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DEFINITION

A group is a pair (G, ) with G asetand x: G x G — G a binary
operation such that:

|. there exists an element e € G suchthat x *e = e x x = x for
all x € G

2. forevery g € G there exists an element g~ € G such that

' —g 'xg=e¢

ERRGE bk c) = (axb)xc foral a, b, ceG.

Examples
i Z = 1. ..,—2,—1,0,1,2,...},
» (R, x) with R* =R\ {0} where R denote the real numbers.
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V an m-dimensional C-vector space.

GL(V) = GL,.(C) the group of all invertible linear transformations
oYV — V.

A representation of a group (G,x)isamap p: G — GL(V) such
that for all a, b € G we have

p(axb) = p(a) o p(b)
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CONJUGACY

For any matrices A, B € GL,,(C) recall that

Tr(ABA™') = Tr(B)

Hence for any two elements a, b € G and any characterx : G — C
we have

x(axbxa') =x(b)

We say a, b € G are conjugate if there exists an element x € G
such that

xxadxX | =Db

This defines an equivalence relation on G. The resulting equivalence
classes are called conjugacy classes.
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[RREDUCIBLE CHARACTERS

A representation p : G — GL(V) is irreducible if there is no proper
subspace W C V which is invariant under G . By this we mean that
forall g € G we have p(g)lW C W,

We have p : G — GL(V) is irreducible if and only if

1
Gl 2 Xe(9)xp(g) =1

geG

A character with this property is also called irreducible.
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{ Theorem

;f- The number of distinct irreducible characters of a finite
t group Is equal to the number of conjugacy classes.

Let g1,...,9n € G be representatives for the conjugacy classes and
[ER G X Dethe Irreducible characters of Gt e sqiEi=

Mmatrix
(Xi(gj ))1 =

Is called the character table of G.
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Gq, is the group of all bijective functions f : {1,...,n} = {1,...,n}.
We call ©;, the symmetric group on N points.

|G| = n! which can be very large even for small n. For example

S0l = 2432902008176640000
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Example (n = 3)
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Example (n = 3)

el 1><1 N2 1 1 1 1 1 1
L Sl 2 2 2><2 2><2 2%2 2&2
Bl 7 o D o 211 S 3 3 3 3 3 3 3

[ 1 1 1 1 1 1 1
2><2 O Z><Z — 2><2><2 = 2%2
3 3 3 3 3 3 3 3 3
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* Afunction f € G, is called a cycle of length k If there exists a

RS E A= X1, ..., Xkt C 11,...,n} such that )= NecHiH
integer 1 ¢ X and f acts on the elements of X in the following way

Lon
N
.

~ / X
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SUHERON O 1 IS a sequence (b = (L1y. .., M ) OF INEESE RSN

e

21 i el N TERG B T — i

For example the partitions of 5 are

(5), (4, 1),

(3,2), 3,1, 1), (2,2,1), (2, 1,1, 1), (1, 1,1, 1,1)

Given f € G, let f; o--- 0 fy be a decomposition of f into a

product of disjoint cycles. If iy denotes the length of the cycle f;

then the sea

uence w(f) = (U1,..., 1) is a partition of n, after

possibly reordering the entries. We call iu(f) the cycle type of f.



B IME | RIC GROUSS

{ Theorem

t Two elements of the symmetric group are conjugate if and
¢ only If they have the same cycle type.



B IME | RIC GROUSS

{ Theorem

t Two elements of the symmetric group are conjugate if and
¢ only If they have the same cycle type.

«  We will write P(n) for the set of all partitions of n.



B IME | RIC GROUSS

{ Theorem

t Two elements of the symmetric group are conjugate if and
¢ only If they have the same cycle type.

We will write P(n) for the set of all partitions of n.

For any partition A € P(n) we denote by X" an irreducible
character of &4,



B IME | RIC GROUSS

{ Theorem

t Two elements of the symmetric group are conjugate if and
¢ only If they have the same cycle type.

We will write P(n) for the set of all partitions of n.

For any partition A € P(n) we denote by X" an irreducible
character of &4,

R 00 E=—"627
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» Consider the partition u = (5,5,4,3,1,1) € P(19).

R22

/

R ER5 >

hy» =6
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"' Theorem (Murnaghan—Nakayama Formula)

Write f € G,, as a product fy o---o fy of disjoint cycles.

i Assume fy Is a cycle of length m then the element
g="f100fi

| is contained in the symmetric group &,,_m . For any partition

| A € P(n) we have

= Y ()R (g)

hij =M



EEIARAC TER TABES




