats as follows:

{H2,4 : 100%}
or βpq,i = 0, for p = 1, . . . , N, q = p, . . . , N,

except for β2,4,i = 1.

b) In the subfactor “inspection and testing cost,” the evalu-
ation scale corresponding to the seven evaluation grades
are given as $0.2–$0.6 per unit, where $0.2 corresponds to
the best grade (H7), . . . , $0.4 to average H4 , . . . , and $0.6
to the worst H1 . Since the evaluation value of “rectangle
light” is $0.5 with 100% certainty, which is between grade
H2 ($0.534) and grade H3 ($0.467), the possibility value
100% should be assigned to H2 and H3 properly. Accord-
ing to Yang [49], the distances between the quantitative
evaluation and the two nearest grades are considered in
the transformation as follows.

For example, in Fig. 4, we have

β2 =
x2

x1 + x2
= 0.5 β3 = 1 − β2 = 0.5.

So the transformed result for $0.5 in terms of grades is
given by H2 : 50% and H3 : 50%.

c) In the subfactor “product features,” the original evaluation
of cylindrical torchlights is given in the following formats:

cylindrical waterproof >10 m of 100% probability;

>12 m of 80% probability;

>15 m of 20% probability;

which are equivalent to the following three interval assess-
ments with uncertainty:

cylindrical waterproof= [10, 12] meters of 20% probability;

[12, 15] meters of 60% probability;

[15, 18] meters of 20% probability.

Fig. 3. Transformation from quantitative scale to evaluation grades.

Fig. 4. Transformation for single quantitative evaluation.

Fig 5. Transformation for quantitative interval evaluation.

However, these intervals are between the grades defined in
Fig. 5. For example, in the interval [10, 12] meters, 10 m is
between H3 and H4 , while 12 is between H4 and H5 . So the
interval [10, 12] belongs to grades H3 , H4 , and H5 to certain
degrees. According to the interval information transformation
technique proposed by Wang et al. [43], the interval [10, 12] can
be equivalently transformed to the following interval beliefs:

β−
3,i = 0 and β+

3,i = I1,1 ×
11.5 − 10

11.5 − 9.34
× 20%

β−
4,i = min

(
10 − 9.34

11.5 − 9.34
,

13.67 − 12
13.67 − 11.5

)
× 20% and

β+
4,i = (I1,1 + I2,1) × 20%

β−
5,i = 0 and β+

5,i = I2,1 ×
12 − 11.5

13.67 − 11.5
× 20%

with I1,1 + I2,1 = 1 and I1,1 × I2,1 = 0, or

{(H33 , [0, 0.139I1,1 ]), (H44 , [0.061, 0.2]), (H55 , [0, 0.046I2,1 ])}.

Similarly, waterproof of 12–15 m of 60% probability can be
transformed to

β−
4,i = 0 and β+

4,i = I1,2 ×
13.67 − 12

13.67 − 11.5
× 60%

β−
5,i = min

(
12 − 11.5

13.67 − 11.5
,

15.84 − 15
15.84 − 13.67

)
× 60% and

β+
5,i = (I1,2 + I2,2) × 60%

β−
6,i = 0 and β+

6,i = I2,2 ×
15 − 13.67

15.84 − 13.67
× 60%

with I1,2 + I2,2 = 1 and I1,2 × I2,2 = 0, or

{(H44 , [0, 0.462I1,2 ]), (H55 , [0.138, 0.6]), (H66 , [0, 0.368I2,2 ])}.
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Fig. 6. Transformation between two different sets of evaluation grades.

And waterproof of 15–18 m of 20% probability can be trans-
formed to

β−
5,i = 0 and β+

5,i = I1,3 ×
15.84 − 15

15.84 − 13.67
× 20%

β−
6,i = min

(
15 − 13.67

15.84 − 13.67
, 0

)
× 20% and

β+
6,i = (I1,3 + I2,3) × 20%

β−
7,i = 0 and β+

7,i = I2,3 ×
18 − 15.84
18 − 15.84

× 20%

with I1,3 + I2,3 = 1 and I1,3 × I2,3 = 0, or

{(H55 , [0, 0.077I1,3 ]), (H66 , [0, 0.2]), (H77 , [0, 0.2I2,3 ])}.
According to the uncertain information transformation tech-

nique proposed by Yang [49], the uncertain assessments of the
waterproof performance for cylindrical torchlights can be equiv-
alently represented by the following interval belief structure:

{(H33 , [0, 0.139I1,1 ]), (H44 , [0.061, 0.2 + 0.462I1,2 ]),

(H55 , [0.138, 0.046I2,1 + 0.6 + 0.077I1,3 ]),

(H66 , [0, 0.368I2,2 + 0.2]), (H77 , [0, 0.2I2,3 ])}
with I1,1 + I2,1 = 1, I1,1 × I2,1 = 0, I1,2 + I2,2 = 1, I1,2 ×
I2,2 = 0, I1,3 + I2,3 = 1, and I1,3 × I2,3 = 0.

2) Transformation Techniques for Qualitative Data: Trans-
formation between two different sets of evaluation grades can
be done based on the utility values of the grades. For exam-
ple, for the subfactor “product maintainability,” the original
evaluation data are given using the five grades from 1 to 5,
where 1 stands for the worst grade and 5 for the best grade.
However, this scale must be transformed to the overall eval-
uation grades between 1 and 7, as shown in Fig. 6. The two
scale systems can be transformed using the following formulas:

Grades 1–5 Grades 1–7
1 1
2 2: 50%; 3: 50%
3 4
4 5: 50%; 6: 50%
5 7

3) Transformation for Pairwise Comparison Data: For the
subfactor “product features,” the original data for evaluation of
rectangle light are more complicated. It is originally stated that
if a sample of cylindrical torchlights is taken and if it has the
waterproof of 10 m, then the decision maker (DM) can evaluate
the waterproof for rectangle torchlights as follows.

a) The designers are 100% sure that rectangle torchlights
have at least 50% of the waterproof performance of cylin-
drical torchlights. In other words, 100% of rectangle torch-
lights have the waterproof performance of more than 5 m.

b) The designers are 20% sure that rectangle torchlights have
at least 60% of the waterproof performance of cylindrical
torchlights. In other words, 20% of rectangle torchlights
have the waterproof performance of more than 6 m.

c) The designers are 5% sure that rectangle torchlights have
at least 70% of the waterproof performance of cylindrical
torchlights. In other words, 5% of rectangle torchlights
have the waterproof performance of more than 7 m.

These original statements mean that:

80% of rectangle torchlights have waterproof performance of
[5, 6] meters;

15% of rectangle torchlights have waterproof performance of
[6, 7] meters;

5% of rectangle torchlights have waterproof performance of
more than 7 m.

However, the evaluation of the waterproof performance for
cylindrical torchlight is not as simple as the above sample
(10 m), but is in more complicated uncertain interval formats.
So, we need to find the probability distribution for the water-
proof performance of rectangle torchlights from the given eval-
uation of the waterproof performance for cylindrical torchlight,
as shown in the following.

The original data were given by:

100% sure that rectangle torchlights have at least 50% of cylin-
drical waterproof;

20% sure that rectangle torchlights have at least 60% of cylin-
drical waterproof;

5% sure that rectangle torchlights have at least 70% of cylindri-
cal waterproof.

This is equivalent to the following statements:

80% sure that rectangle torchlights have 50%–60% of cylindri-
cal waterproof;

15% sure that rectangle torchlights have 60%–70% of cylindri-
cal waterproof;

5% sure that rectangle torchlights have 70%–100% of cylindri-
cal waterproof.

However, as discussed earlier, the cylindrical waterproof is given
by the following three uncertain intervals with different proba-
bilities:

cylindrical waterproof = [10, 12] meters of 20% probability;
cylindrical waterproof = [12, 15] meters of 60% probability;
cylindrical waterproof = [15, 18] meters of 20% probability.

In the following, we transform the earlier comparison data
for evaluation of rectangle waterproof with respect to cylin-
drical waterproof to uncertain interval assessments of differ-
ent probabilities. First, we transform the following uncertain
assessment:

80% sure that rectangle torchlights have 50%–60% of cylindri-
cal waterproof.

Note that 50%–60% of cylindrical waterproof means that rect-
angle waterproof is:
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[10 × 0.5, 12 × 0.6] meters of 20% probability;
[12 × 0.5, 15 × 0.6] meters of 60% probability;
[15 × 0.5, 18 × 0.6] meters of 20% probability;

or:

[5.0, 7.2] meters of 20% probability;
[6.0, 9.0] meters of 60% probability;
[7.5, 10.8] meters of 20% probability.

So, the earlier uncertain assessment can be equivalently trans-
formed to the following three intervals with different probabili-
ties, where “⇒” means “is equivalent to”:

80% sure that rectangle torchlights have 50%–60% of cylindri-
cal waterproof

⇒ rectangle waterproof is
[5.0, 7.2] meters of 16% (20% × 80%) probability;
[6.0, 9.0] meters of 48% (60%×80%) probability;
[7.5, 10.8] meters of 16% (20%×80%) probability.

Similarly, we can equivalently transform each of the following
two uncertain assessments into three intervals with different
probabilities as follows:

15% sure that rectangle torchlights have 60%–70% of cylindri-
cal waterproof

⇒ Rectangle waterproof is
[6.0, 8.4] meters of 3% (20% × 15%) probability;
[7.2, 10.5] meters of 9% (60% × 15%) probability;
[9.0, 12.6] meters of 3% (20% × 15%) probability.

And:

5% sure that rectangle torchlights have 70%–100% of cylindri-
cal waterproof

⇒ Rectangle waterproof is
[7.0, 12.0] meters of 1% (20% × 5%) probability,
[8.4, 15.0] meters of 3% (60% × 5%) probability,
[10.5, 18.0] meters of 1% (20% × 5%) probability.

In summary, rectangle waterproof can be equivalently assessed
using the following nine intervals with different probabilities
summed to one, i.e.

Rectangle waterproof is
[5.0, 7.2] meters of 16% probability;
[6.0, 8.4] meters of 3% probability;
[6.0, 9.0] meters of 48% probability;
[7.0, 12.0] meters of 1% probability;
[7.2, 10.5] meters of 9% probability;
[7.5, 10.8] meters of 16% probability;
[8.4, 15.0] meters of 3% probability;
[9.0, 12.6] meters of 3% probability;
[10.5, 18.0] meters of 1% probability.

The earlier uncertain interval assessments for rectangle water-
proof can be further transformed to an equivalent interval belief
assessment using the grades defined in Fig. 5, as shown in the
Appendix. In summary, the interval belief assessment of the
waterproof performance for rectangle torchlights can be repre-

sented as follows:

{(H11 , [0, 0.16I1,1 + 0.016I1,2 + 0.259I1,3 + 0.0008I1,4 ]),

(H22 , [0.088, 0.16 + 0.03 + 0.48 + 0.01(I1,4 + I2,4)

+ 0.089I1,5 + 0.136I1,6 + 0.013I1,7 + 0.0047I1,8 ]),

(H33 , [0.003, 0.002I2,1 + 0.017I2,2 + 0.405I2,3

+ 0.01(I2,4 + I3,4) + 0.09 + 0.16 + 0.03(I1,7 + I2,7)

+ 0.03(I1,8 + I2,8) + 0.0046I1,9 ]),

(H44 , [0, 0.01(I3,4 + I4,4) + 0.048I2,5 + 0.108I2,6

+ 0.03(I2,7 + I3,7) + 0.03(I2,8 + I3,8)

+ 0.01(I1,9 + I2,9)]),

(H55 , [0, 0.0023I4,4 + 0.03(I3,7 + I4,7) + 0.0152I3,8

+ 0.01(I2,9 + I3,9)]),

(H66 , [0, 0.018I4,7 + 0.01(I3,9 + I4,9)]),

(H77 , [0, 0.01I4,9 ])}

with

I1,1 + I2,1 = 1 I1,1 × I2,1 = 0

I1,2 + I2,2 = 1 I1,2 × I2,2 = 0

I1,3 + I2,3 = 1 I1,3 × I2,3 = 0

I1,4 + I2,4 + I3,4 + I4,4 = 1

I1,4 × (I2,4 + I3,4 + I4,4)+ I2,4 × (I3,4 + I4,4) +I3,4 × I4,4 =0

I1,5 + I2,5 = 1 I1,5 × I2,5 = 0

I1,6 + I2,6 = 1 I1,6 × I2,6 = 0

I1,7 + I2,7 + I3,7 + I4,7 = 1

I1,7 × (I2,7 + I3,7 + I4,7)+ I2,7 × (I3,7 + I4,7)+ I3,7×I4,7 =0

I1,8 + I2,8 + I3,8 = 1 I1,8 × (I2,8 + I3,8) + I2,8 × I3,8 = 0

I1,9 + I2,9 + I3,9 + I4,9 = 1

I1,9 × (I2,9 + I3,9 + I4,9)+ I2,9 × (I3,9 + I4,9)+ I3,9×I4,9 =0.

B. Results

By applying the ER nonlinear maximizing and minimizing
optimization models shown in formulas (28)–(30), evaluations
based on the 24 criterions shown in Table II can be aggre-
gated into the final evaluations βpq for each p = 1, . . . , 7, q =
p, . . . , 7, which also appears in min – max intervals, i.e., βpq is
between [min βpq ,max βpq ], and they are shown in Tables III
and IV for the two alternative products, respectively.

It is observed that the overall evaluation of rectangle light is
mostly distributed in H11 ,H33 ,H55 , and global unknown H17
is about 0.6%–0.7%, while local unknown appears in H12 , H23 ,
H24 , H34 , H56 .

For cylindrical light, it is observed that most of the possibil-
ity is distributed in H33 ,H66 , while local unknown appears in
H45 ,H67 .
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TABLE III
βpq FOR RECTANGLE LIGHT

TABLE IV
βpq FOR CYLINDRICAL LIGHT

Fig. 7. Utility comparisons.

From Tables III and IV, the preference order of cylindrical
and rectangle light is not easy to be observed, so the utility
analysis procedures are used to compare the two alternatives.

Given the utility scale

U = [0 0.17 0.34 0.5 0.67 0.84 1]

where H11 has the utility value of zero and H77 has utility
value of one, we can obtain the minimum utility value umin and
maximum utility value umax of rectangle light as 0.3525 and
0.5132, and for cylindrical light, as 0.5840 and 0.7791.

It can be found that cylindrical light performs dominantly
better than rectangle light, for

umin(cylindrical) = 0.5840 > umax(rectangle) = 0.5132.

So we can conclude that cylindrical light is strictly better than
rectangle light (see Fig. 7).

The final result gives the product designers support to make
the choice between two designs. It is, however, noted that, in
some cases, the result may be not so clear because of the uncer-
tainties of initial NPD data, such as unknown, imprecise both
in interval grades and possibility uncertainties. For example,
if the minimum and maximum utility value of rectangle light
are 0.3525 and 0.6, and that of cylindrical light are 0.5840 and
0.7791, then

umin(cylindrical) = 0.5840 > umax(rectangle) = 0.6.

We cannot conclude that cylindrical light is strictly better
than rectangle, although with large possibility, that the former
is better than the latter. If this possibility is not big enough to
be accepted by the DM or the DM wants the strictly dominant
result, the initial evaluation data should be reevaluated by the
DM, and then the earlier ER aggregating methods should be
applied again to obtain a better or dominant result. For more
detail, refer to the work of Guo et al. [19].

VI. CONCLUSION

The product design process becomes an increasingly complex
decision-making problem in which one must simultaneously
cater, in a rational way, for many interrelated criteria of both
quantitative and qualitative nature. It is also noted that the design
decision analysis has to be conducted on the basis of both precise
numbers and subjective judgments that are imprecise and vague
(fuzzy) in nature. Such uncertainties can be incurred due to
a lack of evidence and understanding or human’s inability of
providing accurate judgments at early design stage of novel new
products. This paper presents the authors’ new development of a
novel rigorous assessment methodology to improve the decision
analysis in the complex multiple-attribute environment of NPD
assessment in early product design stage.

The authors extend the basic ER algorithm to consider the un-
certainties caused by interval-valued evaluations, which happen
in several MADA problems, such as product design assessment.
The developed ER-interval methodologies could improve the
decision analysis on the basis of taking into account both two
kinds of interval-valued evaluations, interval grades and interval
assessment in possibilities. As shown in the case study, the in-
dustrial experts’ judgments are associated with uncertainties that
are a combination of precise, imprecise, and vague information
in various forms. The typical formats of data and information
employed in the industry are described in, namely, a precise
number, an interval value, a belief structure, and a comparison
scale. The ER-interval methodology is able to deal with these
uncertain data and information in various forms with probability
functions, in a comparative basis, unknown embedded, etc.

To illustrate the contribution of this research to the practice,
the authors formulate an NPD assessment framework incorpo-
rated with the ER-interval methodology for the implementation
through a case study. A hierarchal product design assessment
model that constitutes three categories of criteria, namely prod-
uct cost, project risk, and customer satisfaction, is proposed. The
model consists of 24 evaluation factors in three levels. An AHP-
based methodology is also proposed to determine the relative
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importance weightings of individual factor. This provides a way
of thinking about the implementation of the ER-interval-based
product design assessment methodology to be conducted, and
helps product designers understand and assess the alternative
new product concepts.

The development of the ER-interval-based NPD assessment
methodology is motivated by practicing product designers try-
ing to make decisions about choices of alternative new product
concepts. The authors have demonstrated the applicability of the
methodology through a case study. This case study, however, is
not a full validation of the methodology, as it demonstrates its
applicability only in one company. Therefore, for future work,
the methodology will be validated in more companies and even
in different industries. In addition, to facilitate the use of the
methodology in real-life situation, a software assessment sys-
tem based on the developed modeling techniques and assess-
ment methodology is recommended.

APPENDIX

TRANSFORMATION OF THE FOLLOWING UNCERTAIN INTERVAL

ASSESSMENTS TO AN EQUIVALENT INTERVAL BELIEF

ASSESSMENT WITHIN THE ER FRAMEWORK

The uncertain interval assessments are given as follows:

Rectangle waterproof is
[5.0, 7.2] meters of 16% probability;
[6.0, 8.4] meters of 3% probability;
[6.0, 9.0] meters of 48% probability;
[7.0, 12.0] meters of 1% probability;
[7.2, 10.5] meters of 9% probability;
[7.5, 10.8] meters of 16% probability;
[8.4, 15.0] meters of 3% probability;
[9.0, 12.6] meters of 3% probability;
[10.5, 18.0] meters of 1% probability.

According to the uncertain information transformation tech-
nique proposed by Yang [49] and the interval information trans-
formation technique proposed by Wang et al. [43], the earlier
information can be equivalently transformed to an interval belief
assessment as follows. For the first interval [5.0, 7.2] of 16%
probability, we have

β−
1,i = 0 and β+

1,i = I1,1 ×
7.17 − 5.0
7.17 − 5.0

× 16%

β−
2,i = 0 and β+

2,i = (I1,1 + I2,1) × 16%

β−
3,i = 0 and β+

3,i = I2,1 ×
7.2 − 7.17
9.34 − 7.17

× 16%

with I1,1 + I2,1 = 1 and I1,1 × I2,1 = 0, or

{(H11 , [0, 0.16I1,1 ]), (H22 , [0, 0.16]), (H33 , [0, 0.002I2,1 ])}.

For the interval [6.0, 8.4] of 3% probability, we have

β−
1,i = 0 and β+

1,i = I1,2 ×
7.17 − 6.0
7.17 − 5.0

× 3%

β−
2,i = min

(
6.0 − 5.0
7.17 − 5.0

,
9.34 − 8.4
9.34 − 7.17

)
× 3% and

β+
2,i = (I1,2 + I2,2) × 3%

β−
3,i = 0 and β+

3,i = I2,2 ×
8.4 − 7.17
9.34 − 7.17

× 3%

with I1,2 + I2,2 = 1 and I1,2 × I2,2 = 0, or

{(H11 , [0, 0.016I1,2 ]), (H22 , [0.013, 0.03]), (H33 , [0, 0.017I2,2 ])}.

For the interval [6.0, 9.0] of 48% probability, we have

β−
1,i = 0 and β+

1,i = I1,3 ×
7.17 − 6.0
7.17 − 5.0

× 48%

β−
2,i = min

(
6.0 − 5.0
7.17 − 5.0

,
9.34 − 9

9.34 − 7.17

)
× 48% and

β+
2,i = (I1,3 + I2,3) × 48%

β−
3,i = 0 and β+

3,i = I2,3 ×
9.0 − 7.17
9.34 − 7.17

× 48%

with I1,3 + I2,3 = 1 and I1,3 × I2,3 = 0, or

{(H11 , [0, 0.259I1,3 ]), (H22 , [0.075, 0.48]), (H33 , [0, 0.405I2,3 ])}.

For the interval [7.0, 12.0] of 1% probability, we have

β−
1,i = 0 and β+

1,i = I1,4 ×
7.17 − 7.0
7.17 − 5.0

× 1%

β−
2,i = 0 and β+

2,i = (I1,4 + I2,4) × 1%

β−
3,i = 0 and β+

3,i = (I2,4 + I3,4) × 1%

β−
4,i = 0 and β+

4,i = (I3,4 + I4,4) × 1%

β−
5,i = 0 and β+

5,i = I4,4 ×
12.0 − 11.5
13.67 − 11.5

× 1%

with

I1,4 + I2,4 + I3,4 + I4,4 = 1

I1,4 × (I2,4 + I3,4 + I4,4)+ I2,4×(I3,4 +I4,4) +I3,4×I4,4 =0

or

{(H11 , [0, 0.0008I1,4 ]), (H22 , [0, 0.01(I1,4 + I2,4)]),

(H33 , [0, 0.01(I2,4 + I3,4)]), (H44 , [0, 0.01(I3,4 + I4,4)]),

(H55 , [0, 0.0023I4,4 ])}.
For the interval [7.2, 10.5] of 9% probability, we have

β−
2,i = 0 and β+

2,i = I1,5 ×
9.34 − 7.2
9.34 − 7.17

× 9%

β−
3,i = min

(
7.2 − 7.17
9.34 − 7.17

,
11.5 − 10.5
11.5 − 9.34

)
× 9% and

β+
3,i = (I1,5 + I2,5) × 9%

β−
4,i = 0 and β+

4,i = I2,5 ×
10.5 − 9.34
11.5 − 9.34

× 9%
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with I1,5 + I2,5 = 1 and I1,5 × I2,5 = 0, or

{(H22 , [0, 0.089I1,5 ]), (H33 , [0.001, 0.09]), (H44 , [0, 0.048I2,5 ])}.

For the interval [7.5, 10.8] of 16% probability, we have

β−
2,i = 0 and β+

2,i = I1,6 ×
9.34 − 7.5
9.34 − 7.17

× 16%

β−
3,i = min

(
7.5 − 7.17
9.34 − 7.17

,
10.8 − 10.5
11.5 − 9.34

)
× 16% and

β+
3,i = (I1,6 + I2,6) × 16%

β−
4,i = 0 and β+

4,i = I2,6 ×
10.8 − 9.34
11.5 − 9.34

× 16%

with I1,6 + I2,6 = 1 and I1,6 × I2,6 = 0, or

{(H22 , [0, 0.136I1,6 ]), (H33 , [0.002, 0.16]), (H44 , [0, 0.108I2,6 ])}.

For the interval [8.4, 15.0] of 3% probability, we have

β−
2,i = 0 and β+

2,i = I1,7 ×
9.34 − 8.4
9.34 − 7.17

× 3%

β−
3,i = 0 and β+

3,i = (I1,7 + I2,7) × 3%

β−
4,i = 0 and β+

4,i = (I2,7 + I3,7) × 3%

β−
5,i = 0 and β+

5,i = (I3,7 + I4,7) × 3%

β−
6,i = 0 and β+

6,i = I4,7 ×
15.0 − 13.67
15.84 − 13.67

× 3%

with

I1,7 + I2,7 + I3,7 + I4,7 = 1

I1,7 × (I2,7 + I3,7 + I4,7)+ I2,7 × (I3,7 + I4,7)

+ I3,7 × I4,7 = 0

or

{(H22 , [0, 0.013I1,7 ]), (H33 , [0, 0.03(I1,7 + I2,7)]),

(H44 , [0, 0.03(I2,7 + I3,7)]), (H55 , [0, 0.03(I3,7 + I4,7)]),

(H66 , [0, 0.018I4,7 ])}.

For the interval [9.0, 12.6] of 3% probability, we have

β−
2,i = 0 and β+

2,i = I1,8 ×
9.34 − 9.0
9.34 − 7.17

× 3%

β−
3,i = 0 and β+

3,i = (I1,8 + I2,8) × 3%

β−
4,i = 0 and β+

4,i = (I2,8 + I3,8) × 3%

β−
5,i = 0 and β+

5,i = I3,8 ×
12.6 − 11.5
13.67 − 11.5

× 3%

with

I1,8 + I2,8 + I3,8 = 1 and

I1,8 × (I2,8 + I3,8) + I2,8 × I3,8 = 0

or

{(H22 , [0, 0.0047I1,8 ]), (H33 , [0, 0.03(I1,8 + I2,8)]),

(H44 , [0, 0.03(I2,8 + I3,8)]), (H55 , [0, 0.0152I3,8 ])}.

For the interval [10.5, 18.0] of 1% probability, we have

β−
3,i = 0 and β+

3,i = I1,9 ×
11.5 − 10.5
11.5 − 9.34

× 1%

β−
4,i = 0 and β+

4,i = (I1,9 + I2,9) × 1%

β−
5,i = 0 and β+

5,i = (I2,9 + I3,9) × 1%

β−
6,i = 0 and β+

6,i = (I3,9 + I4,9) × 1%

β−
7,i = 0 and β+

7,i = I4,9 ×
18.0 − 15.84
18.0 − 15.84

× 1%

with

I1,9 + I2,9 + I3,9 + I4,9 = 1

I1,9 × (I2,9 +I3,9 +I4,9)+I2,9 × (I3,9 +I4,9) + I3,9×I4,9 =0

or

{(H33 , [0, 0.0046I1,9 ]), (H44 , [0, 0.01(I1,9 + I2,9)]),

(H55 , [0, 0.01(I2,9 + I3,9)]), (H66 , [0, 0.01(I3,9 + I4,9)]),

(H77 , [0, 0.01I4,9 ])}.

So, the interval belief assessment of the waterproof performance
for rectangle torchlights can be equivalently represented by sum-
marizing the earlier results as follows:

{(H11 , [0, 0.16I1,1 + 0.016I1,2 + 0.259I1,3 + 0.0008I1,4 ]),

(H22 , [0.088, 0.16 + 0.03 + 0.48 + 0.01(I1,4 + I2,4)

+ 0.089I1,5 + 0.136I1,6 + 0.013I1,7 + 0.0047I1,8 ]),

(H33 , [0.003, 0.002I2,1 + 0.017I2,2 + 0.405I2,3

+ 0.01(I2,4 + I3,4) + 0.09 + 0.16 + 0.03(I1,7 + I2,7)

+ 0.03(I1,8 + I2,8) + 0.0046I1,9 ]),

(H44 , [0, 0.01(I3,4 + I4,4) + 0.048I2,5 + 0.108I2,6

+ 0.03(I2,7 + I3,7) + 0.03(I2,8 + I3,8)

+ 0.01(I1,9 + I2,9)]),

(H55 , [0, 0.0023I4,4 + 0.03(I3,7 + I4,7) + 0.0152I3,8

+ 0.01(I2,9 + I3,9)]),

(H66 , [0, 0.018I4,7 + 0.01(I3,9 + I4,9)]),

(H77 , [0, 0.01I4,9 ])}

with

I1,1 + I2,1 = 1 I1,1 × I2,1 = 0

I1,2 + I2,2 = 1 I1,2 × I2,2 = 0

I1,3 + I2,3 = 1 I1,3 × I2,3 = 0

I1,4 + I2,4 + I3,4 + I4,4 = 1

I1,4×(I2,4 + I3,4 + I4,4)+ I2,4×(I3,4 +I4,4)+I3,4×I4,4 =0

I1,5 + I2,5 = 1 I1,5 × I2,5 = 0

I1,6 + I2,6 = 1 I1,6 × I2,6 = 0
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I1,7 + I2,7 + I3,7 + I4,7 = 1

I1,7×(I2,7 + I3,7 + I4,7)+ I2,7×(I3,7 +I4,7)+I3,7×I4,7 = 0

I1,8 + I2,8 + I3,8 = 1 I1,8 × (I2,8 + I3,8) + I2,8 × I3,8 = 0

I1,9 + I2,9 + I3,9 + I4,9 = 1 I1,9 × (I2,9 + I3,9 + I4,9)+ I2,9

× (I3,9 + I4,9) + I3,9 × I4,9 = 0.
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