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Abstract 
Many multiple attribute decision analysis (MADA) problems are characterised by both 

quantitative and qualitative attributes with various types of uncertainties. Incompleteness (or 
ignorance) and vagueness (or fuzziness) are among the most common uncertainties in decision 
analysis. The evidential reasoning (ER) and the interval grade evidential reasoning (IER) 
approaches have been developed in recent years to support the solution of MADA problems with 
interval uncertainties and local ignorance in decision analysis. In this paper, the ER approach is 
enhanced to deal with both interval uncertainty and fuzzy beliefs in assessing alternatives on an 
attribute. In this newly developed FIER approach, local ignorance and grade fuzziness are 
modelled under the integrated framework of a distributed fuzzy belief structure, leading to a fuzzy 
belief decision matrix. A numerical example is provided to illustrate the detailed implementation 
process of the FIER approach and its validity and applicability. 
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1. Introduction 

Many real world multiple attribute decision analysis (MADA) problems are characterised with 
both quantitative and qualitative attributes. In many circumstances, the attributes, especially 
qualitative ones, could only be properly assessed using human judgments, which are subjective in 
nature and are inevitably associated with uncertainties caused due to either or both of the following 
two phenomenon: 1) Human being’s inability to provide complete judgments, or the lack of 
information, which is referred to as “ignorance” (incompleteness); 2) The vagueness of meanings 
about attributes and their assessments, which is referred to as “fuzziness” (vagueness).  

For decades, many MADA methods have been developed, such as the well-know Analytical 
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Hierarchy Process (AHP) (Saaty, 1988) and Multiple Attribute Utility Theory (Keeney and Raiffa, 
1993; Belton and Stewart, 2002, etc.) as well as their extensions (Arbel and Vargas 1992, 1993; 
Salo and Hämäläinen 1992; Islame et al. 1997, etc.). In those methods, MADA problems are 
modelled using decision matrices, in which an alternative is assessed on each attribute by either a 
single real number or an interval value. Unfortunately, in many decision situations using a single 
number or interval to represent a judgement proves to be difficult and may be unacceptable. 
Information may be lost or distorted in the process of pre-aggregating different types of information, 
such as a subjective judgement, a probability distribution, or an incomplete piece of information.  

Concerning the fuzziness of MADA problems, a large amount of fuzzy MADA methods have 
been proposed in the literature (Bellman and Zadeh, 1970; Yager, 1977, 1978, 1981; Laarhoven and 
Pedrycz, 1983; Dong, Shah and Wong, 1985; Tseng and Klein, 1992, etc.). Nevertheless, these pure 
fuzzy MADA approaches are essentially based on traditional evaluation methods and are unable to 
handle probabilistic uncertainties such as ignorance. 

Different from the traditional MADA methods, the Evidential Reasoning (ER) approach (Yang 
and Singh, 1994; Yang and Sen, 1994; Yang 2001; Yang and Xu 2002a, 2002b), which is the 
combination of the D-S theory (Dempster, 1967; Shafer, 1976) with a distributed modelling 
framework, shed a new line to modelling complex MADA problems. The ER approach uses a 
distributed modelling framework, in which each attribute is accessed using a set of collectively 
exhaustive and mutually exclusive assessment grades. Probabilistic uncertainty including local and 
global ignorance is characterized by a belief structure in the ER approach, which can both model 
precise data and capture various types of uncertainties such as probabilities and vagueness in 
subjective judgments. Along with the application of ER modelling, experiences show that decision 
maker may not always be confident enough to provide subjective assessments to individual grades 
only, but at times wishes to be able to assess beliefs to sub-sets of adjacent grades. Such ignorance 
is referred to as local ignorance or interval uncertainty. It is to deal with the local ignorance that the 
interval grade ER (IER) approach is proposed (Xu et al 2005). Another extension to the basic ER 
approach is to take account of vagueness or fuzzy uncertainty, i.e. the assessment grades are no 
longer clearly distinctive crisp sets, but are defined as dependent fuzzy sets. In other words, the 
intersection of two fuzzy sets may not be empty. Yang et al 2006 proposed the fuzzy ER approach. 

The aim of this paper is to integrate the main features of the above two approaches, and develop a 
general ER modelling framework and an attribute aggregation process, referred to as the fuzzy IER 
(FIER) algorithm, in order to deal with both fuzzy and interval grade assessments in MADA and 
provide a more powerful means to support the solution of complex MADA problems.  

2. The FIER approach for MADA under fuzzy uncertainty 

2.1. The new FIER distributed modelling framework using the fuzzy belief structure 
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Suppose a MADA problem has M alternatives Mlal ,,1, K= , one upper level attribute, referred 
to as general attribute, and L lower level attributes Liei ,,1, K= , called basic attributes. The 
relative weights of the L basic attributes are denoted by ),,( 1 LwwW K= , which are known and 

satisfy the conditions 10 ≤≤ iw  and ∑
=

=
L

i
iw

1

1. 

Suppose M alternatives are all assessed using a pre-defined set H . In basic ER methodology, set  

H  is defined as a union of N assessment grades , 1, ,pH p N= K , which are mutually exclusive 

and collectively exhaustive for the assessment of all attributes, and the whole set NH1  as follows: 

1 2 1{ , , , , }N NH H H H H� K             (1.) 

According to Xu et al (2005), in the IER (Interval grade ER) methodology, the performances of 
alternatives can be assessed to an individual grade or a grade interval, the complete set of all 
individual grades and grade intervals, for assessing each attribute can be represented by  
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where ppH  ( 1,...,p N= ) in formula (2) denotes an individual grade. pqH  ( 1,...,p N= , 

1,...,q p N= + ) denotes the interval grade which is the union of individual grades 

ppH , ( 1)( 1)p pH + + ,…, qqH .  

In the basic ER as well as the IER approach introduced above, all individual and interval 
assessment grades are assumed to be crisp and independent of each other. However, there are 
occasions where an assessment grade may represent a vague concept or standard and there may be 
no clear cut between the meanings of two adjacent grades. In this paper, we will drop the above 
assumption and allow grades to be vague and adjacent grades to be dependent. To simplify the 
discussion and without loss of generality, fuzzy sets will be used to characterise vague assessment 
grades and it is assumed that only two adjacent fuzzy grades have the overlap of meanings. This 
represents the most common features of fuzzy uncertainty in decision analysis.  

In order to generalize the { , 1,..., , ,..., }pqH H p N q p N= = =  to fuzzy sets, we assume that a 

general set of fuzzy individual assessment grades { }, 1,...,ppH p N=  are dependent on each other, 

which may be assumed to be either triangular or trapezoidal fuzzy sets or their combinations for 
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simplifying the discussion and without loss of generality. Assuming that only two adjacent fuzzy 

individual assessment grades may intersect, we denote by ( 1)p pH Λ +  ( 1,..., 1p N= − ) the fuzzy 

intersection subset of the two adjacent fuzzy individual assessment grades ppH  and ( 1)( 1)p pH + +  

(Fig. 1). 

 

 

 

 

 

 

a) Individual fuzzy grade sets 

 

 

 

 

 

b) Interval fuzzy grade sets 

Fig 1.  Fuzzy sets definitions 

 

 

 

 

 

 

a) Intersection Sets between Individual 
Fuzzy Sets 

 

 

 

 

b) Intersection Sets between Interval or 
Interval Fuzzy Sets 

Fig. 2.  Intersections between fuzzy 

assessment grades 

Furthermore, we define the sets , 1,..., , 1,...,pqH p N q p N= = +  as trapezoidal fuzzy sets which 

include individual grades ppH , ( 1)( 1)p pH + + ,…, qqH . If these individual assessment grades are 

triangular or trapezoidal fuzzy sets, every interval grade will be a trapezoidal fuzzy set (Fig. 1b). 

And we also define ( 1)p pH Λ +  as the fuzzy intersection subset of the two adjacent fuzzy interval 

assessment grades kpH  and ( 1)p qH +  , where k p≤ , 1q p≥ +  (Fig. 2). 

Finally, the generalized fuzzy assessment set H  can be defined as follows. 

( 1){ , 1,..., , ,..., } { , 1,..., 1}F pq p pH H H p N q p N H p NΛ += = = ∪ = −� ,    (3.) 
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where pqH  is a fuzzy set and ( 1)p pH Λ +  is the intersection of two adjacent fuzzy sets kpH  and 

( 1)p qH +  , where k p≤ , 1q p≥ + . 

The assessment of an alternative on attribute la  is then given by 

( ) {( ,  ( )); , 1,..., }l i FS a C C C H i Lβ= ∈ = ,          (4.) 

where 1)(
ˆ

=∑
∈HC

i Cβ  holds. 

The mass functions are defined as follows: 

)()( CwCm iii β= , 1,...,i L= , , FC C H≠ Φ ∈           (5.) 

0)( =Φim ,               (6.) 

( ) 1i im U w= − , 1,...,i L=             (7.) 
where )(Umi  in equation (7) is the remaining probability mass that is unassigned to any evaluation 
grades in set FH  after only attribute i has been taken into account. In other words, )(Umi  
represents the remaining role that other attributes can play in the assessment. )(Umi  should 
eventually be assigned back to set FH , in a way that is dependent upon the importance of other 
attributes. 

3.2. The new FIER algorithm under both interval probabilistic and fuzzy uncertainties 
Based on the fuzzy assessment set FH , a FIER (Fuzzy Interval grade ER) recursive algorithm is 

developed as follows using the similar technique used in Yang and Singh 1994 and Yang, et al 2006 
(the detailed proof is shown in the Appendix).  
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max
( ) ( 1) ( 1) ( ) ( 1)( ) ( )I L p p p p I L p pm H K m HµΛ + Λ + Λ += ⋅ ⋅ % , 1,..., 1p N= −       (16.) 

( ) ( )( ) ( )I L I Lm U K m U= ⋅ %              (17.) 

After the L  attributes have been combined one-by-one using the above FIER algorithm, the 
overall assessment of an alternative la  can be obtained as: 

( )

( )

( )
( )

1 ( )
I L pq

pq
I L

m H
H

m U
β =

−
, 1,..., , ,...,p N q p N= =         (18.) 

( ) ( 1)
( 1)

( )

( )
( )

1 ( )
I L p p

p p
I L

m H
H

m U
β Λ +

Λ + =
−

, 1,..., 1p N= −          (19.) 

3. Fuzzy expected utilities for characterising alternatives 

Utility is one of the most important concepts in decision analysis. In fuzzy MADA, however, 
utilities corresponding to fuzzy assessment grades can no longer be represented by singleton 
numerical values because the evaluation grades are fuzzy sets. In general, a fuzzy grade utility 
should have the same form as its corresponding fuzzy assessment grade. For example, if a fuzzy 
assessment grade is a triangular fuzzy number, its corresponding fuzzy grade utility should also be a 
triangular fuzzy number. In the FIER methodology according to the definitions of fuzzy grades in 
section 2.1, the utility values of an interval fuzzy grade can be calculated from the utility values of 
the correspondent fuzzy individual grades as shown in Fig. 3.  

According to the basic ER methodology, the fuzzy expected utility of an aggregated assessment 
))(( layS  for alternative la  is defined as follows: 

1

( 1) ( 1)
1 1

( ( ( ))) ( ) ( ) ( ) ( )
N N N

l pq pq p p p p
p q p p

u S y a H u H H u Hβ β
−

Λ + Λ +
= = =

= +∑ ∑ ∑      (20.) 
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where ( )pqu H  is the fuzzy grade utility of the assessment grade pqH , and ( 1)( )p pu H Λ +  is the 

fuzzy grade utility of the intersection fuzzy grade set ( 1)p pH Λ + . Without loss of generality, suppose 

( )ppu H  is the utility value of the grade ppH  with ( 1)( 1)( )p pu H + + ≥ ( )ppu H  as it is assumed that the 

grade ( 1)( 1)p pH + +  is preferred to ppH . Suppose 11H  is the least preferred fuzzy assessment grade, 

which has the lowest fuzzy grade utility, and NNH  is the most preferred fuzzy assessment grade, 

which has the highest fuzzy grade utility. Suppose ( )pqu H  can take the lower bound value, the 

upper bound value and the two most possible values as min ( )pqu H , max ( )pqu H , 1( )MP pqu H  and 

2 ( )MP pqu H ( 1 2( ) ( )MP pq MP pqu H u H≤ ) respectively if all grade sets are triangular or trapezoidal fuzzy 

sets. It is straightforward that the following equations hold according to the relationships of 
individual and interval grade sets: 

 
Fig 3  the utility of fuzzy grades 

 

min min( ) ( )pq ppu H u H=              (21.) 

Utility 

)(xµ

H11           H24         …    HNN  

0    u1   u2   u3     u4   u5   …              1 Utility 

)(xµ  

H11    H22      H33      H44     …      HNN     

0    u1   u2   u3  u4   u5   …       1 
a) The utility values of individual fuzzy grade sets 

b) The utility values of Interval fuzzy grade sets 
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max max( ) ( )pq qqu H u H=              (22.) 

1 1( ) ( )MP pq MP ppu H u H=              (23.) 

2 2( ) ( )MP pq MP qqu H u H=              (24.) 

where in equation (21), the belief degree ( )pqHβ  could be assigned to the best grade in the 

interval grade pqH , which is qqH , and also can be assigned to the worst grade ppH  as shown in 

equation (22).  

Similarly, suppose ( 1)( )p pu H Λ +  can take the lower bound value, the upper bound value and the 

two most possible values as min ( 1)( )p pu H Λ + , max ( 1)( )p pu H Λ + , 1 ( 1)( )MP p pu H Λ +  and 2 ( 1)( )MP p pu H Λ +  

( 1 ( 1) 2 ( 1)( ) ( )MP p p MP p pu H u HΛ + Λ += ) respectively, and the following equations hold: 

min ( 1) min ( 1)( 1)( ) ( )p p p pu H u HΛ + + +=            (25.) 

max ( 1) max( ) ( )p p ppu H u HΛ + =             (26.) 

Accordingly, the fuzzy expected utility )))((( laySu  is also a fuzzy number. From equations 
(20-26), the maximum utility value of alternative la  could be calculated as:  

1

max max ( 1) max
1 1

( ) ( ) ( ) ( ) ( )
N N N

l pq qq p p pp
p q p p

u a H u H H u Hβ β
−

Λ +
= = =

= +∑∑ ∑      (27.) 

Similarly, in the worst case, if the uncertainty turned out to be against the assessed alternative, 

with the belief degree ( )pqHβ  being assigned to ppH  (the worst grade in the interval grade pqH ) 

and ( 1)( )p pHβ Λ +  assigned to ppH , then the minimum utility value would be given by: 

1

min min ( 1) min ( 1)( 1)
1 1

( ) ( ) ( ) ( ) ( )
N N N

l pq pp p p p p
p q p p

u a H u H H u Hβ β
−

Λ + + +
= = =

= +∑∑ ∑     (28.) 

We can also define the two most possible utilities and their average value as follows: 
1

1 1 ( 1) 1 ( 1)
1 1

( ) ( ) ( ) ( ) ( )
N N N

MPV l pq MPV pp p p MPV p p
p q p p

u a H u H H u Hβ β
−

Λ + Λ +
= = =

= +∑∑ ∑     (29.) 

1

2 2 ( 1) 2 ( 1)
1 1

( ) ( ) ( ) ( ) ( )
N N N

MPV l pq MPV qq p p MPV p p
p q p p

u a H u H H u Hβ β
−

Λ + Λ +
= = =

= +∑∑ ∑     (30.) 
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1 2( ) ( )( )
2

MP l MP l
AVG MPV l

u a u au a−
+

=            (31.) 

4. Application of the FIER approach to a new product screening problem 

The company concerned is an electronic manufacturer, which manufactures a wide range of 
electronic entertainment products. Every year, the company identifies market requirements and 
comes up with a list of potential product development projects. Suppose there are three new 
computer game projects available: Motor Cycling, Sport Bass Fishin’ and Play TV Baseball. 
However, at a preliminary design phase, the assessment of a project on multiple criteria is mainly 
based on experts’ subject judgments. Experts’ opinions may be expressed by belief degrees (or 
possibility measures) based on basic evaluation grades, i.e. {Bad, Poor, Average, Good, and 
Excellent}. As such, the basic evaluation grade set can be defined as a set H  as follows: 

11 22 33 44 55{ ,  ,  ,  ,  }H H H H H H= ={Bad, Poor, Average, Good, Excellent} 

Due to the high level of uncertainty involved in this NPD problem, however, these evaluation 
grades may not be regarded as crisp sets. For example, it is difficult to separate the grade Bad from 
the grade Poor especially if evaluations need to be given between these two grades. Also it is not 
surprising that for some evaluations the experts prefer to give the belief degree measures on interval 
grades. For example, the TIMING for Sport Bass Fishin’ is {(H34, 1.0)}, which means that means 
that 100% belief is given to interval grade 34H , i.e. the worst assessment for Sport Bass Fishin’ on 
TIMING is Average and the highest is Good. However, the exact belief degree to each of the two 
grades is not known. In a similar way, the incomplete opinions of the experts in evaluating this NPD 
problem can be captured conveniently by the following fuzzy evaluation grades. 

( 1){ , 1,...,5, ,...,5} { , 1,..., 4}F pq p pH H p q p H pΛ += = = ∪ =  

Based on the experts’ opinions, we can approximate all the five individual assessment grades 

by either triangular or trapezoidal fuzzy numbers as shown in table 3, and the maximum degree of 

membership for every fuzzy intersection set is 0.5.  

 

Table 3  Membership functions of the fuzzy assessment grades and their fuzzy utilities 

Linguistic term Worst (W) Poor (P) Average (A) Good (G)  Excellent (E) 

Membership functions 

of fuzzy grade utilities 
(0, 0, 0.2) (0, 0.2, 0.4) (0.2, 0.4, 0.6,0.8) (0.6, 0.8, 1)  (0.8, 1, 1) 

 

By using our proposed FIER methodology, the aggregated performance distribution of all the 
three alternative projects can be calculated. The expected maximum and minimum utilities can also 
be calculated according to formulae (27)-(31), as shown in table 5. A final rank order can be 
obtained as follows. Sport Bass Fishin’ is possibly better than Motor Cycling and Play TV Baseball 
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according to the average MPV values of all the three projects presented. However, it is obviously 
that Sport Bass Fishin’ does not absolutely dominate the other two projects. This is because 

 

Table 4 Belief Matrix of the Performance Assessment Problem 

Criteria Weights Motor Cycling Sport Bass Fishin’ Play TV Baseball  

TIMING 0.1 {(H44, 1.0)} {(H34, 1.0) } {(H12, 1.0)} 

PRICE 0.1 {(H11, 1.0)} 
{(H44, 0.9), 
(H15, 0.1)} 

{(H45, 0.9), 
(H15, 0.1)} 

LOGISTICS 0.05 {(H44, 1.0)} {(H45, 1.0)} {(H45, 1.0)} 

SALES 0.02 {(H33, 1.0)} {(H33, 1.0)} {(H22, 1.0)} 

MFGTECH 0.02 {(H44, 1.0)} 
{(H33, 0.6), 
(H44, 0.4)} 

{(H22, 1.0)} 

MFGCAP 0.02 {(H44, 1.0)} {(H44, 1.0)} {(H45, 1.0)} 

SUPPLY 0.05 {(H34, 1.0)} {(H34, 1.0)} {(H45, 1.0)} 

DESIGN 0.1 {(H11, 1.0)} 
{(H44, 0.8), 
(H15, 0.2)} 

{(H45, 0.8), 
(H15, 0.2)} 

DIFFADV 0.08 {(H11, 1.0)} {(H55, 1.0)} {(H55, 1.0)} 

PAYOFFS 0.08 {(H11, 1.0)} 
{(H44, 0.8), 
(H15, 0.2)} 

{(H45, 0.8), 
(H15, 0.2)} 

LOSSES 0.08 {(H44, 1.0)} 
{(H22, 0.9), 
(H15, 0.1)} 

{(H23, 0.9), 
(H15, 0.1)} 

R&DUNC 0.25 {(H34, 1.0)} 
{(H34, 0.9), 
(H15, 0.1)} 

{(H12, 0.8), 
(H15, 0.2)} 

NONR&D 0.05 {(H44, 1.0)} 
{(H33, 0.8), 
(H15, 0.2)} 

{(H12, 0.8), 
(H15, 0.2)} 

 

Table 5  Fuzzy expected utilities and ranking order of alternatives 

Fuzzy expected utility u    

Lower bound 

minu  
Most possible value  

1MPu  and 2MPu  
Upper bound  

maxu  
Avg. of MPV 

AVG MPVu −  

Motor Cycling 0.2893 0.4253 0.5538 0.7517 0.4896

Sport Bass Fishin’ 0.4231 0.5958 0.7360 0.8944 0.6659

Play TV Baseball 0.2831 0.3960 0.6458 0.7406 0.5209

minu (Sport Bass Fishin’) = 0.4231 < maxu (Motor Cycling) = 0.7517 

< maxu (Play TV Baseball) = 0.7406 

While in the sense of MPV dominance, we can obtain: 
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1MPu (Sport Bass Fishin’) = 0.5958 > 2MPu (Motor Cycling) = 0.5538 

This means that Sport Bass Fishin’ is preferred to Motor Cycling in the sense of MPV dominance, 
or 

Sport Bass Fishin’ MPVf  Motor Cycling 

While the relationships between Sport Bass Fishin’ and Play TV Baseball and between Play TV 
Baseball and Motor Cycling are not clear even in the sense of the most possible value dominance 
due to the uncertainties in the initial assessment data. In order to generate clearer dominant 
relations, more information or more accurate evaluations are needed. 

5. Concluding remarks 

Incompleteness and fuzziness are among the most common uncertainties in complex MADA 
problems. The new development as reported in this paper further extends the capability of the ER 
approach to utilise information with both local ignorance or interval uncertainty and fuzzy linguistic 
evaluation grades. Expert judgements can be captured by our proposed FIER method in such a 
convenient way that the evaluations made by experts, which are incomplete and fuzzy in nature, do 
not need to be converted to some strictly defined formats that may inevitably lead to the loss of 
important information, as shown in some classical MADA methods. In this sense, our FIER method 
can be used to deal with various types of uncertainties to help the DMs in making more informative 
decisions. 

Similar with the previous ER approach, this FIER method is aimed to generate the preference 
orders of alternatives without having to gather perfect or complete information as is often done in 
real life decision making. However, the results obtained using the new methods may be an 
incomplete preference order as well due to the incompleteness and fuzziness in initial data, as 
illustrated in the example. In such cases, more information may be needed to support specific 
decision making such as finding a single winner in a performance assessment problem. Further 
research is needed to investigate the process of information gathering for sensitivity analyse.  
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Appendix. Proof of the fuzzy IER aggregation algorithm  

In the derivation of the IER algorithms in Equations (6)–(8), it was assumed that the evaluation 
grades are independent of each other. Due to the dependency of the adjacent fuzzy assessment 
grades on each other as shown in Fig. 1, the IER algorithms can no longer be employed without 
modification to aggregate attributes assessed using such fuzzy grades. However, the evidence 
theory provides scope to cope with such fuzzy assessments. The ideas similar to those used to 
develop the non-fuzzy evidential reasoning algorithm (Yang and Singh, 1994; Yang and Sen, 1994; 
Yang and Xu 2002a) are used to deduce the following fuzzy evidential reasoning algorithm. 
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The First problem is that the non-fuzzy IER algorithm, which follows the basic ER combination 
rules, is given in recursive forms. In each recursive step, a normalization procedure is taken to 
ensure that the possibility mass assigned to an empty set is set to zero. However, with the 
normalization process the non-fuzzy IER can not be transformed directly to a fuzzy IER algorithm. 
This is because the basic ER and IER algorithms are derived from the D-S combination rules, in 
which the normalizations can be postponed to the end of the recursive algorithm. According to the 
Yen 1994, we can draw the following conclusion. 

Theorem: In the ER and IER recursive combination rules, the normalization can be 
postponed to the end of the recursive algorithms without changing the results. 

Another challenge is that the intersection ( 1)p pH Λ +  of the two adjacent evaluation grades kpH  

and ( 1)p qH + , where k p≤ , 1q p≥ + , is not empty in general, as shown in Fig.1. As in Yang et al 

2006, the fuzzy intersection subset ( 1)p pH Λ + , whose maximum degree of membership is represented 

by max
( 1)p pµ Λ +  and is usually less than one, will be normalized as a fuzzy subset ( 1)p pH Λ +  with the 

maximum membership degree being one, as shown in Fig. 2, so that ( 1)p pH Λ +  can be measured as a 

formal fuzzy set therefore assessed in the same scale as the other defined fuzzy evaluation grades 

such as pqH  (Fig. 1).  

From the combination rule of the D-S theory and the ER methodology, equation (12-14) can be 
obtained straightforward. Then we need to prove formula (15-18) in which the assessments for the 
first ( )I i  attributes are combined with that for attribute 1i +  to generate an assessment for the 

( 1)I i +  attributes. 

We can separate the whole sets into three categories. The first category includes the basic interval 

grade sets pqH  for q p≥ , the second is the fuzzy intersection sets ( 1)p pH Λ +  for 1,..., 1p N= − , 

and the third is the set U . 

It can be shown that these sets have the following relations: 

kq plH HI = pqH , q p≥ , 1,...,k p= , ,...,l q N=   

( 1)kp p qH H +I = ( 1)p pH Λ + , 1,...,k p= , 1,...,q p N= + , 1,..., 1p N= −  

1kl p pH H Λ +I = ( 1)p pH Λ + , 1,..., 1k p= + , ,...,l p N= , k l≤ , 1,..., 1p N= −  
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( 1)p pH Λ + UI = ( 1)p pH Λ + , 1,..., 1p N= −  

pqH UI = pqH , q p≥  

 
Fig. 6. Intersection of fuzzy sets 

Regarding pqH , only kq plH HI  and pqH UI  have the results of pqH , although without any 

relation with the set ( 1)p pH Λ + , so the combination results for pqH  are consistent with those of the 

basic IER algorithm, i.e.: 
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Regarding ( 1)p pH Λ + , we only need to consider the cases ( 1)kp p qH H +I = ( 1)p pH Λ + , 

1kl p pH H Λ +I = ( 1)p pH Λ + , ( 1)p pH Λ + UI = ( 1)p pH Λ + . So 

( 1) ( 1) ( ) 1 ( 1) 1 , ( ) ( 1)
1 1 1 1

1

1 ( ) ( 1) ( ) 1 ( 1)
1
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Because 1 ( 1)( ) 0i p pm H+ Λ + = , then 

)(Uµ  

 ,kpH k p≤     ( 1)p pH Λ +  ( 1) , 1p qH q p+ ≥ +   

 Utility

( 1)p pH Λ +  
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( 1) ( 1) ( ) 1 ( 1) 1 ( ) ( 1)
1 1 1 1

1

1 ( ) ( 1) ( ) ( 1) 1
1
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It is straightforward to obtain 
1

( 1) ( ) 1
1

( ) ( ) ( ) ( )
i

I i I i i l
l

m U m U m U m U
+

+ +
=

= =∏% %  

Finally, after all the L Attributes are combined, we have, 

( )( ) ( )pq I L pqm H m H=% % , 

( )( ) ( )I Lm U m U=% %  and  

( 1) ( ) ( 1)( ) ( )p p I L p pm H m HΛ + Λ +=% % . 

Since the fuzzy subset ( 1)p pH Λ +  is the intersection of the two fuzzy assessment grades kpH  and 

( 1)p qH + , its maximum degree of membership is normally not equal to unity. In order to capture the 
exact probability mass assigned to ( 1)p pH Λ + , its membership function needs to be normalized. If 
this were not done, then probability mass assigned to ( 1)p pH Λ +  would have nothing to do with its 
shape or height. In other words, as long as the two fuzzy assessment grades kpH  and ( 1)p qH +  
intersect, the probability mass assigned to ( 1)p pH Λ +  would always be the same, no matter how large 
or small the intersection subset may be. So, it is necessary to normalise the membership function of 

( 1)p pH Λ + . After normalization, we have (Yang et al, 2006)， 

max max
( 1) ( 1) ( 1) ( 1) ( ) ( 1)( ) ( ) ( )p p p p p p p p I L p pm H m H m Hµ µΛ + Λ + Λ + Λ + Λ += ⋅ = ⋅% % %  

According to Yen 1990, the results should be normalized at the end: 
1

( 1)
1 1

1
max

( ) ( 1) ( ) ( 1) ( )
1 1

1/[ ( ) ( ) ( )]

1/[ ( ) ( ) ( )]

N N N

pq p p
p q p p

N N N

I L pq p p I L p p I L
p q p p

K m H m H m U

m H m H m Uµ

−

Λ +
= = =

−

Λ + Λ +
= = =

= + +

= + +

∑∑ ∑

∑∑ ∑

% % %

% % %

 

( )( ) ( ) ( )pq pq I L pqm H K m H K m H= ⋅ = ⋅% %  

max
( 1) ( 1) ( 1) ( ) ( 1)( ) ( ) ( )p p p p p p I L p pm H K m H K m HµΛ + Λ + Λ + Λ += ⋅ = ⋅ ⋅% %  

( )( ) ( ) ( )I Lm U K m U K m U= ⋅ = ⋅% %  

Q.E.D. 


