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The Fusion of Discrete Z-Numbers With
Application for Fault Diagnosis

Ying Cao , Jian-Bo Yang , Xinyang Deng , and Wen Jiang

Abstract— A Z-number, which is a generalization of probability
and fuzzy numbers, is a novel model to represent uncertainty in
the real world. This article aims to develop discrete Z-numbers in
both theory and application with the methodology of information
fusion. First, a method for the fusion of discrete Z-numbers is
proposed, in which the following problems are solved: 1) the
extension principle and linear smoothing operator are used to
obtain reasonable possibility distributions and 2) an optimization
model based on the maximum entropy is constructed to obtain the
most likely underlying probability. Thus, the relationship between
the two components of Z-numbers is considered in our method.
Second, the fusion of Z-numbers is applied to data-driven fault
diagnosis, with which we show the potential of Z-numbers in
real data in addition to linguistic information. The effectiveness of
the proposed method is illustrated by the numerical experiments,
where the two components of Z-numbers are generated according
to their interpretations.

Index Terms— Fault diagnosis, information fusion, uncertainty,
Z-numbers.

NOMEMCLATURE

X Set of points.
μ(·) Membership degree.
P(A) Probability measure of A.
PX Probability distribution of X .
p(·) Probability of an element.
f (·) Mathematical function.
D Decision matrix.
COG Center of gravity.
X̄ Mean of a set of points.
σ Standard deviation.
r l

mn Training pattern.
ql Test pattern.
MD Mahalanobis distance matrix.
S Matrix of matching degree.
Su Matrix of support degree.
Credl

mi Overall support degree.
NCredl

mi Normalized overall support degree.
scorei Final evaluation of a test sample.
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I. INTRODUCTION

UNCERTAINTY is a pervasive phenomenon in the real
world, so it plays a crucial role when making decisions.

Varieties of models, such as the probability [1], Z-numbers [2],
[3], [4], fuzzy numbers [5], and evidence theory [6], [7], [8],
[9], [10], have been proposed to describe different uncer-
tainties. The focus of this article is the one which covers
the following two components when modeling uncertainty:
the first one is the uncertainty involved in the description or
evaluation of an event, while the second one comes from the
imperfection, i.e., the reliability, of the evaluation. In view of
the two points, Zadeh [2] proposed the concept of Z-numbers.
A Z-number is an ordered pair (A, B), where A is the
restriction on the values an uncertain variable X may take,
while B is the restriction on the probability measure of A,
so it represents how reliable X is A. In this article, we focus
on discrete Z-numbers.

Zadeh [2] first suggested some basic rules for the compu-
tation of Z-numbers. Thereafter, Yager [11] pointed out that
answers of many problems regarding Z-numbers are dependent
on the nature of underlying uncertainty of the associated
variable, and then, he illustrated basic solutions by assum-
ing some probability distributions. With Zadeh and Yager’s
interpretation, many scientists have made great theoretical
contributions for Z-numbers: the arithmetic [12], approximate
reasoning [13], [14], Z-differential equations [15], [16], lin-
ear algebra [17], nonlinear system [18], distance measure
[19], [20], [21], uncertainty measure [22], utility [23], rel-
ative entropy [24], and so on. In addition, Z-numbers have
wide applications, such as decision-making [25], [26], [27],
[28], [29], failure mode and effect analysis [30], omnidirec-
tional robot [31], and monitor drought [32]. This study aims to
solve the following two problems associated with Z-numbers:
1) how to aggregate multiple Z-numbers without ignoring the
underlying probability? and 2) can the fusion of Z-numbers
be applied to data-driven fault diagnosis?

The first task is to develop the theory for the fusion of
Z-numbers. As a general methodology, information fusion [33]
for uncertainty refers to aggregating uncertainties from multi-
ple sources to draw more comprehensive and accurate con-
clusions. The fusion of Z-numbers has great potential in
artificial intelligence [34] in which the main task is to simulate
human smart behaviors in machine systems. There are three
main reasons: 1) people intend to consider information from
different aspects to make better decisions and this is actually
a process of information fusion; 2) Z-numbers are originally
proposed to process the linguistic description provided by
human and, thus, they are consistent with human thinking;
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and 3) a Z-number, utilizing both information itself and its
reliability, is a useful model to represent uncertainty, which
plays an important role in artificial intelligence. For example,
naive Bayes [35] and fuzzy C-means [36] are proposed to
process probability and fuzziness, respectively. The above
factors motivate us to study the fusion of Z-numbers.

In this article, we propose a method for the fusion of
Z-numbers. Our method consists of two modules: 1) the
arithmetic of component A, and in this module, the extension
principle is adopted first for the computation of fuzzy numbers
and, then, a linear smoothing operator is proposed to get
a reasonable possibility distribution satisfying the definition
of fuzzy numbers and 2) the computation of component B ,
where the extension principle and linear smoothing operator
also applies. The main difficulty here is to utilize the underly-
ing probability of the associated variable. For this problem,
Aliev et al. [4] proposed a linear programming model, but
they made assumptions about the underlying probability rather
than finding it via computational models. With the basis
of Aliev et al.’s [4] discussion and the maximum entropy
principle, we construct an optimization model to find the
most likely underlying probability distributions without extra
assumption. The possible values of B can be easily computed
afterward. A numerical example is provided to illustrate the
process of the method and show how Z-numbers work with
linguistic estimations.

Another task is the application of the fusion of Z-numbers
to data-driven fault diagnosis [37], [38], [39], [40]. As men-
tioned before, Z-numbers are originally proposed to process
the uncertainty involved in linguistic information, also called
computing with words [2]. Thus, most previous works [13],
[14], [25], [28], [32] study Z-numbers with human natural
language (usually the estimations of experts). In this article,
we show the following two aspects. First, Z-numbers can
deal with not only human linguistic description but also the
real data collected from nature. Specifically, the reliability of
the information provided by a dataset is considered. Second,
aggregating information involved in multiple Z-numbers helps
improve the performance of the proposed method than the case
without information fusion. To achieve the goals, we propose
a new method for fault diagnosis based on the fusion of
Z-numbers. Two main problems are solved: Z-number gen-
eration and Z-number fusion. For the former one, the two
components of Z-numbers are generated from the original data
according to their own interpretations. Specifically, component
A is generated from the matching degree between the test
and training patterns, while B depends on how much multiple
training patterns support each other. As for the latter problem,
it is consistent with the addition of Z-numbers. The numerical
experiments demonstrate the effectiveness of the proposed
method.

In this article, we use capital letters X , Y , and Z to represent
variables whose values are Z-numbers. Lower case letters x ,
y, z, and b are used to denote elements belonging to a set.
A and B denote the two fuzzy components of Z-numbers.
Other main notations are listed in the Nomenclature. The rest
of this article is organized as follows. Section II provides the
basic knowledge of discrete fuzzy numbers, Z-numbers, and
extension principles. Then, a method to achieve the fusion of

Z-numbers is proposed in Section III. Section IV discusses
how to apply the fusion of Z-numbers to fault diagnosis.
Section V draws the conclusion.

II. PRELIMINARIES

This section provides a review of the background knowledge
associated with this work:

A. Discrete Fuzzy Numbers

Assume that X is a space of points (objects), with a generic
element of X denoted by x . Thus, X = {x}. In the classic set
theory, the possibility that an element x belongs to a set A in
X is 0 or 1, which can be expressed as

μA(x) =
{

1, x ∈ A
0, x /∈ A.

(1)

However, in fuzzy logic, a fuzzy set A in X is characterized
by a membership function μA(x) : X → [0, 1], which maps
x ∈ X to the interval [0, 1], with the value of μA(x) that is also
called possibility representing the grade of membership, also
called the membership degree, of x in A. The closer μA(x)
to 1, the higher the membership degree of x in A (i.e., the
more possible x in A).The support of A is

supp(A) = {x ∈ X |μA(x) �= 0} (2)

and the α-level set of A is denoted by

Aα = [μA(x)]α = {x ∈ X |μA(x) ≥ α}. (3)

Thus, fuzzy sets extend the classic sets from Boolean logic
{0, 1} to the continuous interval [0, 1].

A fuzzy number is a normalized, convex fuzzy set of the
real line. There are two categories: discrete fuzzy numbers
and the continuous ones. In this article, we only care about
discrete fuzzy numbers, which can be defined as follows.

Definition 1 (Discrete Fuzzy Numbers [4]): A fuzzy sub-
set A of the real line R with membership function μA :
R→ [0, 1] is a discrete fuzzy number if its support is finite,
i.e., ∃ x1, . . . , xn ∈ R with x1 < x2 < · · · < xn, such that
supp(A) = {x1, . . . , xn} and ∃ s and t that are natural numbers
with 1 ≤ s ≤ t ≤ n satisfying the following conditions.

1) μA(xi) = 1 for any natural number i with s ≤ i ≤ t .
2) μA(xi) ≤ μA(x j) for each natural numbers i and j with

1 ≤ i ≤ j ≤ s.
3) μA(xi) ≥ μA(x j) for each natural numbers i and j with

t ≤ i ≤ j ≤ n.
The three conditions expressed in Definition 1 demonstrate

the convexity of discrete fuzzy numbers.
Note that fuzzy numbers and probability are two different

models to represent uncertainty. The former one is used to
describe fuzziness or ambiguity when there is no clear bound
between two objects or classes, especially linguistic descrip-
tions, such as the terms young and old, high and low, and about
45 and about 50, while the latter one describes uncertainty
coming from randomness. The probability of a fuzzy number
can be measured based on the associated membership and
the underlying probability distribution, where the membership
plays the role of discount factors.
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Definition 2 (Probability Measure of a Discrete Fuzzy
Number [4]): Assume a discrete fuzzy number A =
{(μA(xi)/xi)} with i = 1, . . . , m, and its associated probability
distribution is pX = {p(xi)} satisfying

m∑
i=1

p(xi) = 1 (4)

and then, the probability measure of A denoted as P(A)
measuring the reliability of A is defined as

P(A) =
m∑

i=1

μA(xi)p(xi). (5)

B. Discrete Z-Numbers

Although the concept of fuzzy numbers introduces a new
uncertainty, which is not covered by the traditional probability,
it is still unclear for the following question: assume that A is
the fuzzy evaluation of an event, how sure is it? In our real
life, it is possible to receive information like the following
descriptions: it is very likely that the anticipated budget deficit
is close to 2 billion, it is absolutely that degree of Robert’s
honesty is very high, and it is likely that the oil price will be
higher than 100 dollars. Taking the last one as an example,
higher than 100 dollars can be quantified as a fuzzy number,
but how to deal with the reliability of the evaluation described
by likely? and what is the relationship between the two
descriptions? To answer the question, Zadeh [2] generalized
the concept of fuzzy numbers and probability to Z-numbers.
Similar to fuzzy numbers, Z-numbers include both the discrete
Z-numbers and continuous ones. This article focuses on the
discrete type.

Definition 3 (Discrete Z-Numbers [4]): A discrete
Z-number is an ordered pair of discrete fuzzy numbers
denoted as: X is (A, B), where A plays the role of the
fuzzy restriction on values that a variable X may take with
a membership function μA : {x1, x2 . . . , xm} → [0, 1]: X is
A and B is the fuzzy restriction on the probability measure
of A with a membership function μB : {b1, . . . , bn} → [0, 1]
and {b1, . . . , bn} ⊂ [0, 1]: P(X is A) is B .

The ordered triple (X, A, B) is referred to as a Z-valuation,
which is also equivalent to an assignment statement: X is
(A, B). Recall that the linguistic information provided by
an expert: it is likely that the oil price will be higher than
100 dollars; then, this can be represented by a Z-valuation:
(the oil price, higher than 100 dollars, likely), and two fuzzy
numbers are used to quantify higher than 100 dollars and
likely.

In a Z-number X = (A, B), A is a fuzzy number, which
can be represented by{

μA(x1)

x1
,
μA(x2)

x2
, . . . ,

μA(xm)

xm

}
(6)

where {xi} with i = 1, . . . , m are possible values of X
and {μA(xi)} is the possibility distribution, also called the
membership degree, representing to what degree xi belongs
to A. In addition, B is a fuzzy number{

μB(b1)

b1
,
μB(b2)

b2
, . . . ,

μB(bn)

bn

}
(7)

Fig. 1. Meaning of Z-numbers.

which describes the reliability of A, b j with j = 1, . . . , n
are possible values of P(A), and {μB(b j)} is the asso-
ciated possibility distribution. Furthermore, the probability
measure of A denoted by P(A) can be defined as: P(A) is∑n

i=1 μA(xi)p(xi). Here, it is important to mention that pX =
{p(xi)} with i = 1, 2, . . . , m called the underlying (hidden)
probability of the variable X is unknown. What is known is pX

satisfies (4) and it has the restriction, which can be expressed
as:

∑n
i=1 μA(xi)p(xi) is B from which we know that B is

the fuzzy restriction on the probability measure of A. The
definition of Z-numbers can be described in Fig. 1, in which
the two components of Z-numbers are linked by the underlying
probability.

A concept that is closely related to the concept of a
Z-numbers is Z+-numbers. The underlying probability of the
variable X , which is unknown in a Z-number, is known
in a Z+-number. A Z+-number is an ordered pair (A, R),
where A plays the same role as it does in a Z-number, while
R representing P(A) is a real number as the underlying
probability is known with which P(A) can be computed
by (5). Similar to Z-numbers, a Z+-valuation can also be
written as: X is (A, pX ). Note that P(A), which follows (5),
is the scalar product of μA and pX , and this links the concept
of Z-numbers and Z+-numbers, which can be described as

Z(A, B) = Z+(A, P(A) is B)

where what is known in a Z-number is not pX , but the
restriction associated with it expressed as: P(A) is B . In fact,
a Z+-number can be viewed as a specific case of a Z-number
when the underlying probability is known.

C. Extension Principle

What the computation of fuzzy numbers and Z-numbers
could follow is the extension principle of fuzzy logic [41].
Basically, the term extension principle is proposed to describe
a rule in which what are known are not the values of arguments
but the restrictions on the value of arguments [2]. Here, we list
some basic versions of the extension principle.

A basic version related to the computation of fuzzy numbers
can be described as

Z = f (X, Y )

R(X) : X is
{

μA1 (x1)

x1
, . . . ,

μA1 (xn1 )

xn1

}
R(Y ) : Y is

{
μA2 (y1)

y1
, . . . ,

μA2 (yn2 )

yn2

}
R(Z) : μA(zi ) = supx j ,yk

(μA1(x j) ∧ μA2(yk))

s.t. zi = f (x j , yk)

(8)
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in which R(·) means the restriction of possible values of a
variable, and μA(zi ), μA1(x j), and μA2(yk) are the restrictions
on the values of Z , X , and Y , respectively.

In probabilistic restrictions, the general extension principle
leading to results coincides with standard results relating to
the functions of probability distributions [42], which can be
described as

Z = f (X, Y )
R(X) : X isp pX , pX = p(x1)\x1 + · · · + p(xn1)\xn1

R(Y ) : Y isp pY , pY = p(y1)\y1 + · · · + p(yn2)\yn2

R(Z) : pZ (zi) =∑
j,k p(x j)p(yk)

s.t. zi = f (x j , yk)

(9)

where isp means probability distribution is, and pZ = pX ◦ pY

is the convolution, a mathematical operation on two functions
producing the third function, of pX and pY [4], [13].

With the basis of the extension principle of fuzzy and
probabilistic restrictions, Zadeh [2] constructed the extension
rule for Z-numbers

Z = f (X, Y )
X is (AX , BX ) (restriction on X)
Y is (AY , BY ) (restriction on Y )
Z is (AZ , BZ ) (induced restriction on Z)

AZ = f (AX , AY )
BZ = μAZ · (pX ◦ pY )

(10)

in which · means the scalar product and pX and pY are
constrained by ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑
p(x j) = 1∑
p(yk) = 1∑
p(x j)μAX (x j) is BX∑
p(yk)μAY (yk) is BY .

(11)

In (10), the possibility distribution of Z can be obtained by

μAZ (zi) = sup
x j ,yk

(μAX (x j) ∧ μAY (yk))

s.t. zi = f (x j , yk) (12)

and the possibility of the probability of Z is

μpZ (p(zi)) = sup
pX ,pY

(
μBx

(∑
μAX (x j)p(x j)

)
∧μBY

(∑
μBY (yk)p(yk)

))
. (13)

III. FUSION OF Z-NUMBERS

In this section, we propose a method to achieve the fusion
of Z-numbers. Variables in classic mathematics are accurate,
and then, they can be aggregated in mathematical functions
via various basic arithmetic operations, including addition,
subtraction, multiplication, division, and power. For example,
if the variable X is 1 and Y is 1, then we have: X + Y = 2.
In this operation, the information involved in X and Y is
aggregated by the addition operation, the associated function
is: f (X, Y ) = X + Y . In this section, mathematical functions
will be extended from accurate variables to Z-valued ones.

The purpose of the fusion of Z-numbers is to integrate
information involved in multiple Z-numbers, and this can be

done by Z-valuation-based mathematical functions, that is, the
following function is considered:

Z = f (Z1, Z2, . . . , Z K ) (14)

where Z1, Z2, . . . , Z K and Z are all variables whose values
are Z-numbers. Here, we only discuss the situation when there
are two Z -valued variables in f , and multivariable situation
follows the same computational rules. Assume two Z -valued
variables X and Y : X is (A1, B1) and Y is (A2, B2), where

A1 =
{

μA1(x1)

x1
,
μA1(x2)

x2
, . . . ,

μA1(xn1)

xn1

}
(15)

A2 =
{

μA2(y1)

y1
,
μA2(y2)

y2
, . . . ,

μA2(yn2)

yn2

}
(16)

B1 =
{

μB1(b11)

b11
,
μB1(b12)

b12
, . . . ,

μB1(b1m1)

b1m1

}
(17)

B2 =
{

μB2(b21)

b21
,
μB2(b22)

b22
, . . . ,

μB2(b2m2)

b2m2

}
. (18)

The task is to compute the variable Z = (A, B), which has
the following mathematical relationship with X and Y :

Z = f (X, Y ). (19)

The whole framework of the fusion of Z-numbers follows
from (10) includes two modules: the fusion of the fuzzy
evaluation of events (i.e., the first components of Z-numbers)
and the computation of reliability (i.e., the second components
of Z-numbers). Details are discussed in the following.

A. Integration of the First Components in Z-Numbers

As the first component in a Z-number is a fuzzy number,
the integration of the fuzzy evaluation of events in Z-numbers
is equivalent to the arithmetic of fuzzy numbers. The main
task in the computation of discrete fuzzy numbers is to obtain
possibility distributions (i.e., membership degree). There are
two common approaches: the extension principle-based [43]
and α-level-set-based [44] methods. In this article, the former
one is adopted. The extension principle-based approach is
defined as follows.

Definition 4: Assume that two discrete fuzzy numbers
denoted as A1 and A2 are

A1 =
{

μA1(x1)

x1
,
μA1(x2)

x2
, . . . ,

μA1(xn1)

xn1

}
(20)

and

A2 =
{

μA2(y1)

y1
,
μA2(y2)

y2
, . . . ,

μA2(yn2)

yn2

}
. (21)

Then, their computational result A satisfying A = f (A1, A2)
is

supp(A) = {z ∈ f (x, y)|min( f (x, y)) ≤ z ≤ max( f (x, y))}
(22)

and the associated membership degree is

μA(z) = sup
x,y

(μA1(x) ∧ μA2(y))

s.t. z = f (x, y). (23)
As shown in (22), element z in A is obtained by the

computational result of pairs (x, y) in which x and y belong
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Fig. 2. (a) Possibility distribution of A without the linear smoothing operator.
(b) Possibility distribution of A with the linear smoothing operator.

to supp(A1) and supp(A2), respectively. The associated mem-
bership degree is obtained by (23) that follows the extension
rule. However, it might obtain the computational result A not
satisfying the convexity of fuzzy numbers. Here, an example
is used to illustrate the limitation.

Example 3.1: Assume that we have two fuzzy numbers

A1 =
{

0.3

1
,

1

2
,

0.5

3

}
(24)

A2 =
{

0.4

4
,

1

6
,

0.8

8

}
. (25)

Then, with the basis of (22) and (23), the sum of A1 and
A2 denoted by A can be obtained

A =
{

0.3

5
,

0.4

6
,

0.4

7
,

1

8
,

0.5

9
,

0.8

10
,

0.5

11

}
. (26)

The possibility distribution of A is shown in Fig. 2(a).
As shown in Fig. 2, A does not satisfy the convex-

ity in Definition 1, and thus, A is not a fuzzy number.
To avoid the drawback, Wang et al. [44] defined operations
on fuzzy numbers based on α-level sets. By using a linear
smoothing method, Casasnovas and Riera [45] generalized
Wang et al.’s [44] result as a family of possibility distributions
in which Wang et al.’s [44] result is just the lower bound of it.
No matter in which approach the key of the arithmetic of fuzzy
numbers is to obtain a reasonable possibility distribution satis-
fying the three conditions in Definition 1. The extension-based
approach has been widely adopted in Z-numbers due to its
simpleness and practicability [2], [11], [13], [46], [47], but
it may cause unreasonable possibility distributions. α-level-
set-based approaches can obtain a reasonable membership
degree. However, the result is sensitive to the value of α.
This makes it not practical in the computation of component
B of Z-numbers. In Casasnovas and Riera’s [45] method,
a family of possible membership degree is involved between
the lower and upper bounds, and this makes it not practical
in real applications and the computation of component B .
To avoid these inconveniences and inspired by Casasnovas and
Riera [45], a new method combining the extension principle
and linear smoothing operator is proposed in this article.
It consists of two steps.

1) Extension Principle-Based Module: This section is
totally consistent with Definition 4. The possible values
belonging to X and Y are computed with (22). Then, the
associated membership degree can be obtained via (23).

2) Linear Smoothing Operator: After step 1), a primary
representation of A denoted by A p can be obtained

A p =
{

μ
p
A(z1)

z1
,
μ

p
A(z2)

z2
, . . . ,

μ
p
A(zn)

zn

}
(27)

where z1 < z2 < · · · < zn and μ
p
A is used to represent

the primary possibility distribution (i.e., membership degree).
However, A p may not satisfy the convexity as shown in
Example 3.1. Therefore, it is necessary to change the primary
extension-based possibility distribution to satisfy the convexity
of fuzzy numbers. For this issue, we utilize the original
extension-based possibility distribution as much as possible
with the constraint that the properties of fuzzy numbers are
satisfied. Specifically, the methodology is to find the possibility
distribution denoted by μA that is closest to μ

p
A and satisfy

the convexity of fuzzy numbers at the same time. Here, the
similarity between μA and μ

p
A is measured by the utility

U = {u1, u2, . . . , un} where

ui =
{

1, if μA(xi) = μ
p
A(xi)

0, if μA(xi) �= μ
p
A(xi )

(28)

and then, the objective is

arg max
μA

n∑
i=1

ui

s.t.

⎧⎪⎨
⎪⎩

μA(zi ) ≤ μA(z j ), 1 ≤ i ≤ j ≤ s

μA(zi ) = 1, s ≤ i ≤ t

μA(zi ) ≥ μA(z j ), t ≤ i ≤ j ≤ n.

(29)

Before solving (29), a linear smoothing operator, which is
inspired by the linear operation in [45], is proposed.

Definition 5: Assume a monotone sequence associated with
a fuzzy number

A =
{

μA(z1)

z1
,
μA(z2)

z2
, . . . ,

μA(zn)

zn

}
(30)

where z1 < · · · < zn and u A(zi ) satisfy one of the following
two monotone conditions:

μA(z1) ≤ μA(z2) ≤ · · · ≤ μA(zn) (31)

or

μA(z1) ≥ μA(z2) ≥ · · · ≥ μA(zn). (32)

Then, for a new element z j ∈ (zi , zi+1), i.e., zi < z j < zi+1

where zi , zi+1 ∈ supp(A), its membership degree μA(z j) is
smoothed as

μA(z j) = μA(zi+1)− μA(zi)

zi+1 − zi
(z j − zi)+ μA(zi ). (33)

Note that with the linear operation (33), it is easy to
verify that the new element z j does not destroy the convexity.
Specifically, we have{

μA(zi ) ≤ μA(z j) ≤ μA(zi+1), if μA(zi ) ≤ μA(zi+1)

μA(zi ) ≥ μA(z j) ≥ μA(zi+1), if μA(zi ) ≥ μA(zi+1).
(34)

With (33) and (34), (29) can be solved by the following
process. Assume that for the fuzzy number (27), μ(zi) =
1 with 1 ≤ s ≤ i ≤ t ≤ n. Taking zs and zt as boundary
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points, then the whole sequence can be divided into three parts:
z1 ≤ zi ≤ zs , zs ≤ zi ≤ zt , and zt ≤ zi ≤ zn :

For z1 ≤ zi ≤ zs , we first find the longest non-
decreasing subsequence of {μp

A(z1), . . . , μ
p
A(zs)}, denoted

by {μp
A(z∗1), . . . , μ

p
A(z∗d)} with d ≤ s, z∗1 < · · · < z∗d and

μ
p
A(z∗1) ≤ · · · ≤ μ

p
A(z∗d). Note that here, z∗i is used to

distinguish the nondecreasing subsequence and the original
possibility sequence, and {z∗1, . . . , z∗d} ⊆ {z1, . . . , zs}. Then,
we have

μA
(
z∗j

) = μ
p
A

(
z∗j

)
(35)

where 1 ≤ j ≤ d , that is, there is no change
with the membership degree belonging to the longest
nondecreasing subsequence. Then, the possibility of
elements satisfying z1 ≤ zi ≤ zs , but zi /∈ {z∗1, z∗2, . . . , z∗d}
is smoothed according to (33). After inserting the
smoothed elements, {μA(z∗1), . . . , μA(z∗d)} can be extended
to {μA(z1), . . . , μA(zs)}. According to (34), we know
z1 < · · · < zs and μA(z1) ≤ · · · ≤ μA(zs). Thus, this
operation can make the possibility distribution of the first
part monotonically increase.

As for elements zi ∈ [zt , zn], the associated membership
degree follows similar procedures: the longest nonincreas-
ing subsequence of {μp

A(zt ), . . . , μ
p
A(zn)} is found at first.

Then, the possibility of not belonging to the subsequence is
smoothed by (33), and this makes the membership degree
monotonically decrease. Therefore, the possibility distribu-
tion {μp

A(zt ), . . . , μ
p
A(zn)} is smoothed as a nonincreasing

sequence: {μA(zt), . . . , μA(zn)} with zt < zt+1 < · · · < zn

and μA(zt) ≥ μA(zt+1) ≥ · · · ≥ μA(zn). In addition, there is
no change for zs ≤ zi ≤ zt as their membership degrees are
all equal to 1.

Finally, combining the three smoothed parts, the reasonable
possibility distribution {μA(z1), μA(z2), . . . , μA(zn)} satisfy-
ing the convexity in Definition 1 can be obtained. In short,
the linear smoothing operator guarantees the convexity of the
obtained discrete fuzzy number according to (34). The whole
process of the arithmetic of fuzzy numbers is shown in Algo-
rithm 1, and the linear smoothing operator is demonstrated by
Algorithm 2. With the proposed linear smoothing operator, the
computational result in Example 3.1 is

A =
{

0.3

5
,

0.4

6
,

0.4

7
,

1

8
,

0.5

9
,

0.5

10
,

0.5

11

}
(36)

which is shown in Fig. 2(b). Obviously, only μA(10) is mod-
ified, and thus, A keeps the original extension principle-based
possibility distribution as much as possible on the premise of
satisfying convexity.

B. Computation of the Second Component in Z-Numbers

As for the computation of component B , following the
definition of Z-numbers, the fusion of reliability includes three
steps.

1) Searching for the Underlying Probability: According to
Definition 3, both fuzziness and probability should be consid-
ered in the computation of Z-numbers. In addition, we know
that A and B in Z-numbers are not independent of each
other but linked by the underlying probability distribution.

Algorithm 1 Arithmetic of Fuzzy Numbers

Input: A1 = {μA1 (x1)

x1
,

μA1 (x2)

x2
, . . . ,

μA1 (xn1 )

xn1
},

A2 = {μA2 (y1)

y1
,

μA2 (y2)

y2
, . . . ,

μA2 (yn2)

yn2
}

Output: A = f (A1, A2)= {μA(z1)
z1

, μA(z2)
z2

, . . . , μA(zn)
zn
}

1: Computing the primary supp(A) = {z1, z2 . . . , zn}
and μ

p
A = {μp

A(z1), μ
p
A(z2), . . . , μ

p
A(zn)} with (22) and (23)

respectively;
2: Finding the boundary points satisfying μA(zi) = 1 where

s ≤ i ≤ t ;
3: Smoothing {μp

A(z1), . . . , μ
p
A(zs)} as a monotone

non-decreasing sequence {μA(z1), . . . , μA(zs)} with
algorithm 2;

4: Smoothing {μp
A(zt ), . . . , μ

p(zn)} as a monotone
non-increasing sequence {μp

A(zt), . . . , μ
p(zn)} with

algorithm 2;
5: Combining the three parts: μA = {μA(z1), . . . , μA(zs)} ∪
{μA(zs+1), . . . , μA(zt)} ∪ {μA(zt+1), . . . , μA(n)};

6: return A = μA

supp(A)
.

Algorithm 2 Linear Smoothing Operator

Input: A p = {μp
A(z1)

z1
, . . . ,

μ
p
A(zn)

zn
} with z1 < . . . < zn

Output: A = {μA(z1)
z1

, . . . , μA(zn)
zn
}

1: if μ(z1) = 1 then
2: Finding the longest non-increasing subsequence of μ

p
A:

{μp
A(z∗1), μ

p
A(z∗2), . . . , μ

p
A(z∗d)} where d ≤ n

3: else
4: Finding the longest non-decreasing subsequence of μ

p
A:

{μp
A(z∗1), μ

p
A(z∗2), . . . , μ

p
A(z∗d)} where d ≤ n

5: end if
6: for i = 1→ n do
7: if zi ∈ {z∗1, z∗2, . . . , z∗d} then
8: μA(zi )← μ

p
A(zi)

9: else
10: Smoothing μ

p
A(zi ) as μA(zi ) with (33)

11: end if
12: end for
13: return {μA(z1)

z1
, μA(z2)

z2
, . . . , μA(zn)

zn
}

Specifically, the elements in B are computed by the underlying
probability and the possibility distribution of A according
to (5). Inspired by [4], we first obtain (37) for X based on
Definition 3 and (4) and (5){

p1(x1)+ p1(x2)+ · · · + p1(xn1) = 1

μA1(x1)p1(x1)+ · · · + μA1(xn1)p1(xn1) = b11

...{
pm1(x1)+ pm1(x2)+ · · · + pm1(xn1) = 1

μA1(x1)pm1(x1)+ · · · + μA1(xn1)pm1(xn1) = b1m1

(37)

where each group of probability distribution of X , denoted
by pXl1 = {pl1(x1), . . . , pl1(xn1)}, has a membership
degree μ(pXl1) that is actually given by b1l1 , i.e.,

μ(pXl1) = μB1(b1l1) (38)
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with l1 = 1, . . . , m1. Similarly, for Y , we have{
p1(y1)+ p1(y2)+ · · · + p1(yn2) = 1

μA2(y1)p1(y1)+ · · · + μA2(yn2)p1(yn2) = b21

...{
pm2(y1)+ pm2(y2)+ · · · + pm2(yn2) = 1

μA2(y1)pm2(y1)+ · · · + μA2(yn2)pm2(yn2) = b2m2

(39)

and

μ(pYl2) = μB2(b2l2) (40)

with l2 = 1, . . . , m2. However, it is clear that infinite solutions
satisfy the two equalities in (39) for each b2l2 , which means
that infinite probability distributions of Y are possible. The
probability of X in (37) also follows the similar case. This
makes the computation of Z-numbers difficult, and now, the
question is: how to utilize the unknown probabilistic infor-
mation with the given conditions? To solve the problem, the
maximum entropy principle [1], which states that the proba-
bility distribution, which best represents the current state of
knowledge about a system is the one with the largest entropy,
is adopted to find the most likely probability distribution of X
for each b1l1

arg max
pX

−
∑

j

pl1(x j)log2 pl1(x j)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n1∑
j=1

pl1(x j) = 1

n1∑
j=1

pl1(x j)μA1(x j) = b1l1 ↔ μB1(b1l1)

0 ≤ pl1(x j) ≤ 1

(41)

where ↔ is used to emphasize μB1(b1l1). In (41), the three
constraints follow from the definition of Z-numbers, and no
extra assumption is made. Note that the maximum entropy
model tends to generate the uniform probability distribution,
but the second constraint of (41) originated from (5) affects
the trend, that is, if b1l1 is improved, elements with larger
possibility can be assigned more probability compared with
smaller b1l1 and vice versa. Furthermore, (41) has a solution
if and only if

b1l1 ≥ min
j

μA(x j). (42)

As l1 = 1, . . . , m1, m1 groups of probability distribution
can be obtained for X , with each group denoted by pXl1 ={pl1(x1), . . . , pl1(xn1)}. What is more, μ(pXl1) can be obtained
by (38). Similarly, for Y , we have

arg max
pY

−
∑

k

pl2(yk)log2 pl2(yk)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n2∑
k=1

pl2(yk) = 1

n2∑
k=1

pl1(yk)μA2(yk) = b2l2 ↔ μB2(b2l2)

0 ≤ pl2(yk) ≤ 1

(43)

with l2 = 1, . . . , m2. Then, m2 groups of probability distri-
bution can be obtained for Y , with each group denoted by
pYl2 = {pl2(y1), . . . , pl2(yn2)}. Meanwhile, μ(pYl2) can be
obtained by (40). Then, with (9), the probability of Z can
be derived with the convolution of pXl1 and pYl2

pl(zi ) =
∑

j

∑
k

pl1(x j)pl2(yk)

s.t. zi = f (x j , yk) (44)

where i = 1, . . . , n, j = 1, . . . , n1, k = 1, . . . , n2,
l1 = 1, . . . , m1, and l2 = 1, . . . , m2. Note that with (44),
m3 groups of probability distributions for Z denoted by
pZl = {p(z1), p(z2), . . . , p(zn)} can be obtained, where l =
1, . . . , m3 and m3 ≤ m1×m2. The reason why m3 ≤ m1×m2 is
that it is possible to get the same pZl with different pairs of
pXl1 and pYl2 . Moreover, similar to pX and pY , each pZl has
a membership degree that can be derived according to the
extension rule

μ(pZl) = sup
pXl1 ,pYl2

(μ(pXl1) ∧ μ(pYl2))

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1∑
j=1

pl1(x j) = 1

n2∑
k=1

pl2(yk) = 1

μ(pXl1) = μB1(b1l1)

μ(pYl2) = μB2(b2l2)

pZl = pXl1 ◦ pYl2

(45)

which is extended from (13).
2) Computation of Elements in Component B: With

m3 groups of most likely probability distributions, the pos-
sibility distribution of Z , and (5), elements in component B
can be computed by

bl =
∑

i

μA(zi )pl(zi ) (46)

where i = 1, . . . , n and l = 1, . . . , m. As for the value of m
which is the total number of bl , it is originally equal to m3 as
each group of probability distribution can get one element
in B . However, with (46), equivalent bl may be obtained by
two different pZl ’s. Therefore, the total number of bl denoted
as m satisfies m ≤ m3. Furthermore, the possibility of bl can
be obtained with the extension rule

μB(bl) = sup
pZl

μ(pZl)

s.t.
n∑

i=1

pl(zi )μA(zi) = bl . (47)

Above all, the computation of membership degree is a possi-
bility transmission process, which can be described as

μB1(b1l1)⇒ μ(pXl1)
μB2(b2l2)⇒ μ(pYl2)

}
⇒ μ(pZl)⇒ μB(bl). (48)

As shown in (48), b1l1 and b2l2 transmit their possibility to the
underlying probability denoted by pXl1 and pYl2 , respectively,
and then, pXl1 and pYl2 give their membership degree to pZl

via (44). Finally, bl receives its final possibility from pZl

by (46).
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Fig. 3. (a) Fuzzy numbers for the five linguistic terms of reliability. (b) Fuzzy
numbers for the five linguistic terms of risk.

3) Smooth the Possibility Distribution of B: It is possible
that the possibility distribution of B obtained from step 2) does
not satisfy the convexity of fuzzy numbers. To solve the prob-
lem, the linear smoothing operator illustrated in Algorithm 2
is adopted again. The smoothing process of the possibility
distribution of B is the same as that in the arithmetic of
component A: The original B is divided into three parts by
taking elements whose possibility is equal to 1 as the boundary
points. Then, with Algorithm 2, the possibility of elements less
than the boundary points can be smoothed as nondecreasing
series, and the membership degree of elements bigger than
boundary points can be smoothed as nonincreasing series. This
guarantees the convexity of B .

Z-numbers are generally used to quantify the fuzzy linguis-
tic descriptions, and more examples can be found from [2].
Here, we provide a numerical example to illustrate the details
about how to aggregate Z-numbers.

Example 3.2: Assume that two experts are invited to esti-
mate the risk of a strategy for a company, and there are five
different linguistic levels for the risk: very high (VH), high
(H), medium (M), low (L), and very low (VL). Moreover, three
reliability levels are provided to show how sure the experts
are about their estimations: sure (S), likely (L), and not sure
(NS). Assume that the two experts give the following two
Z-number-based estimations: (VH, L) and (H, S), where the
former one is equivalent to: I am sure that the strategy would
bring high risk, and the latter one is: it is likely the strategy can
cause very high risk. One general method to integrate the two
experts’ information is to average them. Here, we use [1, 10]
to quantify the five risk levels and [0, 1] to quantify the three
reliability levels, and the triangular fuzzy numbers for them
are shown in Fig. 3, with which the two estimations can be
modeled as the following two discrete Z-numbers:

X = (A1, B1), Y = (A2, B2) (49)

where

A1 =
{

0.4

8.8
,

0.6

9.2
,

0.8

9.6
,

1

10

}

B1 =
{

0.6

0.48
,

0.8

0.54
,

1

0.6
,

0.8

0.64
,

0.6

0.68

}

A2 =
{

0.6

6.9
,

0.8

7.2
,

1

7.5
,

0.8

7.8
,

0.6

8.1

}

B2 =
{

0.6

0.82
,

0.8

0.86
,

1

0.9
,

0.8

0.92
,

0.6

0.94

}
(50)

and then, the purpose is to compute

Z = 1

2
(X + Y ) = (A, B). (51)

First, with (22) and (23), we have

2A p =
{

0.4

15.7
,

0.4

16.0
,

0.6

16.1
,

0.4

16.3
,

0.6

16.4
,

0.6

16.5
,

0.4

16.6
,

0.6

16.7
,

0.8

16.8
,

0.6

16.9
,

0.6

17.0
,

0.8

17.1
,

0.8

17.2
,

0.6

17.3
,

0.8

17.4
,

1

17.5
,

0.6

17.7
,

0.8

17.8
,

0.6

18.1

}
(52)

which is not a fuzzy number as the convexity is not satisfied
at μ

p
A(16.3), μ

p
A(16.8), μ

p
A(17.3), and μ

p
A(17.8), and then,

with Algorithm 2, we have

2A =
{

0.4

15.7
,

0.4

16.0
,

0.6

16.1
,

0.6

16.3
,

0.6

16.4
,

0.6

16.5
,

0.6

16.6
,

0.6

16.7
,

0.6

16.8
,

0.6

16.9
,

0.6

17.0
,

0.8

17.1
,

0.8

17.2
,

0.8

17.3
,

0.8

17.4
,

1

17.5
,

0.6

17.7
,

0.6

17.8
,

0.6

18.1

}
. (53)

Thus,

A=
{

0.4

7.85
,

0.4

8.0
,

0.6

8.05
,

0.6

8.15
,

0.6

8.2
,

0.6

8.25
,

0.6

8.3
,

0.6

8.35
,

0.6

8.4
,

0.6

8.45
,

0.6

8.5
,

0.8

8.55
,

0.8

8.6
,

0.8

8.65
,

0.8

8.7
,

1

8.75
,

0.6

8.85
,

0.6

8.9
,

0.6

9.05

}
. (54)

Second, with (41) and (43), the probability distributions and
the associated possibility for X and Y can be obtained. For
example, for b13 = 0.6 from B1, we have

pX3 = {0.4213, 0.2770, 0.1820, 0.1197}
μ(pX3) = μ(b13) = 1 (55)

while for b11 = 0.48 from B1, we have

pX1 = {0.6818, 0.2363, 0.0819, 0}
μ(pX1) = μ(b11) = 0.6. (56)

Comparing pX3 and pX1, we observe that elements with larger
possibility are assigned more probability in pX3 than pX1 since
b13 > b11. As for b23 = 0.9, we have

pY 3 = {0.0443, 0.1614, 0.5886, 0.1614, 0.0443} (57)

μ(pX3) = μ(b23) = 1. (58)

Due to the space limitation, here, we just show pX1, pX3, and
pY 3, and probability for other values from B1 and B2 follows
the same method. After receiving all probability distributions
of X and Y from all values of B1 and B2, the probability
distributions and the associated possibility for Z can be
obtained with the convolution operation in (44), e.g.,

pZ (8.05) = pZ

(
1

2
(6.9+ 7.2)

)
= pX (6.9) ∗ pY (7.2) (59)

and with pX3 and pY 3, we have

pZ = {0.0187, 0.068, 0.248, 0.068, 0.024, 0.0123, 0.0447,

0.163, 0.0447, 0.0123, 0.0081, 0.0294, 0.1071, 0.0294,

0.0081, 0.0193, 0.0704, 0.0193, 0.0052}. (60)
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After countering all pX and pY , and with (45)–(47), we have

B =
{

0.6

0.57
,

0.6

0.58
,

0.6

0.59
,

0.8

0.6
,

0.8

0.61
,

0.8

0.62
,

1

0.63
,

0.8

0.64
,

0.6

0.65

}
(61)

which is a discrete fuzzy number as it satisfies the convexity
in Definition 1.

C. Discussion

In this section, a method to achieve the fusion of Z-numbers
in mathematical functions is proposed. Two main problems are
solved.

1) Obtaining the Possibility Distribution Satisfying Convex-
ity: The extension principle and linear smoothing operator are
combined since the possibility distribution from the traditional
extension rule may be unreasonable (i.e., not satisfying prop-
erties in Definition 1). The basic idea of the method is to keep
the extension-based sequence of membership degree as much
as possible on the premise of satisfying the definition of fuzzy
numbers. To implement the idea, a utility function measuring
the similarity between the original extension-based sequence
and the final sequence of membership degree is constructed.
The longest nondecreasing (or nonincreasing) subsequence of
the original extension-based possibility distribution is adopted.
Thereafter, the least number of elements not belonging to the
monotone subsequence is smoothed by the linear smoothing
operator to guarantee convexity.

2) Exploring the Underlying Probability of Z-Numbers:
According to Definition 3, two components denoted by A
and B in a Z-number are not independent of each other
but linked by the underlying probability. Therefore, finding
the underlying probability is important for the computation
of B . In view of this and motivated by the maximum entropy
approach, an optimization model is constructed to get the
most likely underlying probability. In the whole process, the
underlying probability is obtained based on the definition and
properties of Z-numbers rather than any extra assumption.

All in all, the whole process is extended from the frame-
work (10) of Z-numbers proposed by Zadeh [2]. On the one
hand, the linear smoothing operator is proposed to guarantee
the convexity of the two obtained components so that they are
all fuzzy numbers. On the other hand, the maximum entropy
model is proposed to explore the most likely underlying prob-
ability without extra assumption, with which the relationship
between the two components in Z-numbers is utilized. Thus,
there is no change with the principles of Z-numbers in the
computation process.

IV. APPLICATION

In this section, we show how the fusion of Z-numbers can be
applied to fault diagnosis. As Zadeh mentioned in [2], humans
have a remarkable capability to make rational decisions based
on information which is uncertain, imprecise, and/or incom-
plete. Z-number is an effective model to formalize this sort of
capability. Similar to Example 3.2, many previous works [2],
[14], [47], [48] focused on how to process uncertainty involved
in natural language by Z-numbers. The purpose here is to
utilize the fusion of Z-numbers in real datasets of fault
diagnosis, where the reliability of the datasets is considered.

A. Fault Diagnosis Based on the Fusion of Z-Numbers

The proposed method consists of the following steps:
1) Modeling Uncertainty With Z-Numbers: The first diffi-

culty is to generate Z-numbers to model the uncertainty of the
original dataset. For each attribute of an unlabeled sample,
a Z-number is generated to measure to what extent and with
what reliability the sample matches a class label. Assume that
there are M classes, and each class is characterized by L
features. Then, the decision matrix denoted by D for a test
sample can be constructed as

D =

w1 · · · w j · · · wL

C1
...

Ci
...

CM

⎡
⎢⎢⎢⎣ (Ai j , Bi j)

⎤
⎥⎥⎥⎦ (62)

where Ci corresponds to a class, w j represents an attribute, and
the Z-number Zi j = (Ai j, Bi j) indicates the matching degree
between the test data and class Ci under feature w j .

2) Fusion of Z-Numbers via the Addition Operation: Uncer-
tainty can be further processed after generating Z-numbers
in step (1). For this issue, Z-numbers Zi j = (Ai j , Bi j)
evaluating how much an unlabeled sample can match a class
under different features can be integrated to obtain a global
evaluation. In this article, the addition operation is adopted to
achieve the goal

Z i = f (Zi1, Zi2, . . . , Zi L ) = Zi1 + Zi2 + · · · + Zi L (63)

where Zi is the global Z -valuation covering the matching
degree between the unlabeled data and class Ci over all
features.

3) Decision-Making Based on Defuzzification: After getting
the global evaluation over all features in step 2), it is necessary
to rank all evaluations to decide the true class of the input
pattern. As shown in (64), the true class Ctrue should be the
one with the highest evaluation

Ctrue = arg max
Ci

{scorei }. (64)

As for this issue, a popular defuzzification method called
the COG [49] is adopted. Assume a Z-number (A, B)
with A = {(μA(x1)/x1), . . . , (μA(xn)/xn)} and B =
{(μB(b1)/b1), . . . , (μB(bm)/bm)}, and the defuzzification
result of it can be computed by

scorei =
∑

x jμA(x j)∑
μA(x j)

×
∑

bkμB(bk)∑
μB(bk)

(65)

where the COG of B representing the information reliability
is used as a discount factor of the COG of A which is the
comprehensive matching degree between the test sample and
the class Ci . Finally, the label Ci with the highest scorei is
assigned to the test sample according to (64).

B. Case Study I

In this section, we simulate the proposed method with the
dataset of motor rotor fault diagnosis from [50], in which
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Fig. 4. Fault diagnosis based on the fusion of Z-numbers.

the equipment to collect the fault data is a multifunctional
flexible rotor test stand. In the experiments of the flexible
rotor, multiple sensors measure the vibration of the rotor
system when the motor rotor runs stably in a certain working
condition. The details of the dataset are given as follows. All
fault data are from the rotor vibration signal. To collect the
vibration data, the displacement sensor and the acceleration
sensor are installed in the vertical and horizontal directions of
the rotor supporting base, respectively. In the experiment, three
faults are configured: rotor imbalance (denoted by F1), rotor
misalignment (denoted by F2), and support base loosening
(denoted by F3). Thus, there are three classes in total. Each
fault is characterized by four features. First, the vibration
energy of the three faults is mostly concentrated on the basic
frequency 1X , double frequency 2X , and triple frequency 3X ,
so the amplitude of the vibration acceleration from 1X to
3X frequency is used as three features. Then, the average
amplitude of the vibration displacement in the time domain
is viewed as the fourth feature. For each feature of each
fault class, six groups of fault data are collected. Furthermore,
in each data group, 40 data are collected in 16 s for each
feature of each class, so there are 2880 points in total across
the dataset. In this experiment, we use 6-fold cross validation,
that is, five groups of data are used as the training set and, then,
the rest group is the test set. Thus, six runs of experiments are
done. The final accuracy is the mean of the accuracy of all
six runs. With the basis of Fig. 4, the experiments of fault
diagnosis with the dataset used in this article consist of the
following steps.

1) Generating Z-Numbers From the Original Data: Note
that the collected data have a certain degree of ambiguity:
data collected for a single feature from the same period
(i.e., the same group) fluctuate in a certain range, and data
collected for the same feature from different periods overlap
with each other. Considering these points, Z-numbers can be
generated with the idea, as shown in Fig. 4: the training
patterns and test patterns can be built with the training data
and test data, respectively, and then, the component A can
be generated based on the matching degree (i.e., similarity)
between them. Also, as there are multiple groups of training
data, the component B can be generated by using the degree
of how much they support each other, that is, the higher

the degree all groups support each other, the more reliable
A is. Details for Z-number generation of Fig. 4 about how
to generate Z-numbers with this dataset are described in the
following.

a) Modeling the component A of Z-numbers: The fuzzy
evaluation measures how much a test sample matches the
training templates. The event associated with the Z-numbers
we aim to generate in (62) is the similarity, also called the
matching degree, between a training pattern and a test pattern.
A is the fuzzy evaluation toward this event. As mentioned
before, there are M = 3 fault classes in the dataset, and
each fault is characterized by L = 4 features. Sensors collect
fault data k = 40 times in a time interval �t = 16 s.
In each experiment round, five groups of training data are
collected. Here, we assume that the collected data are normally
distributed to construct the training patterns. Then, the training
templates and test patterns from the training data and test data
can be constructed as follows.

For the training data of each feature of each class, N = 5
training patterns can be built by the empirical distribution of
the data, i.e., each group of data observed from the same time
interval for a feature of a class is built as a Gaussian model.
Let X l

mn = {x1, x2, . . . , xk} be the nth group of the observed
data for feature l of class m, and then, a Gaussian distribution
(i.e., template) can be built as

f (x) = 1√
2πσ l

mn

exp

(
−

(
x − X̄ l

mn)
2

2
(
σ l

mn

)2

)
(66)

where X̄ l
mn is the mean of X l

mn and σ l
mn is the sample standard

deviation with l = 1, . . . , 4, m = 1, . . . , 3 and n = 1, . . . , 5,
and they can be obtained by

X̄ l
mn =

x1 + x2 + · · · + xk

k
(67)

σ l
mn =

√(
x1 − X̄ l

mn

)2 + · · · + (
xk − X̄ l

mn

)2

k − 1
(68)

from which we know that a training pattern utilizes the
empirical distribution of a group of data, so it summarizes
the information of the data group. Thus, for the training
set consisting of L features and N groups, each fault class
has L ∗ N = 20 associated training templates. We use
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r l
mn = N (X̄ l

mn, σ
l
mn) to represent the training template associ-

ated with feature l of class m from group n. Taking m = 1
(i.e., the training data of F1) and l = 1 as an example, the
five training patterns for the first feature of F1 are given as
follows:

r1
11 = N (0.1619, 0.02)

r1
12 = N (0.1596, 0.0073)

r1
13 = N (0.1644, 0.0009)

r1
14 = N (0.1617, 0.0006)

r1
15 = N (0.1598, 0.001). (69)

As for a test sample denoted by q , it includes L = 4 features,
so it consists of four test patterns denoted by ql with l =
1, . . . , 4, and each pattern corresponds to a feature. Here,
we use q1 = 0.1421 to illustrate the process. The question
is: how to measure the matching degree between the training
template r l

mn and the test pattern ql? To solve the problem, the
Mahalanobis distance [51], which can be viewed as a measure
of the distance between a point and a distribution, is adopted.
Here, the Mahalanobis distance of 1-D ql and the distribution
r l

mn can be computed by

d
(
r l

mn, ql
) = 1

σ l
mn

∣∣ql − X̄ l
mn

∣∣ (70)

with which the lower d(r l
mn, ql), the higher the matching

degree between the template pattern and the test pattern. Thus,
we have

d
(
r1

11, q1) = 1

0.02
× |0.1619− 0.1421| = 0.9899. (71)

Then, for the test pattern ql , its distance to N training
templates of each class can be computed with (70), and the
Mahalanobis distance matrix of feature l denoted by MDl can
be obtained afterward

MDl =
⎡
⎢⎣

d
(
r l

11, ql
) · · · d

(
r l

1N , ql
)

...
. . .

...
d
(
r l

M1, ql
) · · · d

(
r l

M N , ql
)
⎤
⎥⎦ (72)

with which the matrix of matching degree for ql denoted by
Sl can be obtained

Sl =
⎡
⎢⎣

sl
11 · · · sl

1N
...

. . .
...

sl
M1 · · · sl

M N

⎤
⎥⎦ (73)

where

sl
mn = 1− d

(
r l

mn, ql
)

max(MDl)
(74)

is obtained by normalizing MDl , and it measures the similarity
of ql and r l

mn . The larger sl
mn is, the more similar ql and r l

mn
are. Then, for the test pattern q1 = 0.1421, we have

S1 =
⎡
⎣ 0.9878 0.9705 0.6912 0.5853 0.7801

0.9648 0.9116 0.9544 0.8359 0.8493
0.6582 0.1006 0.6942 0.5325 0.0

⎤
⎦ (75)

from which we know that the similarity between q1 and the
first group of training data for the first feature of F1 is 0.9878.

The final step to generate A is to generate fuzzy numbers.
With Sl which describes the matching degree between the test
pattern and each class under feature l, the triangular fuzzy
numbers can be generated as (76) in which all information
from N data groups involved in Sl is considered

Aml =
{

0.5

a + (h − a)× 0.5
,

0.75

a + (h − a)× 0.75
,

1

h
,

0.75

u − 0.75× (u − h)
,

0.5

u − 0.5× (u − h)

}
(76)

where

a = min
(
sl

m1, . . . , sl
mN

)
max(Sl)

(77)

h = min
(
sl

m1, . . . , sl
mN

)+max
(
sl

m1, . . . , sl
mN

)
2×max(Sl)

(78)

u = max
(
sl

m1, . . . , sl
mN

)
max(Sl)

(79)

where m = 1, . . . , M . For q1 = 0.1421, and with (75)
and (76), we have

A11 =
{

0.5

0.6944
,

0.75

0.7453
,

1

0.7962
,

0.75

0.8472
,

0.5

0.8981

}

A21 =
{

0.5

0.8788
,

0.75

0.8952
,

1

0.9115
,

0.75

0.9278
,

0.5

0.9441

}

A31 =
{

0.5

0.1757
,

0.75

0.2635
,

1

0.3514
,

0.75

0.4392
,

0.5

0.5271

}
. (80)

The above process demonstrates how to generate the com-
ponent A of the Z-number for a test pattern ql . As each class
is determined by L features, part A of the decision matrix D
in (62) can be obtained as

DA =
⎡
⎢⎣

A11 · · · A1L
...

. . .
...

AM1 · · · AM L

⎤
⎥⎦ (81)

where Aml with m = 1, . . . , M and l = 1, 2, . . . , L is the
similarity between a test pattern and the feature l of class m
from the training set.

b) Generating B measuring the reliability of A: In the
dataset of fault diagnosis, data collected by sensors may not be
completely reliable. Thus, its reliability should be quantified.
As a fuzzy evaluation A is generated based on the matching
degree between a test pattern and N training patterns, the
reliability of A should come from the reliability of training
patterns, that is, the more reliable of the training data, which
is used to build training templates, the more reliable of A.
In view of this and as shown in Fig. 4, the similarity is
also called the support degree among N training templates
built from N groups of data for a feature of a class, showing
how much they support each other, is adopted to generate
component B . Details are demonstrated as follows.

First, quantify the similarity among training patterns.
In each run of experiment, N ∗ M ∗ L = 60 training patterns
denoted by r l

mn are built when modeling A. As shown in Fig. 5,
the overlapping area of two gaussian curves, i.e., the green
area, is used to quantify how much they support each other.
The higher the overlapping area is, the more similar the two
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Fig. 5. Overlapping area of two Gaussian curves.

Fig. 6. Visualization for six groups of data of F1.

distributions are. As mentioned before, we have six groups
of data in the training set, and in each run of experiments,
five groups of data are used as the training set. In Fig. 6,
we draw the Gaussian curves for all six groups of data
associated with all four features of fault F1. Note that in
each run, only five curves from five training data groups are
utilized to generate B . We observe from Fig. 6 that all curves
have different overlapping areas so that they have different
reliability.

In each run, after obtaining all overlapping areas of every
two training patterns from N groups, the matrix of support
degree for feature l of class m denoted by Sul

m can be obtained

Sul
m =

⎡
⎢⎣

sul
m

(
r l

m1, r l
m1

) · · · sul
m

(
r l

m1, r l
mN

)
...

. . .
...

sul
m

(
r l

mN , r l
m1

) · · · sul
m

(
r l

mN , r l
mN

)
⎤
⎥⎦ (82)

where sul
m(r l

mi , r l
mj ) is the overlapping area between r l

mi and
r l

mj with i, j = 1, . . . , N . Also, Sul
m is symmetric. Taking the

five training patterns in (69) as an example, we have

Su1
1 =

⎡
⎢⎢⎢⎣

1.0 0.5473 0.1002 0.0693 0.1100
0.5472 1.0 0.1984 0.1608 0.2585
0.1002 0.1984 1.0 0.0586 0.0131
0.0693 0.1608 0.0586 1.0 0.2168
0.1100 0.2585 0.0131 0.2168 1.0

⎤
⎥⎥⎥⎦. (83)

The next step is to generate fuzzy numbers with the matrix
of support degree. The overall support degree, also called the
credibility, of template r l

mi can be defined as the sum of its

overlapping area with all data groups

Credl
mi =

N∑
j=1

sul
m

(
r l

mi , r l
mj

)
. (84)

Then, the normalized overall support denoted by NCredl
mi can

be obtained as

NCredl
mi =

Credl
mi∑N

i=1 Credl
mi

. (85)

Similar to generating fuzzy numbers for A, fuzzy numbers
associated with B can be constructed

Bml =
{

0.5

a + (h − a)× 0.5
,

0.75

a + (h − a)× 0.75
,

1

h
,

0.75

u − 0.75× (u − h)
,

0.5

u − 0.5× (u − h)

}
(86)

where

a = mini=1,...,N NCredl
mi

maxl=1,...,L maxi=1,...,N NCredl
mi

(87)

h = mini=1,...,N NCredl
mi +maxi=1,...,N NCredl

mi

2 ∗maxl=1,...,L maxi=1,...,N NCredl
mi

(88)

u = maxi=1,...,N NCredl
mi

maxl=1,...,L maxi=1,...,N NCredl
mi

. (89)

For example, with Su1
1, Su2

1, Su3
1, and Su4

1 showing the support
degree of all four features of F1, we have

B11 =
{

0.5

0.7247
,

0.75

0.7706
,

1

0.8165
,

0.75

0.8624
,

0.5

0.9082

}

B12 =
{

0.5

0.7340
,

0.75

0.7594
,

1

0.7847
,

0.75

0.8101
,

0.5

0.8355

}

B13 =
{

0.5

0.6063
,

0.75

0.6531
,

1

0.6999
,

0.75

0.7467
,

0.5

0.7936

}

B14 =
{

0.5

0.6665
,

0.75

0.7128
,

1

0.7590
,

0.75

0.8052
,

0.5

0.8515

}
. (90)

Bml represents how N training patterns generated from the
training data associated with feature l of class m support each
other. Then part B of the decision matrix D in (62) can be
generated as:

DB =
⎡
⎢⎣

B11 · · · B1L
...

. . .
...

BM1 · · · BM L

⎤
⎥⎦. (91)

Since it is training data that are used to construct DB without
test data, DB generated from the training data for all test
samples is always the same. Then, concatenate DA and DB ,
and the decision matrix for a test sample over all L features
can be constructed as

D =
⎡
⎢⎣

(A11, B11) · · · (A1L , B1L)
...

. . .
...

(AM1, BM1) · · · (AM L , BM L)

⎤
⎥⎦. (92)
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TABLE I

CASE STUDY I: ACCURACY OF FAULT DIAGNOSIS BY AGGREGATING
DIFFERENT NUMBERS OF FEATURES

2) Aggregating Z-Numbers via the Addition Operation:
Z-numbers representing the matching degree between a test
sample and each class over all four features can be obtained
by step 1), and then, they can be aggregated by (63). For
example, for a test sample with q1 = 0.1421, q2 = 0.104,
q3 = 0.1305, and q4 = 4.125, we have

Z1 =
({

0.5

2.85
, . . . ,

0.75

3.19
,

1

3.2
,

0.75

3.21
, . . . ,

0.5

3.57

}
,{

0.5

0.65
,

0.75

0.66
,

1

0.67
,

0.5

0.68
,

0.5

0.69

})

Z2 =
({

0.5

2.19
, . . . ,

0.75

2.59
,

1

2.6
,

0.75

2.61
, . . . ,

0.5

3.02

}
,{

0.5

0.65
,

1

0.67
,

0.5

0.68
,

0.5

0.69

})

Z3 =
({

0.5

1.6
, . . . ,

0.75

2.06
,

1

2.07
,

0.75

2.08
, . . . ,

0.5

2.55

}
,{

0.5

0.7
,

0.5

0.71
,

0.75

0.72
,

1

0.73
,

0.75

0.74
,

0.5

0.75
,

0.5

0.76

})
(93)

where Zm is the sum of the four Z-numbers generated for all
features from the training data of class m, and it means the
overall matching degree of the test sample with class m.

3) Defuzzification for Decision-Making: All the three
Z-numbers in (93) can be defuzzified via (65), so we have

score1 = 2.1474, score2 = 1.7440, score3 = 1.5148 (94)

from which the true class of the example test sample is F1.
To demonstrate the superiority of information fusion,

we compute the accuracy of fault diagnosis by combining
different numbers of information sources (i.e., features). Four
different strategies are carried out. We first compute the
average accuracy without aggregating Z-numbers of different
features. Then, only the Z-numbers from any two features are
aggregated. In the third comparative experiment, Z-numbers
from every three features are combined. Finally, all four fea-
tures are considered in information fusion. The experimental
results of the above four experiments are shown in Table I,
where the number of Li means the number of features used
in information fusion.

We observe from Table I that the accuracy of diagnosis
increases with the number of sources (i.e., features) used in
information fusion. By combining all four features, the overall
accuracy is improved by 36.36% than no fusion. Thus, the
accuracy of fault diagnosis can be improved by aggregating
information from multiple sources. This is because information
from some sources is complements of other sources, that is,
if the true class of a test sample is F1, its matching degree with
another class under feature 1 may be higher than that of F1.

TABLE II

CASE STUDY I: ACCURACY OF FAULT DIAGNOSIS BY
USING DIFFERENT METHODS

Then, if only feature 1 is considered, an erroneous decision is
made. Information from other features can help mitigate the
negative influence of feature 1.

In addition, we compare our approach with the method
based on the Dempster–Shafer evidence theory [52] and
the extended one from the evidence theory proposed by
Zhang et al. [53]. When testing the classic Dempster’s com-
bination rule, the method from [53] is used to generate the
basic probability assignment. The results are shown in Table II,
from which we observe that our method gets better overall
accuracy than the other two. Note that our method is based
on the fusion of Z-numbers so that the reliability of the
information provided by the training set is considered, while
Shafer [52] and Zhang et al. [53] aggregated basic probability
assignments generated from the original dataset by utilizing
Dempster–Shafer’s evidence theory, which is another useful
tool to quantify uncertainty. The comparative results demon-
strate the effectiveness of the fusion of Z-numbers in fault
diagnosis.

C. Case Study II

In this section, we test the performance of the framework
proposed in Section IV-A with the Case Western Reserve
University (CWRU) dataset [54], which is a popular and
easily accessible dataset for fault diagnosis. CWRU includes
161 records, and they are grouped into four subsets: nor-
mal baseline, 12k drive end fault, 48k drive end fault, and
12k fan end fault. In each subset, the vibration data were
recorded for motor loads of 0–3 horsepower (motor speeds of
1797–1720 RPM). Also, fault diameters range from 0.007 to
0.040 in. In our experiments, we use the data files from normal
baseline and 12k drive fault data with a diameter of 0.007 in,
that is, there are six classes of faults in our simulation: normal
(F1), ball bearing fault (F2), inner race fault (F3), outer race
fault centered at 6 : 00 (F4), outer race fault orthogonal at
3 : 00 (F5), and outer race fault opposite at 12 : 00 (F6). For
the sake of convenience, we use the first 120 000 points of
the driven-end data from each data file and reshape it to (300,
400), that is, we have 300 fault samples for each class in
our dataset and each sample consists of 400 points. Moreover,
as the vibration data were collected from multiple motor loads
with different horsepower, we aggregate the fault signal from
each load to make better decisions.

To generate Z-numbers, we randomly split the original
dataset into six groups. Then, similar to case study I, six
runs of experiments are done. In each run, five groups of data
are used as the training templates, and the rest group is the
test set. Different from case study I where each feature of
a test sample is a data point, it consists of 400 points in this
simulation. Thus, the overlapping area of the training templates
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TABLE III

CASE STUDY II: ACCURACY OF FAULT DIAGNOSIS BY AGGREGATING
DATA FROM DIFFERENT NUMBERS OF LODES

TABLE IV

CASE STUDY II: ACCURACY OF FAULT DIAGNOSIS

BY USING DIFFERENT METHODS

and test templates are computed to generate the component A
of Z-numbers, and the rest procedures to generate Z-numbers
are similar to case study I.

Similar to Table I from case study I, Table III shows
the classification accuracy by combining information from a
different number of information sources (i.e., motor loads).
We observe that the classification accuracy can be improved by
information fusion. What is more, in Table IV, we compare our
method with the one based on the Dempster–Shafer evidence
theory [52], [53]. We see that our method can get better
performance.

V. CONCLUSION

This article develops both the theory and application of
Z-numbers. In theory, we propose a method for the fusion of
Z-numbers. Besides the extension principle, a linear smoothing
operator is adopted to guarantee the convexity of the two com-
ponents of Z-numbers. What is more, without extra assump-
tion, the underlying probability linking the two components
of Z-numbers is computed from an optimization model. Then,
we apply the fusion of Z-numbers to fault diagnosis. Different
from previous works in which Z-numbers were used to process
linguistic information, we exhibit the potential of Z-numbers
in real data.

Future works could focus on the generation of Z-numbers,
which has always been a complicated problem. The picture of
the proposed framework is applicable to other pattern classifi-
cation problems, but the details of modeling Z-numbers are not
general for all datasets. In this article, we empirically generate
Z-numbers for the specific fault datasets used in the experi-
ments according to the interpretation of the two components of
Z-numbers and the characteristics of the datasets themselves.
For wider applications, the generation of Z-numbers is still an
open issue.
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