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Let k = Fp for some prime p > 0 and let G be a connected reductive algebraic group.

1. Er ... Algebraic Group?

A linear algebraic group G is a group with an added topological structure, known
as the Zariski topology. In essence it is a group which can be defined as the vanishing
points, in kn, of some polynomials in k[X1, . . . , Xn] and whose multiplication and inversion
maps are continuous with respect to the topology. We define the Zariski topology on G by
defining closed sets to be precisely those which can be defined as the vanishing points of a
set of polynomials.

For example all our favourite matrix groups are linear algebraic groups. We naturally
associate Mn(k) with the space kn × kn ∼= kn

2
and then consider polynomials in kn

2
[Xij |

1 6 i, j 6 n]. A good example is the special linear group. We know that we can describe,
for X ∈ Mn(k), the determinant of X as a polynomial in the following way

det(X) =
∑
σ∈Sn

sgn(σ)X1σ(1) · · ·Xnσ(n) ∈ kn
2

[Xij | 1 6 i, j 6 n].

Then we define the special linear group over k as

SLn(k) = {(xij) ∈ kn
2 | det(xij)− 1 = 0}.

For most purposes in algebraic groups we deal with special kinds of algebraic groups
known as connected reductive algebraic groups.

Definition. The radical of G, denoted R(G) is the maximal closed connected solvable
normal subgroup of G. The unipotent radical of G, denoted RU(G), is the maximal
closed connected unipotent normal subgroup of G.

Now, we say G is reductive if RU(G) = {1} and G is semisimple if R(G) = {1}. We
note that as RU(G) ⊆ R(G) we have G semisimple ⇒ G reductive. In general it is more
than sufficient to think of GLn(k) when hearing the words connected reductive algebraic
group. You may be slightly concerned that GLn(k) is in fact not defined as the vanishing
of some polynomial equations. However we fix this in the following way

GLn(k) = {(xij, y) ∈ kn2 × k | det(xij)y − 1 = 0}.
A connected reductive algebraic group comes with a very important structure known

as a BN -pair or Tits system. In the following we will define the elements of this that we
1
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will need to continue with this talk and in parallel describe what these things look like in
GLn(k). If at all lost just think of what the matrices look like in GLn(k).

Terminology GLn(k)

Let B be a Borel subgroup of G. This is a maximal
closed connected solvable subgroup of G.

? · · · ?
. . .

...
?



Let U be the unipotent radical of B.

1 · · · ?
. . .

...
1


Let T be a maximal torus of G. This is a maximal
subgroup of G, which is isomorphic to k× × · · · × k×.

? . . .
?



Fact. Every maximal torus of G lies in a Borel subgroup of G but this is not necessarily
unique. See Corollary A, Section 21.3 of [Hum75]. For example the maximal torus of
diagonal matrices in GLn(k) lies in the subgroup of upper triangular matrices and the
subgroup of lower triangular matrices.

Now as a part of the definition of a BN -pair we have that, for a connected reductive
algebraic group, W := NG(T )/T will always be a Weyl group, where NG(T ) is the nor-
maliser of the torus in G. In fact for a connected reductive algebraic group this is always
finite. The associated Weyl group of G is very important and really controls most of the
defining features of the algebraic group.

Example. Let G = GLn(k) and T be the maximal torus of diagonal matrices. Then NG(T )
is the group of all monomial matrices in GLn(k). Therefore we can see that NG(T )/T ∼= Sn.

We now need a very important fact in the theory of algebraic groups.

Fact. Any algebraic group G can be embedded into GLn(k) for some n. See Corollary 2.4.4
of [Gec03].

So, just like any group can be embedded into the symmetric group we have any algebraic
group can be embedded into GLn(k). This fact allows us the following definition

Definition. We define a morphism of GLn(k) by

Fq : GLn(k)→ GLn(k)

(aij) 7→ (aqij),

where q = pe for some 0 < e ∈ N. A standard Frobenius map of an algebraic group G is
any map F : G → G such that there exists an embedding ι : G → GLn(k) which satisfies
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ι ◦ F = Fq ◦ ι for some q. A morphism F : G→ G is called a Frobenius map if for some
m ∈ N we have Fm is a standard Frobenius map.

If F : G → G is a Frobenius map then we can consider the fixed point group of F which
we denote

GF := {g ∈ G | F (g) = g}.
Fact. GF is always a finite subgroup of G. See Proposition 4.1.4 of [Gec03].

Example. We think of GLn(k), where k = Fp, and the standard Frobenius map Fq where
q = pe. Then we have GFq = GLn(q), i.e. the finite general linear group defined over the
field Fq.

2. So, semisimple you say?

We have two ways to define semisimple elements in an algebraic group when our field is
of positive characteristic these are equivalent.

Definition. Let ι : G→ GLn(k) be an embedding of G into GLn(k) for some appropriate
n. Then an element s ∈ G is semisimple if ι(s) is a semisimple, (i.e. diagonalisable
because our field is algebraically closed), matrix.

Definition. An element s ∈ G is called semisimple if its order is prime to p.

For our example of GLn(k) it will be more constructive to consider the first definition
as it will make the following facts slightly more believable.

Fact. All maximal tori of G are conjugate in G. See Corollary A, section 21.3 of [Hum75].

Fact. Every semisimple element of G lies in a maximal torus of G. See Corollary, section
19.3 of [Hum75].

If we think about this in GLn(k) then this may make some sense. Consider the maximal
torus of diagonal matrices in GLn(k). Then a semisimple matrix, over an algebraically
closed field, is one which is conjugate to a diagonal matrix. Hence every semisimple element
in GLn(k) has a conjugate which lies in the maximal torus of diagonal matrices. In fact a
maximal torus is made up entirely of semisimple elements.

Now we recall the Weyl group W = NG(T )/T . We have a natural action of the Weyl
group on the maximal torus by conjugation. Then with this action we can state the
following theorem.

Theorem. We have that for two elements t1, t2 ∈ T that t1, t2 are conjugate in G if
and only if they lie in the same W orbit. Hence there is a bijection between semisimple
conjugacy classes in G and orbits T/W of the Weyl group acting on T .

Proof. This result uses the fact that in a group with a split BN -pair we have a unique way
of writing an element as a product of things coming from RU(B), T and W . See section
2.5 of [Car85] for more details on the unique expression and section 3.7 of [Car85] for the
proof of the theorem. �
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Example. Consider the group GL3(k). We have the standard maximal torus T of diagonal
matrices in GL3(k), so we can denote a typical semisimple element in T by a triple (α, β, γ)
for α, β, γ ∈ k. If we assume that all these elements are distinct, then the orbits of W ∼= S3

acting on T look like

{(α, β, γ), (α, γ, β), (β, α, γ), (β, γ, α), (γ, β, α), (γ, α, β)},
{(α, α, β), (α, β, α), (β, α, α)},

{(α, α, α)}.

Therefore we have seemingly taken a very infinite problem and reduced it to something
that is finite. For example in GLn(k) we can take a general diagonal matrix and conjugate
this with the permutation matrices of the Weyl group. This will give us the conjugacy
class of this semisimple element in GLn(k).

So in a connected reductive algebraic group G we have a nice solution to this problem.
All we have to do is examine the orbits of the action of the Weyl group on a maximal torus
and we’re done. However, when we pass to the finite group this situation becomes slightly
more complicated.

3. Finite, schminite.

We now want to take our very nice solution in G and pass this to GF . However what we’re
essentially doing is taking a conjugacy class in a group and trying to see what happens to
it when we intersect it with a subgroup. For example in the symmetric group we know that
conjugacy classes are represented by cycle type but in the alternating group it can happen
that these conjugacy classes split. The same thing will happen in our finite subgroup GF

and ideally we would like to know how, why and when they will split.

Definition. We say x ∈ G is F -stable if F (x) = x. We say a subset H ⊆ G is F -stable
if F (H) = H, note that this does not mean every element of H is F -stable.

Fact. There exists F -stable Borel subgroups and maximal tori of G. See section 1.17 of
[Car85].

Definition. Let T be an F -stable maximal torus of G. Then we say the subgroup T F =
{t ∈ T | F (t) = t} 6 GF is a maximal torus of GF .

Note that T F is just an abelian subgroup of GF , it is not necessarily maximal in GF .
Now we know that in G all maximal tori are conjugate. However if T1 and T2 are two
F -stable maximal tori of G it is not true that we can find an element g ∈ GF such that
T1 and T2 are conjugate by g. This causes us our first problem In fact not every F -stable
maximal torus of G lies in an F -stable Borel subgroup but every F -stable Borel subgroup
does contain an F -stable maximal torus.

We need the important idea of F -conjugacy. Consider the Weyl group W . We say that
w,w′ ∈ W are F -conjugate if there exists x ∈ W such that w′ = x−1wF (x). We have
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F -conjugacy is an equivalence relation on W . We call the equivalence classes under this
relation F -conjugacy classes.

The first step on the road to solving our problem is the following theorem.

Theorem. There is a bijection between the GF conjugacy classes of F -stable maximal tori
of G and the F -conjugacy classes of W .

Proof. See Proposition 3.3.3 in [Car85] �

Now we note that if F acts trivially on the Weyl group then the F -conjugacy classes of
W are in fact just the regular conjugacy classes of W . This happens in GLn(k). Consider
Fq the standard Frobenius map then we have an element of W is just a permutation matrix
but applying Fq to this will leave it unchanged.

We briefly wish to talk about centralisers of semisimple elements because of the following.
Let s ∈ GF be semisimple and g ∈ G such that gs := gsg−1 ∈ GF then g−1F (g) ∈ CG(s).
This is clear because

gsg−1 = F (gsg−1) = F (g)sF (g−1)⇒ g−1F (g)s = sg−1F (g).

Now if gs = hs for some h ∈ G we have g−1F (g) and h−1F (h) are F -conjugate in CG(s).

This is because gs = hs⇒ h−1gs = s⇒ h−1g ∈ CG(s) and clearly

g−1F (g) = g−1h(h−1F (h))F (h−1g).

In fact we obtain the following result

Theorem. The map taking g 7→ gs for g−1F (g) ∈ CG(s) induces a bijection between
F -conjugacy classes of CG(s)/CG(s)◦ and GF orbits of F -stable conjugates of s in G.

Proof. This is proved in a more general statement in Theorem 4.3.5 of [Gec03]. �

This result suggests that knowledge about the centralisers of a semisimple element and
whether it is connected or not will prove most useful to us. In fact this result says that if
CG(s) is connected then the F -stable conjugates of s will form a single GF conjugacy class
of semisimple elements.

Theorem. Let s be a semisimple element of G and T a maximal torus of G containing s.
Then

(a) CG(s)◦ = 〈T,Xα | α(s) = 1〉,
(b) CG(s) = 〈T,Xα, ẇ | α(s) = 1, ẇs = s〉.

where Xα are the root subgroups with respect to the torus T and ẇ is a representative of
the Weyl group element w in NG(T ).

Proof. See Theorem 3.5.3 of [Car85]. �

Now in the above theorem we said that Xα are the root subgroups. It is not really
important to know what the root subgroups are, just know that they are 1-dim subgroups
isomorphic to k+ associated to each root in the root system. They have the property that
G is generated by a maximal torus and the root subgroups. The important thing to notice
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about the above result is that CG(s)/CG(s)◦ will be isomorphic to a group generated by
representatives of the Weyl group. So F -conjugacy classes of CG(s)/CG(s)◦ will in fact
just be related to F -conjugacy classes of the Weyl group.

With this in mind we now state a very important result due to Steinberg.

Theorem (Steinberg). Let G be a connected reductive group whose derived subgroup G′ is
simply-connected. Let s be a semisimple element of G. Then CG(s) is connected.

Proof. See Theorem 3.5.6 of [Car85]. �

So in a simply connected algebraic group we will have that given an F -stable conjugacy
class of semisimple elements, say C, in G that CF will form precisely one conjugacy class
of semisimple elements in GF . Finally with this in place we can state the main result
regarding semisimple conjugacy classes in GF .

Theorem. Suppose G is a connected reductive group whose derived group G′ is simply
connected. Then there is a bijection between semisimple conjugacy classes of GF and F -
stable orbits in T/W . Furthermore the number of semisimple conjugacy classes in GF is
|(Z(G)◦)F |q`, where ` is the semisimple rank of G.

Proof. See Proposition 3.7.3 and Theorem 3.7.6 of [Car85]. �

We note that simply connected refers to the classification of simple algebraic groups. An
example of the above is GLn(k). We have GLn(k) is a connected reductive algebraic group
whose derived subgroup is SLn(k) which is a semisimple simply connected algebraic group
of type An−1.

Example. We consider G = GL2(k) together with F = Fq the standard Frobenius map
and hence GF = GL2(q). Let λ be a primitive (q2−1)th root of unity in k then η = λq+1 is
a primitive (q − 1)th root of unity in k. We have GL2(k) is an algebraic group of type A1

and hence there are only two roots. With respect to the standard maximal torus T these
are

α

[
x 0
0 y

]
= xy−1 − α

[
x 0
0 y

]
= x−1y.

The Weyl group W is isomorphic to S2. We can see this as we have NG(T )/T is given
by the coset representatives [

1 0
0 1

]
T

[
0 1
1 0

]
T

We have the orbits of the Weyl group acting on the standard maximal torus are

{(x, y), (y, x)} {(x, x)},
where x 6= y ∈ k and (x, y) represents a diagonal matrix in T .

We now consider when these orbits are F -stable. The latter orbit is F -stable if and only
if xq = x ⇒ xq−1 = 1 and hence x = ηi for some 0 6 i 6 q − 2. There are q − 1 choices
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for i and so we get q − 1 different conjugacy classes in GL2(q). Now this element is in the
centre of GL2(q) and so clearly CG(s) = GL2(q). Now also we see that ±α(ηi, ηi) = 1 and
so CG(s) = 〈T,Xα, X−α〉 = GL2(k)⇒ CG(s)F = CGF (s) = GL2(q).

There are two possibilities for the first orbit to be F -stable. The first possibility is that
xq = x and yq = y, which means x = ηi and y = ηj for some 0 6 i, j 6 q − 2 with i 6= j.
We have q−1 choices for i and q−2 choices for j, dividing through by the size of the orbit

we have (q−1)(q−2)
2

different conjugacy classes in GL2(q). We have ±α(ηi, ηj) 6= 1 when
i 6= j and so CG(s) = 〈T 〉 = T . Therefore CGF (s) = T F ∼= Zq−1 ⊕ Zq−1, which means
|CGF (s)| = (q − 1)2.

The second possibility is that we could have xq = y and yq = x⇒ xq
2

= x⇒ xq
2−1 = 1

and so x = λi, y = λiq for some 0 6 i 6 q2 − 2. Recall that λq+1 = η and so if q + 1 | i we
will have that (λi, λiq) is one of the cases we have already considered. We have q2−1 choices
for i but we also have q−1 choices for j such that i = (q+1)j, (we really have q choices for
j but we don’t want to throw away j = 0), so we have q2− 1− (q− 1) = q2− q = q(q− 1)

choices for i. Dividing through by the order of the orbit this gives us q(q−1)
2

different
conjugacy classes in GL2(q). We have ±α(λi, λiq) 6= 1 and so CG(s) = T .

Now the element (λi, λiq) is not F -stable. However recall that we have a conjugacy class
of maximal tori in GL2(q) corresponding to the non-identity element in W . Therefore
we have a conjugate maximal torus gT , such that g−1F (g) is the non-identity element in
W , which is not conjugate in GF to T F . This semisimple element lies in the non-split
maximal torus and so g(λi, λiq) is F -stable for some g ∈ G. Therefore the centraliser of

this element in GL2(q) will be the other maximal torus which we denote T Fw
−1

which has
order (q − 1)(q + 1) = q2 − 1.

Therefore the following table gives the information regarding the semisimple classes in
GL2(q).

s No. Classes No. Elements CGF (s) |CGF (s)|

(ηi, ηi) q − 1 1 GL2(q) q(q2 − 1)(q − 1)

(ηi, ηj)
(q − 1)(q − 2)

2
q(q + 1) T F (q − 1)2

(λi, λiq)
q(q − 1)

2
q(q − 1) T Fw

−1
q2 − 1

Note that Z(G)◦ = {λI2 | λ ∈ k} and so (Z(G)◦)F = {ηiI2 | 0 6 i 6 q − 2}. Therefore we
should have (q − 1)q conjugacy classes of semisimple elements in GL2(q). Indeed we have

q − 1 +
(q − 1)(q − 2)

2
+
q(q − 1)

2
=

2q − 2 + q2 − 3q + 2 + q2 − q
2

,

= (q − 1)q,

semisimple classes in GL2(q).
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