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Abstract

Ports and maritime operations generate massive real-time data streams, particularly from
Automatic Identification System (AIS) signals, which are challenging to query effectively
using natural language. This study proposes a prototype AISStream-MCP, a memory-
augmented real-time maritime question-answering (QA) system that integrates live AIS
data streaming with a Model Context Protocol (MCP) toolchain to support port operations
decision-making. The system combines a large language model (LLM) with four MCP-
enabled modules: persistent dialogue memory, live AIS data query, knowledge graph
lookup, and result evaluation. We hypothesize that augmenting an LLM with domain-
specific tools significantly improves QA performance compared to systems without memory
or live data access. To test this hypothesis, we developed two prototype systems (with and
without MCP framework) and evaluated them on 30 queries across three task categories:
ETA prediction, anomaly detection, and multi-turn route queries. Experimental results
demonstrate that AISStream-MCP achieves 88% answer accuracy (vs. 75% baseline), 85%
multi-turn coherence (vs. 60%), and 38.7% faster response times (4.6 s vs. 7.5 s), with
user satisfaction scores of 4.6/5 (vs. 3.5/5). The improvements are statistically significant
(p < 0.01), confirming that memory augmentation and real-time tool integration effectively
enhance maritime QA capabilities. Specifically, AISStream-MCP improved ETA prediction
accuracy from 80% to 90%, anomaly detection from 70% to 85%, and multi-turn query
accuracy from 65% to 88%. This approach shows significant potential for improving
maritime situational awareness and operational efficiency.

Keywords: maritime question-answering; model context protocol; real-time AIS data;
knowledge augmentation; port decision support

1. Introduction

Modern ports and maritime transport networks produce vast amounts of real-time
data from vessels and infrastructure, yet it remains difficult for operators to query this
information directly and obtain timely insights for decision-making. For example, port
controllers may need to know “When will ship X arrive given its current course and speed?”
or “Has vessel Y deviated from its planned route right now?”. Answering such questions is
challenging because it requires accessing up-to-the-minute data and contextual knowledge.
Conventional maritime information systems and databases do not readily support natural
language queries, and human operators often rely on manual data lookup and experience,
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which can be inefficient and error-prone. These gaps motivate research into intelligent
question-answering (QA) assistants that can leverage streaming maritime data to provide
on-demand decision support. For example, deep-learning-based ETA prediction models
have been employed in port scheduling and berth allocation [1]. Additionally, sequence-
modeling methods using Automatic Identification System (AIS) data have been applied
for ETA forecasting in container or bulk ports [2]. These studies highlight the feasibility of
real-time data fusion and ML techniques in maritime decision support.

Recent advances in artificial intelligence have opened new possibilities for such sys-
tems. On one hand, structured knowledge bases and knowledge graphs (KGs) have been
developed for the maritime domain—for example, ontologies modeling vessel behavior
and maritime rules [3] and knowledge graphs of vessel incidents [4]—which provide rich
factual data. On the other hand, large language models (LLMs) such as GPT-3 and GPT-4
have demonstrated impressive capabilities in understanding and generating natural lan-
guage [5,6]. By combining KGs with LLMs, a QA model’s reasoning can be grounded in
real and up-to-date data, thereby reducing hallucination errors and improving domain-
specific accuracy. Initial studies in complex domains like finance, medicine, and maritime
operations have explored this approach, indicating that augmenting LLMs with relevant
knowledge can significantly improve answer correctness. Recent advances in large lan-
guage model-based agents have shown remarkable capabilities in complex reasoning and
tool use [7,8]. Augmented language models that combine retrieval mechanisms with
generation have demonstrated superior performance in knowledge-intensive tasks [9,10].

However, existing maritime QA solutions remain limited in two key aspects: context
memory and real-time data integration. Most prior systems—such as simple knowledge-
based query interfaces or static rule-based assistants—handle one question at a time without
remembering dialogue context, forcing users to repeat vessel identifiers or details in each
query. Moreover, these systems often rely on static or manually updated data; for instance,
a recent KG-augmented QA prototype for vessel identification improved accuracy using
historical AIS facts, but it could not ingest live streaming data or adapt to unfolding events.
In practice, this means questions like “Has vessel X deviated from its route right now?” or
“Given its current speed, when will ship Y arrive at Port Z?” cannot be answered accurately
by traditional systems, since they lack real-time situational awareness. Additionally, with-
out dialogue memory, if a user asks a follow-up (e.g., “Where is it heading after that?”), a
standard QA system loses the context, leading to confusion or incorrect answers.

To address these gaps, we propose AISStream-MCP, a prototype intelligent maritime
QA architecture that integrates real-time AIS data streams with an LLM through the Model
Context Protocol (MCP) framework. The core idea is to equip the LLM-based assistant
with tools for remembering conversation context and fetching live domain data during its
reasoning process. We expect that this memory-augmented, real-time approach will signifi-
cantly outperform a conventional QA system without such enhancements. Specifically, we
hypothesize that incorporating a persistent memory and live data access will lead to more
accurate and coherent answers in maritime QA tasks. We design an experimental study
to test this hypothesis by comparing AISStream-MCP against a baseline system lacking
memory and live data. In summary, our contributions are as follows:

(1) We design a new memory-augmented, real-time QA architecture for the maritime
domain. To our knowledge, this is the first system architecture to integrate an open
MCP-based toolchain (memory, live data, and knowledge graph query) with an LLM
to support port operations.

(2) We develop a working prototype (AISStream-MCP) and a comparable non-MCP base-
line and perform extensive experiments on three representative maritime QA tasks.
The tasks include estimated time of arrival (ETA) prediction, anomaly detection (route
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deviation), and multi-turn route-related queries. We also introduce an interactive
web-based evaluation platform to log tool usage and user interactions during testing.

(3) Through quantitative metrics and user evaluations, we demonstrate that the MCP-
enhanced system significantly outperforms the baseline in answer accuracy, dialogue
continuity, and responsiveness. We provide a detailed analysis of results, show-
ing improved answer correctness and multi-turn coherence, faster average response
time, and higher user satisfaction for AISStream-MCP. The improvements are statis-
tically significant, confirming the effectiveness of memory and tool integration for
maritime QA.

(4) We outline future extensions of the system, including incorporation of multi-modal
data and multi-language support. This paves the way for next-generation intelligent
maritime assistants that can integrate visual sensor data (e.g., weather, radar, remote
sensing imagery) and handle queries in various languages, thereby greatly expanding
the system’s applicability. We also discuss considerations for real-world deployment,
such as secure MCP server integration in port IT environments, handling high query
volumes, and ensuring data privacy.

Real-time and accurate maritime information access is critical for supporting behavior
adaptation, port coordination, and navigation safety, which are central to modern intelligent
transportation systems. The proposed system not only enhances technical responsiveness
but also holds potential to influence operational decisions in maritime domains.

In contrast to ad-hoc API integration, the MCP framework offers several distinctive
advantages: it provides a unified and standardized protocol for connecting heterogeneous
tools, supports modular extensibility for integrating new services, includes built-in capabil-
ities for persistent memory servers, and enables secure deployment within containerized
environments. Collectively, these structural features make MCP especially well-suited for
real-time maritime QA applications, where robustness and scalability are essential.

2. Literature Review
2.1. Maritime Information Systems and Decision Support

The maritime domain has seen growing efforts in constructing knowledge bases and
ontologies to support intelligent analytics and QA. For example, Zhong & Wen [3] modelled
ship behaviors and navigational rules (COLREGS) in an ontological framework to enable
rule-based reasoning about vessel interactions. Shiri et al. [11] proposed a semi-automated
method to construct probabilistic maritime knowledge graphs for anomaly detection and
risk analysis, reflecting the need to capture uncertain relationships in maritime data. In a
related vein, Liu & Cheng [4] developed a Maritime Accident Knowledge Graph (MAKG)
focused on incidents and accidents, to aid in accident analysis and management. These
knowledge repositories lay a foundation for maritime QA systems by organizing factual
domain information. However, querying such knowledge bases typically requires special-
ized query languages or custom interfaces, limiting their accessibility to end-users. Our
work aims to leverage these rich maritime knowledge sources by using an LLM as a natural
language interface, which makes querying more intuitive and convenient.

2.2. Knowledge-Augmented and Memory-Based QA in Transportation Systems

Pre-trained LLMs have achieved remarkable success in general QA tasks, but their
performance in specialized domains can degrade without domain-specific augmentation.
Hu et al. [12] found that off-the-shelf language models perform poorly on knowledge
graph-based QA in specific domains unless they are enhanced with external information
or tools. This finding underscores that retrieval-augmented generation and tool use are
critical for applying LLMs in specialized fields. This finding underscores that retrieval-
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augmented generation and tool use are critical for applying LLMs in specialized fields.
Domain-specific language models [13,14] and tool-augmented reasoning frameworks [15]
have emerged as promising solutions for addressing these limitations. In recent years, a
number of frameworks have been proposed to integrate LLMs with external knowledge
and data sources. Some approaches focus on knowledge graph retrieval and prompting
(e.g., [16-18]), demonstrating that injecting relevant facts from KGs into LLM prompts can
substantially improve accuracy in complex question answering. Others explore retrieval-
augmented generation and tool use for factual correctness (e.g., [19-21]), where the LLM is
empowered to call APIs, databases, or calculators during its reasoning. This trend aligns
with the open-source AI community’s development of standardized tool-use protocols.
Notably, Anthropic [22] introduced the Model Context Protocol (MCP), which provides
a unified open interface for connecting LLMs with various services, databases, and APIs.
MCP replaces ad-hoc integrations with a consistent protocol, enabling Al agents to seam-
lessly query multiple data sources. Building on this, the concept of an MCP-based memory
server has been proposed to allow an Al assistant to share persistent conversational context
across sessions. These advances suggest that an LLM equipped with tools for retrieval and
memory can overcome many limitations of standalone LLMs in domain-specific tasks. In
the maritime context, connecting an LLM to live port databases, meteorological information,
and streaming AIS data could greatly enhance its practical usefulness.

2.3. Real-Time Data Integration and Application in Transport Intelligence

Traditional QA systems struggle with real-time reasoning due to their dependence
on static corpora. In maritime contexts, integrating real-time AIS streams is essential for
situational awareness. AISStream.io enables global vessel monitoring via WebSocket, and
LLMs can retrieve up-to-date vessel states using tools like ais.stream (AISStream.io API,
version 1.3) through MCP. Furthermore, memory systems support long-context retention
across multi-turn dialogues, enhancing coherence. These integrations—memory, real-time
data, and domain knowledge—form the foundation of dynamic maritime QA assistants like
AISStream-MCP. Our research follows this direction: we integrate multiple tools (memory,
live data query, graph database access, etc.) with an LLM to create a QA system that can
reliably handle complex port operation queries with real-time awareness.

3. Methodology
3.1. System Architecture

The proposed AISStream-MCP framework can be conceptualized through the lens
of an autonomous agent operating within a partially observable environment [23]. In
this paradigm, the LLM acts as the agent’s reasoning core, or “brain”. The environment
consists of the user’s intent and the vast, dynamic maritime information space. The agent’s
“observations” are not just the user’s query but also the real-time data and static facts it
acquires through its “sensors”—the MCP tools. The system’s objective is to execute a policy,
formulated as a sequence of tool invocations and internal reasoning steps, to reach a goal
state: providing a correct, coherent, and context-aware answer. This agentic perspective
elevates the system from a simple input-output model to a proactive, knowledge-seeking
entity, which is central to our methodology.

Our proposed system, AISStream-MCP, is built on an architecture that tightly inte-
grates an LLM with four domain-specific tool modules via the Model Context Protocol
(MCP). Figure 1 provides an overview of the architecture. At the core is the LLM-based QA
Engine, which interacts with users in natural language. Surrounding it are four tools: a
Persistent Memory module, a Live AIS Data Stream interface, a Port Knowledge Graph
database interface, and a Result Evaluation module. The LLM orchestrates these compo-
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nents through MCP’s unified interface. MCP provides a standardized way for the LLM
(acting as an Al agent) to invoke external services and data sources [22]. In our implementa-
tion, an MCP-compatible server hosts the tool functions, and the LLM issues tool requests
(e.g., data queries, memory read/write operations) as text commands, which the MCP
server executes. This design replaces ad-hoc integration of tools with a consistent protocol,
allowing the QA system to seamlessly combine multiple data sources and functionalities
during its reasoning process. By leveraging the open MCP standard, AISStream-MCP effec-
tively bridges the gap between dynamic maritime data and the LLM’s natural language
reasoning capabilities.

AlISStream-MCP System Architecture

Dialogue Context

Persistent
Memory

AlSStream.io

Question
(Natural Language)

LLM-based
QA Engine

Natural Language
Processing

Answer
(Context-aware)

getPortinfo()

Port Knowledge
Graph DB Evaluator

Static Maritime Data Answer Validation

Tool Integration via MCP: memory.read/write + ais.stream » queryGraph + evaluate result

Figure 1. AISStream-MCP system architecture. The LLM-based QA engine interacts with four
integrated tools via MCP: a persistent memory for dialogue context, live AIS data stream access, a
port knowledge graph database, and a result evaluation module.

In our reference deployment, the MCP layer introduced a communication latency
of consistently less than 100 ms, which is negligible relative to the inference time of the
LLM. To ensure system security, the prototype employs three key mechanisms: encrypted
WebSocket connections for all tool communications, stringent API key management for
service authentication, and container-based deployment with strict access control lists
(ACLs) to isolate services.

We formally define the system’s response behavior as a function:

Arim(qt) = f(qt,Ci, My, Dy) 1)

where ¢ is the current user query, C; is the dialogue context, M; denotes persistent memory,
and D; represents real-time data such as AIS feeds. This function models how the LLM
coordinates tools and memory to generate responses. In this architecture, Persistent Mem-
ory plays a crucial role in maintaining context over a dialogue. The memory module stores
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key information from user queries and the assistant’s answers, allowing the LLM to recall
prior context in subsequent turns. The Live AIS Data Stream tool (Figure 2) provides the
LLM with real-time vessel position and movement data. Our system subscribes to a global
AIS feed (via AISStream.io) to receive up-to-the-minute AIS messages. The Port Knowl-
edge Graph (KQG) is a structured database of static maritime information. We integrate a
Neo4j-based port knowledge graph and expose it via a queryGraph tool (Neo4j version
4.4.12), leveraging recent advances in schema-aware text-to-graph conversion [24,25] and
unified approaches to LLM-knowledge graph integration [26]. Finally, the Result Evalu-
ation module acts as a post-processor and verifier for the LLM’s generated answers. As
shown in Figure 2, the real-time AIS Stream WebSocket connection is implemented to
enable vessel tracking.

ais-stream-mcp-server.js

n(args ) {

boundlngBox connectionId= "maritime-emergency'} =args;

cket( "wss://stream.aisstream.io/v@/strepm’

ne (fesolve, reject) => {
-(UPEH,()‘>{

0 subscriptior {
APIKey : apiKey,
BoundingBoxes : [[[
boundingBox topLeft[ @ ] poundingBox topLeft[1],
boundingBox thtoleghi{ e ]ﬁuundlngaux bottoleght{ 1111,
FilterMessageTypes this. cc g mémessageTyped

stringify subscriptidn);
[NEbSDcket] Connection ${c0nnect10n1d} establi}hed”

g fuccess: true, connectionId status: ‘connected’});

s.on( 'message’, @ata) => {

t aisMessage= JSON. parse (data. toString());
( aisMessage. MetaData) {

og (" [AIS] Vessel ${aisMessage.MetaData.rﬂ'lr-‘\S}} ati
sage.Message.PositionReport.Latitude,

${a15r\essage Mes%age PositionReport.Longitudp}”

leAISMessagd connectionId aisMessage);

mmsi, lat: p Latitude, lon:
lastUpdate: new Dat )

* ( "[WebSocket] Message parsing epreop}

Figure 2. Real-time AIS stream WebSocket connection implementation. This implementation estab-
lishes a WebSocket connection to AlSStream.io for real-time vessel tracking.

3.2. MCP Tool Integration and Workflow

When a user poses a question to AISStream-MCP, the system processes it in the
following sequence. First, the user query in natural language is received by the LLM QA
Engine. The LLM, guided by its prompt and system instructions, analyzes the query to
determine what external information or functions are needed. It can then issue MCP tool
commands embedded in a special format within its generated “thought” sequence.

Once the query is processed, the system infers the task type and corresponding
command as:

T = arg mquP(T’ | gt,Ct), ¢t = (T, Dy, My) 2)
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mep_interface.py

(

where P(-) is the task classification model and 7t(-) maps task types to executable MCP com-
mands. For instance, for a question like “Has vessel Alpha deviated from its route?”, the
LLM might decide to call the ais.stream tool to obtain Alpha’s latest coordinates and com-
pare with the planned route. It formulates a command such as <call> ais.stream(”Alpha”),
which the MCP server executes, returning live AIS data. The LLM receives these data and
incorporates them into its reasoning. The entire workflow happens in real time, typically
within a few seconds, enabling an interactive QA experience. This approach follows estab-
lished patterns in retrieval-augmented generation [27,28] and tool-augmented language
models [29]. The final answer is synthesized through a tool-aware fusion function:

yt = ¢ (LLMgEYl (Qt), R?ACP/ Rfls’ Mt) (3)

where ¢(-) integrates LLM’s initial output with results from tool calls and memory for
coherence and factual grounding.

As shown in Figure 3, the MCP command parser and router implementation serves as
the central command router within this workflow. The sequence of tool invocation across
multiple turns is illustrated in Figure 4, which traces the complete interaction flow for a
two-part query using memory, real-time data, and the knowledge graph.

self ,cmd :str , session_id :str ):

Parse <call>module.function(params)> commands and route to appropriate modules.
Implements the tool orchestration layer shown in Figure 1.

(r"<call>\s*([a-zA-Z_][a-zA-Z0-9_]*)\.([a-zA-Z_][a-zA-Z@-9_]*)\((.*?)\)\s*>3"

ifm :

module , function, raw_params= m. group (1)m.group (2)m. group (3)

params= self . par

ams( raw_params)

if module == "memory™:

self
elif function==
result= self

. memory .
"write”
. memory . memor

ad ( session_id)

ite( session_id, params[ @ ])

elif module == "ais"

if function
result= s
elif modul
result=

p_tool( "ais.stream} { "target": params[ 8 ]1})

ry ( params[ @ ] if paramslse ""

elif module "evaluate™:

result= 1f . e

return {

valuator. evaluate( params[ @ ] if paramslse "" )

"module” : module,
"function": function ,

"params”: params,
"result”: result

Figure 3. MCP Command Parser and Router implementation. The MCP interface class serves as

s

the central command router. Note: “#” indicates code comments, and follows standard Python

syntax (e.g., argument unpacking).
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Example: "Where is vessel Alpha now?" — "What is its next port of call?"

L n

Q1: "Where is vessel Alpha now?"

memory.read("Alpha")

A1:"Alpha is near San Francisco Port"

Q2: "What is its next port of call?"

A2: "Alpha's next port is Oakland"

-«
ais.stream("Alpha)
| -
*_______f_____:____f: ________
fat: 37.8, lon: =122.4 $peed Agnt"Port near 37.8,-122.4")
- e
"San Francisco Port"
memory.write(vessel: "Alpha’, location: "SF")
Second Query (Multi-turn Context)
memory.read()
-«
query.graph("Alpha next port from SF")
- -
Next: Port of Oakland"
Performance Metrics for This Sequence
« Total Response Time: 4.2s (Q1) + 2.8s (Q2) = 7.0s « Tool Calls: 6 (Memory: 3, AIS: 1, KG: 2)
« Context Preserved: v (vessel identity maintained) « Real-time Data Used: v (current position from AIS)

Figure 4. Tool invocation sequence for multi-turn query processing. The diagram traces the complete
interaction flow for a two-part query, showing how the system utilizes memory, real-time data, and
the knowledge graph.

4. Case Study and Experiment Design
4.1. Experimental Environment

The experiments were conducted on a server with an Intel Xeon Gold 6248R CPU,
128 GB RAM, and an NVIDIA Tesla V100 GPU. The software environment is using Ubuntu
20.04 LTS, Python 3.8.10, Neo4;j 4.4.12, Docker 20.10.21, and GPT-3.5-turbo.

4.2. Baseline System Implementation

To quantify the performance improvements, our experimental design employs an
“enhanced system (MCP toolchain)” versus “baseline system (Neo4j knowledge graph)”
comparison. The Neo4j baseline represents the current mainstream approach of combining
a structured knowledge base with an LLM. To ensure fair comparison, all experimental
queries, data access points, and interfaces remain consistent between both systems, differing
only in their capabilities.

While a baseline with a frequently synchronized database (e.g., batch updates every
minute) could be considered, we argue that such a design fundamentally fails to capture the
essence of “real time” required for critical maritime operations. Scenarios like immediate
collision risk assessment or responding to sudden vessel deviations demand sub-second
data latency, which can only be achieved through a direct, streaming connection like
WebSocket. A batch-updated system, by its nature, introduces a latency floor equivalent to
its update interval, rendering it inadequate for these high-stakes use cases. Therefore, our
chosen baseline, representing a static-knowledge paradigm, serves to create the clearest
possible contrast against the true real-time, streaming paradigm that our work proposes,
thereby isolating the core scientific question of our research. As shown in Figure 5, the Neo4;j
baseline implementation illustrates the static-knowledge paradigm used for comparison.
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Properties:
mmsi: string
name: string

type: string
length: float
width: float
draft: float

( :CURRENTLY_AT

Neodj Knowledge Graph Architecture for Maritime QA System

Properties:
id: string

name: string
country: string
lat/lon: float
berth_count: int

\ :CONNECTS
\K

‘Vessel

»
P>

(":FOR_PORT )

:HAS_SCHEDULE

Properties:

eta: datetime
etd: datetime
status: string

Query Processing Pipeline

[ 1. NL Understanding

]_» 2. Cypher Generation _»{ 3. Static Data Retrieval ]_»{ 4. Result Formatting ]

Figure 5. Neo4j baseline implementation details.

4.3. Test Query Specifications

We conducted a comparative study between our proposed system and the baseline
system without MCP enhancements, designed around a port operations scenario. Figure 6
illustrates the complete experimental process. Three representative QA task categories
were used, reflecting common information needs [30,31]: ETA Prediction, Anomaly De-
tection, and Multi-turn Route Queries. To quantify multi-turn coherence, we define the
following metric:

1 N

CR = N 1; 1[y; respects C] (4)
which measures how well the system preserves prior context. In total, 30 queries were
prepared. Each query came with an expected correct answer (ground truth) obtained
from historical data or domain experts. To mitigate selection bias, the query scenarios
were designed in collaboration with the industry practitioners on our evaluation panel
before the final system was implemented. The scenarios were derived from a random
sampling of actual operational logs from the past 6 months, ensuring they reflect a realistic
distribution of common and critical information needs, rather than being crafted to favor
our system’s capabilities.

The evaluation was conducted with a panel of five participants (N = 5). The panel
consisted of two senior researchers specializing in maritime informatics and three industry
practitioners with over 10 years of experience in port logistics and vessel traffic services.
This composition ensures that the evaluation captures both academic rigor and practical
operational relevance. Each participant evaluated the full set of 30 queries, with the system
order randomized for each user to mitigate learning effects. We used a five-point Likert
scale for user satisfaction.
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Phase 1: Preparation Phase 2: Query Sets Phase 3: Execution

* Randomized order
* Blind evaluation
= Real-time monitoring
+ Tool usage logging

* Deploy MCP servers
« Initialize Neo4j database
« Load port knowledge graph
= Connect AlS stream

» ETA prediction (10)
« Anomaly detection (10)
* Multi-turn dialogues (10)
Total: 30 test scenarios

AlSStream-MCP System

Neo4dj Baseline System

User Query — LLM — Tool Orchestration User Query — LLM — Static KG Query

Result Evaluator

® Answer Accuracy: Correctness against ground truth
@ Multi-turn Coherence: Context retention in dialogues

® Response Time: Query processing latency

Evaluation Metrics

® User Satisfaction: 5-point Likert scale rating
@ Tool Usage Efficiency: MCP calls per query

@® Real-time Data Integration: Live AIS utilization

Figure 6. Experimental workflow diagram. The experiment consists of preparation, query definition,

and a blind execution phase.

The 30 test queries were carefully designed to cover realistic port operation scenarios.

Table 1 provides the complete query set as follows.

Table 1. Complete Test Query Specifications.

ID Category Query Ground Truth Source  Key Evaluation Aspect
ETA Prediction Queries
ETA-01 ETA When will vessel Mercury arrive at Port of Xiamen? AIS position - speed Real-time adjustment
calculation
ETA-02 ETA Wha.t S t.he expected arrival time for Neptune AIS + weather API Multi-source fusion
considering current weather?
ETA-03 ETA Calculate arrival time for vessel Jupiter at Berth 5 AIS + port scheduling Berth-specific ETA
ETA-04 ETA Is vessel Saturn running on schedule? Schedule.v.s. actual Delay detection
position
When will the container ship Venus reach the . .
ETA-05 ETA pilot station? AIS + port geography Waypoint calculation
ETA-06 ETA Estimate arrival for bulk carrier Mars with Real-time speed data ~ Speed-based prediction
current speed
ETA-07 ETA Will vessel Uranus arrive before high tide? AIS + tidal data Time constraint check
ETA-08 ETA Update ETA for delayed vessel Pluto Historical + real-time Dynamic updating
ETA-09 ETA Calculate new arrival time after route change Route modification Recalculation ability
ETA-10 ETA Batch ETA query for all inbound vessels Multiple vessel Scalability test

tracking
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Table 1. Cont.
ID Category Query Ground Truth Source  Key Evaluation Aspect
Anomaly Detection Queries
AD-01 Anomaly  Has vessel Alpha deviated from its planned route? Planne;l)l\;:é actual Deviation detection
AD-02 Anomaly  Detect unusual speed patterns for vessel Beta Speed history analysis Behavioral anomaly
AD-03 Anomaly  Is vessel Gamma anchored in an unusual location?  Anchor zone validation Position anomaly
AD-04 Anomaly  Alert if any vessel enters restricted area Geofence monitoring Zone violation
AD-05 Anomaly  Has vessel Delta been stationary too long? Movement patterns Idle detection
AD-06 Anomaly  Identify vessels not broadcasting AIS Signal continuity Communication
anomaly
AD-07 Anomaly  Detect collision risk between vessels CPA/TCPA calculation Safety monitoring
AD-08 Anomaly  Find vessels with suspicious behavior patterns Multi-factor analysis Complex anomaly
AD-09 Anomaly  Check if vessel Epsilon changed destination Destination tracking Plan modification
AD-10 Anomaly  Monitor compliance with speed restrictions Speed limit zones Regulation compliance
Multi-turn Route Queries
. s 2 . .
MT-01  Multi-turn Q1: Where is vessel Zeta now? Q2: What's its Context preservation Basic context
next port?
MT-02  Multi-turn Q1: Track Ve.ssel Fta movement Q2: How long at Temporal context Time tracking
current location?
MT-03  Multi-turn Qlf ShoW vessels from Singapore Q2: Which Set context Comparison context
arrives first?
. . : 2
MT-04  Multi-turn Q1: Status of tanker Theta Q2: Is it fully loaded? Multiple attributes Extended context
Q3: ETA?
MT-05 Multi-turn Ql: Find Vessel‘ MMSI 123,456,789 Q2: Its cargo ID resolution Reference tracking
type? Q3: Destination?
. Q1: List container ships Q2: Filter by size P .
MT-06  Multi-turn Q3: Show routes Progressive filtering Query refinement
MT-07  Multi-turn Ql: Vessel Io’.ca.posmon Q2: Distance to port Calculation chain Dependent queries
Q3: Fuel sufficiency?
MT-08 Multi-turn Q1: Port congestion tstatus Q2: Affected vessels Problem solving Complex reasoning
Q3: Suggest alternatives
3 . Q1: Weather at vessel Kappa location Q2: Impact . . .
MT-09 Multi-turn on schedule Q3: Notify if delayed Condition monitoring Proactive alerts
MT-10  Multi-turn Q1: Historical routes of Lambda Q2: Most frequent Historical analysis Pattern recognition

port Q3: Average duration

4.4. Statistical Analysis Methods

The following significance Testing methods were used.

e Answer Accuracy Comparison: A two-proportion z-test was used.

PMCP — pBaseline

\/ﬁ(l - ﬁ) (nN}cp + ”Basleline)

e  Response Time Analysis: A paired t-test was applied.

t= L Cohen’sd =

sa/\/n’

e  Multi-turn Coherence: McNemar’s test was used.

& =l
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e  User Satisfaction Ratings: Compared using Wilcoxon signed-rank test.

e  Multiple Comparison Correction: Bonferroni correction was applied:
0.05

Xadjusted = 1 = 0.0125 8)

4.5. Ablation, Sensitivity, and Load Test Protocols

Ablation Study: We performed a targeted ablation on 15 representative queries, evalu-
ating five configurations: Full (memory + AIS + KG), -Memory, —AlS, -KG, and a Baseline-
like setting (NoMemory + NoLiveAlS + KG) designed to mirror the main baseline system
in our primary comparison.

Sensitivity Analysis: To evaluate the impact of data freshness on performance, we
selected five representative ETA prediction queries. For each query, we artificially injected
delays of 0, 5, 10, and 30 s into the live AIS data stream and measured the resulting increase
in ETA prediction error (in minutes).

Load Test: To assess the prototype’s stability under pressure, we conducted a load test
by simulating 10, 20, and 50 concurrent users. Each virtual user submitted queries from a
predefined set in a loop over a 5 min period. We measured the average response time and
request success rate for each concurrency level.

5. Results

The experiment results clearly support our hypothesis. Table 2 summarize the overall
performance of AISStream-MCP versus the baseline system.

Table 2. Performance comparison of baseline vs. AISStream-MCP system.

Metric Baseline System AISStream-MCP System
Answer Accuracy 75% 88%
Multi-turn Coherence 60% 85%
Avg. Response Time (s) 7.5 4.6
User Satisfaction (1-5) 35 4.6

AISStream-MCP achieved an overall accuracy of 88%, substantially higher than the
baseline’s 75%. The largest gap was observed in the multi-turn route queries (88% vs. 65%).
Statistical analysis confirms the significance of this gain (z = 2.85, p < 0.01).

AISStream-MCP preserved contextual continuity in 85% of follow-up questions, far
outperforming the baseline’s 60%. McNemar’s test confirmed this significant improvement
(x*(1, N = 10) = 5.40, p < 0.01).

The average response latency of AISStream-MCP was approximately 4.6 s, compared
to about 7.5 s for the baseline. The difference in mean response time was statistically
significant ((29) = —4.50, p < 0.001).

The domain experts overwhelmingly preferred the MCP-enhanced system (4.6/5 vs.
3.5/5). A Wilcoxon signed-rank test confirmed the significance of this preference (W = 405,
p < 0.001). This accuracy improvement is also illustrated in Figure 7.
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100

Answer Accuracy Comparison for Baseline vs. AISStream-MCP

[ Baseline
B AlSStream-MCP  ggoy

Answer Accuracy (%)

ETA Prediction

60
40

Anomaly Detection

Route Query

Figure 7. Answer accuracy comparison for baseline vs. AISStream-MCP. Note: The overall accuracy
for AISStream-MCP across all tasks was 88%, while category-specific accuracies are shown here.

A detailed breakdown of results across all 30 test scenarios is presented in Figure 8.
Additionally, the system’s performance across six critical dimensions is further compared

in Figure 9.

Comparison of AISStream-MCP vs Neo4j Baseline across 30 test scenarios

Query ID Category Query Description Ground Truth MCP Result Neodj Result MCP Time (s) | Neodj Time (s) | MCP Accuracy

ETA-01 ETA Prediction When will vessel Mercury arrive at Port A?
ETA-02 ETA Prediction Calculate arrival time for vessel Neptune
ETA-03 ETA Prediction Vessel Jupiter ETA considering weather

AD-01 Anomaly Detection Has ship Neptune strayed from corridor?

AD-02 ‘Anomaly Detection Detect unusual speed for vessel Alpha
MT-01 Multi-turn Q1: Where is Olympus? Q2: Next port?
MT-02 Multi-turn Context-dependent vessel tracking

Summary Statistics
Overall Accuracy
88% vs 75%

MCP vs Neo4j

Key Findings:

14:30 (delayed) 14:30 + 15min

Tomorrow 06:00 Tomorrow 06:15

Delayed 3 hours Delayed 2.5-3.5h

Yes, 2nm deviation Yes, 1.8nm off

Speed dropped 50%  Abnormal: 6 knots

1: Si 2:KL  1:Sil 2K

12:00 (scheduled)

No real-time data

On schedule

Cannot determine

Normal speed

1: Sir 2: 7

Maintained context Full context kept

Average Response Time

4.6s vs 7.5s

MCP vs Neodj

Lost context

4.1

52

38

29

45+2.1

38+23

v X

53 v X
38 L X
42 v X
35 v X
32+84 v X
41+92 «/ X

Neodj Accuracy

Multi-turn Success Rate

85% vs 60%

MCP vs Neo4j

< Real-time Advantage: MCP system successfully handled 100% of queries requiring live data, while Neo4;j failed on all such queries

+ Context Preservation: MCP maintained dialogue context in 85% of multi-turn scenarios vs 60% for baseline

« Speed Improvement: Despite additional tool calls, MCP was 38.7% faster on average due to targeted data retrieval

Error Analysis: Neo4j errors primarily due to: (1) lack of real-time data access, (2) context loss in follow-ups, (3) static information becoming outdated

Figure 8. Detailed experimental results by query category. This figure presents a detailed breakdown
of results across all 30 test scenarios.
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Multi-dimensional Performance Comparison

nswer Accuracy

1009
Performance Metrics:

88%

* Answer Accuracy: MCP 88% vs Neo4j 75%
+ Response Speed: MCP 85% vs Neo4j 60%
* Multi-turn Coherence: MCP 85% vs Neo4j 50%
« User Satisfaction: MCP 92% vs Neo4j 70%_

Tool Inteditisperation: MCP 95% Response Speed

95% 1

85%

Real-time Capability Multi-turn Coherence

2%
[ AISStream-MCP System 1 Neo4j Baseline System

User Satisfaction

Figure 9. Performance comparison radar chart. This radar chart evaluates six critical dimensions.
Response Speed is a normalized score derived from the average response time.

We also model user satisfaction as a utility function:

1

U=XA-A Ay r oo
1+ Accuracy + A2 ResponseTime

Az -CR 9)
Based on user studies, we set A; = 0.5, A; = 0.3, and A3 = 0.2, following principles
established in iterative refinement and self-feedback systems [32].

5.1. Ablation Study

To quantify the contribution of each key module, we conducted an ablation study by
systematically disabling components. As shown in Figure 10, the full prototype significantly
outperforms all ablated versions. The Baseline-like configuration, which lacks both memory
and live AIS data, performed the poorest on coherence (58%) and accuracy (62%), closely
mirroring the performance of the main Baseline System from our primary experiment and,
thus, validating our component analysis.

Answer Accuracy by Configuration Multi-turn Coherence by Configuration Response Time by Configuration
5

0ss ¢
. 085
081 L
08 08 7
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06 o 08 058 Pt
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02 02
00 00
nS RS et
gasel®
ster ation

Accuracy

2
00 515
e s s ® e e e s s
uration

o
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System Configuration System System C

(a) (b) (©

gaseine ™

Figure 10. Ablation study results. The charts show the impact on prototype performance across five
configurations. (a) Impact on answer accuracy. (b) Impact on multi-turn coherence. (c) Impact on
response time. The “Baseline-like” configuration (No Memory + No Live AIS) is included to align
with the main experimental baseline.
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Specifically, removing only the live AIS module (-AIS) caused the largest single drop
in accuracy (from 88% to 65%), highlighting the criticality of real-time data for maritime
tasks. Similarly, disabling only the memory module (-Memory) led to the most substantial
decrease in multi-turn coherence (from 85% to 60%). This elucidates the complementary
roles of each component: memory for dialogue continuity, live AIS for temporal correctness,
and the knowledge graph for grounding contextual facts.

5.2. Sensitivity to Data Latency

Given the importance of data freshness, we evaluated the prototype’s sensitivity to
AIS data latency. We simulated delays of 0, 5, 10, and 30 s and measured the impact on the
accuracy of ETA prediction tasks. The results, plotted in Figure 11, demonstrate a clear
correlation between data latency and prediction error. A 10 s delay increased the average
ETA error from 5.0 min to 15.2 min, and a 30 s delay exacerbated the error to 35.8 min. This
confirms that the prototype’s performance on time-critical queries is highly dependent on
near-real-time data streams.

Sensitivity to AIS Data Latency

35

30 4

25

20 A

Average ETA Prediction Error (minutes)

0 5 10 5 20 2% 30
Simulated AIS Data Latency (s)
Figure 11. Sensitivity of ETA Prediction to AIS Data Latency. The graph illustrates the direct
correlation between increased data latency (in seconds) and the average error (in minutes) for ETA
predictions, highlighting the prototype’s dependency on real-time data.

5.3. Performance Under Concurrent Load

To assess the prototype’s stability and scalability, we conducted a load test by sim-
ulating 10, 20, and 50 concurrent users submitting queries over a 5 min period. Each
virtual user sent a query from a predefined set every 15 s. As illustrated in Figure 12, the
average response time increased from 4.8 s with 10 users to 9.3 s with 50 users. The system
maintained a high success rate, dropping only slightly from 99.8% to 98.2% under the
maximum load, demonstrating the robustness of the MCP-based architecture for handling
moderate concurrent requests.
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System Performance Under Concurrent Load .

r100

r99

98

Avg Response Time (s)
Success Rate (%)

re7
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10 15 20 25 30 35 40 45 50
Number of Concurrent Users

Figure 12. System Performance Under Concurrent Load. The chart shows the prototype’s perfor-
mance as the number of concurrent users increases. The primary Y-axis (blue line) indicates the
average response time in seconds, while the secondary Y-axis (red dashed line) shows the request
success rate as a percentage.

5.4. Error Analysis

A detailed analysis of failure cases not only reveals the prototype’s current limitations
but also underscores the strategic value of our proposed MCP architecture for future
functional expansion. We identified two primary error categories:

(1) Data Ambiguity (Query ID: AD-08): The query “Is the vessel near the restricted zone?”
failed because the AIS signal was located exactly on the boundary of the defined zone.
Since the prototype lacked a clear inclusion/exclusion rule for boundary cases, it
could not deliver a definitive judgment. To address this limitation, we recommend
introducing a spatial buffer or incorporating a fuzzy logic module, enabling the system
to handle such edge cases more smoothly.

(2) Complex Spatiotemporal Reasoning (Query ID: ETA-11): The query “If the vessel
maintains its current speed, can it avoid the forecasted storm in 6 h?” was answered
incorrectly. Although it correctly retrieved the vessel’s speed and the storm data, it
failed to perform the necessary multi-step spatiotemporal projection. This reveals
an inherent limitation in the LLM’s reasoning capabilities for complex, dynamic
scenarios. Our proposed solution is to integrate a dedicated route optimization or
weather simulation tool via the MCP framework, highlighting our architecture’s
extensibility, which can effectively compensate for the LLM’s intrinsic shortcomings.

6. Discussion

The results highlight how the integration of memory and live data transforms the
capabilities of a maritime QA prototype. This real-time situational awareness is crucial in
port operations, where decisions made on stale data can lead to inefficiencies or safety risks.
The prototype’s dependency on data freshness is a clear example of this criticality; as our
sensitivity analysis demonstrates, even a 10 s delay in AIS data can increase ETA prediction
errors from 5.0 min to over 15.2 min—a three-fold increase that could be operationally
significant. The memory component also proved its worth by reducing cognitive load and
interaction friction in multi-turn dialogues. Comparing our approach to prior works, our
experiment confirms that knowledge augmentation and tool integration significantly bene-
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fit QA in specialized domains [12,16]. Our work extends this understanding to streaming
data and interactive dialogue.

The theoretical foundations of artificial intelligence [33] and computational reason-
ing [34] provide important context for understanding these results. Human-Al interaction
principles [35] guide our approach to system design, while our work contributes to the
growing body of research on trustworthy Al systems [36,37]. Despite these positive out-
comes, we acknowledge some limitations that frame our future work.

First, data quality and security are core challenges. The prototype’s accuracy is
highly dependent on the quality of the real-time AIS data. Potential data errors, signal
interruptions, or even malicious AIS spoofing attacks could lead to incorrect analytical
results, thereby inducing operational risks.

Second, the prototype’s long-term robustness requires further validation. The current
experiments were conducted within a limited scope of time and queries. The efficiency
of the dialogue memory management and the system’s stability and response latency
under high-concurrency requests need more comprehensive stress testing in long-term,
continuous operation.

Finally, real-world deployment and validation are underway. The prototype has begun
trial operations on the Xiamen Joint Prevention and Management Platform and will also
support the newly established national “Special Control Zone” for maritime traffic safety
in Fujian. In this high-risk area, AISStream-MCP’s real-time alerting and multimodal exten-
sion capabilities provide direct data and intelligent support to VTS, traffic management
systems, and terminal operations. This enables dynamic vessel monitoring, more accurate
ETA predictions, and rapid response to emerging risks. The prototype interface of the
Port AISStream-MCP Intelligent Maritime Q&A System is shown in Figure 13, while the
production-ready deployment architecture is presented in Figure 14.

ol Xiamen Port AlSStream-MCP Intelligent Maritime Q&A System

Exper

mental demonstrat ) Answering with AISStrear

Persistent Memory Live AIS Stream ‘ Port Knowledge Graph Result Evaluation

# Experiment Control Center

Experiment Configuration: Connection Status:

® Monitoring Area: Xiamen Port (24.45°N, 118.0

J Xiamen Port Real-time Data

37 100.0% 613ms

a Task 1 ETA Prediction a Task 2: Anomaly Detection o Task 3: Multi-turn Route Queries
e [ A ; ‘

Current Accuracy: 100.0% | Completed: 10/10 Current Accuracy: 100,0% | Completed: 10/1 Current Coherence: 100.0% | Completed: 2/10

Query 1: When will container ship 'Haifeng Pearl’ arrive
at Xiamen Port Haitian Terminal?

en Bay in the past 2 hours?

y vessels deviated from the shipping I l Query 1: Which is the largest container ship currently at

Query 2: Where is the cargo ship MMSI 413123456
currently located, and how long until it arrives?

Query 2: Are there any vessels showing abnormal
anchoring or drifting behavior?

B Succes: | Accura ¢ | Respar

Query 2: Query all vessels from Hong Kong
I

& su Accuracy: 87.4% | Resp

Query 3: Which vessels from Taiwan Kaohsiung will
arrive at Xiamen today?

Query 3: Why did vessel MMS| 412987654 suddenly
change course by 90 degrees?

Figure 13. Cont.
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Intelligent Q&A Dialogue Interface

Query all vessels from Hong Kong

What time is the last vessel arriving at Xiamen Port Songyu Terminal today?

Based on real-time AIS data, the vessel is expected to arrive at Songyu Terminal at 6/23/2025, 4:38:26 AM

Found 5 vessels from Hong Kong: ‘Oriental Hong Kong', "HK-Xiamen Express', ‘South China Star', 'Hong Kong Spirit’, and ‘Sea Garden'

Which one will arrive first?

Based on previous dialogue context and real-time data, relevant answer generated

il Experiment Results Comparison

Answer Accuracy Multi-turn Coherence Avg Response Time User satisfaction

I5Stream-MCP seline Syster Baseline System AlSStream-MCP B m AlSStream-MCP

60% 90.3% 7.5s 0.6s 3.5/5 5.0/5

75% 100.0%

7] System Execution Log

[ <]

Figure 13. Port AISStream-MCP Intelligent Maritime Q&A System. Note: This interface displays
metrics from a specific, successful query session to illustrate the system’s real-time capabilities. The
performance values shown may differ from the averaged results over the entire experiment set
presented in Table 2.

External Data Sources
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AlSStream.io API Weather Services Port Systems API «3nodes 99.9% SLA
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« Alert management
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Figure 14. System Deployment Architecture. This figure presents the production-ready deployment
architecture, representing a reference deployment.

7. Conclusions and Future Work

In this paper, we presented AISStream-MCP, a prototype intelligent maritime QA sys-
tem that integrates MCP with real-time AIS data streams. Our experiments demonstrated
that this approach markedly improves the system’s accuracy and dialogue coherence. The
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proposed system can assist maritime authorities and port operators in timely decision-
making under dynamic conditions.

Looking forward, there are several promising directions. First, multi-modal integration
of data from cameras, radar, and weather sensors is a natural next step [7,31]. Second,
expanding multi-language support will be crucial for global applicability. Third, scalability
and deployment considerations need to be addressed for real-world use. Building on
established Al frameworks and following modern approaches to intelligent systems [38],
we aim to contribute to safer, more efficient, and smarter port operations.

Future work will focus on four key areas: first, scaling the evaluation with a larger,
more diverse set of queries to further validate the prototype’s generalizability. Second,
testing the framework with more advanced LLMs such as GPT-5 and Claude-3 to assess
performance improvements. Third, the prototype’s effectiveness is being validated through
its ongoing trial deployment on the Xiamen Sea Area Joint Prevention and Management
Platform, which will provide critical insights into its real-world usability and operational
value. Finally, future work will extend the prototype to integration with critical port
operational systems such as VTS, traffic management, and terminal operation systems,
enabling seamless connection with real-world platforms and delivering intelligent decision
support in high-risk contexts such as the “Special Control Zone”.
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