Character Sheaves and GGGRs

Jay Taylor

Technische Universität Kaiserslautern

Algebra Seminar University of Georgia 24th March 2014

- **G** a connected reductive algebraic group defined over $\overline{\mathbb{F}_p}$.
- $F : \mathbf{G} \to \mathbf{G}$ a Frobenius endomorphism defining an \mathbb{F}_q -rational structure $\mathbf{G}^F = \{g \in \mathbf{G} \mid F(g) = g\}.$
- Fix a prime $\ell \neq p$ and an algebraic closure $\overline{\mathbb{Q}_{\ell}}$. Interested in

$$\mathsf{Irr}(\mathbf{G}^{\mathsf{F}}) \subset \mathsf{Cent}(\mathbf{G}^{\mathsf{F}}) = \{f : \mathbf{G}^{\mathsf{F}} \to \overline{\mathbb{Q}}_{\ell} \mid f(xgx^{-1}) = f(x)\}$$

Problem

Given
$$g \in \mathbf{G}^F$$
 and $\chi \in Irr(\mathbf{G}^F)$ describe $\chi(g)$.

Two main cases to consider:

•
$$g \in \mathbf{G}_{ss}^{F} = \{x \in \mathbf{G}^{F} \mid p \nmid o(x)\}$$

•
$$g \in \mathbf{G}_{uni}^F = \{x \in \mathbf{G}^F \mid o(x) = p^a\}$$

For any *F*-stable maximal torus $\mathbf{T} \leq \mathbf{G}$ and $\theta \in Irr(\mathbf{T}^F)$ we have a virtual character

 $R_{\mathbf{T}}^{\mathbf{G}}(\theta) \in \mathbb{Z} \operatorname{Irr}(\mathbf{G}^{F}).$

Theorem (Deligne-Lusztig, 1976) For any $\chi \in Irr(\mathbf{G}^F)$ and $s \in \mathbf{G}_{ss}^F$ we have $\chi(s) = \sum \langle R_{\mathsf{T}}^{\mathsf{G}}(\theta), \chi \rangle R_{\mathsf{T}}^{\mathsf{G}}(\theta)(s)$ $(\mathbf{T},\theta)/\sim$ and $R_{\mathsf{T}}^{\mathsf{G}}(\theta)(s) = \frac{1}{|C_{\mathsf{G}}^{\circ}(s)^{\mathsf{F}}|} \sum_{x \in \mathsf{G}^{\mathsf{F}}} \theta(x^{-1}sx).$

 $\mathscr{D}\mathbf{G} :=$ the bounded derived category of \mathbb{Q}_{ℓ} -constructible sheaves on \mathbf{G} $\mathcal{M}\mathbf{G}$:= the category of \mathbb{Q}_{ℓ} -perverse sheaves on \mathbf{G}

• Can think of an object $A \in \mathscr{D}\mathbf{G}$ as a bounded "complex"

$$\cdots \longrightarrow A_{i-1} \longrightarrow A_i \longrightarrow A_{i+1} \longrightarrow \cdots$$

of $\overline{\mathbb{Q}}_{\nu}$ -sheaves on **G** such that for each $i \in \mathbb{Z}$ the cohomology sheaf $\mathscr{H}^{i}(A)$ is constructible.

• In particular, for each $x \in \mathbf{G}$, the stalk $\mathscr{H}_{\mathbf{x}}^{i}(A)$ is a finite dimensional $\overline{\mathbb{Q}}_{\ell}$ -vector space. Furthermore we have $\mathscr{H}^{i}_{x}(A) \neq 0$ for only finitely many $i \in \mathbb{Z}$.

Definition

A character sheaf of **G** is a **G**-equivariant simple object in \mathcal{M} **G**. We denote by $\widehat{\mathbf{G}}$ the set of character sheaves of \mathbf{G} .

Jay Taylor (TU Kaiserslautern)

The Frobenius endomorphism $F : \mathbf{G} \to \mathbf{G}$ induces a functor

$$F^*: \mathscr{D}\mathbf{G} \to \mathscr{D}\mathbf{G}$$

which preserves $\widehat{\mathbf{G}}$. We say $A \in \mathscr{D}\mathbf{G}$ is *F*-stable if there exists an isomorphism

 $\phi_A: F^*A \to A \in \mathscr{D}\mathbf{G}.$

We denote by $\widehat{\mathbf{G}}^F \subseteq \widehat{\mathbf{G}}$ the subset of *F*-stable character sheaves.

Definition

Assume now that $A \in \widehat{\mathbf{G}}^{F}$. For each $x \in \mathbf{G}^{F}$ and $i \in \mathbb{Z}$ we have

$$\mathscr{H}^{i}_{x}(F^{*}A) = \mathscr{H}^{i}_{F(x)}(A) = \mathscr{H}^{i}_{x}(A)$$

and ϕ_A induces an automorphism $\phi_A : \mathscr{H}^i_x(A) \to \mathscr{H}^i_x(A)$. We define the characteristic function of A to be $\chi_{A,\phi_A} : \mathbf{G}^F \to \overline{\mathbb{Q}}_\ell$ given by

$$\chi_{\mathcal{A},\phi_{\mathcal{A}}}(g) = \sum_{i\in\mathbb{Z}} (-1)^i \operatorname{Tr}(\phi_{\mathcal{A}},\mathscr{H}^i_g(\mathcal{A})).$$

Jay Taylor (TU Kaiserslautern)

Theorem (Lusztig, 1986, 2012)

There exists a family of isomorphisms $\{\phi_A : F^*A \to A \mid A \in \widehat{\mathbf{G}}^F\}$ (unique up to multiplication by roots of unity) such that

$$\{\chi_{A,\phi_A} \mid A \in \widehat{\mathbf{G}}^F\}$$

is an orthonormal basis for $Cent(\mathbf{G}^{F})$.

Definition

We say $A \in \widehat{\mathbf{G}}$ is unipotently supported if $\mathscr{H}_{u}^{i}(A) \neq 0$ for some $i \in \mathbb{Z}$ and $u \in \mathbf{G}_{uni}$.

Induction

Assume $\mathbf{P} \leq \mathbf{G}$ is a parabolic with Levi complement $\mathbf{L} \leq \mathbf{P}$. Lusztig has defined a map

$$A_0\in \widehat{\mathsf{L}} \qquad imes \qquad \mathsf{ind}_{\mathsf{L}\subseteq \mathbf{P}}^{\mathsf{G}}(A_0)\in \mathscr{M}\mathsf{G}$$

called induction. The complex $\operatorname{ind}_{I \subset P}^{G}(A_0)$ satisfies the following properties:

•
$$\operatorname{ind}_{\mathsf{L}\subseteq\mathsf{P}}^{\mathsf{G}}(A_0) = A_0$$
 if $\mathsf{L} = \mathsf{P} = \mathsf{G}$.

- $\operatorname{ind}_{I \subset P}^{G}(A_0)$ is semisimple and all indecomposable summands are character sheaves.
- for any $A \in \widehat{\mathbf{G}}$ there exists a Levi subgroup $\mathbf{L} \leq \mathbf{P}$ and a cuspidal character sheaf $A_0 \in \widehat{\mathbf{L}}$ such that $(A : \operatorname{ind}_{\mathbf{L} \subset \mathbf{P}}^{\mathbf{G}}(A_0)) \neq 0$. Furthermore the pair (\mathbf{L}, A_0) is unique up to **G**-conjugacy.

Definition

We say
$$A \in \widehat{\mathbf{G}}$$
 is cuspidal if $(A : \operatorname{ind}_{\mathsf{L}\subseteq \mathbf{P}}^{\mathsf{G}}(A_0)) \neq 0$ implies $\mathsf{L} = \mathbf{P} = \mathbf{G}$.

Theorem (Lusztig)

If $A_0 \in \widehat{L}$ is cuspidal and unipotently supported then

 $A_0 = \mathsf{IC}(\overline{\mathcal{O}_0}Z^{\circ}(\mathsf{L}), \mathscr{E}_0 \boxtimes \mathscr{L})[\dim \mathcal{O}_0 + \dim Z^{\circ}(\mathsf{L})]$

where:

- $\bullet \ \mathcal{O}_0 \subseteq L$ is a unipotent conjugacy class,
- \mathscr{E}_0 is an L-equivariant cuspidal local system on \mathcal{O}_0 ,
- \mathscr{L} is a tame local system on $Z^{\circ}(\mathsf{L})$.

Furthermore, the quotient group $W_G(L) = N_G(L)/L$ is a Weyl group and

$$\mathsf{End}_{\mathscr{D}\mathbf{G}}(\mathsf{ind}_{\mathsf{L}\subseteq\mathsf{P}}^{\mathsf{G}}(A_0))\cong\overline{\mathbb{Q}}_{\ell}\,\mathcal{W}_{\mathsf{G}}(\mathsf{L},\mathscr{L})$$

In particular, we have a bijection

$$\{A \in \widehat{\mathbf{G}} \mid (A : \operatorname{ind}_{\mathbf{L}}^{\mathbf{G}}(A_0)) \neq 0\} \longleftrightarrow \operatorname{Irr}(W_{\mathbf{G}}(\mathbf{L}, \mathscr{L}))$$

Denote by $\mathcal{N}_{\mathbf{G}}$ the set of all pairs $\iota = (\mathcal{O}_{\iota}, \mathscr{E}_{\iota})$ where:

- $\mathcal{O}_{\iota} \subset \mathbf{G}$ is a unipotent class,
- \mathscr{E}_{ι} is a **G**-equivariant local system on \mathcal{O}_{ι} .

Theorem (Lusztig, 1984)

Denote by $\nu \in \mathcal{N}_{\mathsf{L}}$ the cuspidal pair $(\mathcal{O}_0, \mathscr{E}_0)$ and assume that $\mathscr{L} = \overline{\mathbb{Q}}_{\ell}$. Then there is a subset $\mathscr{I}(\mathsf{L}, \nu) \subseteq \mathcal{N}_{\mathsf{G}}$ and a natural bijection

$$\mathscr{I}(\mathbf{L},\nu) \to \{A \in \widehat{\mathbf{G}} \mid (A : \operatorname{ind}_{\mathbf{L}}^{\mathbf{G}}(A_0)) \neq 0\}$$

 $\iota \mapsto K_{\iota}.$

Hence also a bijection

$$\mathscr{I}(\mathsf{L},\nu)
ightarrow \mathsf{Irr}(W_{\mathsf{G}}(\mathsf{L}))$$

 $\iota \mapsto E_{\iota}.$

Let $A \in \widehat{\mathbf{G}}^{F}$ be an *F*-stable summand of $\operatorname{ind}_{\mathbf{L}}^{\mathbf{G}}(A_{0})$ then we can assume:

 $F(\mathbf{L}) = \mathbf{L}$ $F(\mathcal{O}_0) = \mathcal{O}_0$ $F^* \mathscr{E}_0 \cong \mathscr{E}_0$ $F^* \mathscr{L} \cong \mathscr{L}$.

In particular we have:

- F induces an automorphism of W_G(L) and W_G(L, L),
- If A is parameterised by $E \in Irr(W_{\mathbf{G}}(\mathbf{L}, \mathscr{L}))$ then this is fixed by F.

Proposition

Assume we fix an isomorphism $\varphi_0 : F^* \mathscr{E}_0 \to \mathscr{E}_0$ and an extension \widetilde{E} of E to $W_{\mathbf{G}}(\mathbf{L}, \mathscr{L}) \rtimes \langle F \rangle$ (similarly an extension \widetilde{E}_{ι} of E_{ι}). Then this induces isomorphisms

$$\phi_{A}: F^{*}A \to A \qquad \phi_{\iota}: F^{*}K_{\iota} \to K_{\iota}$$

Theorem (T., 2014) $\chi_{A,\phi_{A}}|_{\mathbf{G}_{\mathsf{uni}}^{F}} = \sum_{\iota \in \mathscr{I}(\mathbf{L},\nu)^{F}} \langle \widetilde{E}_{\iota}, \mathsf{Ind}_{W_{\mathbf{G}}(\mathbf{L}).F}^{W_{\mathbf{G}}(\mathbf{L}).F}(\widetilde{E}) \rangle_{W_{\mathbf{G}}(\mathbf{L}).F} \cdot \chi_{K_{\iota},\phi_{\iota}}$

Theorem (Lusztig, T.)

Let $a_{\iota} = -\dim \mathcal{O}_{\iota} - \dim Z^{\circ}(\mathsf{L})$ then we have

$$\chi_{\mathcal{K}_{\iota},\phi_{\iota}} = (-1)^{a_{\iota}} q^{(\dim \mathbf{G} + a_{\iota})/2} P_{\iota',\iota} Y_{\iota'}$$

Theorem (Bonnafé, Shoji, Waldspurger)

Assume p is good for **G** and one of the following holds:

- $Z(\mathbf{G})$ is connected and $\mathbf{G}/Z(\mathbf{G})$ is simple,
- **G** is $SL_n(\overline{\mathbb{F}_p})$, $Sp_{2n}(\overline{\mathbb{F}_p})$ or $SO_n(\overline{\mathbb{F}_p})$.

Then the functions $Y_{\iota'}$ are explicitly computable.

Assume now that p is good for **G**. By Kawanaka (1986) we have a map

$$u \in \mathbf{G}_{\mathsf{uni}}^{\mathsf{F}} \qquad \leadsto \qquad \gamma_u \in \mathsf{Cent}(G)$$

where γ_u is the character of a generalised Gelfand–Graev representation. These satisfy the following properties:

• γ_u is obtained by inducing a linear character from a *p*-subgroup of **G**^{*F*},

•
$$\gamma_u = \gamma_v$$
 if $xux^{-1} = v$ for some $x \in \mathbf{G}^F$,

• γ_1 is the regular character and γ_u is a Gelfand–Graev character when u is a regular element.

Problem

Describe the multiplicities $\langle \gamma_u, \chi \rangle$ for all $\chi \in Irr(\mathbf{G}^F)$.

Consider $\mathbf{G}^{F} = \operatorname{GL}_{n}(q)$ and **B** the upper triangular matrices then

$$\operatorname{Ind}_{\mathbf{B}^{F}}^{\mathbf{G}^{F}}(1_{\mathbf{B}^{F}}) = \sum_{\rho \in \operatorname{Irr}(\mathfrak{S}_{n})} \rho(1) \chi_{\rho}$$

and

$$\mathcal{E}(\mathbf{G}^{\mathsf{F}},1) = \{\chi_{\lambda} \mid \lambda \vdash n\}$$

is the set of unipotent characters.

Theorem (Kawanaka)

$$\left< \gamma_{\mu}, \chi_{\lambda^*} \right> = \begin{cases} 1 & \text{if } \lambda = \mu \\ 0 & \text{if } \lambda \lhd \mu \end{cases}$$

Example

If $\lambda = (1^n)$ then $\lambda^* = (n)$ and $\chi_{\lambda^*} = 1_{\operatorname{GL}_n(q)}$ occurs in the regular representation with multiplicity 1 and in no other GGGR.

Jay Taylor (TU Kaiserslautern)

Character Sheaves

Georgia, March 2014 13 / 17

Definition

Say a unipotent conjugacy class $\mathcal{O} \subset \mathbf{G}$ is a unipotent support for $\chi \in \operatorname{Irr}(\mathbf{G}^F)$ if the following hold:

•
$$F(\mathcal{O}) = \mathcal{O}$$

2
$$\sum_{g \in \mathcal{O}^F} \chi(g) \neq 0$$

 \odot \mathcal{O} has maximal dimension amongst all classes satisfying (1) and (2).

Theorem (Lusztig, Geck)

If p is good for **G** then every irreducible character $\chi \in Irr(\mathbf{G}^F)$ has a unique unipotent support denoted \mathcal{O}_{χ} .

Example

If $\mathbf{G}^F = \operatorname{GL}_n(q)$ then the unipotent support of χ_{λ} is \mathcal{O}_{λ} .

Recall that we have an isometry

$$D_{\mathbf{G}^F}: \mathsf{Cent}(\mathbf{G}^F) o \mathsf{Cent}(\mathbf{G}^F)$$

of order 2 called Alvis-Curtis Duality. Thus we have a bijection

$$\operatorname{Irr}(\mathbf{G}^{F}) \to \operatorname{Irr}(\mathbf{G}^{F})$$
$$\chi \mapsto \chi^{*} := \pm D_{\mathbf{G}^{F}}(\chi)$$

Better Problem

For any $\chi \in Irr(\mathbf{G}^F)$ describe the multiplicities $\langle \gamma_u, \chi^* \rangle$ for any $u \in \mathcal{O}^F_{\chi}$.

Theorem (Lusztig)

Assume p and q are sufficiently large then for any $\chi \in Irr(\mathbf{G}^F)$ and any $u \in \mathcal{O}_{\chi}^F$ we have

$$0 \leqslant \langle \gamma_u, \chi^* \rangle \leqslant \frac{|A_{\mathbf{G}}(u)|}{n_{\chi}}$$

Jay Taylor (TU Kaiserslautern)

If p and q are sufficiently large then Lusztig has given an explicit decomposition

$$\gamma_{\boldsymbol{u}} \qquad \rightsquigarrow \qquad \{\chi_{\boldsymbol{K}_{\iota},\phi_{\iota}} \mid \iota \in \mathcal{N}_{\mathbf{G}}^{\boldsymbol{F}}\}$$

and has conjectured an explicit decomposition

$$\chi \in \mathsf{Irr}(\mathbf{G}^{\mathsf{F}}) \qquad \rightsquigarrow \qquad \{\chi_{\mathsf{A},\phi_{\mathsf{A}}} \mid \mathsf{A} \in \widehat{\mathbf{G}}^{\mathsf{F}}\}$$

If we solve this conjecture then the multiplicity $\langle\gamma_u,\chi\rangle$ can be reduced to the multiplicities

$$\langle \chi_{A,\phi_A} |_{\mathbf{G}_{\mathrm{uni}}^F}, \chi_{K_\iota,\phi_\iota} \rangle$$

and these are given by our main theorem!

Theorem (T.)

Assume:

- $G^{F} = SO_{2n+1}(q)$,
- $q \equiv 1 \pmod{4}$ and p > 2,
- $\chi \in Irr(\mathbf{G}^F)$ is an isolated character.

If p and q are sufficiently large then there exists $u \in \mathcal{O}_{\chi}^{F}$ (unique up to \mathbf{G}^{F} -conjugacy) such that

$$\langle \gamma_{\mathbf{v}}, \chi^* \rangle = \begin{cases} rac{|A_{\mathbf{G}}(\boldsymbol{u})|}{n_{\chi}} & \text{if } \mathbf{v} \sim_{\mathbf{G}^F} \boldsymbol{u}, \\ 0 & \text{otherwise.} \end{cases}$$