On Lusztig's Conjecture for Character Sheaves of Classical-Type Groups

Jay Taylor

Technische Universität Kaiserslautern

Cohomology in Lie Theory Oxford, June 2013

- Algebraic Closures: $\mathbb{K} = \overline{\mathbb{F}}_p$ (p > 2 a prime) and $\overline{\mathbb{Q}}_\ell$ ($\ell \neq p > 0$ a prime).
- G a connected reductive algebraic group over K such that Z(G) is connected and G/Z(G) is simple of type B_n, C_n or D_n.

$$\begin{array}{c|c} & \mathsf{B}_n & \mathsf{C}_n & \mathsf{D}_n \\ \hline \mathsf{SO}_{2n+1}(\mathbb{K}) & \mathsf{CSp}_{2n}(\mathbb{K}) & \mathsf{CO}_{2n}(\mathbb{K})^\circ \end{array}$$

• $F : \mathbf{G} \to \mathbf{G}$ is a split Frobenius endomorphism defining an \mathbb{F}_q -rational structure \mathbf{G}^F .

- Algebraic Closures: $\mathbb{K} = \overline{\mathbb{F}}_p$ (p > 2 a prime) and $\overline{\mathbb{Q}}_\ell$ ($\ell \neq p > 0$ a prime).
- G a connected reductive algebraic group over K such that Z(G) is connected and G/Z(G) is simple of type B_n, C_n or D_n.

$$\begin{array}{c|c} & \mathsf{B}_n & \mathsf{C}_n & \mathsf{D}_n \\ \hline & \mathsf{SO}_{2n+1}(\mathbb{K}) & \mathsf{CSp}_{2n}(\mathbb{K}) & \mathsf{CO}_{2n}(\mathbb{K})^\circ \end{array}$$

• $F : \mathbf{G} \to \mathbf{G}$ is a split Frobenius endomorphism defining an \mathbb{F}_q -rational structure \mathbf{G}^F .

Goal

Let Irr(\mathbf{G}^F) = { χ_1, \ldots, χ_r } be the irreducible $\overline{\mathbb{Q}}_{\ell}$ -characters of \mathbf{G}^F and let { g_1, \ldots, g_r } be conjugacy class representatives of \mathbf{G}^F . Give a method to explicitly compute the character table

$$(\chi_i(g_j))_{1\leqslant i,j\leqslant r}.$$

Jay Taylor (TU Kaiserslautern)

Recall we have the $\overline{\mathbb{Q}}_{\ell}$ -vector space of all class functions

$$\mathsf{Cent}(\mathbf{G}^{\mathsf{F}}) = \{ f : \mathbf{G}^{\mathsf{F}} \to \overline{\mathbb{Q}}_{\ell} \mid f(xgx^{-1}) = f(g) \text{ for all } x, g \in \mathbf{G}^{\mathsf{F}} \}.$$

Recall we have the $\overline{\mathbb{Q}}_{\ell}$ -vector space of all class functions

$$\mathsf{Cent}(\mathbf{G}^{\mathsf{F}}) = \{f: \mathbf{G}^{\mathsf{F}} \to \overline{\mathbb{Q}}_{\ell} \mid f(xgx^{-1}) = f(g) \text{ for all } x, g \in \mathbf{G}^{\mathsf{F}} \}.$$

Possible Solution

Find a basis \mathcal{A} of Cent(**G**^{*F*}) such that:

 ${\rm \textcircled{O}}$ the elements of ${\mathcal A}$ are "computable",

Recall we have the $\overline{\mathbb{Q}}_{\ell}$ -vector space of all class functions

$$\mathsf{Cent}(\mathbf{G}^{\mathsf{F}}) = \{ f : \mathbf{G}^{\mathsf{F}} \to \overline{\mathbb{Q}}_{\ell} \mid f(xgx^{-1}) = f(g) \text{ for all } x, g \in \mathbf{G}^{\mathsf{F}} \}.$$

Possible Solution

Find a basis \mathcal{A} of Cent(\mathbf{G}^{F}) such that:

- ${\small \bullet} {\small \bullet} {\small the elements of \mathcal{A} are "computable",}$
- **2** the change of basis matrix from \mathcal{A} to $Irr(\mathbf{G}^F)$ can be described.

Recall we have the $\overline{\mathbb{Q}}_\ell\text{-vector}$ space of all class functions

$$\mathsf{Cent}(\mathbf{G}^{\mathsf{F}}) = \{ f : \mathbf{G}^{\mathsf{F}} \to \overline{\mathbb{Q}}_{\ell} \mid f(xgx^{-1}) = f(g) \text{ for all } x, g \in \mathbf{G}^{\mathsf{F}} \}.$$

Possible Solution

Find a basis \mathcal{A} of Cent(**G**^{*F*}) such that:

 ${\rm \textcircled{O}}$ the elements of ${\mathcal A}$ are "computable",

2 the change of basis matrix from \mathcal{A} to $Irr(\mathbf{G}^F)$ can be described.

A Computable Basis

Take $\mathcal{A} = \{f_1, \ldots, f_r\}$ to be the characteristic functions of the conjugacy classes of \mathbf{G}^F . In other words for each $1 \leq i \leq r$ we define

$$f_i(g) = \begin{cases} |C_{\mathbf{G}^F}(g)| & \text{if } xgx^{-1} = g_i \text{ for some } x \in G \\ 0 & \text{otherwise.} \end{cases}$$

- Lusztig (1984) formally introduces the notion of an almost character.
- Defined on a case by case basis.
- Explicit linear combination of irreducible characters of \mathbf{G}^{F} .
- Coefficients given by a Fourier transform matrix (classical types) or non-abelian analogue (exceptional types).

- Lusztig (1984) formally introduces the notion of an almost character.
- Defined on a case by case basis.
- Explicit linear combination of irreducible characters of **G**^F.
- Coefficients given by a Fourier transform matrix (classical types) or non-abelian analogue (exceptional types).

A subset \mathcal{B} of the set of almost characters is an orthonormal basis of Cent(\mathbf{G}^{F}). Furthermore the change of basis matrix from \mathcal{B} to Irr(\mathbf{G}^{F}) is explicitly known.

Fix an *F*-stable maximal torus $\mathbf{T}_0 \leq \mathbf{G}$ and let $W = N_{\mathbf{G}}(\mathbf{T}_0)/\mathbf{T}_0$ be the Weyl group of \mathbf{G} . For each $w \in W$ define an *F*-stable maximal torus

$$\mathbf{T}_w := g \mathbf{T}_0 g^{-1}$$
 some $g \in \mathbf{G}$ with $g^{-1} \mathcal{F}(g) \mapsto w \in W$.

Fix an *F*-stable maximal torus $\mathbf{T}_0 \leq \mathbf{G}$ and let $W = N_{\mathbf{G}}(\mathbf{T}_0)/\mathbf{T}_0$ be the Weyl group of \mathbf{G} . For each $w \in W$ define an *F*-stable maximal torus

$${f T}_w:=g{f T}_0g^{-1}\qquad ext{some }g\in {f G} ext{ with }g^{-1}F(g)\mapsto w\in W.$$

By Deligne–Lusztig (1976) we have for each $w \in W$ a virtual character

 $R_{\mathbf{T}_{w}}^{\mathbf{G}}(1) \in \mathbb{Z} \operatorname{Irr}(G).$

Fix an *F*-stable maximal torus $\mathbf{T}_0 \leq \mathbf{G}$ and let $W = N_{\mathbf{G}}(\mathbf{T}_0)/\mathbf{T}_0$ be the Weyl group of \mathbf{G} . For each $w \in W$ define an *F*-stable maximal torus

$${f \Gamma}_w:=g{f \Gamma}_0g^{-1}\qquad ext{some }g\in {f G} ext{ with }g^{-1}{f F}(g)\mapsto w\in W.$$

By Deligne–Lusztig (1976) we have for each $w \in W$ a virtual character $R^{G}_{T_{w}}(1) \in \mathbb{Z} \operatorname{Irr}(G).$

Example of an Almost Character Let $\rho \in Irr(W)$ then we define

$$R_{
ho} = rac{1}{|W|} \sum_{w \in W}
ho(w) R^{\mathsf{G}}_{\mathsf{T}_w}(1) \in \mathbb{Q} \operatorname{Irr}(G).$$

We call R_{ρ} a uniform unipotent almost character.

 $\mathscr{D}\mathbf{G} :=$ the bounded derived category of $\overline{\mathbb{Q}}_{\ell}$ -constructible sheaves on \mathbf{G} $\mathscr{M}\mathbf{G} :=$ the category of $\overline{\mathbb{Q}}_{\ell}$ -perverse sheaves on \mathbf{G} $\mathscr{D}\mathbf{G} :=$ the bounded derived category of $\overline{\mathbb{Q}}_{\ell}$ -constructible sheaves on \mathbf{G} $\mathscr{M}\mathbf{G} :=$ the category of $\overline{\mathbb{Q}}_{\ell}$ -perverse sheaves on \mathbf{G}

• An object $A \in \mathscr{D}\mathbf{G}$ is a complex

$$\cdots \longrightarrow A_{i-1} \longrightarrow A_i \longrightarrow A_{i+1} \longrightarrow \cdots$$

of $\overline{\mathbb{Q}}_{\ell}$ -sheaves on **G** such that for each $i \in \mathbb{Z}$ the cohomology sheaf $\mathscr{H}^{i}(A)$ is constructible.

 $\mathscr{D}\mathbf{G} :=$ the bounded derived category of $\overline{\mathbb{Q}}_{\ell}$ -constructible sheaves on \mathbf{G} $\mathscr{M}\mathbf{G} :=$ the category of $\overline{\mathbb{Q}}_{\ell}$ -perverse sheaves on \mathbf{G}

• An object $A \in \mathscr{D}\mathbf{G}$ is a complex

$$\cdots \longrightarrow A_{i-1} \longrightarrow A_i \longrightarrow A_{i+1} \longrightarrow \cdots$$

of $\overline{\mathbb{Q}}_{\ell}$ -sheaves on **G** such that for each $i \in \mathbb{Z}$ the cohomology sheaf $\mathscr{H}^{i}(A)$ is constructible.

Definition

A character sheaf of **G** is a **G**-equivariant simple object in \mathscr{M} **G**. We denote by $\widehat{\mathbf{G}}$ the set of character sheaves of **G**.

Jay Taylor (TU Kaiserslautern)

$$F^*: \mathscr{D}\mathbf{G} \to \mathscr{D}\mathbf{G}$$

which preserves $\widehat{\mathbf{G}}$.

 $F^*: \mathscr{D}\mathbf{G} \to \mathscr{D}\mathbf{G}$

which preserves $\widehat{\mathbf{G}}$. We say $A \in \mathscr{D}\mathbf{G}$ is *F*-stable if there exists an isomorphism

 $\phi_A: F^*A \to A \in \mathscr{D}\mathbf{G}.$

We denote by $\widehat{\mathbf{G}}^F \subseteq \widehat{\mathbf{G}}$ the subset of *F*-stable character sheaves.

 $F^*: \mathscr{D}\mathbf{G} \to \mathscr{D}\mathbf{G}$

which preserves $\widehat{\mathbf{G}}$. We say $A \in \mathscr{D}\mathbf{G}$ is *F*-stable if there exists an isomorphism

 $\phi_A: F^*A \to A \in \mathscr{D}\mathbf{G}.$

We denote by $\widehat{\mathbf{G}}^F \subseteq \widehat{\mathbf{G}}$ the subset of *F*-stable character sheaves.

Definition

Assume now that $A \in \widehat{\mathbf{G}}^{F}$. For each $x \in \mathbf{G}^{F}$ and $i \in \mathbb{Z}$ we have

$$\mathscr{H}^i_x(F^*A) = \mathscr{H}^i_{F(x)}(A) = \mathscr{H}^i_x(A)$$

and ϕ_A induces an automorphism $\phi_A : \mathscr{H}^i_x(A) \to \mathscr{H}^i_x(A)$.

 $F^*: \mathscr{D}\mathbf{G} \to \mathscr{D}\mathbf{G}$

which preserves $\widehat{\mathbf{G}}$. We say $A \in \mathscr{D}\mathbf{G}$ is *F*-stable if there exists an isomorphism

 $\phi_A: F^*A \to A \in \mathscr{D}\mathbf{G}.$

We denote by $\widehat{\mathbf{G}}^F \subseteq \widehat{\mathbf{G}}$ the subset of *F*-stable character sheaves.

Definition

Assume now that $A \in \widehat{\mathbf{G}}^{F}$. For each $x \in \mathbf{G}^{F}$ and $i \in \mathbb{Z}$ we have

$$\mathscr{H}^{i}_{x}(F^{*}A) = \mathscr{H}^{i}_{F(x)}(A) = \mathscr{H}^{i}_{x}(A)$$

and ϕ_A induces an automorphism $\phi_A : \mathscr{H}^i_x(A) \to \mathscr{H}^i_x(A)$. We define the characteristic function of A to be $\chi_{A,\phi_A} : \mathbf{G}^F \to \overline{\mathbb{Q}}_\ell$ given by

$$\chi_{A,\phi_A}(g) = \sum_{i\in\mathbb{Z}} (-1)^i \operatorname{Tr}(\phi_A,\mathscr{H}^i_g(A)).$$

Jay Taylor (TU Kaiserslautern)

There exists a family of isomorphisms $\{\phi_A : F^*A \to A \mid A \in \widehat{\mathbf{G}}^F\}$, (unique up to multiplication by roots of unity), such that

$$\mathcal{A} = \{ \chi_{\mathcal{A},\phi_{\mathcal{A}}} \mid \mathcal{A} \in \widehat{\mathbf{G}}^{\mathcal{F}} \}$$

is an orthonormal basis for Cent(G). Furthermore, the elements of A are computable by a general algorithm.

There exists a family of isomorphisms $\{\phi_A : F^*A \to A \mid A \in \widehat{\mathbf{G}}^F\}$, (unique up to multiplication by roots of unity), such that

$$\mathcal{A} = \{ \chi_{\mathcal{A},\phi_{\mathcal{A}}} \mid \mathcal{A} \in \widehat{\mathbf{G}}^{\mathcal{F}} \}$$

is an orthonormal basis for Cent(G). Furthermore, the elements of A are computable by a general algorithm.

Conjecture (Lusztig, 1985)

There is an explicit ordering of the bases \mathcal{A} and \mathcal{B} so that the change of basis matrix from \mathcal{A} to \mathcal{B} is diagonal and the non-zero entries are roots of unity.

There exists a family of isomorphisms $\{\phi_A : F^*A \to A \mid A \in \widehat{\mathbf{G}}^F\}$, (unique up to multiplication by roots of unity), such that

$$\mathcal{A} = \{ \chi_{\mathcal{A},\phi_{\mathcal{A}}} \mid \mathcal{A} \in \widehat{\mathbf{G}}^{\mathcal{F}} \}$$

is an orthonormal basis for Cent(G). Furthermore, the elements of A are computable by a general algorithm.

Theorem (Shoji, 1995)

There is an explicit ordering of the bases \mathcal{A} and \mathcal{B} so that the change of basis matrix from \mathcal{A} to \mathcal{B} is diagonal and the non-zero entries are scalars of absolute value 1.

There exists a family of isomorphisms $\{\phi_A : F^*A \to A \mid A \in \widehat{\mathbf{G}}^F\}$, (unique up to multiplication by roots of unity), such that

$$\mathcal{A} = \{ \chi_{\mathcal{A},\phi_{\mathcal{A}}} \mid \mathcal{A} \in \widehat{\mathbf{G}}^{\mathcal{F}} \}$$

is an orthonormal basis for Cent(G). Furthermore, the elements of A are computable by a general algorithm.

Theorem (Shoji, 1995)

There is an explicit ordering of the bases \mathcal{A} and \mathcal{B} so that the change of basis matrix from \mathcal{A} to \mathcal{B} is diagonal and the non-zero entries are scalars of absolute value 1.

Remaining Problem

Compute explicitly the change of basis matrix C from \mathcal{A} to \mathcal{B} .

$$A_0 \in \widehat{\mathbf{L}} \quad \rightsquigarrow \quad \operatorname{ind}_{\mathbf{L} \subset \mathbf{P}}^{\mathbf{G}}(A_0) \in \mathscr{M}\mathbf{G}$$

called induction.

$$A_0\in \widehat{\mathsf{L}} \qquad o \qquad \mathsf{ind}_{\mathsf{L}\subseteq\mathsf{P}}^{\mathsf{G}}(A_0)\in \mathscr{M}\mathsf{G}$$

called induction. The complex $\text{ind}_{L\subseteq P}^{G}(A_0)$ satisfies the following properties:

• $\operatorname{ind}_{L\subseteq P}^{G}(A_0) = A_0$ if L = P = G.

$$A_0 \in \widehat{\mathsf{L}} \qquad \leadsto \qquad \mathsf{ind}_{\mathsf{L}\subseteq\mathsf{P}}^{\mathsf{G}}(A_0) \in \mathscr{M}\mathsf{G}$$

called induction. The complex $\operatorname{ind}_{L\subseteq P}^{G}(A_0)$ satisfies the following properties:

- $\operatorname{ind}_{\mathsf{L}\subseteq\mathsf{P}}^{\mathsf{G}}(A_0) = A_0$ if $\mathsf{L} = \mathsf{P} = \mathsf{G}$.
- ind^G_{L⊆P}(A₀) is semisimple and all indecomposable summands are character sheaves.

$$A_0 \in \widehat{\mathsf{L}} \qquad \leadsto \qquad \mathsf{ind}_{\mathsf{L}\subseteq\mathsf{P}}^{\mathsf{G}}(A_0) \in \mathscr{M}\mathsf{G}$$

called induction. The complex $\text{ind}_{L\subseteq P}^{G}(A_0)$ satisfies the following properties:

•
$$\operatorname{ind}_{\mathsf{L}\subseteq\mathsf{P}}^{\mathsf{G}}(A_0) = A_0$$
 if $\mathsf{L} = \mathsf{P} = \mathsf{G}$.

- ind^G_{L⊆P}(A₀) is semisimple and all indecomposable summands are character sheaves.
- for any A ∈ G there exists a Levi subgroup L ≤ P and a cuspidal character sheaf A₀ ∈ L such that (A : ind^G_{L⊆P}(A₀)) ≠ 0. Furthermore the pair (L, A₀) is unique up to G-conjugacy.

$$A_0 \in \widehat{\mathbf{L}} \qquad \rightsquigarrow \qquad \operatorname{ind}_{\mathbf{L} \subseteq \mathbf{P}}^{\mathbf{G}}(A_0) \in \mathscr{M}\mathbf{G}$$

called induction. The complex $\operatorname{ind}_{L\subseteq P}^{G}(A_0)$ satisfies the following properties:

•
$$\operatorname{ind}_{\mathsf{L}\subseteq\mathsf{P}}^{\mathsf{G}}(A_0) = A_0$$
 if $\mathsf{L} = \mathsf{P} = \mathsf{G}$.

- ind^G_{L⊆P}(A₀) is semisimple and all indecomposable summands are character sheaves.
- for any A ∈ G there exists a Levi subgroup L ≤ P and a cuspidal character sheaf A₀ ∈ L such that (A : ind^G_{L⊆P}(A₀)) ≠ 0. Furthermore the pair (L, A₀) is unique up to G-conjugacy.

Definition

We say
$$A \in \widehat{\mathbf{G}}$$
 is cuspidal if $(A : \operatorname{ind}_{\mathsf{L}\subseteq \mathbf{P}}^{\mathsf{G}}(A_0)) \neq 0$ implies $\mathsf{L} = \mathbf{P} = \mathbf{G}$.

Definition

We say $A \in \widehat{\mathbf{G}}$ is unipotently supported if $\mathscr{H}_{u}^{i}(A) \neq 0$ for some $i \in \mathbb{Z}$ and $u \in \mathbf{G}$ unipotent.

Definition

We say $A \in \widehat{\mathbf{G}}$ is unipotently supported if $\mathscr{H}_{u}^{i}(A) \neq 0$ for some $i \in \mathbb{Z}$ and $u \in \mathbf{G}$ unipotent.

Theorem (Lusztig)

If $A \in \widehat{\mathbf{G}}$ is cuspidal and unipotently supported then

$$A = \mathsf{IC}(\overline{\mathcal{O}_0 Z^{\circ}(\mathbf{G})}, \mathscr{E}_0 \boxtimes \overline{\mathbb{Q}}_\ell)$$

where $\mathcal{O}_0 \subseteq \mathbf{G}$ is a unipotent conjugacy class and \mathcal{E}_0 is a cuspidal local system on \mathcal{O}_0 .

Definition

We say $A \in \widehat{\mathbf{G}}$ is unipotently supported if $\mathscr{H}_{u}^{i}(A) \neq 0$ for some $i \in \mathbb{Z}$ and $u \in \mathbf{G}$ unipotent.

Theorem (Lusztig)

If $A \in \widehat{\mathbf{G}}$ is cuspidal and unipotently supported then

$$A = \mathsf{IC}(\overline{\mathcal{O}_0 Z^{\circ}(\mathbf{G})}, \mathscr{E}_0 \boxtimes \overline{\mathbb{Q}}_\ell)$$

where $\mathcal{O}_0 \subseteq \mathbf{G}$ is a unipotent conjugacy class and \mathcal{E}_0 is a cuspidal local system on \mathcal{O}_0 .

A is F-stable if and only if $F(\mathcal{O}_0) = \mathcal{O}_0$ and $F^* \mathscr{E}_0 \cong \mathscr{E}_0$. Choose

$$\varphi: F^*\mathscr{E}_0 o \mathscr{E}_0 wo \varphi_u: (\mathscr{E}_0)_u o (\mathscr{E}_0)_u ext{ is } q^* ext{ id }$$

for any split unipotent element $u \in \mathcal{O}_0^F$. Now $\varphi \boxtimes \operatorname{id} \rightsquigarrow \phi_A$.

Let $(L_1, A_1), \ldots, (L_k, A_k)$ be representatives for the conjugation action of \mathbf{G}^F on

 $\{(\mathbf{L}, A) \mid \mathbf{L} \leq \mathbf{G} \text{ an } F\text{-stable Levi and } A \in \widehat{\mathbf{L}}^F \text{ cuspidal}\}.$

Let $(L_1, A_1), \ldots, (L_k, A_k)$ be representatives for the conjugation action of \mathbf{G}^F on

$$\{(\mathbf{L}, A) \mid \mathbf{L} \leqslant \mathbf{G} \text{ an } F$$
-stable Levi and $A \in \widehat{\mathbf{L}}^F$ cuspidal $\}$.

We get a block decomposition

$$\widehat{\mathbf{G}}_{i}^{F} = \{A \in \widehat{\mathbf{G}}^{F} \mid (A : \operatorname{ind}_{\mathbf{L}_{i} \subseteq \mathbf{P}_{i}}^{\mathbf{G}}(A_{i})) \neq 0\}$$
$$\widehat{\mathbf{G}}^{F} = \bigsqcup_{i=1}^{k} \widehat{\mathbf{G}}_{i}^{F} \qquad \rightsquigarrow \qquad C = \begin{bmatrix} C_{1} & 0 \\ & \ddots \\ 0 & C_{k} \end{bmatrix}$$

Let $(L_1, A_1), \ldots, (L_k, A_k)$ be representatives for the conjugation action of \mathbf{G}^F on

$$\{(\mathbf{L}, A) \mid \mathbf{L} \leqslant \mathbf{G} \text{ an } F$$
-stable Levi and $A \in \widehat{\mathbf{L}}^F$ cuspidal $\}$.

We get a block decomposition

$$\widehat{\mathbf{G}}_{i}^{F} = \{A \in \widehat{\mathbf{G}}^{F} \mid (A : \operatorname{ind}_{\mathbf{L}_{i} \subseteq \mathbf{P}_{i}}^{\mathbf{G}}(A_{i})) \neq 0\}$$
$$\widehat{\mathbf{G}}^{F} = \bigsqcup_{i=1}^{k} \widehat{\mathbf{G}}_{i}^{F} \qquad \rightsquigarrow \qquad C = \begin{bmatrix} C_{1} & 0 \\ & \ddots \\ 0 & C_{k} \end{bmatrix}$$

Lemma (Shoji)

Let $\zeta_i \in \overline{\mathbb{Q}}_{\ell}$ be such that $\zeta_i \chi_{A_i,\phi_{A_i}}$ is an almost character of \mathbf{L}_i^F . The isomorphism ϕ_{A_i} induces an isomorphism ϕ_A for each $A \in \widehat{\mathbf{G}}_i^F$ such that C_i is $(-1)^{a_i} \zeta_i$ times the identity matrix for some $a_i \in \mathbb{Z}_{\geq 0}$.

Theorem (Lusztig)

The Levi subgroups L_i are such that $L_i/Z(L_i)$ is simple of the same type as **G**.

Theorem (Lusztig)

The Levi subgroups L_i are such that $L_i/Z(L_i)$ is simple of the same type as **G**.

Lemma (Lusztig)

Assume $(A : ind_{L_i \subseteq P_i}^G(A_i)) \neq 0$ then A is unipotently supported if and only if A_i is unipotently supported.

Theorem (Lusztig)

The Levi subgroups L_i are such that $L_i/Z(L_i)$ is simple of the same type as **G**.

Lemma (Lusztig)

Assume $(A : ind_{L_i \subseteq P_i}^G(A_i)) \neq 0$ then A is unipotently supported if and only if A_i is unipotently supported.

Theorem (T., 2013)

Assume $A \in \widehat{\mathbf{G}}^F$ is a unipotently supported cuspidal character sheaf and $q \equiv 1 \pmod{4}$ when **G** is of type C_n or D_n then χ_{A,ϕ_A} is the corresponding almost character of G.

• When $\mathbf{G} = SO_{2n+1}(\mathbb{K})$ due to Lusztig - "On the Character Values of Finite Chevalley Groups at Unipotent Elements" (1986).

By Kawanaka (1986) we have a map

 $u \in G$ unipotent $\rightsquigarrow \gamma_u \in Cent(G)$

where γ_u is the character of a generalised Gelfand–Graev representation.

By Kawanaka (1986) we have a map

 $u \in G$ unipotent $\rightsquigarrow \gamma_u \in Cent(G)$

where γ_u is the character of a generalised Gelfand–Graev representation. Assume p and q sufficiently large then by Lusztig (1992) we have a map

$$\chi \in \mathsf{Irr}(\mathcal{G}) \qquad \rightsquigarrow \qquad \mathcal{O}_{\chi} \subseteq \mathbf{G} \text{ an } F ext{-stable unipotent class}$$

where \mathcal{O}_{χ} is the unipotent support of χ .

By Kawanaka (1986) we have a map

 $u \in G$ unipotent $\rightsquigarrow \gamma_u \in Cent(G)$

where γ_u is the character of a generalised Gelfand–Graev representation. Assume p and q sufficiently large then by Lusztig (1992) we have a map

$$\chi \in \mathsf{Irr}(G) \qquad \rightsquigarrow \qquad \mathcal{O}_\chi \subseteq \mathbf{G} ext{ an } F ext{-stable unipotent class}$$

where \mathcal{O}_{χ} is the unipotent support of χ .

Lemma (Lusztig, 1992)

Assume p and q are sufficiently large. For any $\chi \in Irr(G)$ and any $u \in \mathcal{O}_{\chi}^{F}$ we have $|\langle D_{G}(\gamma_{u}), \chi \rangle|$ is a "small" integer. In other words it is bounded independently of q.

Question

Can we explicitly compute $\langle D_G(\gamma_u), \chi \rangle$?

Question

Can we explicitly compute $\langle D_G(\gamma_u), \chi \rangle$?

- Lusztig has expressed each GGGR as an explicit linear combination of characteristic functions of *F*-stable unipotently supported character sheaves.
- In particular we may translate the problem

$$\langle D_G(\gamma_u), \chi \rangle \qquad \rightsquigarrow \qquad \langle D_G(\chi_{A,\phi_A}), \chi \rangle$$

- The right hand side is known once Lusztig's conjecture is explicitly known.
- Then one only has to do the translation.