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Abstract
This work considers a long-term Perishable Inventory Routing Problem with mul-
tiple products, static demand, and single vehicle, in the setting of Vendor Managed
Inventory. By analyzing the optimal solutions of long-term cases that can be solved in
Python+Gurobi within 2 h, we capture some patterns of optimal solutions. Utilizing
these patterns, experiments show that under certain conditions, themathematical mod-
els of multi-product problems could be simplified to single-product problems, which
have the same optimal solutions while taking less time to solve. Managerial insights
were generated that for products with static demand in the long term, delivery should
be arranged at the store level rather than at the product level. Products in the same
store should have the same delivery pattern, no matter how different the unit holding
costs are. By further analyzing the optimal solutions of the simplified models, we find
that optimal value will stabilize in the long term, and the optimal solution is very close
to the solution point where total inventory holding cost and transportation cost are
close. Based on these findings, we have developed a heuristic that always provides
optimal or close-to-optimal solutions with far less computational time, compared with
Python+Gurobi.
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1 Introduction

Inventory Routing Problems (IRPs) are complex logistic problems in which two
hard problems are integrated into a unified framework: Inventory Management and
Vehicle Routing [1].

IRPs usually arise from a setting of vendor-managed-inventory (VMI) system, in
contrast to retailer-managed-inventory (RMI) system. As the name indicates, in the
system of RMI, retailers decide independently when and how much to order. As a
consequence,without exchanging information properly, the retailers’ decision strongly
limits the performance of a whole supply chain, in terms of transportation cost and
inventory-related cost [2]. In a VMI system, a supplier, having the full information of
inventory and demand of various retailers, is the central decision-maker, instead of the
retailers [3]. The cost reduction and collaborative benefits of VMI have been proved
by many scholars and retail chains including Wal-Mart [4,5].

In general, IRPs model the delivery policy of a supplier to a set of retail stores over
a short- or long-term planning period with a single product coming from a single plant
or facility, referred to as the vendor. Two main decisions are made during this process:
1. how much to replenish to each store to minimize waste and holding cost; 2. which
routes to choose to minimize transportation cost [6,7].

The structure of this work is as follows. In Sect. 2, we briefly explain the literature
and our contributions. In Sect. 3, we introduce the problem, notations, and mathemati-
cal models. In Sect. 4, we present our instances and some analysis of the optimal solu-
tions. Based on the analysis in Sect. 4, Sect. 5 elaborates the development of an equiva-
lent simplified model and experiment results of 2 models. This is followed by detailed
description of our heuristic in Sect. 6. The computational results are presented in
Sect. 7, including comparing solutions and computation time of our heuristic and com-
mercial solver Python+Gurobi. In the final section, Sect. 8, we conclude our findings.

2 Literature Review

IRP has a history of about 30 years. It was first introduced by [8] by integrating
decisions on inventory, vehicle scheduling for the delivery of chemical products. More
comprehensive and detailed reviews can be found in [9] and [10], which are very good
reviews of IRP.

Perishable Inventory Routing Problems (PIRP) was first motivated by a healthcare
application [11,12] due to the human blood perishability. Later on, the applicable range
gradually extends to more general context where the perishable items could be food
or medical drugs.

Generally speaking, thework onPIRP is scarce [13]. Several variants have been pro-
posed. Various topics includes economic issue, environmental issue [14] etc. Among
these topics, the economic issue continues to attract most attention, which is mini-
mizing cost. Environmental issue is also popular, which considers carbon emission.
According to model assumptions, PIRPs can be further divided into models of deter-
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ministic or stochastic demand [15,16], trans-shipments (delivery between stores) [17]
or direct delivery (delivery from depot to stores only), homogeneous vehicle or het-
erogeneous vehicle (can involve different capacity, unit transportation cost and speed
etc) [18], multiple [16] or single products. Since it is not possible to list all of the
papers, we cite some recent papers. For more detailed review, interested readers are
referred to reference [19], which is a comprehensive review.

After years of development, more complicated models have been formulated. How-
ever, these models differ in small details. Most of them are formulated as or found to
be equivalent to mixed-integer linear program (MILP). The methods adopted in those
models are usually based on exact methods such as Branch-and-Cut [1,20]) or meta-
heuristic such as Genetic Algorithm (GA) [21,22], Simulated Annealing (SA) [22],
Tabu-Search [23] etc. Some also rely on commercial solver such as Cplex [14,16],
Gurobi [15] to solve their models. When it comes to assumptions, majority of prob-
lems are single-product PIRPwith homogeneous fleet, deterministic demand and finite
shelf life.

PIRP with multi-product is a variant that is even less studied in PIRP because of
its complexity brought by the various products and inventory deterioration due to
different limited shelf-lives [12,16].

Reference [9] reports that instances of a single-product IRP with deterministic
demands can rarely be solved to optimality when the number of stores exceeds 30.
Considering product perish-ability makes the intrinsic-complicated IRP even more
complicated as the combinatorial complexity grows exponentially with the increase
of both product variety and store numbers [24].

However, the need for research in PIRP with multiple products is not neglectable.
First of all, waste of perishable products requires more attention. Perishable products
constitute over 52% of the sales revenue of grocery retail chains [25]. Nevertheless,
it is reported that food lost after harvest and at the transport, storage, and processing
stages stands at 13.8% globally, which amounts to over 400 billion USD per year [26].
In 2019, the profit margin of food retail barely reaches 1% after-tax [27]. Secondly,
the solution and method available for single-product PIRP are not suitable for real-life
retail chains [28]. A small retail chain could dispatch thousands of (perishable and
dry) products from a central warehouse to hundreds of stores.

Due to the complexity of real-world problems and the NP-hard nature of PIRP,
demand arises for more efficient algorithms to find optimal or near optimal solutions.
Perishable inventory is difficult to manage. However, analysis of optimal replenish-
ment policies remains a topic of great interest in the area of pure inventory manage-
ment. For example, references [15] and [29] explores optimal base-stock level, while
references [30] and [31] develop approximation algorithms for perishable inventory
systems. Due to the complex nature of algorithms for finding the solutions, papers of
PIRP tend to focus less on analysis but more on modelling and computation. Our work
differs from previous PIRP papers in the way that we obtain our close-to-optimal solu-
tions by analyzing the relationship between parameter values and optimal solutions.

In our problem, the relationship is found through both extensive experiments and
analyzing the trade-off of the 3 costs in our objective function, which are transportation
cost, inventory holding cost and waste cost. To the best of our knowledge, our work
is the first to study the long-term multi-product PIRP with static demand and provide
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solutions based on parameter-solution relationships. Since our problem has never been
studied before, we base our model on the famous single-product single-period Miller-
Tucker-Zemlin (MTZ) formulation of Travelling Salesman Problem (TSP) [32], and
modify the model to our need.

This work contributes to the literature in the following 4 ways: (a). We study the
PIRP of multiple perishable products with stable demand in the long term; (b). We
build a single-product PIRP model that provides the same solution and objective
function value as themulti-product PIRPmodel; (c).Wefind that the optimal solutions,
including the quantity to deliver to each store in each period, and the transportation
routes, could be found near the solution point whose total inventory holding cost and
transportation cost are close to each other; and (d). We develop a heuristic that can
provide the optimal or close-to-optimal solution for larger-scale problems with far less
computing time than Gurobi+Python.

3 ProblemDescription

The problem studied here is a long-term Inventory Routing Problem with multiple
perishable products, single-vehicle, and static demand. In the following subsections
we introduce our assumptions, notations and then mathematical models.

3.1 Assumptions and Notations

The mathematical models are developed based on the following assumptions:

1. One warehouse supplies multiple perishable products to multiple stores with an
unlimited supply. For the same product, different stores have different demands.

2. The unit holding costs are different for different products but are the same for the
same product across stores. Different products have a different maximum shelf
life, which is the same for the same product across stores.

3. FIFO policy: In each store, inventory is consumed in a first-in-first-out (FIFO)
manner, which means the oldest inventory will be consumed first then the fresher
ones. FIFO policy is one of themost effective policies to reduce waste and increase
revenue [25,33], which is widely adopted by supermarkets.

4. Symmetric distance matrix: The distance from any store i to store j equals the
distance from store j to store i .

5. For any route, a truck always departs from the warehouse and returns to the ware-
house at the end of a period. Each store can receive 1 delivery only in a period.

6. Single vehicle and static demand: In real life, 1 truck driver is usually responsible
for a certain area and this area tends not to change or change very slowly in terms
of population size and lifestyle. This also implies that, without intervention of
special events, the demand of product in each store tends to be stable in the long
term, especially for daily necessities like food.

7. No demand shortage is allowed in each period for each product at each store.
8. The vehicle has infinite capacity. There are 3 reasons: (a). Perishable products

require frequent delivery and small delivery quantity to control waste; (b). The
constraint that truck returns to depot at the end of the period (usually a day) limits
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the number of stores visited; (c). The vehicle capacity is much larger than the total
delivery quantity per route.

The notations used in this paper are presented in Table 1.

3.2 Mathematical Formulations of Multi-product PIRP with Static Demand and
FIFO

min

⎡
⎣uT ×

I∑
i=1

J& j !=i∑
j=1

Ti j ×
T∑
t=1

xi j t +
I∑

i=1

P∑
p=1

uHp ×
T∑
t=1

⎛
⎝

L p+1∑
l p=2

Invi pt,lp − Dip/2

⎞
⎠

+
I∑

i=1

P∑
p=1

Wp ×
T∑
t=1

Invi pt,1

⎤
⎦ /T , (1)

J& j !=i∑
j=1

xi j t � 1,∀i ∈ I ,∀t ∈ T , (2)

Table 1 Problem Notations

Indices

i, j Notation of node, i, j ∈ {1, 2, · · · , I }. I = J . Node 1 (i = 1) is the depot and I is the
total number of stores and depot.

p Notation of product, p ∈ {1, 2, · · · , P}. P is the total number of products.

lp Notation of remaining shelf life of product p, lp ∈ {
1, 2, 3 · · · , L p + 1

}
. Product with

lp = 1 will be discarded at the beginning of the period. L p is the shelf life of product p.

t Notation of a period, normally in the unit of day, in a planning horizon, t ∈ {1, 2, · · · , T }
and T is the total number of periods in the planning horizon.

Parameters

uT Unit transportation cost, unit: pound per km.

TC Truck Capacity of the vehicle, a very large number.

Ti j Transportation distance between store i and store j , in which store 1 is the depot, unit: km.

uHp Unit inventory holding cost of product p, unit: pound per piece per period.

Wp Unit wastage cost of product p unit: pound per piece per period.

Dip The demand of product p in store i , unit: piece.

M A large number used in if-or constraints.

Decision variables

xi j t Binary: 1, when truck departs from store i to store j at period t ; 0, otherwise.

Qipt Non-negative real: quantity of product p to deliver to store i in period t .

uit Real: quantity left in the vehicle after visiting store i in period t .

Invi pt,lp Non-negative real: inventory level of product p at store i and with remaining shelf life lp,
at the beginning of period t . Invi pt,1 is the inventory that should be discarded at the
beginning of each period; Invi pt,L p+1 is the freshest inventory received at the
beginning of each period.
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J& j !=i∑
j=1

x jit =
J& j !=i∑
j=1

xi j t ,∀i ∈ I ,∀t ∈ T , (3)

Qipt � 0,∀i ∈ I ,∀p ∈ P,∀t ∈ T , (4)

Invi pt,L p+1 = Qipt ,∀i ∈ I ,∀p ∈ P,∀t ∈ T , (5)

L p+1∑
lp=2

Invi pt,lp � Dip,∀i ∈ I ,∀p ∈ P,∀t ∈ T , (6)

P∑
p=1

Q jpt � M ×
I&i != j∑
i=1

xi j t ,∀ j ∈ J ,∀t ∈ T , (7)

uit − u jt �
P∑

p=1

Q jpt − TC × (1 − xi j t ),∀i ∈ [2, I ],∀ j ∈ [2, J ],

∀i ! = j,∀t ∈ T , (8)

Invi p,1,lp = 0,∀i ∈ I ,∀p ∈ P,∀lp ∈ [1, L p], (9)

Invi p,t+1,1 = max(Invi pt,2 − Dip, 0),∀i ∈ I ,∀p ∈ P,∀t ∈ T , (10)

Invi p,t+1,n = max

⎛
⎝

n+1∑
lp=2

Invi pt,lp − Dip, 0

⎞
⎠ −

n−1∑
lp=1

Invi p,t+1,lp,

∀i ∈ I ,∀p ∈ P,∀n ∈ [2, L p],∀t ∈ T ,

(11)

xi j t ∈ {0, 1} ,∀i ∈ I ,∀ j ∈ J ,∀i ! = j,∀t ∈ T . (12)

The objective function (1) minimizes the total cost, which equals the transportation
cost, plus inventory holding cost, plus perishable cost. Constraint (2)means the number
of trucks that leave any node should not exceed 1. Constraint (3) means the number
of trucks that enter any node should be equal to the number of trucks that leave the
same node. Constraint (4) means the quantity delivered should not be negative for all
product p, store i in all period t . Constraint (5) means the new delivery received at the
beginning of any period t is freshest among all inventory, having the longest remaining
shelf life. Constraint (6) means the quantity of product p that delivers to store i in
period t should at least satisfy the demand of this period, for all products in all stores.
Invi pt,1 is not included in the on-hand inventory because they reach the end of their
shelf life and are discarded at the beginning of the period. Constraint (7) means, if
the total quantity delivered to store j in period t is 0, then store j will not be visited
in period t ; else the number of trucks that goes to store j should be 1. Constraint
(8) is the sub-tour elimination and capacity constraints, based on the known MTZ
constraints and modified to our multi-period PIRP background. The MTZ constraints
have a polynomial cardinality, were first proposed for the single-period TSP [32] and
subsequently extended in reference [34]. When xi j t = 0, the constraint is not binding;
whereas xi j t = 1, the constraint imposes uit � u jt + ∑P

p=1 Q jpt , which means the
load left in the vehicle at store i after visiting should be no smaller than the load
left in the vehicle at store j after visiting plus the quantity needed in store j . This
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constraint has been used extensively to model the basic Vehicle Routing Problem
(VRP) and Capacitated Vehicle Routing Problem (CVRP). Constraint (9) means the
initial inventory at the beginning of period t = 1 is 0 for all products and all stores.
Constraint (10) means that according to FIFO policy, the oldest inventory, which is
lp = 2, will be used to first satisfy the demand. The remnant will perish in the next
period. Constraint (11) is similar to (10), meaning that the oldest inventorywith shorter
remaining shelf life will be used first, then the fresher batch. Constraint (12) enforces
xi j t to be binary.

4 SolutionMethod

The model is coded in Python 3.8, and Python + Gurobi is used to compute the
optimal solution. All computations are executed on a machine equipped with an Intel
i7 with CPU 1.80 GHz and 8 GB of RAM, with the Windows 10 operating system.

4.1 Instances Generation

Randomly generated instances are used to explore the relationship between optimal
solutions and the value of parameters. Instances vary in terms of the number and
locations of stores, length of planning horizon, unit holding cost, unit transportation
cost, and product shelf life. The details of our test-bed parameters is provided in
Table 2.

This study aims to explore the optimal solution in the long run, which is T = ∞.
However, due to the NP-hard nature of IRP [1], the problem is not solvable when T
is infinity. As a result, optimal solutions with limited T are observed at this stage.

All the other parameters are introduced earlier in Sect. 3.1 except node coordinate.
Node coordinates are the locations of stores and the depot. We randomly generate the
locations first, and then calculate Euclidean distance between node i and node j based

on Ti j =
√
(xi − x j )2 + (yi − y j )2 . Their locations are also used to draw the optimal

delivery routes per period for each instance.

Table 2 Test-bed parameter values

Parameters Value

Number of stores: I [0,70]

Number of Periods: T [1,10]

Shelf life of products: L p Random [1,20]

Number of products: P [1,200]

Demand: D Random [1,40]

Node coordinate: (xi ,yi ) Both Random [0, 200]

Unit inventory holding cost: uH 0.01, 0.1, 0.2, 10, 100

Unit transportation cost: uT 0.1

Initial inventory level: Inv0 0

123



666 X.-Y. Chen et al.

4.2 Analysis of Results and Features of Quantity in Optimal Solution

Due to the NP-Hard nature of the problem and the limited computational power of
the machine, it is found that some instances could not be solved to optimal within an
acceptable time, taking up to more than 15 h, such as problem scale of 1 product, 7
customers and 10 periods, or 4 products, 7 customers and 8 periods, or 1 product, 20
customers and 2 periods.

In our experiments, we let the model run for maximum 2 h. The cases that can
be solved within 2 h are referred to as ‘solvable’ cases for short in this paper, while
the rest are referred to as ‘not solvable’ cases for short. However, in the early stage
of the experiments, to test the limit of Python+Gurobi and observe optimal solution
patterns, we let some cases to run for more than 10 h.

In this section, we try different combinations of parameters and list computational
time and objective function value of 18 solvable cases. The cases that take longer than
2 h are marked with **. The rest of the larger-scale cases are not listed, for the optimal
solution could not be attained, due to the program terminated after 2 h or memory
running out.

Generally, the cases with longer planning horizon and more customers takes more
time to solve.More specifically, cases with customer number exceeding 20 or planning
horizon longer than 8 periods needs to be paired with other parameters of small values,
otherwise they are less likely to be solved within 2 h.

In the process of analyzing optimal solutions, we notice the delivery interval plays a
very important role. It is the lever that influences the trade-off of 3 costs (transportation,
inventory holding andwaste costs) in our objective function.When the optimal delivery
interval for each store is found, the optimal delivery quantity is found. The rest of the
job is scheduling the routes to optimal. Denote delivery interval of store i as Inti , total
delivery quantity to store i as Qi , the optimal delivery quantity at the beginning of
any delivery interval has the following 3 features:

Feature 1 Inti � min(L p): Delivery intervals should not be longer than the shortest
shelf-life of all products in store. The perishable nature of products requires
that the delivery interval must be smaller than product shelf life, which is
Inti � L p, ∀i ∈ I ,∀p ∈ P . This is equivalent to Inti � min(L p), ∀i ∈ I .
The smallest shelf-life in a store limits its delivery interval.

Explanation If the delivery interval is longer than product shelf-life, constraint (6),
which allows no demand shortage, will surely be violated. Let us assume the shelf-life
of a product is 3 days. If the store is replenished every 4 days, we will face 1-day
stock-out. No matter how much inventory we have at the beginning of the interval,
that inventory will drop to 0 at the end of shelf-life period. If not replenished in time,
the rest of the time, stores face stock-out situations.

Feature 2 Qi = Inti ×∑P
p=1 Dip: Under the condition of Feature 1, when the initial

inventory is 0 for all products in all stores as in our problem, optimal total
quantity delivered to each store at the beginning of any delivery interval
should always cover exactly the total demand during this interval; All
products in the same store have the same delivery pattern, which means
when optimized, situations will not happen that in the same store, some

123



Inventory Policy and Heuristic for Long-term Multi-product· · · 667

products receive 0while other products receive positive number of delivery
quantity.

Explanation The objective function consists of 3 costs, in which delivery quantity
only influences 2 of them, inventory holding and waste costs. Transportation cost
depends solely on delivery patterns, not on delivery quantity. Inventory holding cost
depends on the inventory level at the beginning and the demand,which is represented as∑L p+1

lp=2 Invi pt,lp −Dip/2. Suppose new delivery is received at the beginning of period

t , the inventory level at the end of the interval period is
∑L p+1

lp=2 Invi pt,lp − Inti × Dip.
Since no shortage is allowed in our problem, inventory level can not be negative and

we have
∑L p+1

lp=2 Invi pt,lp � Inti × Dip. Combined with constraint (5), we know that,
during any interval period Inti , initial inventory should always satisfy the following:∑L p

lp=2 Invi p,lp + Qip � Inti × Dip.
Objective function being minimizing cost, we will have:

L p∑
lp=2

Invi p,lp + Qip = Inti × Dip,∀i ∈ I ,∀p ∈ P. (13)

In equation (13),
∑L p

lp=2 Invi p,lp is the total inventory left at the end of previous
period, and also the total inventory at the beginning of the current interval period before
receiving newdelivery. If not plannedwell, this part of inventorywill be positive,which
means store ordered too much for last interval, Qip � Inti × Dip; nevertheless, when
planned well enough, initial inventory at the beginning of any interval before receiving
new delivery will be 0 for all products in all stores, we will have:

Qip = Inti × Dip,∀i ∈ I ,∀p ∈ P . (14)

Note that the value of Inti can be different for different stores. In the same store,
when Inti is given, equation (14) holds for all products. At the end, the optimal total
quantity delivered to store i : Qi = Inti × ∑P

p=1 Dip.
An example of how different delivery quantities influence inventory level is pro-

vided in Fig. 1. In this example, demand is 2 pieces per period, delivery interval is
3 periods. We can see that inventory level of the yellow line is clearly not optimal.
Store holds 2 more pieces than needed in first 3 periods. If quantity is optimized for all
periods, we would have the blue line. Thus, no matter how delivery intervals change,
when inventory is optimized, we will have no excess inventory, no shortage and no
waste.

Feature 3 Qi � min(L p)×∑P
p=1 Dip:When the initial inventory is 0 for all products

in all stores, the optimal delivery quantity for any product in any store
should not exceed the demand in the minimum shelf life period of all
products in the store.

Explanation Feature 3 is simply the combination of Features 1 and 2 when delivery
quantity of previous period is optimized, or when initial inventory is 0. However, when
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Fig. 1 Inventory level with different delivery quantity

we are unsure of the initial inventory level, we should have

P∑
p=1

L p∑
lp=2

Invi p,lp + Qi � min(L p) ×
P∑

p=1

Dip,∀i ∈ I ,∀p ∈ P . (15)

Inequality (15) makes sure that stores do not order too much. Combined with
no shortage constraint (6), inequality (15) forces stores to order at least once every
minimum shelf-life period.

The above 3 features show that optimal solutions of multi-product PIRP could
be presented at the store level. In other words, notations related to products can be
discarded and multi-product problem can be simplified to single-product problem.

For better illustration of the above 3 features, optimal delivery quantity and routes
of 2 cases both with 7 stores, 4 products, and 6-period planning horizon (I7P4T6)
are presented in this section. Table 3 shows product-related parameter values such
as demand in each store, shelf life and unit holding cost. The locations of depot and
stores are provided in Table 4.

In these 2 cases, the parameter values are carefully controlled.We specifically make
unit holding cost the same for different products in case1, and case2 with each product
having a very different unit holding cost. All the other data are the same between the
two cases.

The decision variable Qipt , optimal quantity delivered to each store in each period
is presented below in Table 5. For case1, I1 and I5 are replenished every period,
while the rest of the stores are replenished every 2 periods. The optimal solutions of
the remaining 4 periods are repetition of solutions for t = 1 and t = 2: Solution
(t = 1) = Solution (t = 3) = Solution (t = 5), Solution (t = 2) = Solution (t = 4) =
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Table 3 Products demand, shelf
life and unit holding cost of 2
cases

P1 P2 P3 P4

Dip I1 2 5 8 7

I2 10 10 8 9

I3 8 4 5 4

I4 3 5 3 4

I5 9 4 9 8

I6 5 9 7 4

I7 4 10 2 3

Shelf life L 4 3 7 10

uHp of Case1 0.15 0.15 0.15 0.15

uHp of Case2 0.01 0.1 0.2 100

Table 4 Nodes (stores) position
coordinate of 2 cases

Coordinates Nodes

Depot I1 I2 I3 I4 I5 I6 I7

X 62.5 82 91 12 92 63 9 28

Y 58.9 66 3 85 94 68 76 75

Table 5 Optimal quantity of 2 cases

(a) Case1 optimal quantity (b) Case2 optimal quantity
Stores t = 1 t = 2 Stores t = 1

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

I1 2 5 8 7 2 5 8 7 I1 2 5 8 7

I2 20 20 16 18 0 0 0 0 I2 10 10 8 9

I3 16 8 10 8 0 0 0 0 I3 8 4 5 4

I4 6 10 6 8 0 0 0 0 I4 3 5 3 4

I5 9 4 9 8 9 4 9 8 I5 9 4 9 8

I6 10 18 14 8 0 0 0 0 I6 5 9 7 4

I7 8 20 4 6 0 0 0 0 I7 4 10 2 3

Solution (t = 6). While for case 2, all stores are replenished every 1 period. Optimal
solutions of the remaining 5 periods are repetition of those of ‘t = 1’.

The optimal routes of the 2 cases are presented in Fig. 2 graphically. The red square
is the location of the depot, and the blue squares are the locations of stores.

5 SimplifiedModel Equivalent

Concluding from Sect. 4.2, the 3 features imply that optimal solution of multi-
product model could be presented without product-related indices, which inspire us
to simplify the multi-product model to single-product model. To further verify the
3 features of optimal solutions found and utilize them to our benefit, a simplified
model was formulated by dropping product and shelf-life-related indices. The updated

123



670 X.-Y. Chen et al.

Fig. 2 Optimal routes of 2 cases

parameters and simplified models are presented in the following subsections and in
Table 6.

Comparing optimal solutions and objective function values, experiments show that
the 2models are equivalent, while solving the simplifiedmodel is less time-consuming.

5.1 Updated Indices and Parameters

There are 4 main differences between the updated parameter table and the original
one after dropping the product-related indices p and its corresponding shelf life lp.
The detailed update is presented in Table 6.

1. Di replacing
∑P

p=1 Dip: New demand is considered at the store level rather than
product level, adding up the demand for different products in the same store.

Table 6 Updated indices and parameters

Updated Parameters

Di
∑P

p=1 Dip , total demand in store i in period t , unit: piece

uHi (
∑P

p=1 Dip × uHp)/(
∑P

p=1 Dip), average unit holding cost in store i , unit: pound/piece

L min(L p), unit: periods.

Deleted Parameters

Wp Unit wastage cost per product piece, unit: pound/piece

Updated Decision Variable

Qit Non-negative real: quantity to deliver to store i in period t , replacing
∑P

p=1 Qipt

Invi t Non-negative real: inventory level at store i at the beginning of period t , replacing∑P
p=1

∑L p
lp=1 Invi pt,lp
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2. uHi added, uHp removed: New unit holding cost is also presented at the store level
rather than product level, with unit of new demand having the same unit holding
cost.

3. L replacing min(L p): Shelf life per product is replaced by minimal shelf life
of products. For example, if the old shelf lives for 4 products are 3, 4, 15, 20
respectively, then the new shelf life is 3.

4. Inventory age is no longer tracked.

5.2 SimplifiedModels

min

⎡
⎣uT ×

I∑
i=1

J& j !=i∑
j=1

Ti j ×
T∑
t=1

xi j t +
I∑

i=1

uHi ×
T∑
t=1

(Invi t − Di/2)

⎤
⎦ /T , (16)

s.t.

J& j !=i∑
j=1

xi j t � 1,∀i ∈ I ,∀t ∈ T , (17)

J& j !=i∑
j=1

x jit =
J& j !=i∑
j=1

xi j t ,∀i ∈ I ,∀t ∈ T , (18)

Invi,1 = 0,∀i ∈ I , (19)

Qit � 0,∀i ∈ I ,∀t ∈ T , (20)

Invi t + Qit � Di ,∀i ∈ I ,∀t ∈ T , (21)

Invi t + Qit � Di ∗ L,∀i ∈ I ,∀t ∈ T , (22)

Invi,t+1 = Invi t + Qit − Di ,∀i ∈ I ,∀t ∈ T , (23)

Q jt � M ×
I&i != j∑
i=1

xi j t ,∀ j ∈ J ,∀t ∈ T , (24)

uit − u jt � Q jt − TC × (1 − xi j t ),∀i ∈ [2, I ],∀ ∈ [2, J ],∀i ! = j,∀t ∈ T , (25)

xi j t ∈ {0, 1} ,∀i ∈ I ,∀ j ∈ J ,∀i ! = j,∀t ∈ T . (26)

Themain body of objective function and constraints are the same. There are 3major
differences between the simplified model and the original one:

1. Waste cost is eliminated from the objective function because the waste will always
be 0. This is achieved by adding constraint (22) when minimizing the objective
function and applying FIFO policy.

Constraint (22) is originated from inequality (15). It erases the part of waste caused
by over-ordering. As explained in Sect. 4.2, combined with no shortage constraint
(21), this constraint limits the delivery interval to be shorter than or equal to minimum
shelf-life of all products in store.
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The objective function of minimizing costs helps to control the inventory level to
be just enough between any delivery interval, leaving no excess inventory for next
delivery interval, as explained in Sect. 4.2, Feature 2.

By adding constraint (22) when minimizing the objective function, the waste can
already be thoroughly eliminated. Objective function helps to minimize the inventory
level during an interval, and constraint (22) helps to control the length of intervals.
FIFO policy is not necessary anymore in our problem setting. Nevertheless, adopting
FIFO in real life is still a good practice. It requires the inventorywith shortest remaining
shelf-life to be consumed first, which reduces possible waste due to mismanagement.
Note that in constraint (22), the total initial inventory in store Invi t equals∑P

p=1
∑L p

lp=1 Invi p,lp, while in inequality (15) it is
∑P

p=1
∑L p

lp=2 Invi p,lp. They are
equal because in optimal solutions, Invi pt,1 = 0.

2. Since there is no waste, there is no need to track inventory age in our mathematical
model. Supermarkets can still track inventory age in real life. In mathematical
model, whether tracking inventory age or not does not affect our optimal solutions.
Inventory-age-related constraints in the original model are all deleted. The original
inventory dynamic constraints (10) and (11) are now replaced with constraint (23),
which means the total inventory at beginning of next period before receiving new
delivery equals total inventory at the beginning of this period, plus new delivery,
minus demand.

3. As discussed in Sect. 4.2, product-related parameters and variables are all deleted.
The multi-product model is now simplified to single-product model.

5.3 Computational Results and Conclusions of 2models

Demonstrated by experiments, the 2 models are equivalent in terms of solutions
and objective function value. The simplified model generally takes less time for
Python+Gurobi to solve. We list detailed computational time and objective function
value in Table 7. The ‘Obj’ in the table is short for ‘Objective Function Value’. The
cases of the original model that take longer than 2 h to solve are marked with **.

After the aboveverification, someconclusions canbedrawnandmanagerial insights
can be derived. Since inventory holding cost is usually proportionate to product price,
the more expensive the product, the higher the unit holding cost. This is to say, for
perishable products in the same store with stable demand and unlimited supply, if they
could be delivered in the same cold-chain vehicle, then:

1. There is no need to hoard cheap products. The reason is that if other conditions
remain unchanged, for any store, the transportation cost occurs and is fixed as long
as delivery happens. Hoarding 1 product while trucks still deliver other products
to the same store only increases inventory holding cost. The better way is to break
down the bulk of large orders andfit them in the delivery schedule of other products.

2. There is no need to arrange frequent delivery for expensive products to reduce
holding cost. The reason is similar to the previous one. The transportation of
delivery to each store does not depend on the quantity, but on the distance only.
Increasing delivery frequency for only 1productwhile frequency for other products
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Table 7 Computational time in
seconds (S) and OBJ value of 2
models

I P T Original model Simplified model

Time/s Obj Time/s Obj

5 100 8 7 392.5 1 392.5

5 200 5 4 400.2 0.4 400.2

7 4 5 250 300.2 150 300.2

7 4 6 1 320 243.5 250 243.5

9 4 4 53 167.2 8 167.2

9 4 4 1 048 356.7 89 356.7

10 50 6 123 347.2 6 347.2

10 150 4 459 687.9 8 687.9

15** 8 4 11 779 189.7 3 894 189.7

15 50 3 748 225.2 411 300.3

19 4 2 2 280 141.5 5 847 141.5

19 6 2 1 789 178.1 890 178.1

20 6 4 50 328.7 17 328.7

20 50 4 69 357.9 14 357.9

25 8 2 193 132.9 239 132.9

25 20 2 71 130.8 14 130.8

30 8 2 557 138.9 366 138.9

30 10 2 2 954 101.6 1 394 101.6

remains the same is not optimal. Inventory holding cost of other products can be
further reduced by increasing the delivery frequency and reduce the quantity of
delivery each time, which also evens the truck utilization rate for each delivery.

3. There is no need to track inventory age and consider product-age-related policies,
such as FIFO policy, since all products can be sold and waste is eliminated.

In conclusion, when the delivery frequency for 1 product changes, the delivery
frequency of other products should be adjusted accordingly. The best strategy is to
sync the delivery for all products, provided the assumptions of this problem.

6 Heuristic for Long Term PIRP

Though the simplified model consumes less time than the original model by reduc-
ing some constraints and variables, long-term models are still not solvable, even for
small-scale problems. In the earlier experiments, we know that the long-term delivery
pattern is repeating the solutions of its shortest cycle (denoted as T ∗).

The shortest cycle T ∗ has the following 3 features:

Feature 1 All conditions are the same for all cycles including initial inventory. The
end inventory of current cycle is the initial inventory for next cycle, and
optimal end inventory is always 0 (no left over). Therefore, in each cycle,
the initial inventory and end inventory are 0 for all products in all stores.

Feature 2 The periodic objective function value is the smallest.
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Feature 3 T ∗ is the smallest value among all T s that satisfy Feature 1.

The shortest cycle T ∗ is difficult to find and unknown. One way to find this T ∗ is
to compare objective function values of all solvable problems for each case, gradually
increasing T from 1 period. Usually to observe an accurate T ∗, T should be at least
2× T ∗, because we need to be sure that we have found the smallest periodic objective
function value.

This method is quite time-consuming because unfortunately, not all T ∗s are small
numbers. If intervals for all stores are the same, then T ∗ equals to this interval; else, T ∗
is the least commonmultiple of all stores replenish intervals. For example, considering
2 stores, the optimal intervals are 3 and 5 periods. The end inventory of 2 stores returns
to 0 at the end of each 3 and 5 periods. The smallest period in which Feature 1 can be
satisfied is period 15. The situation complexity can only increase with the number of
stores. As we can imagine, even for some small cases, the optimal long-term solutions
are not attainable, due to computational complexity.

To solve long-term problems, we propose a heuristic based on the relation-
ships observed between parameters values and optimal solutions computed via
Python+Gurobi. For small-scale problems for which the optimal solution is com-
putable by using Python+Gurobi, the heuristic can provide optimal or close-to-optimal
solutions with less computational time. For medium to large scale problems for which
only 1-period optimal solution is computable, the heuristic can provide better solu-
tions with reasonably less computational time. For larger-scale problems that 1-period
problem could not be solved to optimal within 2 h, the heuristic is still able to provide
good solutions.

6.1 Heuristic for Long-Term PIRP

For the long-term PIRP with static demand and single vehicle, due to those special
assumptions, when the T is large enough, the periodic inventory and transportation
cost will converge to a value, and the optimal solutions of multiple periods will be
a repetition of solutions of a smaller T ∗. Take the I7P4T6 case1 we saw in Sect. 4
for example, the optimal solutions are the repetition of the first 2 periods’, which is
T ∗ = 2. That is because the delivery intervals of different stores are 1 or 2 periods,
T ∗ = 2 is the smallest common multiple of 1 and 2. The heuristic approaches optimal
solution byfinding this T ∗, which comprises the optimal delivery interval of each store.

The overview of heuristic is shown in Fig. 3, which displays rough idea. As men-
tioned earlier, during the experiments, we notice delivery interval is the lever in the

Fig. 3 Main idea of steps in heuristics
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trade-off of our PIRP model. The detailed steps are presented below, in which 2 steps
are the cores: (a) how to calculate close-to-optimal global interval; (b) how to adjust
interval for each store based on the global interval to approach to the optimal solution.

Step1 Calculate Global Delivery Interval, denoted as GInt, assuming all the cus-
tomers have the same delivery pattern and before considering product
perishability constraint. The same delivery pattern means, in any period
t , either all stores are replenished, or no store is replenished at all. In other
words, having the same delivery pattern means having both the same deliv-
ery interval and the same 1st delivery date. For example, if GInt = 3, all
stores are replenished every 3 periods and on the same day.

– Step1-1 Solve TSP for all customers using Python +Gurobi, which is calculating
the shortest distance visiting all customers in 1 route. Denote the optimal objective
function value as TC, and save the optimal routes. The TSP mathematical model
is presented in the following Sect. 6.2.

– Step1-2 Calculate optimal global interval before considering product perish-

ability: GInt =
√

2×TC×uT∑I
i=1 uHi×Di

. The objective function could be written as follows,

minimizing periodic transportation cost and inventory holding cost:

min

(
TC × uT

GInt
+

∑I
i=1(uHi × Di ) × GInt

2
.

)
(27)

GInt is the only variable. The optimal solution is found where the gradient con-
cerning GInt is 0, which is −TC×uT

GInt2
+ ∑I

i=1(uHi × Di )/2 = 0. In the end, we

have GInt =
√

2×TC×uT∑I
i=1 uHi×Di

. Go to Step2.

Step2 Since the interval GInt can be non-integer, or greater than shelf life (infea-
sible), we then check if the interval (GInt) is feasible and integer.

– Step2-1 If GInt � L , then GInt = L , go to Step3-0; else if GInt � 1, then
GInt = 1, go to Step3-2; else if 1 < GInt < L , go to Step3-0.

Step3 Assume x ′ is x rounded up to its nearest larger integer and x∗ is x rounded
down to its nearest smaller integer. For example, if GInt = 3.5, then
GInt∗ = 3, GInt′ = 4. In the following steps, based on the 2 nearest integers
(GInt∗,GInt′) of GInt, we fine-tune the intervals for each store and check if
the solution can be improved.
If GInt is not an integer, after Step3, we will have 2 delivery schedules, one
is based on global interval GInt∗ (e.g., 3), another is based on global interval
GInt′ (e.g., 4). These 2 delivery schedules are different. In final Step4, we
pick the schedule with the smaller cost. However, if GInt is an integer itself
(e.g., 2), we will have 1 schedule, whose global interval is itself (e.g., 2).

– Step3-0 If (GInt2 )∗ = (GInt2 )′, then GInt is an even number and no smaller
than 2, go to Step3-2; else, go to Step3-1.
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– Step3-1 Let fGInt = GInt∗. If fGInt � 2, go to Step3-1.1; else, go to
Step3-1.2.

Step3-1.1 Check if total cost could be improved, when shortening delivery
interval for each store. For each store i , we insert 1 delivery in the middle of
the global delivery interval fGInt, without changing intervals of other stores.
Let hfGInt = fGInt/2. After inserting, the original delivery interval is split
into 2 intervals, which are hfGInt∗ and hfGInt′. For example, if fGInt = 3,
then hfGInt∗ = 1, hfGInt′ = 2. If fGInt = 4, the 2 new intervals are both 2.

Hsavei = [(fGInt)2 − (hfGInt∗)2 − (hfGInt′)2] × uHi × Di/2, (28)

Tincrei = 2 × T0i × uT. (29)

As introduced inSect. 4.2, in any intervalwith 0 initial inventory, the optimal
inventory at the beginning of a period should equal to the total demand in
this interval. Equation (28) calculates the difference in fGInt periods. Before
insertion of one extra delivery, optimal original initial inventory is fGInt× Di ,
which can last for fGInt periods. After the insertion, we have hfGInt∗ × Di

pieces of product for store i , which lasts for hfGInt∗ periods and hfGInt′ × Di

which lasts hfGInt′. The saved holding cost Hsavei is the difference between
original holding cost (fGInt)2 × uHi × Di/2 and new holding cost after the
insertion [(hfGInt∗)2 + (hfGInt′)2] × uHi × Di/2. Equation (29) calculates
the increased transportation cost Tincrei , which is the cost of vehicle leaving
depot to store i and returning.

If Hsavei > Tincrei , insert one more delivery for store i . If the number
of stores is greater than 1, solve TSP for these stores. Update total cost and
delivery interval for all i . Go to Step3-1.2.

The reasons for inserting new delivery in the middle of the original interval
for all stores are: (a) to maximize the reduction on inventory holding cost for
each single store; (b) to further reduce transportation cost since delivery of
multiple stores can be arranged on the same day in 1 route. In this way, the
total cost will be minimized.
Step3-1.2 If 2 × fGInt > L , go to Step3-2; else, which is if 2 × fGInt � L ,
check if the total cost could be improved for each store by increasing the
delivery interval. For each store i , we increase the interval to be twice the
global interval, the new interval newInt = 2 × fGInt. For example, if L = 7,
fGInt = 3, then newInt = 6; if L = 5, fGInt = 3, then Step3-1.2 is skipped,
go straight to Step3-2.

Tsavei = (Tni + Tim − Tnm) × uT, (30)

Hincrei = (newInt2 − 2 × (fGInt)2) × uHi × Di/2. (31)

For each store i , denote the nodes before and after in the TSP routes, as n and
m. Before increasing the interval, store i is visited twice in newInt periods with
the same store visiting order, store n to store i to storem. After increasing, store
i is visited once in newInt periods. The 2nd visit is cancelled and the vehicle
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visits store m directly after leaving store n. Equation (30) calculates the saved
transportation cost Tsavei caused by the cancellation of the 2nd visit in newInt
periods. Equation (30) is a fast and easy estimation of saved transportation
cost. Equation (31) calculates the increased holding cost Hincrei , which is the
difference between 2 costs, 2× (fGInt)2 × uHi × Di/2 (original interval) and
newInt2 × uHi × Di/2 (after interval increase). If Tsavei > Hincrei , increase
the delivery interval for store i . Please note that the Tsavei is an estimation
of saved transportation cost by simply removing node i from the routes and
linking the nodes before and after i . To increase the accuracy, we keep a record
of these store i , update the route by deleting these stores from the original
one, calculate T savei for the rest of the stores, and compare them with Hincrei
again. We repeat the steps until no more stores could be improved.

If the number of stores is greater than 1, solve TSP for these stores. Update
delivery interval for all i and total cost. Go to Step3-2.

– Step3-2 Let fGInt = GInt′, go to Step3-1.1, and then go to Step4.

Step4 If GInt∗ = GInt′, save final solutions of Step3-2; otherwise, compare the
final solutions obtained from Step3-1 and Step3-2, and select the delivery
schedule with smaller objective function value. Now the delivery intervals
are known, denote interval for store i as Inti , and the quantity that should be
delivered is: Inti × Di .

6.2 Mathematical Formulation for TSP

Here we present the model of typical TSP. The one we adopt is the famous MTZ
formulation [34], in which the TSP is formulated as an integer linear program. The
assumptions of the twomodels in the earlier sections still hold, and the data generation
rule also applies.

The TSP was first formulated in 1930. After all these years, many variants emerge,
extending from the seminal model. Interested readers could refer to [35] for more
details. This area is very mature with many efficient algorithms.

During our exploration to PIRP solution optimality, it is found that optimal solution
of TSP, or the accuracy of transportation cost estimation, attaches great importance.
Thus, despite of its NP-hard nature, in our heuristic, we still choose to solve TSP to
optimal using Python+Gurobi. With the quality of TSP routes guaranteed, we are able
to obtain optimal solution for some cases.

min
I∑

i=1

J& j !=i∑
j=1

Ti j × xi j , (32)

s.t.

J& j !=i∑
j=1

xi j = 1,∀i ∈ I , (33)
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J& j !=i∑
j=1

x ji = 1,∀i ∈ I , (34)

ui − u j + 1 � I ∗ (1 − xi j ),∀i ∈ [2, I ], j ∈ [2, J ], i ! = j, (35)

1 � ui � I − 1,∀i ∈ [2, I ], (36)

xi j ∈ {0, 1} ,∀i ∈ I ,∀ j ∈ J ,∀i ! = j . (37)

The objective function (32) minimizes the total traveling distance. Constraint (33)
means the number of trucks that leave any node should be 1. Constraint (34) means
the number of trucks that enter any node should be 1. Constraint (35) and (36) are for
sub-tour elimination. Constraint (37) enforces integrality.

7 Computational Results

Ideally, when solving the problem using Python+Gurobi, the longer the T the more
accurate the long-term optimal solution. T should be at least 2×T ∗ so that the shortest
repeating cycle T ∗ can reveal itself.With a longer T , by analyzing the optimal solution
obtained from t = 1 to t = T , the shortest solution cycle T ∗ and the optimal solution
pattern are clearer. However, due to the NP-hard nature of the problem, even for a
small-scale problem, only problems with limited periods are solvable.

The generation of cases in this section follows the same rule as in previous Sect. 4.1.
The detailed numerical results, objective value, and computational time for 45 ran-
domly generated cases are presented in Table 8.

The ‘T ’ column in Table 8 is the maximum period that Python+Gurobi could solve
within 2 h. For all cases, we start with T = 1, and then gradually increase the T , until
the limit of Python+Gurobi is reached. That is, if the largest T is 6 for a case, we solve
the model to optimal for 6 times with T varying from 1 to 6, and save optimal solutions
and objectives function value for each T . In the early stage of the experiments, to test
the limit of Python+Gurobi and observe optimal solution patterns, we let some cases
run for more than 10 h. These cases are marked with ** in the ‘Dataset’ column.

The ‘Obj’ in the table is short for ‘Objective Function Value’. For cases with T
greater than 1, the ‘Obj’ listed in Table 8 is the optimal periodic cost after comparing
all solvable T s. The PT∗ is the period where the optimal solution is found. The HT∗
is the global interval calculated using heuristic. For example, for the 1st case (I7Set1)
in Table 8, the largest T computable is 6, the best solution is found when T = 3 and
T = 6. The corresponding ‘Obj’ listed is the ‘Obj’ value of T = 3 and T = 6. Using
heuristic, the global interval is also 3 periods. For some cases, T = 0. It means these
cases with T = 1 could not be solved within 2 h, and the computational time and
objective function are represented as ‘-’.

The results show that, even for the cases with the same number of stores, compu-
tational time can vary a lot as parameter values vary. For each data-set, we generate
demand and maximum product shelf life randomly. It is found that cases with larger
demand value and longer shelf life usually take more time. Nevertheless, generally,
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Table 8 Comparison between Python+Gurobi and Heuristics

Dataset T Python+Gurobi Heuristic

PT∗ Time/s Obj HT∗ Time/s Obj

I7Set1 6 3,6 3 642 26.3 3 0.3 26.3

I7Set2∗∗ 5 2,4 43 996 37.3 2 0.2 37.3

I7Set3 8 4,8 14 536 29.9 4 105 29.9

I7Set4 9 6 154 24.9 6 0.3 24.9

I7Set5 8 8 2 854 22.5 8 0.05 22.5

I10Set1 7 6 5 007 46.3 3 0.4 46.8

I10Set2 6 2,4,6 4 175 32.2 3 0.3 32.8

I10Set3 6 5 335 20.8 5 0.4 20.8

I10Set4 3 3 4 389 53.6 2 0.3 54.9

I10Set5 7 6 78 27.7 6 0.5 27.7

I20Set1 2 2 1 145 73.9 2 4 73.9

I20Set2 2 2 1 394 50.3 4 7 50.2

I20Set3 2 2 531 46.4 3 133 45.9

I20Set4 2 2 5 936 71.7 2 215 71.7

I20Set5 2 2 3 50.8 4 1 50.7

I30Set1 1 1 548 105.7 2 297 101.4

I30Set2 2 2 986 91.3 2 9 91.7

I30Set3 2 2 89 84,3 2 2 84.7

I30Set4 3 2 2 501 58.9 4 6 58.5

I30Set5 2 2 200 69.2 2 17 69.2

I40Set1 2 2 433 75.1 4 263 74.3

I40Set2 1 1 8 180 85.9 2 4 74.2

I40Set3 2 2 378 80.2 2 25 80.2

I40Set4 1 1 60 97.5 2 6 78.9

I40Set5 1 1 30 95.3 2 24 77.9

I50Set1 2 2 3 389 81.9 2 53 81.9

I50Set2∗∗ 1 1 20 365 105.5 4 112 78.7

I50Set3 2 2 177 80.7 4 81 79.7

I50Set4 0 – – – 4 57 78.7

I50Set5 2 2 901 129.0 2 43 130.1

I55Set1 1 1 124 111.5 2 24 97.5

I55Set2 1 1 879 110.8 2 167 93.2

I55Set3 1 1 4 164 115.2 2 83 101.5

I55Set4 1 1 2 903 112.2 2 1 972 97.3

I55Set5 1 1 2 718 115.7 2 346 102.7

I60Set1 1 1 607 149.5 2 160 148.9

I60Set2 1 1 655 133.7 2 118 132.7

I60Set3 0 – – – 2 5 331 127.3

I60Set4 1 1 47 118.2 2 32 103.1
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Table 8 continued

Dataset T Python+Gurobi Heuristic

PT∗ Time/s Obj HT∗ Time/s Obj

I60Set5 0 – – – 2 277 109.2

I70Set1 0 – – – 2 1 070 166.8

I70Set2 1 1 739 165.4 2 1 279 163.7

I70Set3 0 – – – 2 4 986 142.3

I70Set4 0 – – – 2 297 163.3

I70Set5 0 – – – 2 7 015 131.9

as the number of stores increases, the maximum planning horizon solvable shortens,
and the number of 1-period problems that could be solved within 2 h decreases.
In conclusion, as the experiment shows, the heuristic is effective and efficient in 2
perspectives:

1. Solution quality: for all cases, as long as TSP is solvable usingGurobi, the heuristic
could provide the same optimal solutions for some cases and close-to-optimal
solutions for the rest.

2. Computational time: for almost all cases, the heuristic consumes less time, which
lays a good base for more complicated problems, such as stochastic demand,
multiple vehicles.

8 Conclusions and Findings

In this work, we have studied the long-term PIRP with multiple products, single-
vehicle, and static demand. By analyzing the optimal solutions, we have proposed 2
ways of modeling, namely single product model and multiple product models, and
experiments have showed that they are equivalent in terms of optimal solutions and
objective function values, while the former takes less time to solve.

By verifying that the two models are equivalents, we could gain some managerial
insights: for products with regular and stable demand in the long term, delivery should
be arranged at the store level rather than at the product level. The latter means the
truck carries 1 or limited kinds of product per delivery, while the former requires the
delivery of all products to be in sync. This indicates that for any store, there is no
need to hoard products with cheap inventory holding cost to reduce transportation
cost; and no need to arrange a special delivery for products with expensive holding
cost to reduce holding cost. The advantage of syncing delivery for all products in this
problem setting could be concluded as stable supply and even vehicle utilization rate.
One should also note that for products with unstable demand, the above managerial
insights might not apply.

Due to the NP-hard nature of PIRP, to obtain good solutions for larger-scale prob-
lems and save computational time for small-scale problems, we have also developed a
heuristic. Comparing the solution and computational time between heuristic and com-
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mercial solver Gurobi coded on Python, it is demonstrated by experiments that the
heuristic can provide optimal or close-to-optimal solutions for all solvable cases, with
far less time. Though the heuristic is for single-vehicle problems, it could be easily
implemented in multi-vehicle problems, by assigning each vehicle to its long-term
serving zone and customers.

To balance the solution quality and speed of calculation, we mix the exact method
and the analytical method. Exact method used for TSP assures the solution quality
and approximation in our selection process reduces excessive time on exhausting all
combinations.

The efficiency and quality of our heuristic is supported by extensive experiments.
Nevertheless, we acknowledge some limitations of our study. Currently, our heuristic
is tailored for the PIRP presented in this work, which is with single vehicle, static
demand and single objective function. Our heuristic and some of the managerial
insights are applicable to limited scenarios only. For example, when the number of
vehicles increases or the demand is no longer static, the optimal solution pattern can
be more difficult or impossible to capture. Besides, in our heuristic, the transportation
cost is calculated to optimal by using Python+Gurobi, which can be time-consuming.

In the future, we may consider replacing the Python+Gurobi with other methods,
which can increase the speed of calculation. One possible research direction is incor-
porating more realistic elements to our model such as multi-objective, multi-vehicle
and stochastic demand. Another direction is to study the influence of different product
issuing policy (other than FIFO) to the performance of our PIRP system.
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