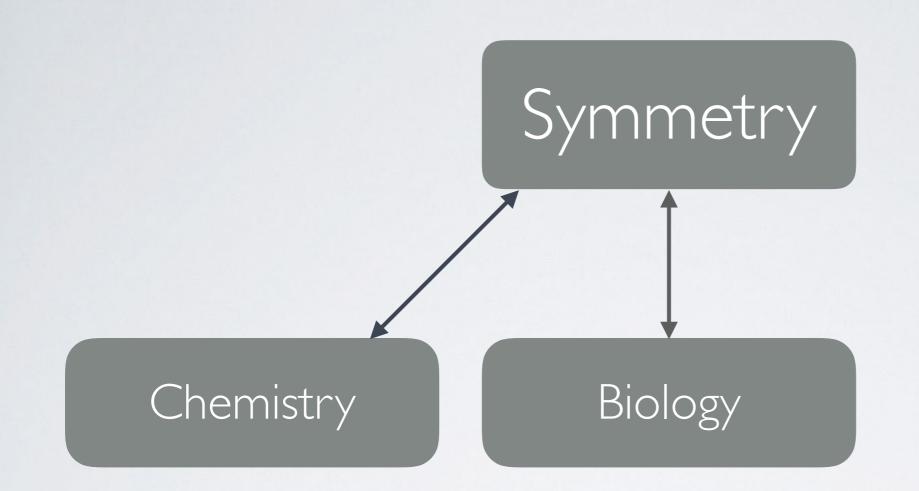
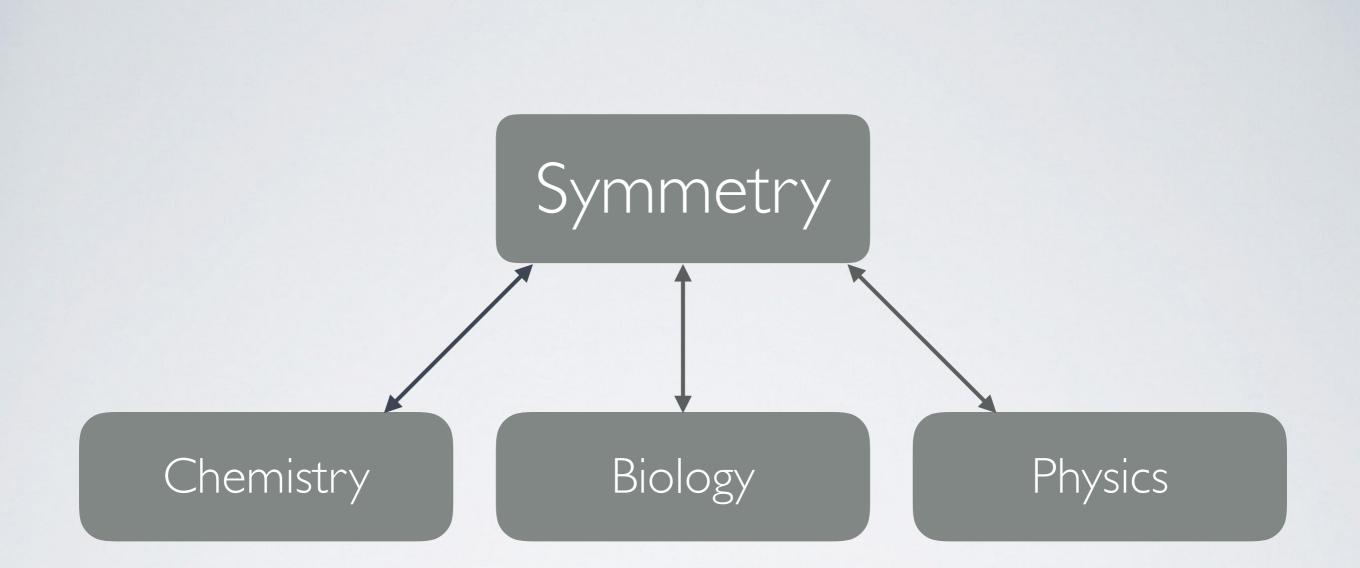
COMPUTING CHARACTER TABLES OF FINITE GROUPS

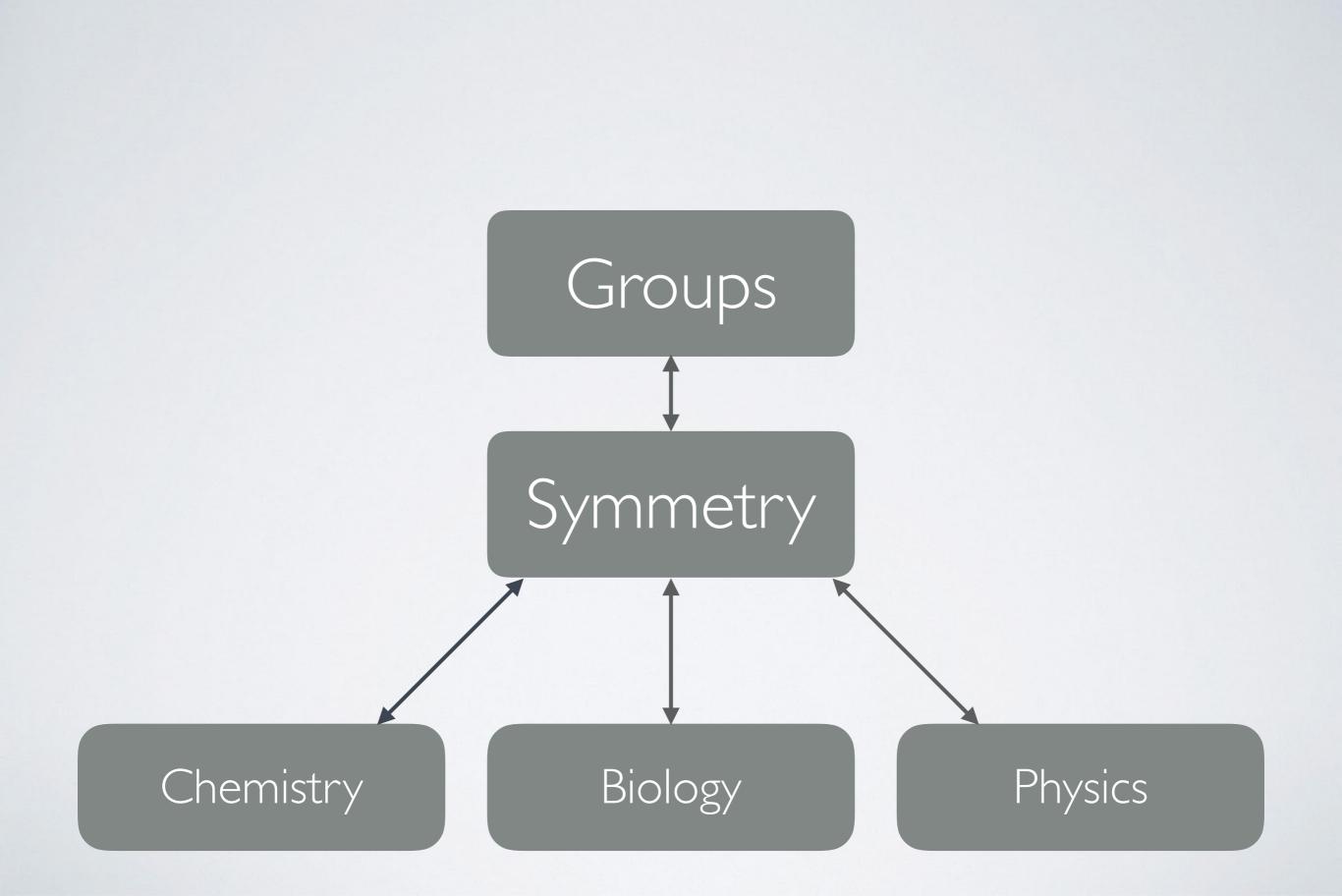
Jay Taylor (Università degli Studi di Padova)

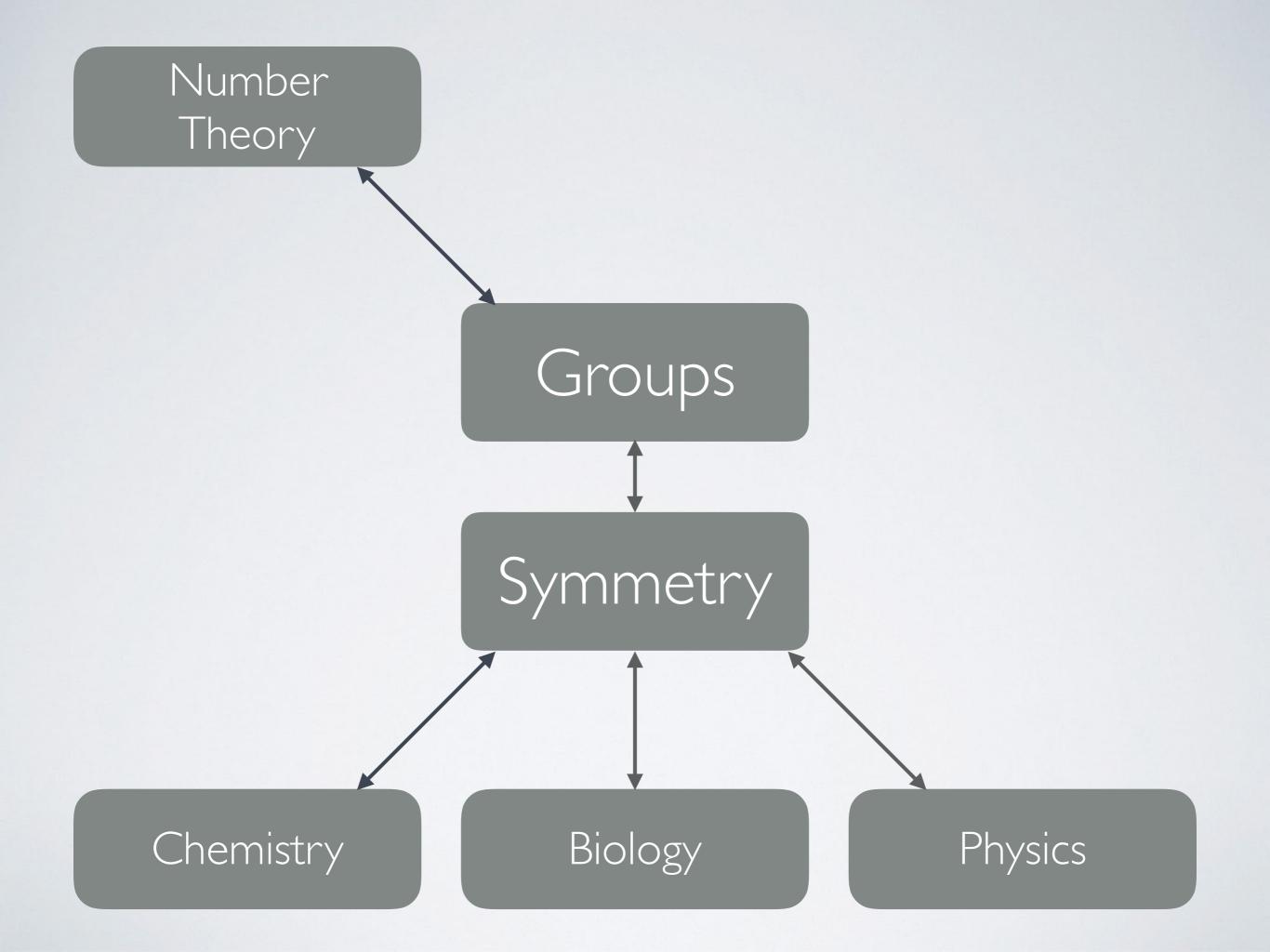
Symmetry

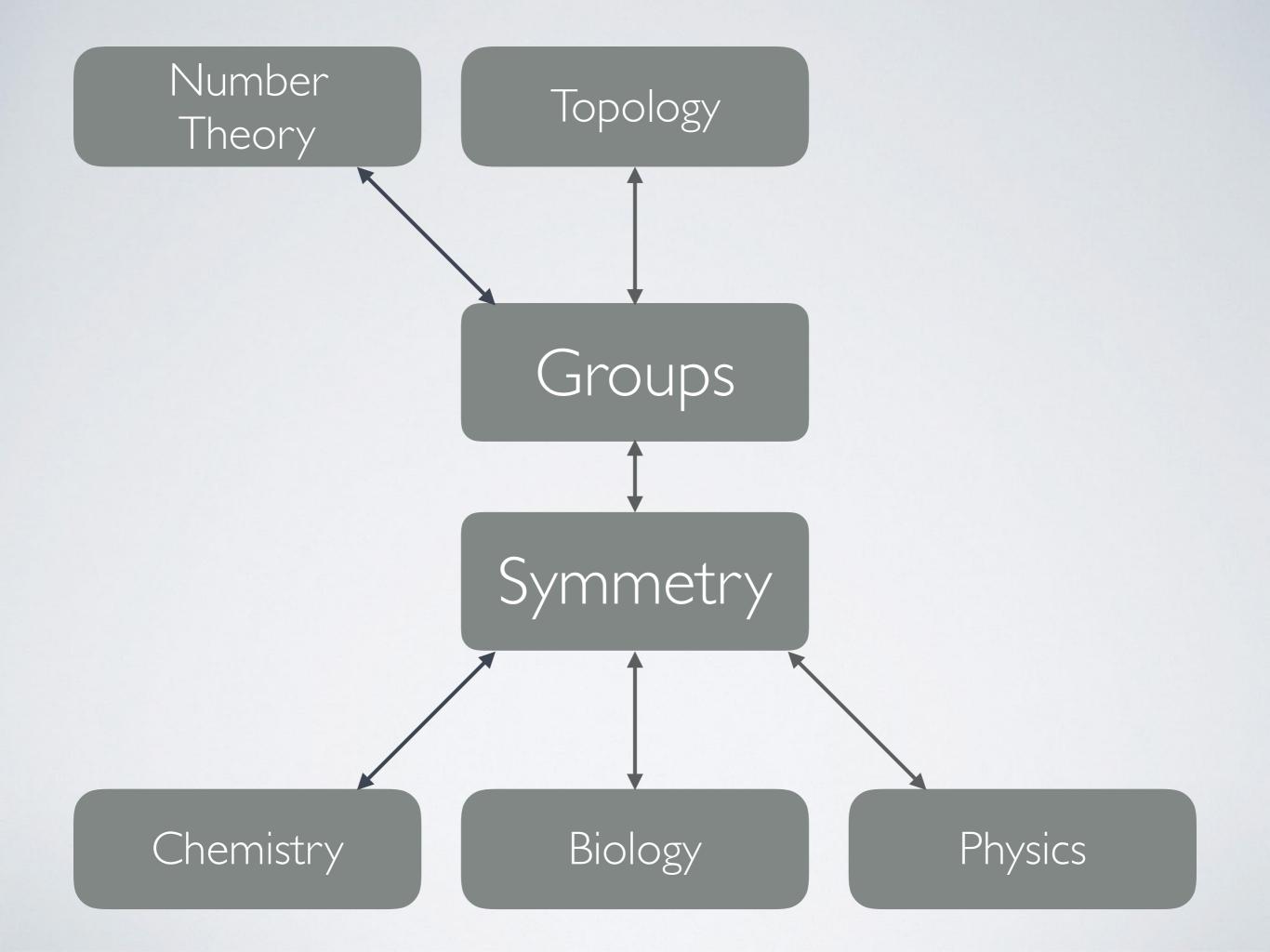
Chemistry

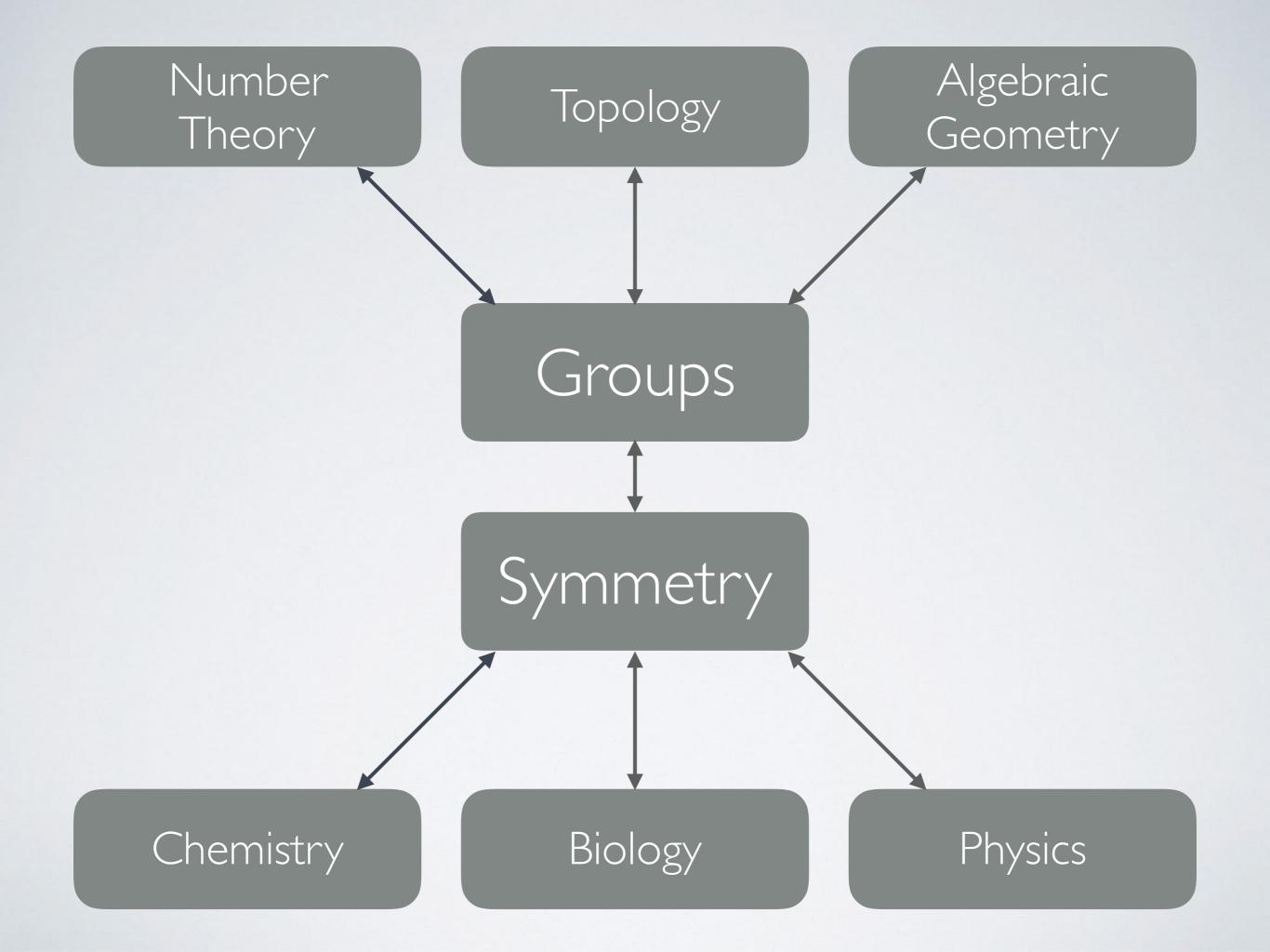












A group is a pair (G, \star) with G a set and $\star : G \times G \to G$ a binary operation such that:

A group is a pair (G, \star) with G a set and $\star : G \times G \to G$ a binary operation such that:

I. there exists an element $e \in G$ such that $x \star e = e \star x = x$ for all $x \in G$

A group is a pair (G, \star) with G a set and $\star : G \times G \to G$ a binary operation such that:

- I. there exists an element $e \in G$ such that $x \star e = e \star x = x$ for all $x \in G$
- 2. for every $g \in G$ there exists an element $g^{-1} \in G$ such that $g \star g^{-1} = g^{-1} \star g = e$

A group is a pair (G, \star) with G a set and $\star : G \times G \to G$ a binary operation such that:

- I. there exists an element $e \in G$ such that $x \star e = e \star x = x$ for all $x \in G$
- 2. for every $g \in G$ there exists an element $g^{-1} \in G$ such that $g \star g^{-1} = g^{-1} \star g = e$
- 3. $a \star (b \star c) = (a \star b) \star c$ for all $a, b, c \in G$.

A group is a pair (G, \star) with G a set and $\star : G \times G \to G$ a binary operation such that:

- I. there exists an element $e \in G$ such that $x \star e = e \star x = x$ for all $x \in G$
- 2. for every $g \in G$ there exists an element $g^{-1} \in G$ such that $g \star g^{-1} = g^{-1} \star g = e$
- 3. $a \star (b \star c) = (a \star b) \star c$ for all $a, b, c \in G$.

Examples

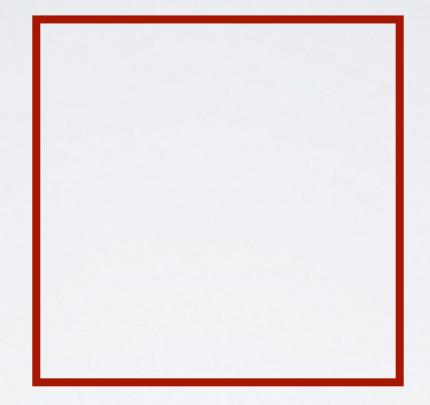
• $(\mathbb{Z}, +)$ with $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$,

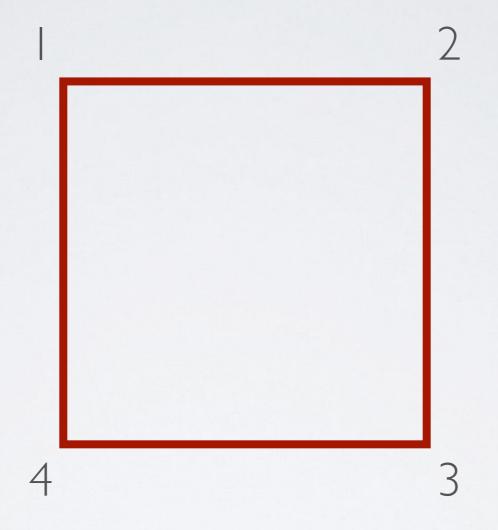
A group is a pair (G, \star) with G a set and $\star : G \times G \to G$ a binary operation such that:

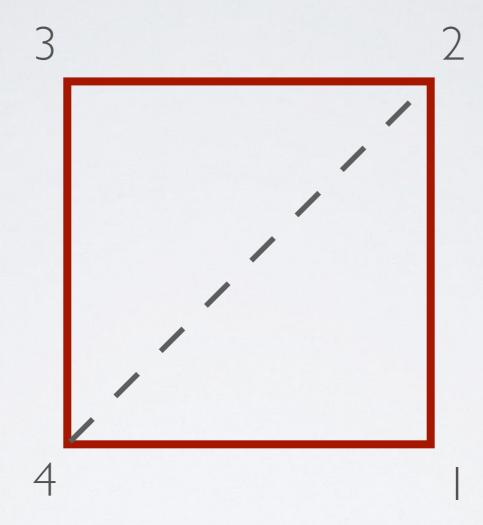
- I. there exists an element $e \in G$ such that $x \star e = e \star x = x$ for all $x \in G$
- 2. for every $g \in G$ there exists an element $g^{-1} \in G$ such that $g \star g^{-1} = g^{-1} \star g = e$
- 3. $a \star (b \star c) = (a \star b) \star c$ for all $a, b, c \in G$.

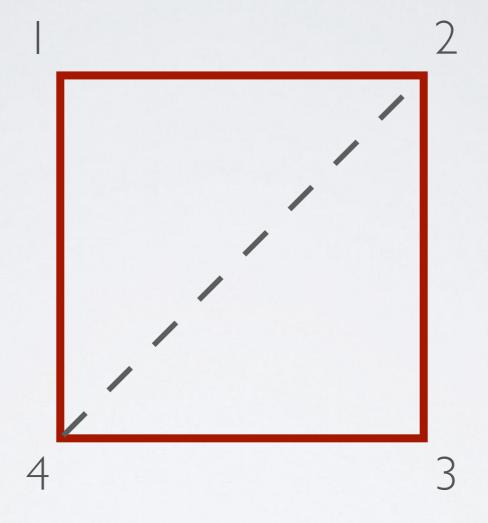
Examples

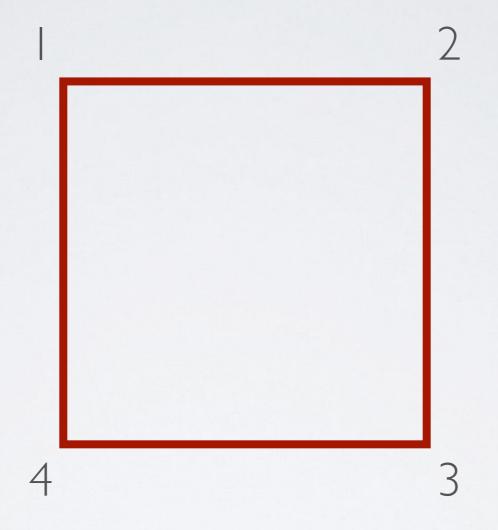
- $(\mathbb{Z}, +)$ with $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$,
- $(\mathbb{R}^{\times}, \times)$ with $\mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}$ where \mathbb{R} denote the real numbers.

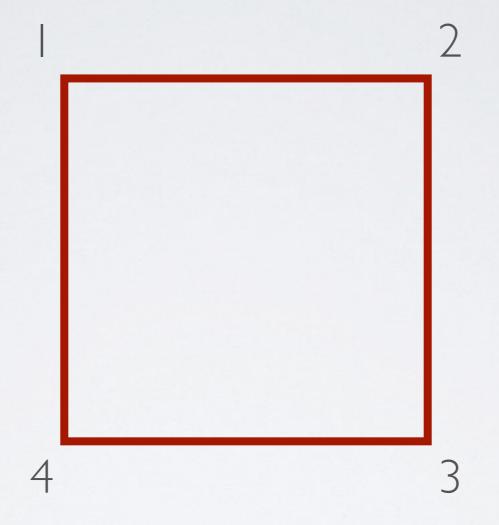


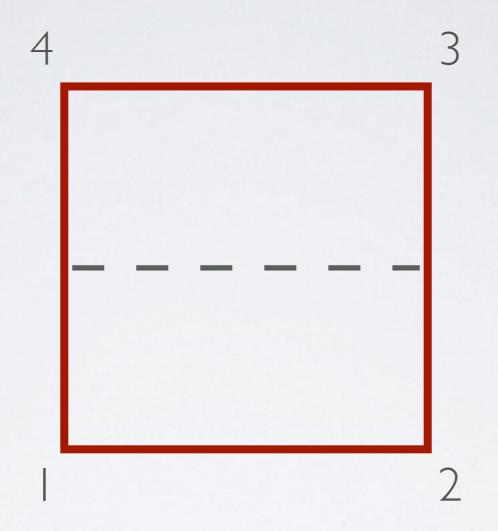


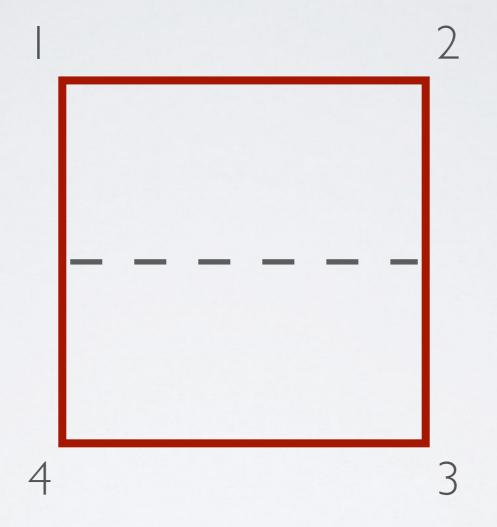


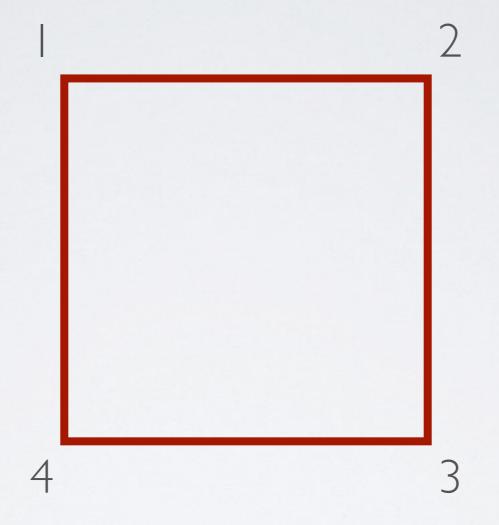


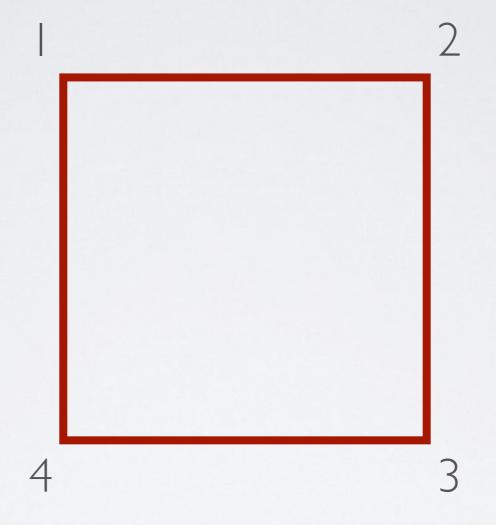


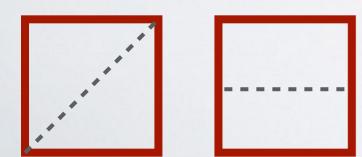


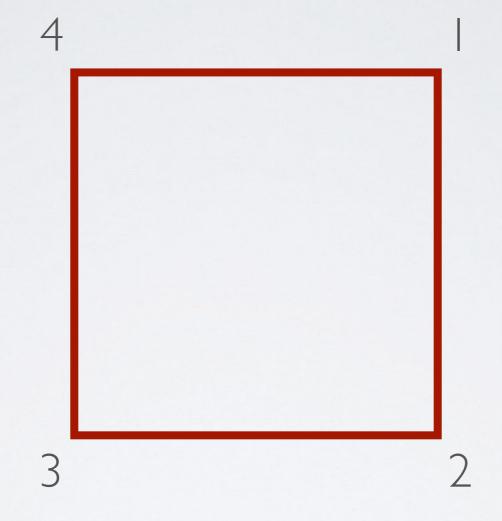


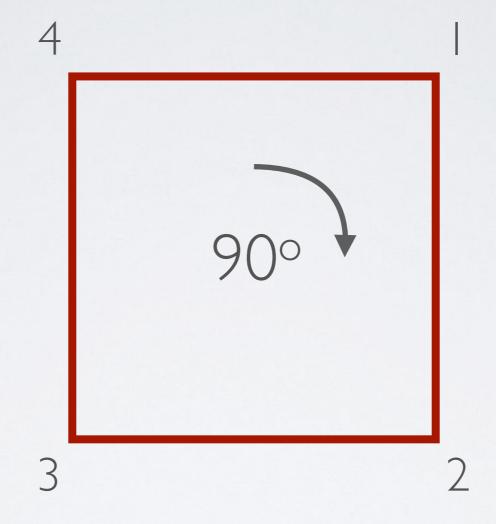


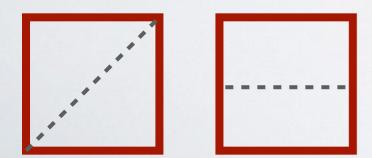


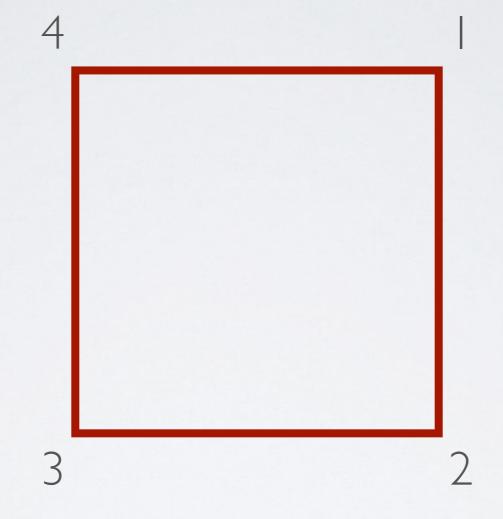


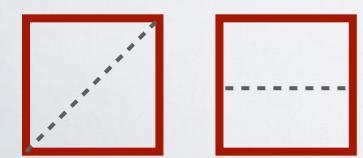


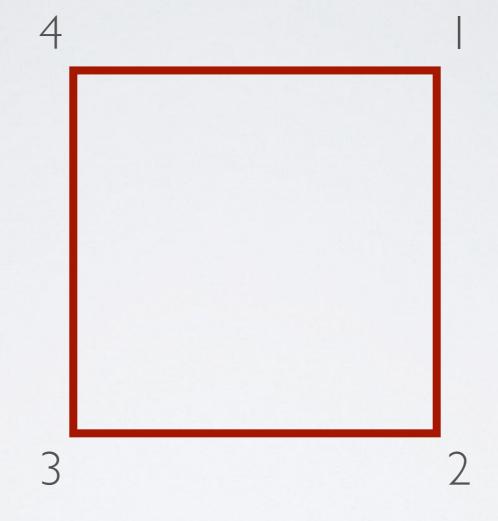


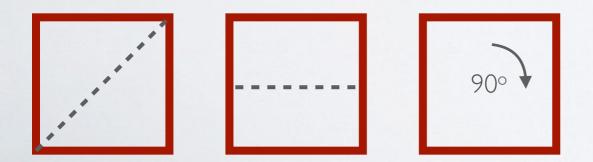


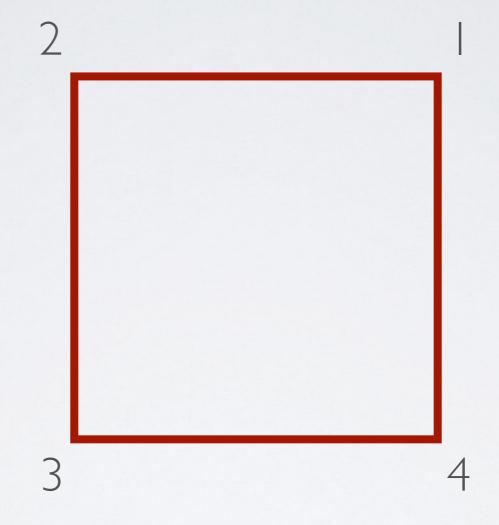


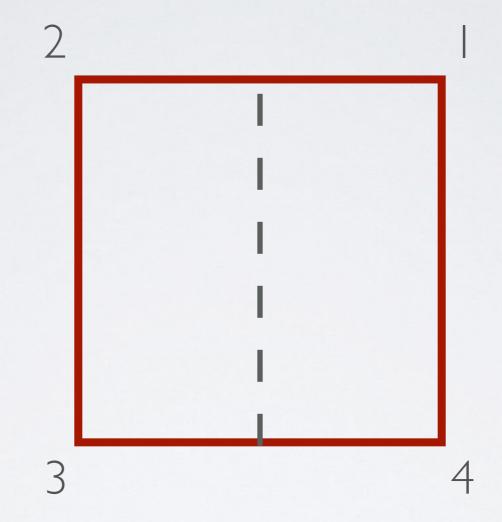


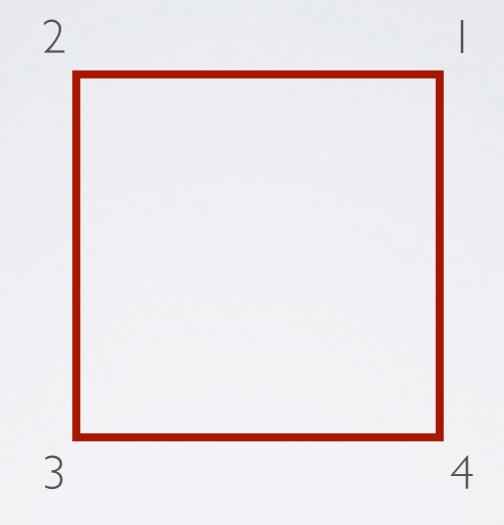


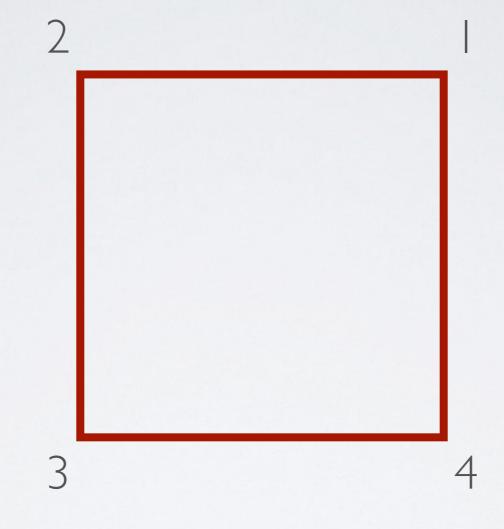


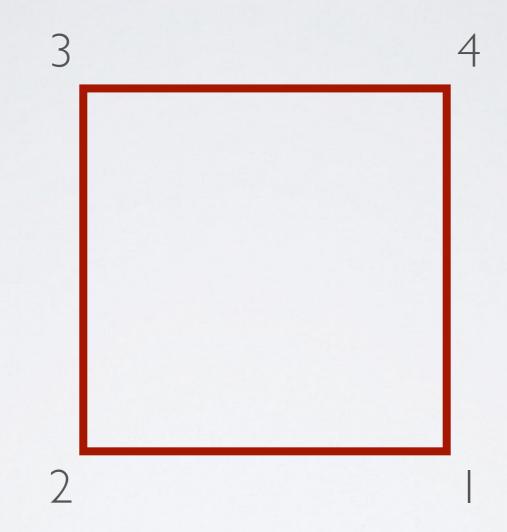


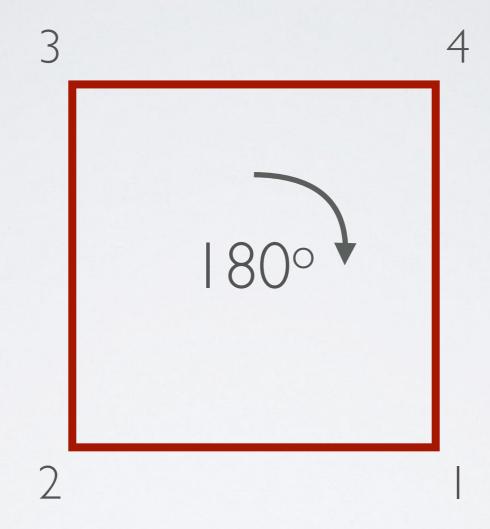


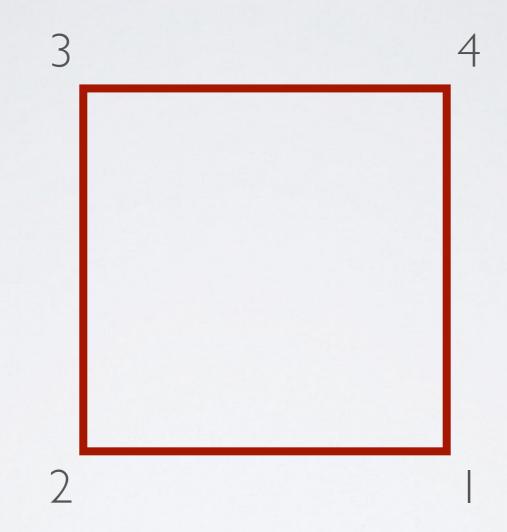


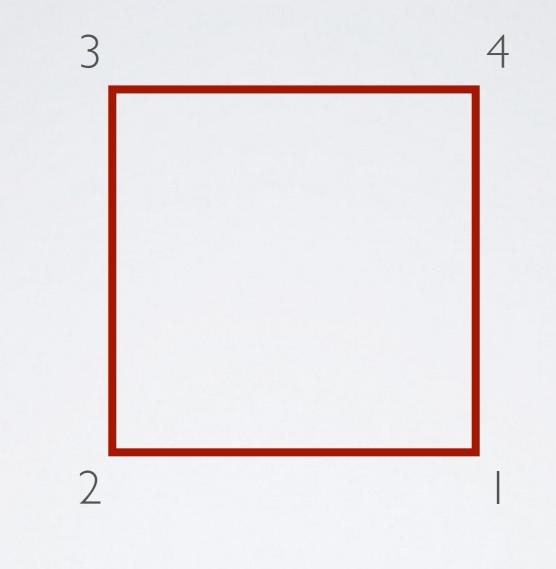


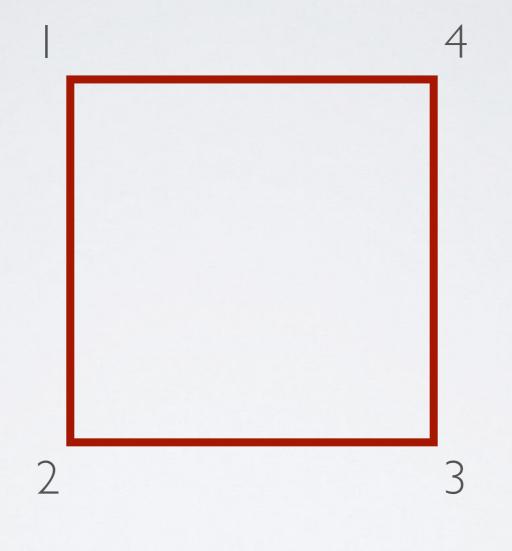


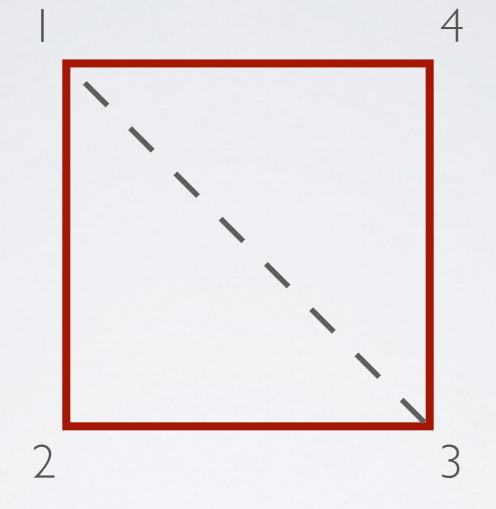




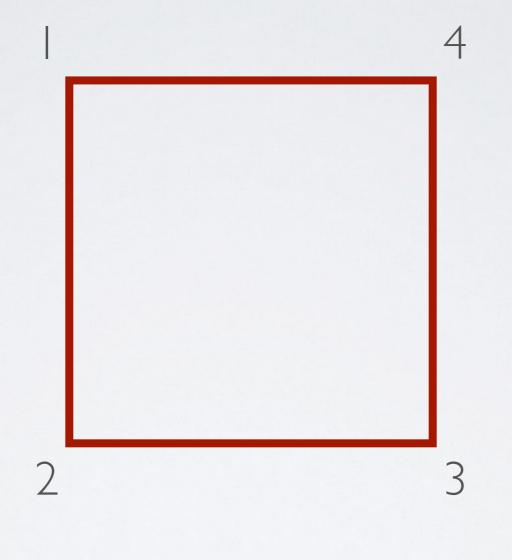


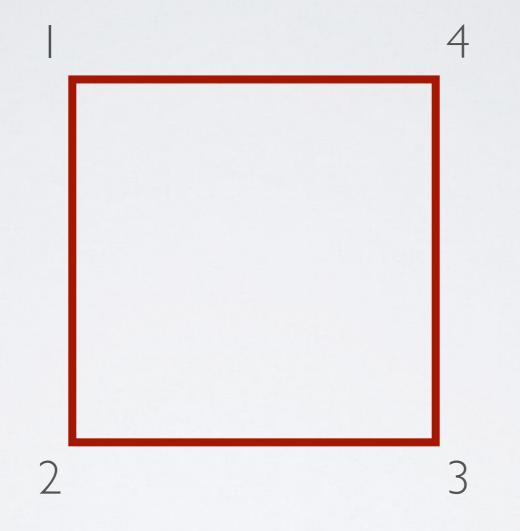


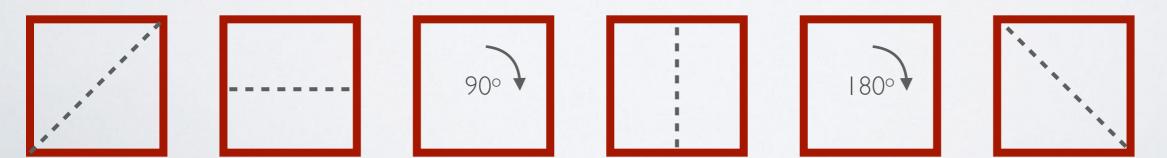


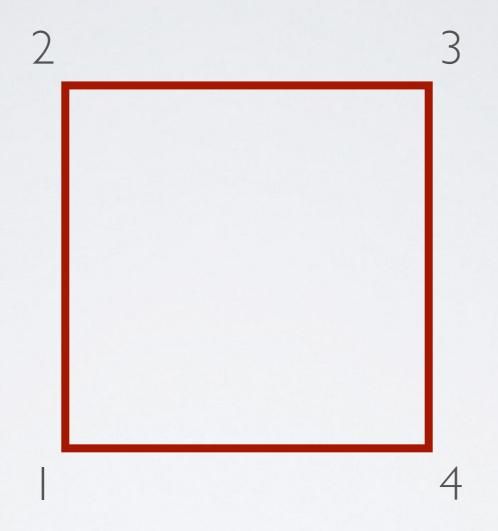


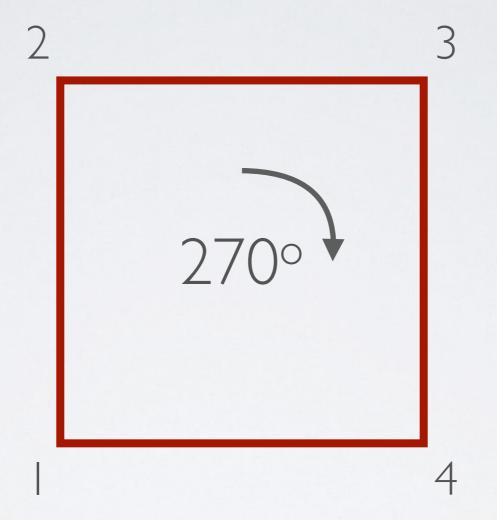




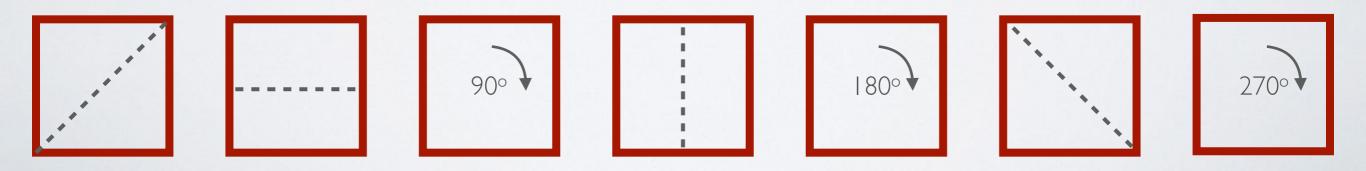


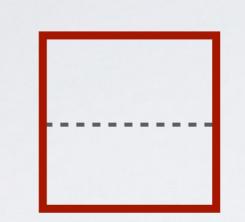


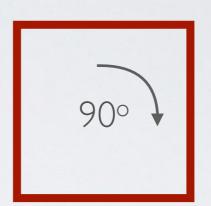


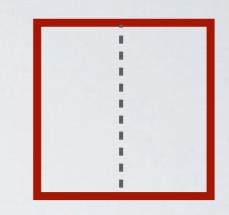


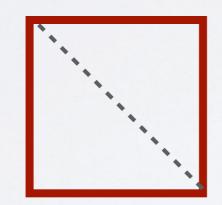


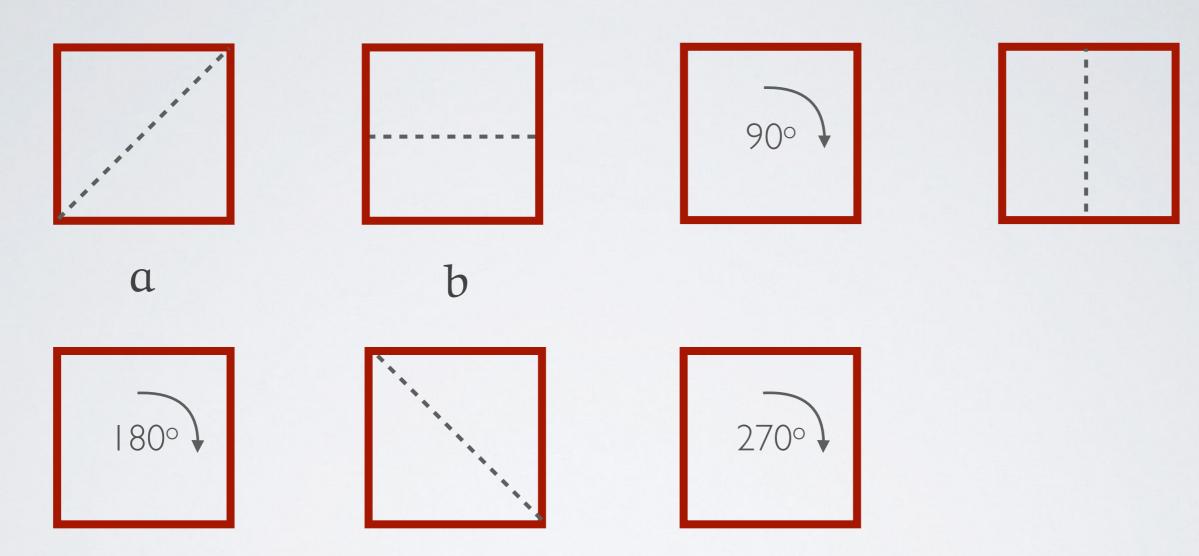


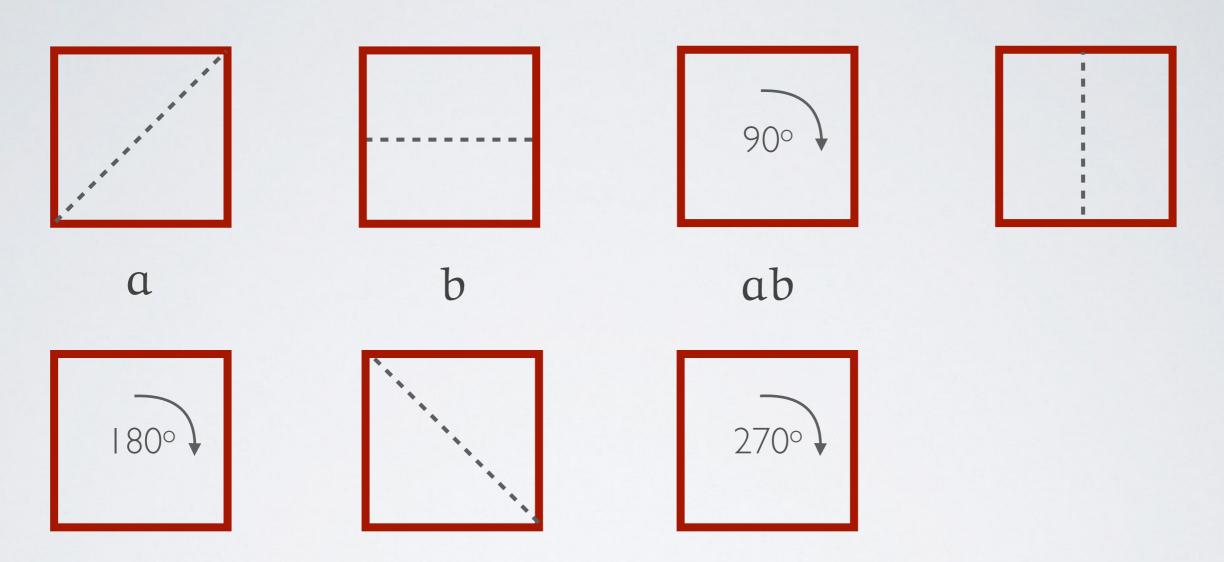


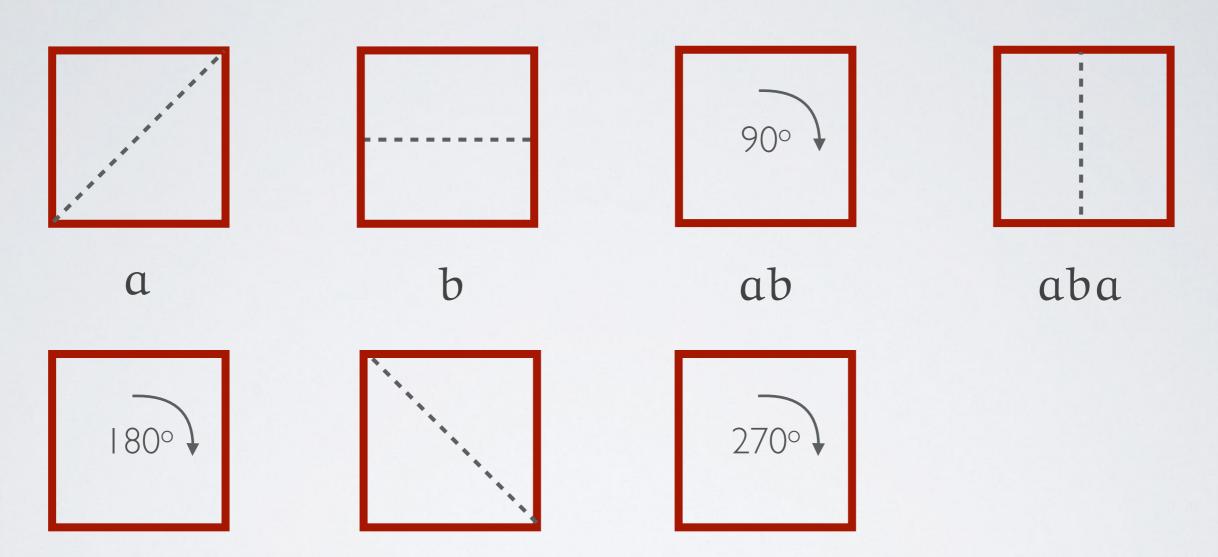


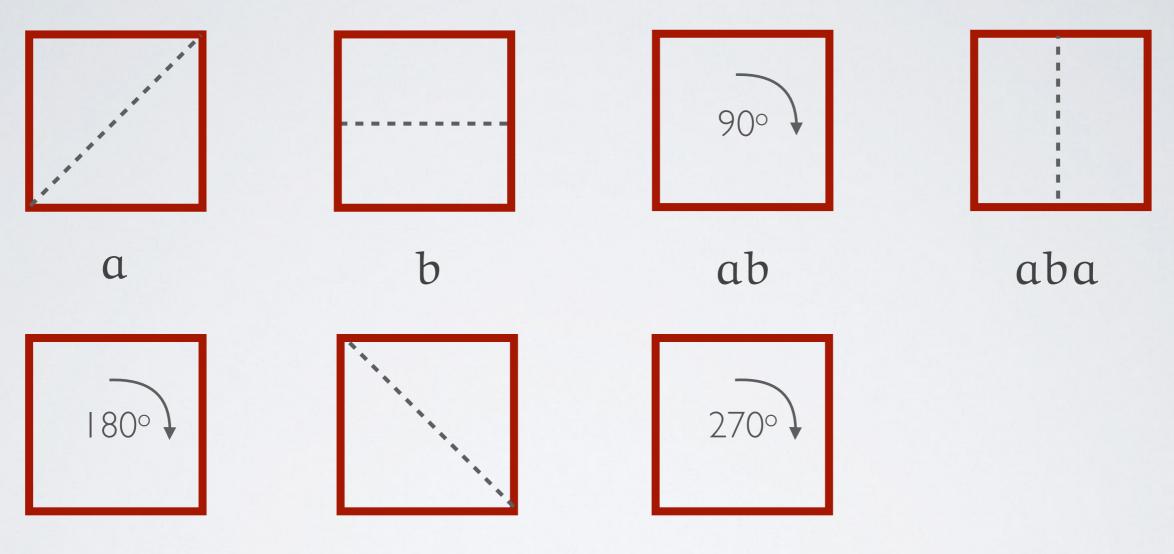




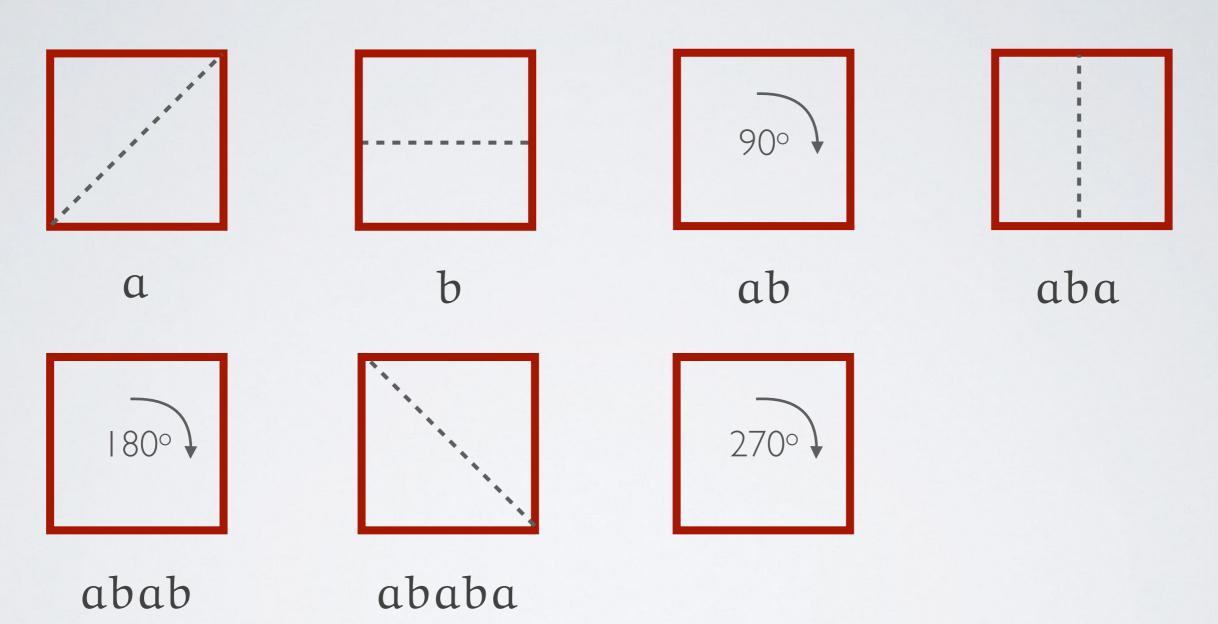


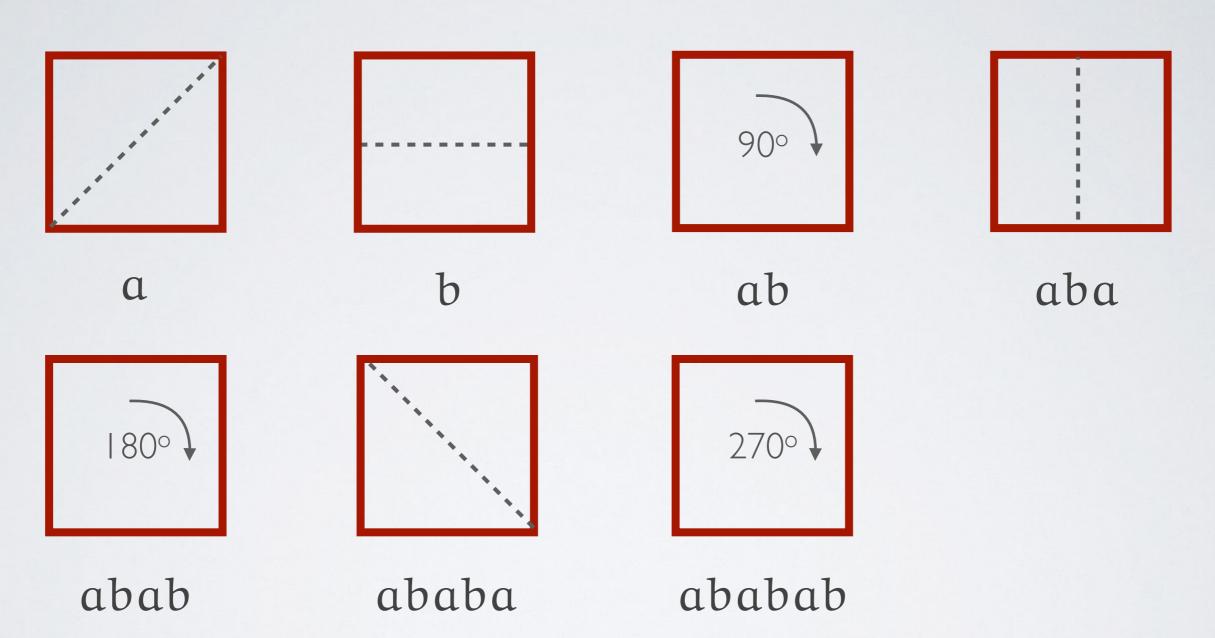


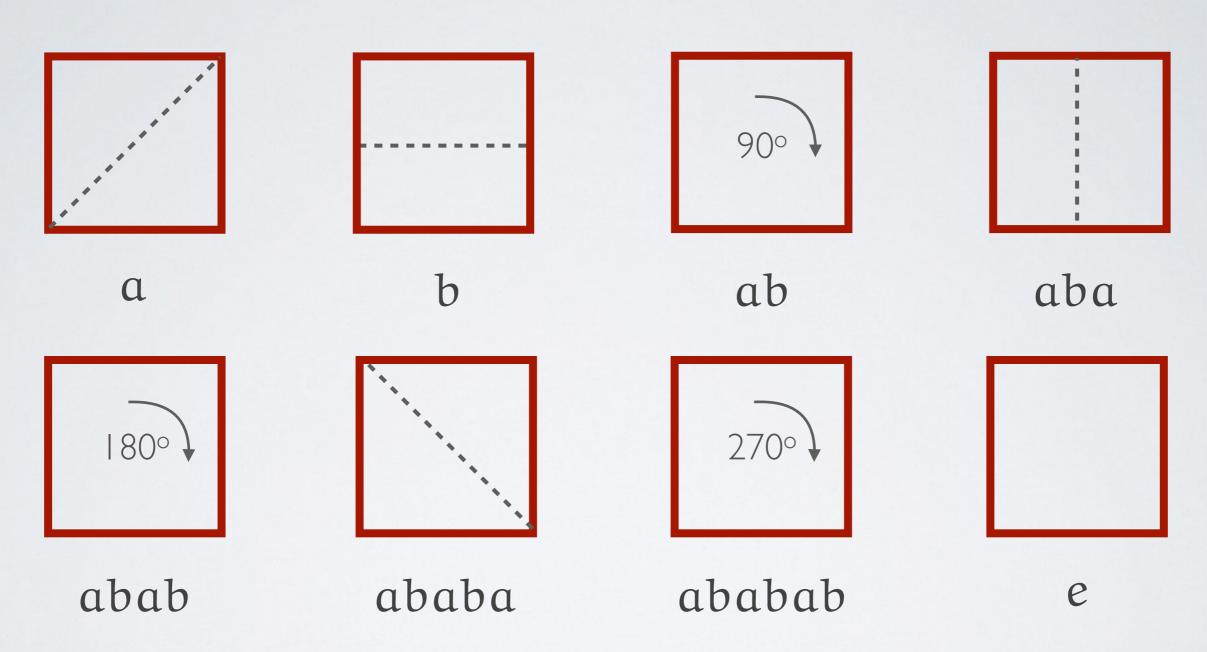


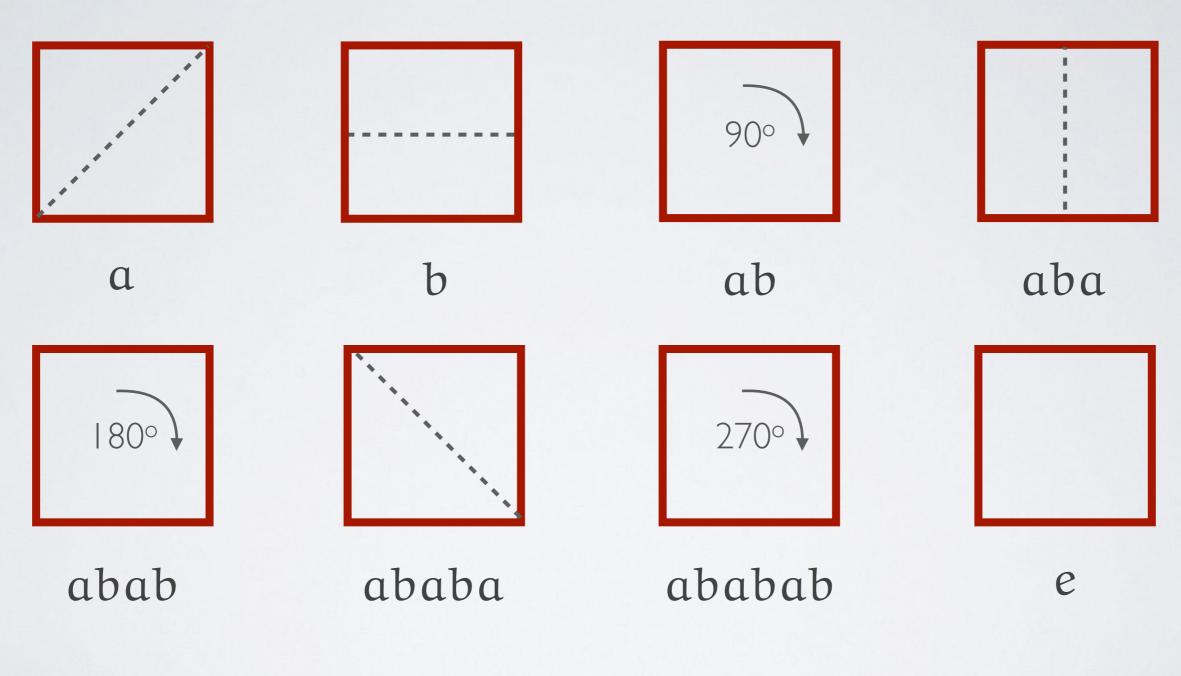


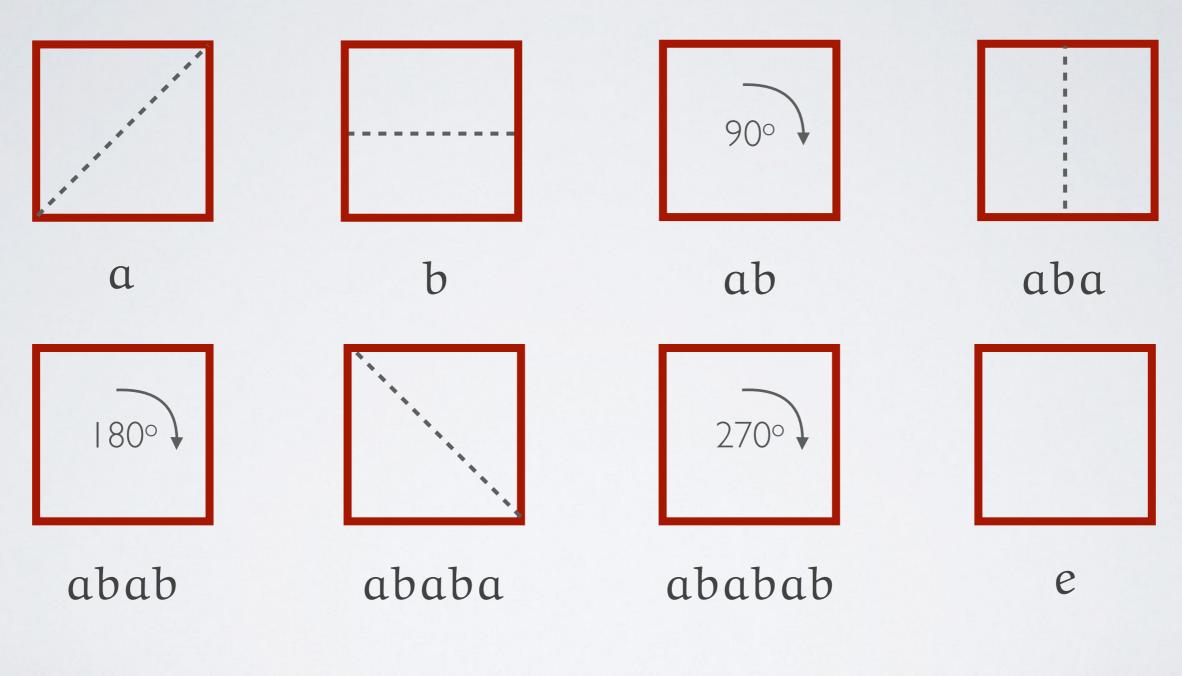
abab



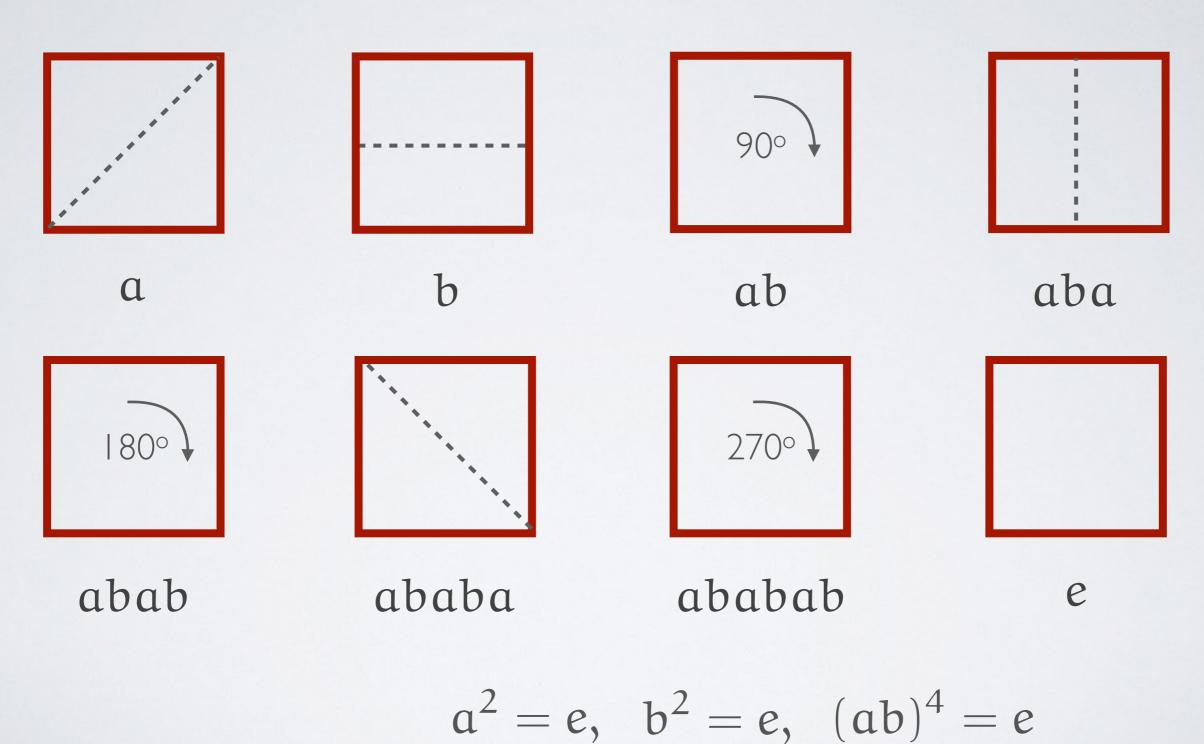


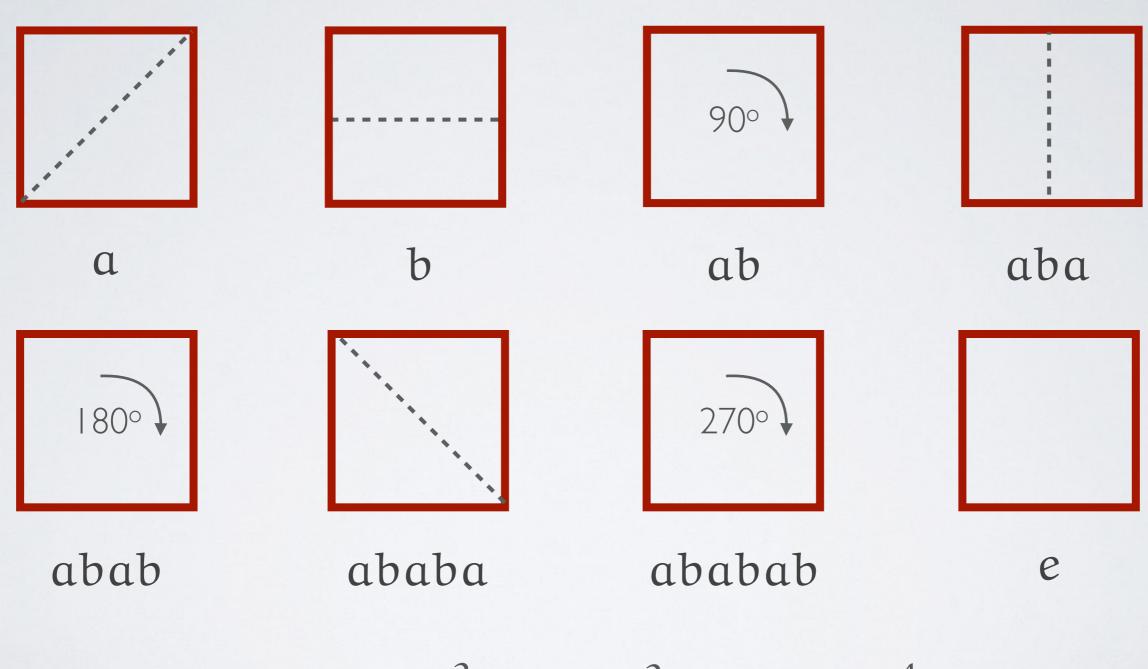




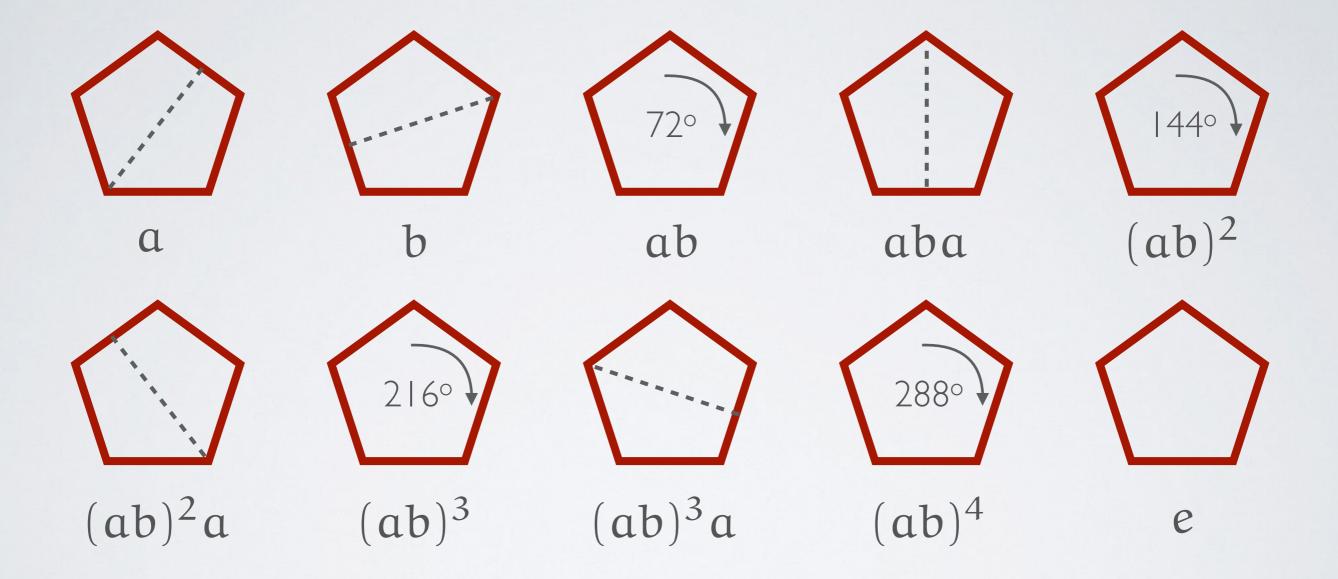


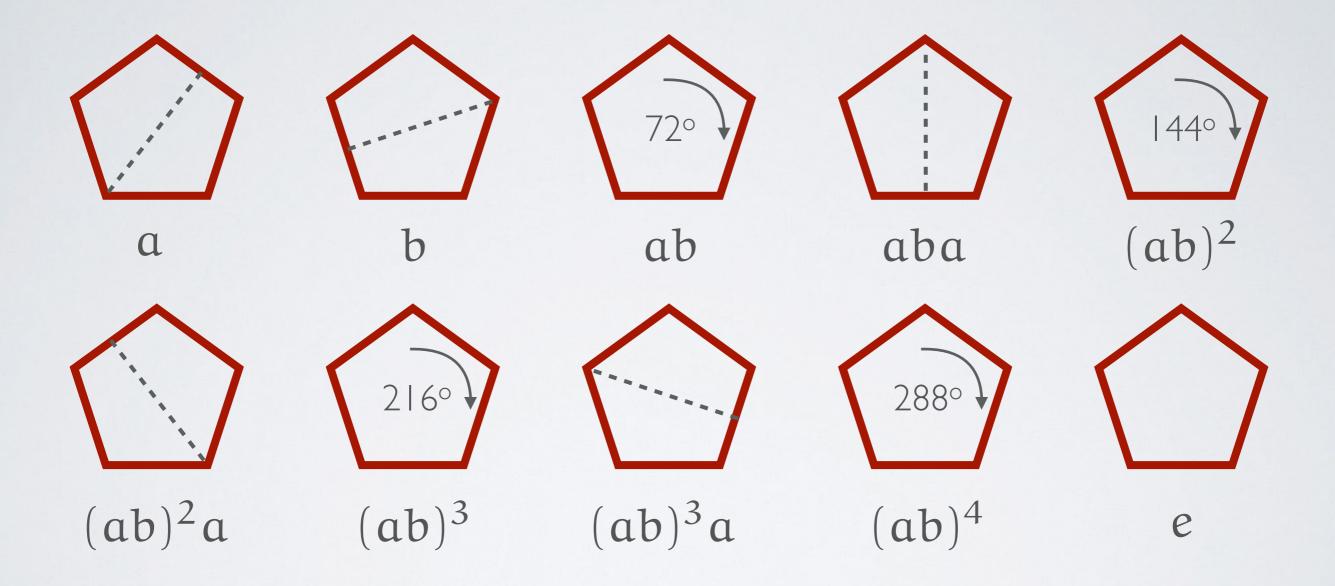
 $a^2 = e, b^2 = e,$



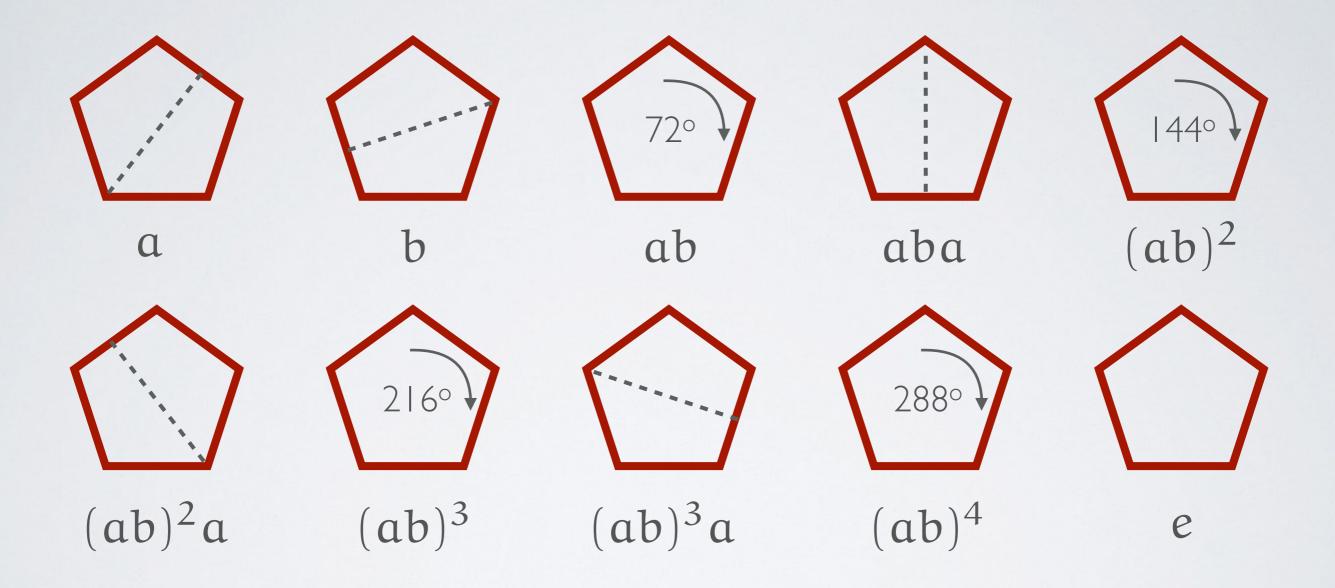


 $I_2(4) = \langle a, b \mid a^2 = e, b^2 = e, (ab)^4 = e \rangle$

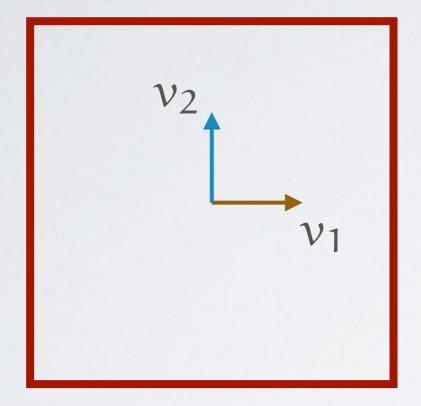


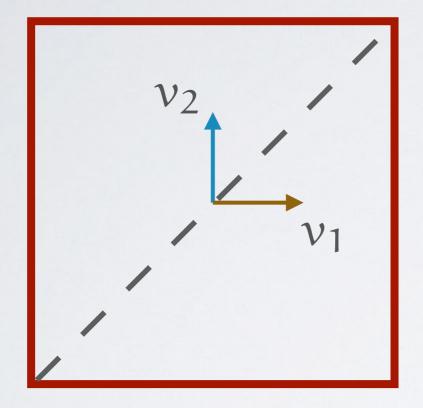


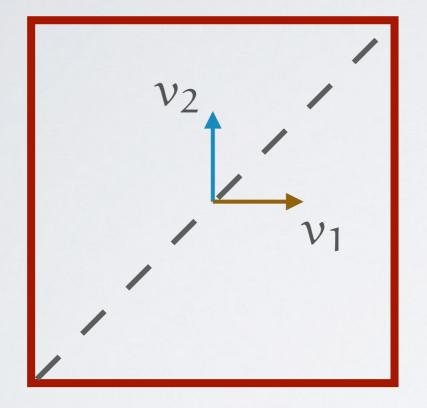
 $I_2(5) = \langle a, b \mid a^2, b^2, (ab)^5 \rangle$

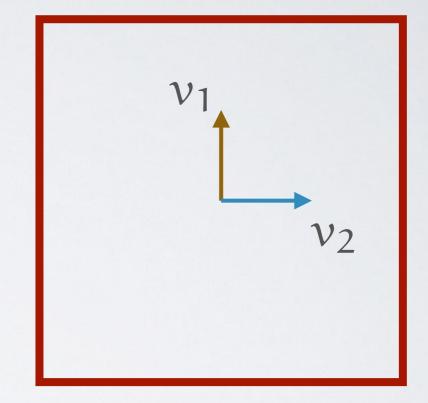


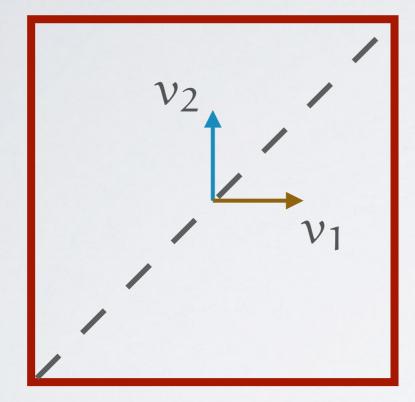
 $I_2(\mathbf{m}) = \langle \mathbf{a}, \mathbf{b} \mid \mathbf{a}^2, \mathbf{b}^2, (\mathbf{a}\mathbf{b})^{\mathbf{m}} \rangle$

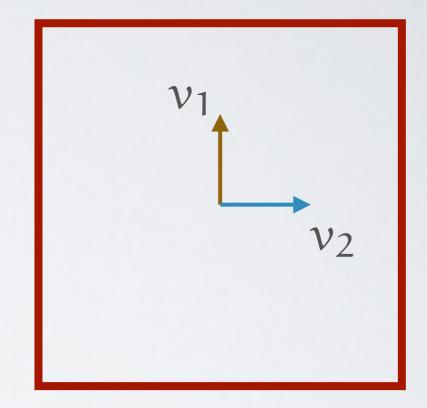




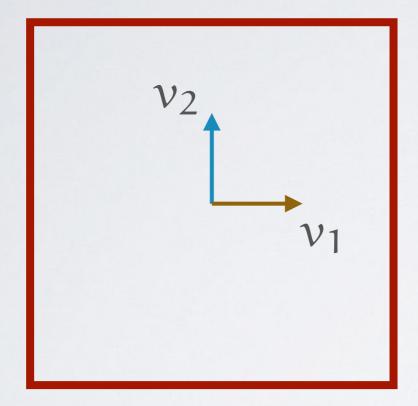




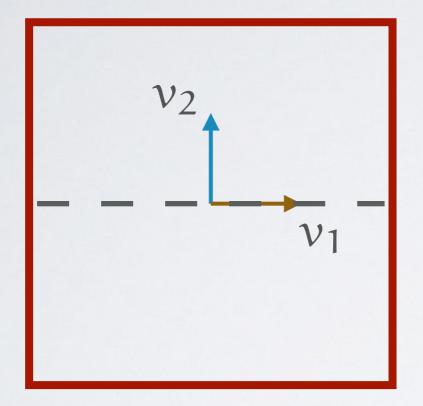




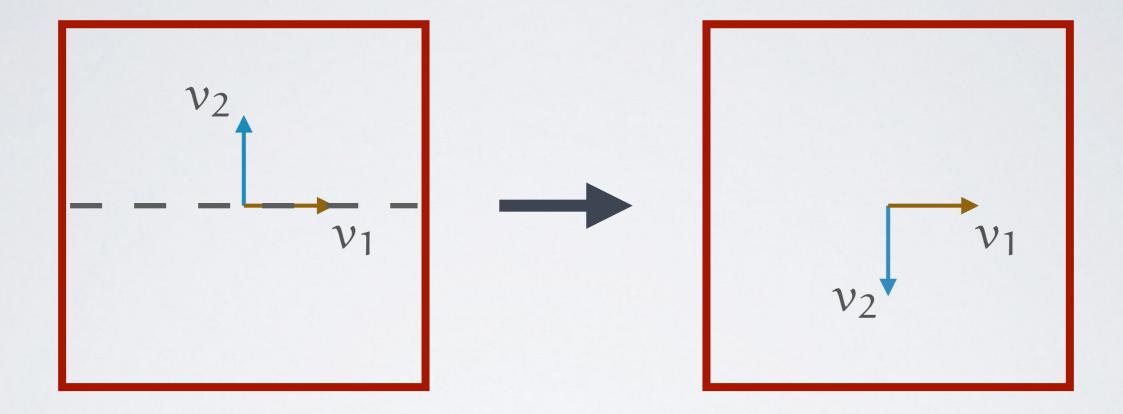
0 Ω



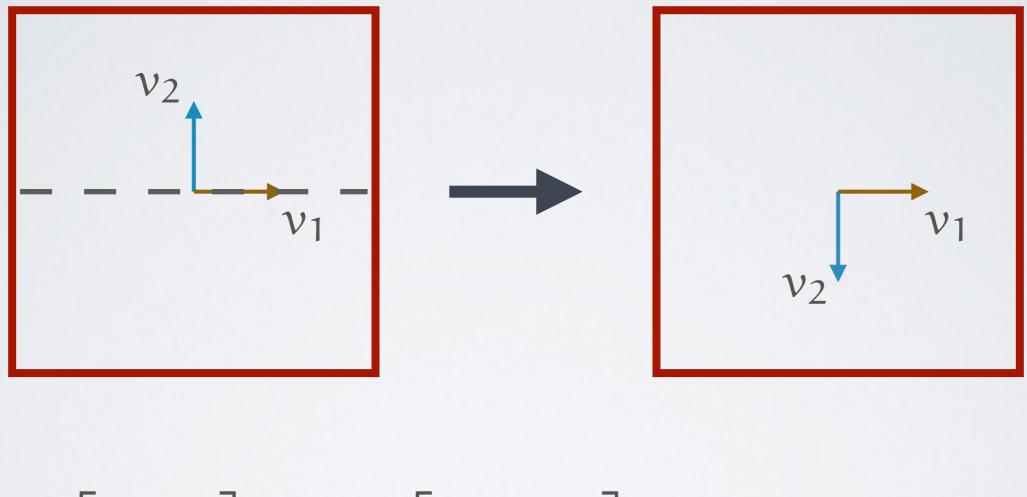
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

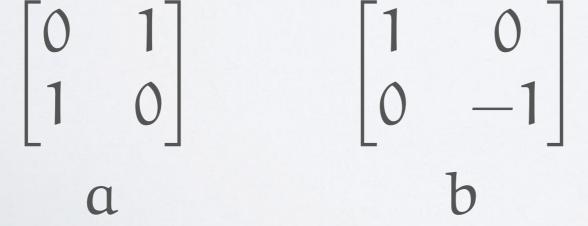


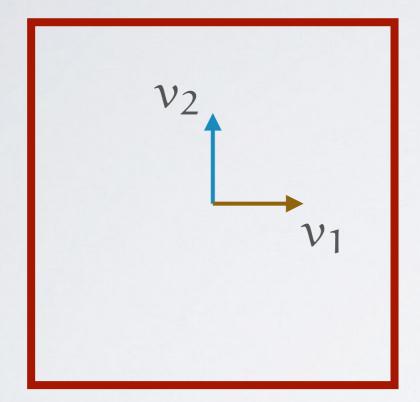
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$



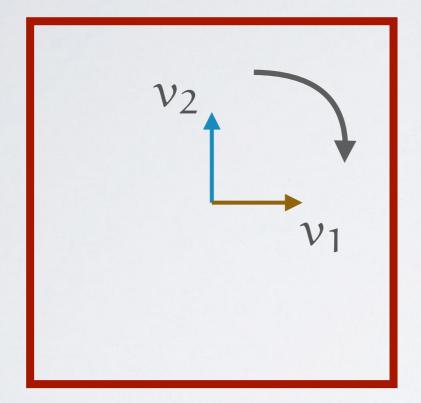
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

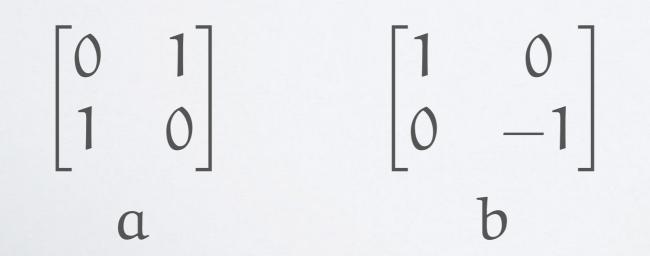


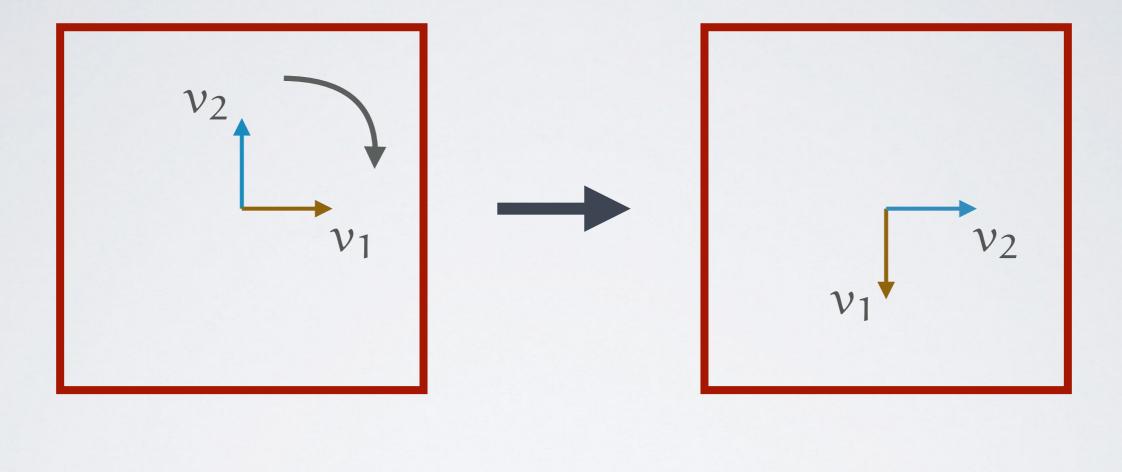




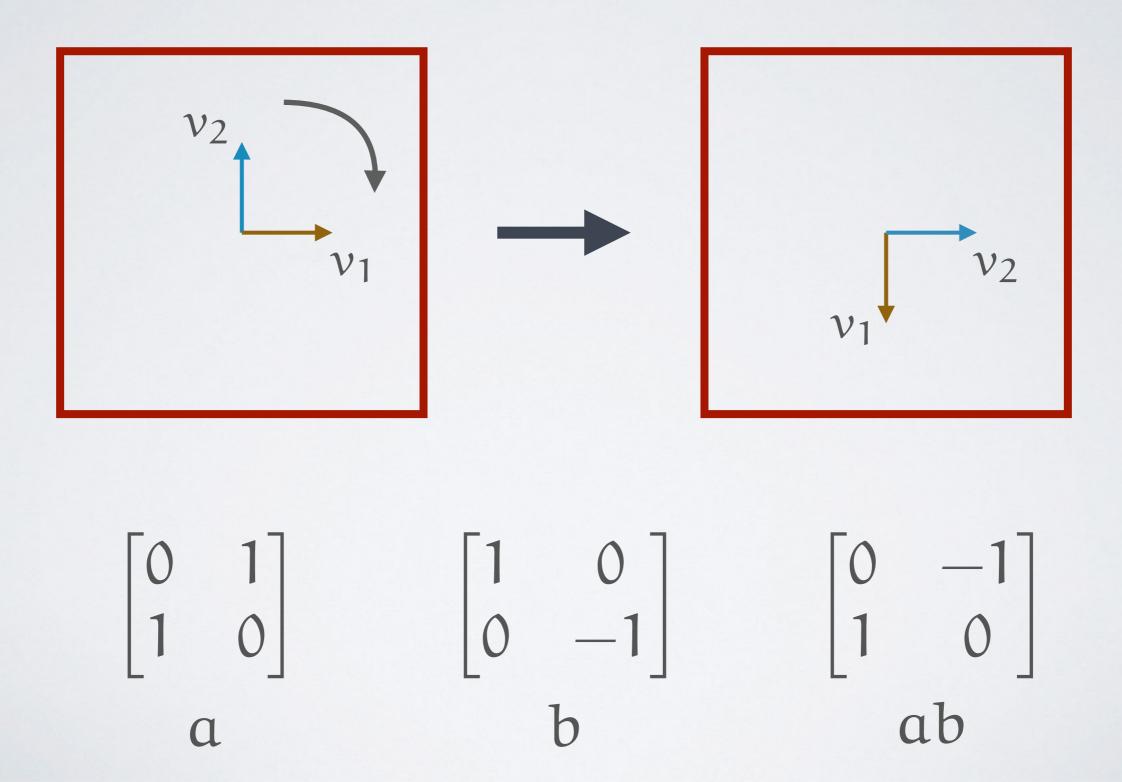
 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ a b







 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ a b



 $\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} \quad \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix} \quad \begin{vmatrix} 0 & -1 \\ 1 & 0 \end{vmatrix} \quad \begin{vmatrix} -1 & 0 \\ 0 & 1 \end{vmatrix}$ ab aba b a $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ ababab abab ababa e

• V an n-dimensional \mathbb{C} -vector space.

- V an n-dimensional \mathbb{C} -vector space.
- $\operatorname{GL}(V)\cong\operatorname{GL}_n(\mathbb{C})$ the group of all invertible linear transformations $f:V\to V.$

- V an n-dimensional \mathbb{C} -vector space.
- $\operatorname{GL}(V)\cong\operatorname{GL}_n(\mathbb{C})$ the group of all invertible linear transformations $f:V\to V.$
- A representation of a group (G,\star) is a map $\rho:G\to \operatorname{GL}(V)$ such that for all $\alpha,\,b\in G$ we have

$$\rho(a \star b) = \rho(a) \circ \rho(b)$$

CHARACTERS

• Let $\rho: G \to \operatorname{GL}_n(\mathbb{C})$ be a representation of a group (G, \star) . The function $\chi_{\rho}: G \to \mathbb{C}$ defined by

 $\chi_\rho(\mathfrak{a})=\mathrm{Tr}(\rho(\mathfrak{a}))$

is called the character of ρ .

CHARACTERS

• Let $\rho: G \to \operatorname{GL}_n(\mathbb{C})$ be a representation of a group (G, \star) . The function $\chi_{\rho}: G \to \mathbb{C}$ defined by

 $\chi_\rho(\mathfrak{a})=\mathrm{Tr}(\rho(\mathfrak{a}))$

is called the character of ρ .

е	a	Ъ	ab	aba	abab	ababa	ababab
$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
2	0	0	0	0	-2	0	0

CONJUGACY

CONJUGACY

• For any matrices $A, B \in \operatorname{GL}_n(\mathbb{C})$ recall that

 $\operatorname{Tr}(ABA^{-1}) = \operatorname{Tr}(B)$

CONJUGACY

• For any matrices $A, B \in GL_n(\mathbb{C})$ recall that

 $\operatorname{Tr}(ABA^{-1}) = \operatorname{Tr}(B)$

- Hence for any two elements $a, \, b \in G$ and any character $\chi: G \to \mathbb{C}$ we have

$$\chi(a \star b \star a^{-1}) = \chi(b)$$

CONJUGACY

• For any matrices $A, B \in GL_n(\mathbb{C})$ recall that

 $\operatorname{Tr}(ABA^{-1}) = \operatorname{Tr}(B)$

- Hence for any two elements $a, \ b \in G$ and any character $\chi: G \to \mathbb{C}$ we have

$$\chi(a \star b \star a^{-1}) = \chi(b)$$

- We say $a, b \in G$ are conjugate if there exists an element $x \in G$ such that

$$x \star a \star x^{-1} = b$$

CONJUGACY

• For any matrices $A, B \in GL_n(\mathbb{C})$ recall that

 $\operatorname{Tr}(ABA^{-1}) = \operatorname{Tr}(B)$

- Hence for any two elements $a, \ b \in G$ and any character $\chi: G \to \mathbb{C}$ we have

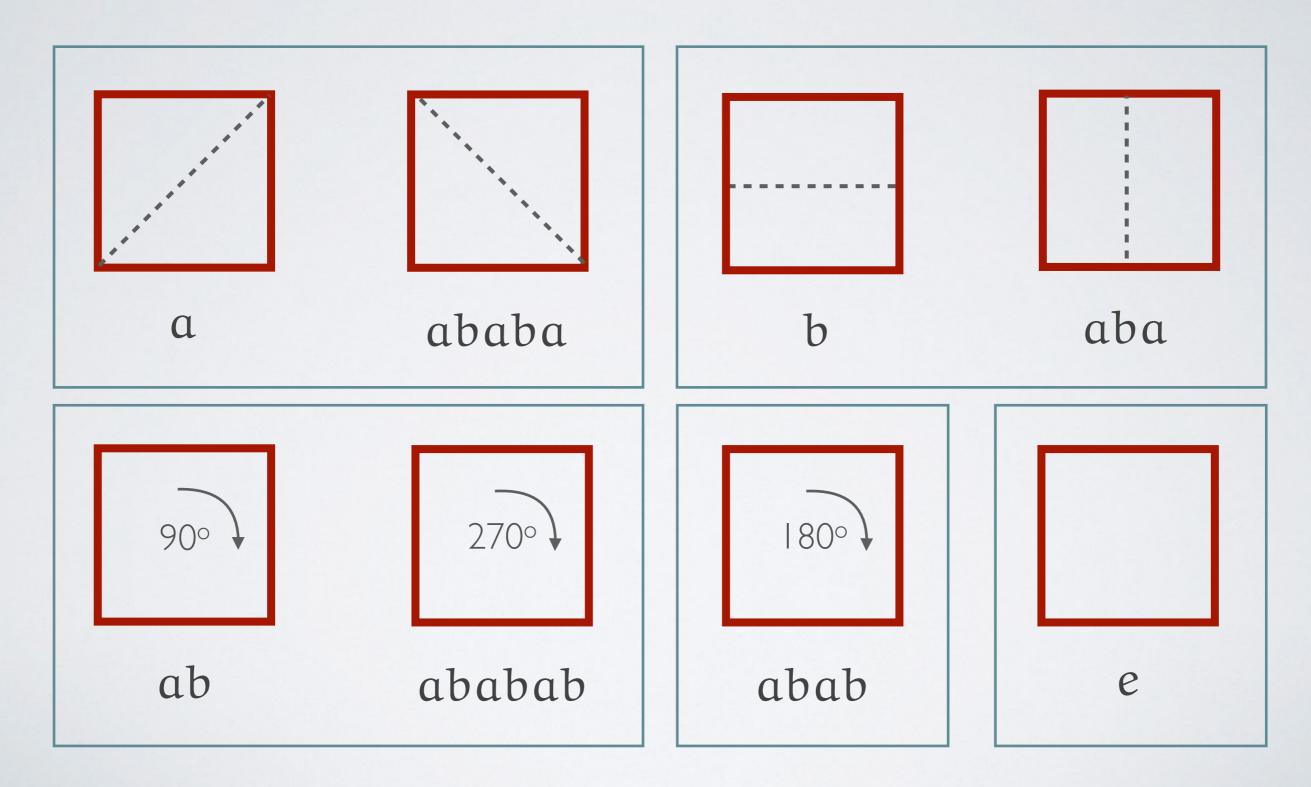
$$\chi(a \star b \star a^{-1}) = \chi(b)$$

• We say $a, b \in G$ are conjugate if there exists an element $x \in G$ such that

$$x \star a \star x^{-1} = b$$

• This defines an equivalence relation on **G**. The resulting equivalence classes are called conjugacy classes.

CONJUGACY



• A representation $\rho: G \to \operatorname{GL}(V)$ is irreducible if there is no proper subspace $W \subseteq V$ which is invariant under G. By this we mean that for all $g \in G$ we have $\rho(g)W \subseteq W$.

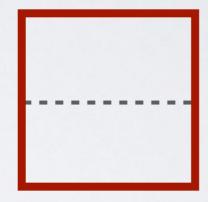
- A representation $\rho: G \to \operatorname{GL}(V)$ is irreducible if there is no proper subspace $W \subseteq V$ which is invariant under G. By this we mean that for all $g \in G$ we have $\rho(g)W \subseteq W$.
- We have $\rho:G \to \operatorname{GL}(V)$ is irreducible if and only if

$$\frac{1}{|G|} \sum_{g \in G} \chi_{\rho}(g) \overline{\chi_{\rho}(g)} = 1$$

- A representation $\rho: G \to \operatorname{GL}(V)$ is irreducible if there is no proper subspace $W \subseteq V$ which is invariant under G. By this we mean that for all $g \in G$ we have $\rho(g)W \subseteq W$.
- We have $\rho:G \to \operatorname{GL}(V)$ is irreducible if and only if

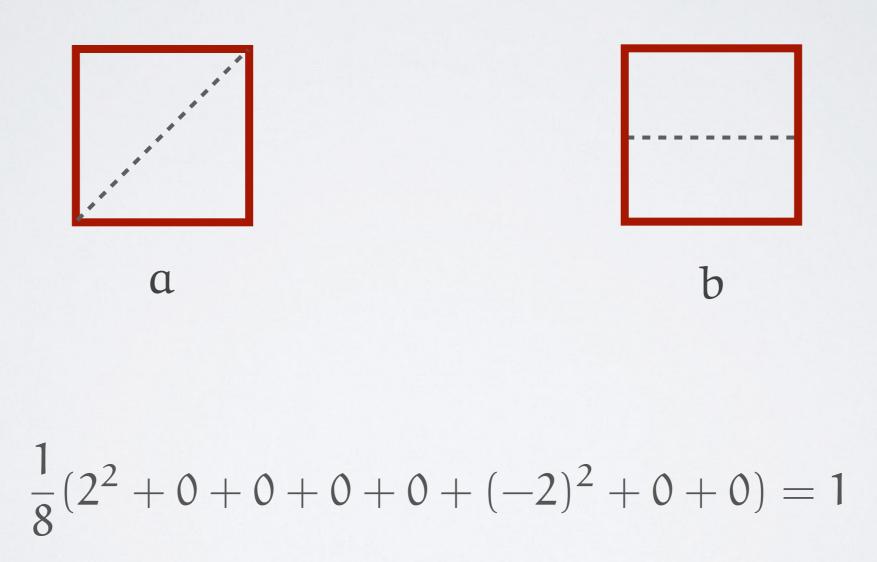
$$\frac{1}{|G|} \sum_{g \in G} \chi_{\rho}(g) \overline{\chi_{\rho}(g)} = 1$$

• A character with this property is also called irreducible.



b

a



Theorem

The number of distinct irreducible characters of a finite group is equal to the number of conjugacy classes.

Theorem

The number of distinct irreducible characters of a finite group is equal to the number of conjugacy classes.

• Let $g_1, \ldots, g_n \in G$ be representatives for the conjugacy classes and let χ_1, \ldots, χ_n be the irreducible characters of G. The square matrix

$(\chi_i(g_j))_{1 \leqslant i,j \leqslant n}$

is called the character table of G.

$I_2(4)$	е	a	Ъ	ab	$(ab)^2$
χ1	1	1	1	1	1
χ2	1	—1	1	—1	1
χ3	1	1	—1	—1	1
χ4	1	—1	—1	1	1
ψ	2	0	0	0	-2

$I_2(2m)$	е	a	Ъ	$(ab)^r$	(ab) ^m
χ1	1	1	1	1	1
χ2	1	—1	1	(-1) ^r	(-1) ^m
χ3	1	1	-1	(-1) ^r	(-1) ^m
χ4	1	—1	-1	1	1
ψ_j	2	0	0	$\varepsilon^{jr} + \varepsilon^{-jr}$	2(-1) ^j

$I_2(2m)$	е	a	Ъ	$(ab)^r$	$(ab)^m$
χ1	1	1	1	1	1
χ2	1	—1	1	(- 1) ^r	(- 1) ^m
χ3	1	1	—1	(- 1) ^r	(- 1) ^m
χ4	1	—1	-1	1	1
ψ_{j}	2	0	0	$\varepsilon^{jr} + \varepsilon^{-jr}$	2(-1) ^j

 $1 \leq j, r \leq m-1$ $\varepsilon = e^{\pi i/m}$

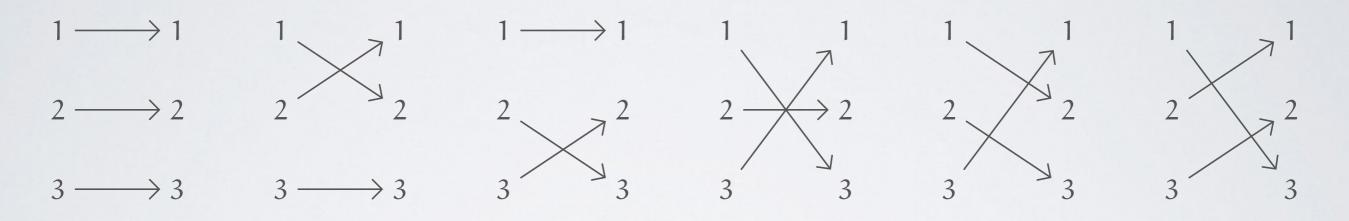
• \mathfrak{S}_n is the group of all bijective functions $f: \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$.

- \mathfrak{S}_n is the group of all bijective functions $f: \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$.
- We call \mathfrak{S}_n the symmetric group on n points.

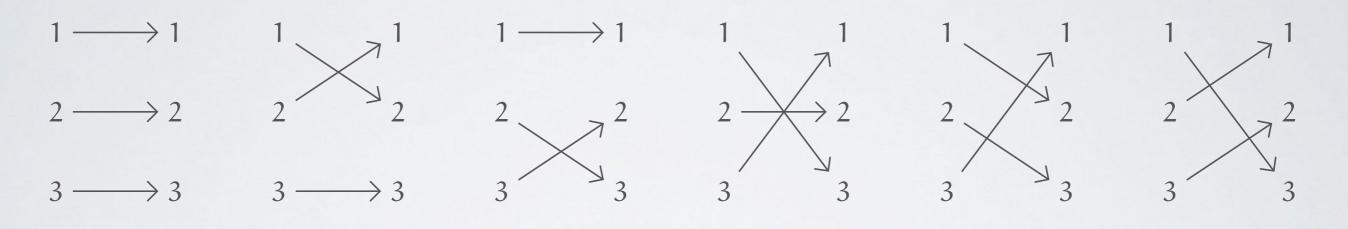
- \mathfrak{S}_n is the group of all bijective functions $f: \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$.
- We call \mathfrak{S}_n the symmetric group on n points.
- $|\mathfrak{S}_n| = n!$ which can be very large even for small n. For example

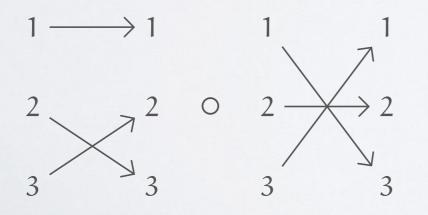
 $|\mathfrak{S}_{20}| = 2432902008176640000$

Example (n = 3**)**

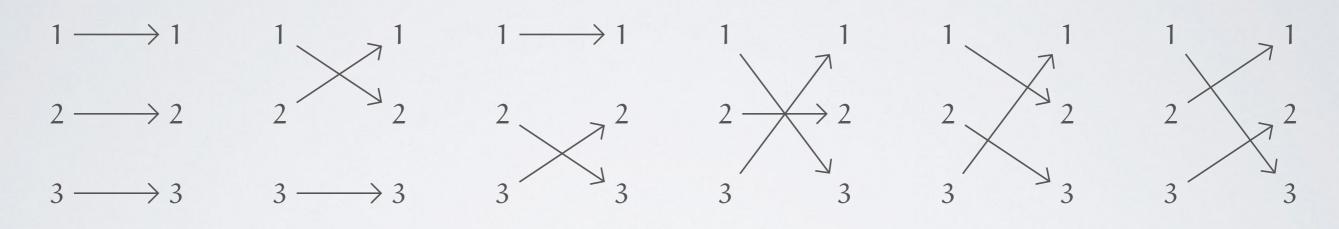


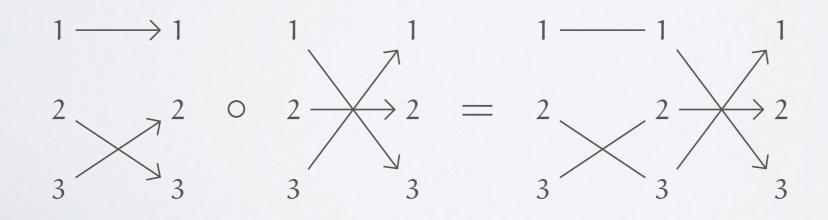
Example (n = 3**)**





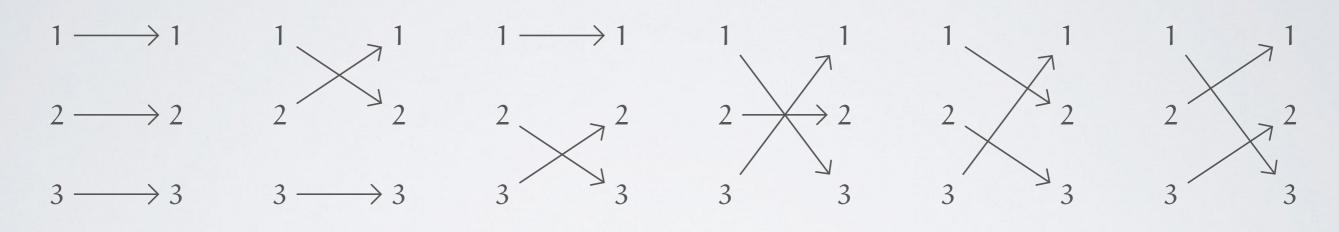
Example (n = 3**)**

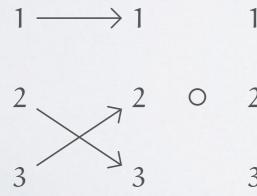


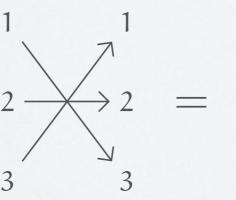


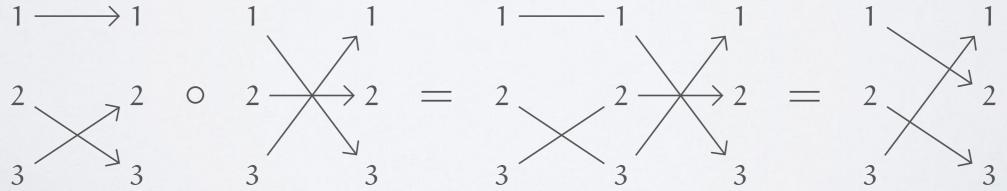
TRICGROUI

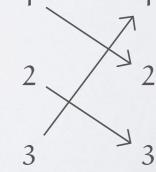
Example (n = 3**)**



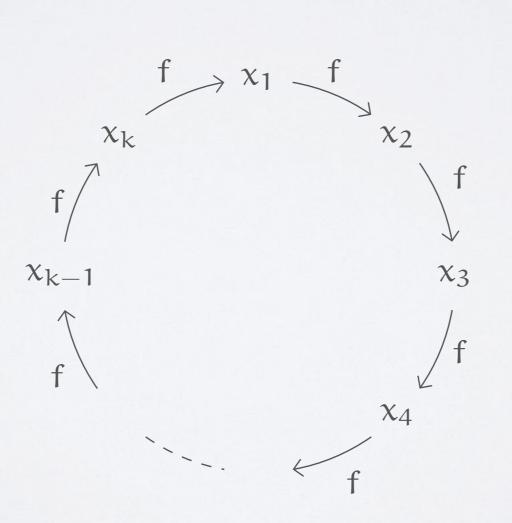








A function f ∈ 𝔅_n is called a cycle of length k if there exists a subset X = {x₁,...,x_k} ⊆ {1,...,n} such that f(i) = i for any integer i ∉ X and f acts on the elements of X in the following way

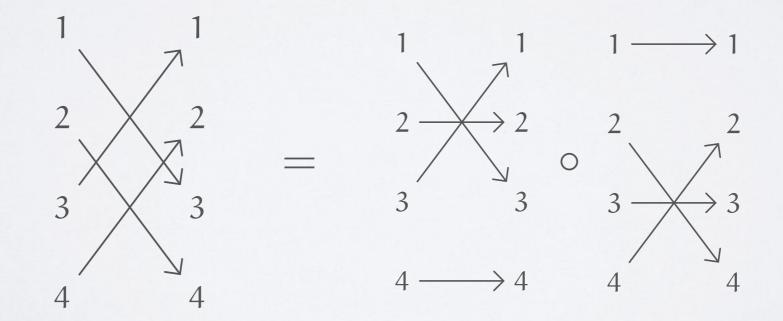


Lemma

Every element of \mathfrak{S}_n is a product of disjoint cycles.

Lemma

Every element of \mathfrak{S}_n is a product of disjoint cycles.



• A partition of n is a sequence $\mu = (\mu_1, \dots, \mu_k)$ of integers such that $\mu_1 \ge \dots \ge \mu_k \ge 1$ and $\mu_1 + \dots + \mu_k = n$.

- A partition of n is a sequence $\mu = (\mu_1, \dots, \mu_k)$ of integers such that $\mu_1 \ge \dots \ge \mu_k \ge 1$ and $\mu_1 + \dots + \mu_k = n$.
- For example the partitions of 5 are
 (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)

- A partition of n is a sequence $\mu = (\mu_1, \dots, \mu_k)$ of integers such that $\mu_1 \ge \dots \ge \mu_k \ge 1$ and $\mu_1 + \dots + \mu_k = n$.
- For example the partitions of 5 are
 (5), (4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1), (1,1,1,1,1)
- Given $f \in \mathfrak{S}_n$ let $f_1 \circ \cdots \circ f_k$ be a decomposition of f into a product of disjoint cycles. If μ_i denotes the length of the cycle f_i then the sequence $\mu(f) = (\mu_1, \dots, \mu_k)$ is a partition of \mathfrak{n} , after possibly reordering the entries. We call $\mu(f)$ the cycle type of f.

Theorem

Two elements of the symmetric group are conjugate if and only if they have the same cycle type.

Theorem

Two elements of the symmetric group are conjugate if and only if they have the same cycle type.

• We will write P(n) for the set of all partitions of n.

Theorem

Two elements of the symmetric group are conjugate if and only if they have the same cycle type.

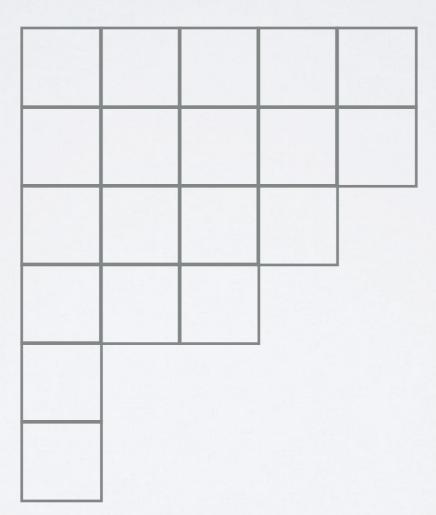
- We will write P(n) for the set of all partitions of n.
- For any partition $\lambda \in P(n)$ we denote by χ^{λ} an irreducible character of \mathfrak{S}_n .

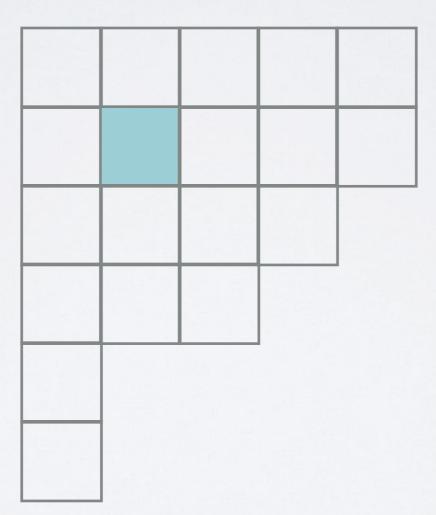
Theorem

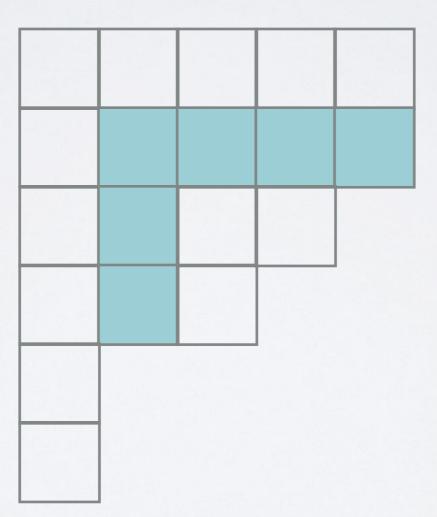
Two elements of the symmetric group are conjugate if and only if they have the same cycle type.

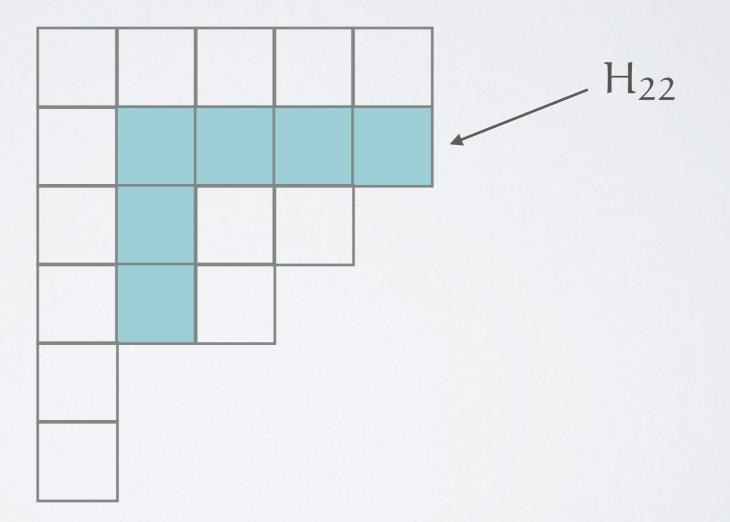
- We will write P(n) for the set of all partitions of n.
- For any partition $\lambda \in P(n)$ we denote by χ^{λ} an irreducible character of \mathfrak{S}_n .

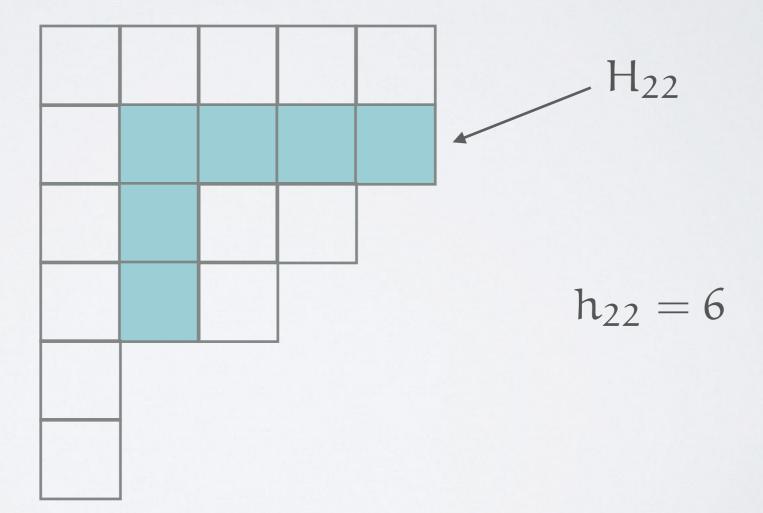
|P(20)| = 627

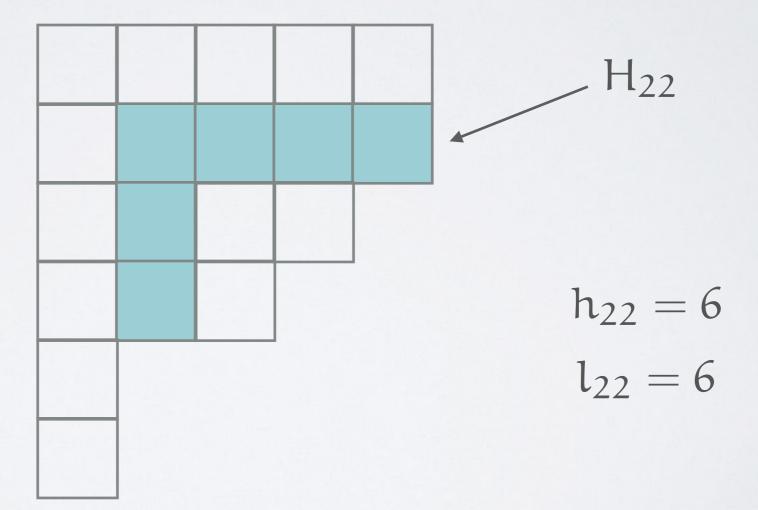




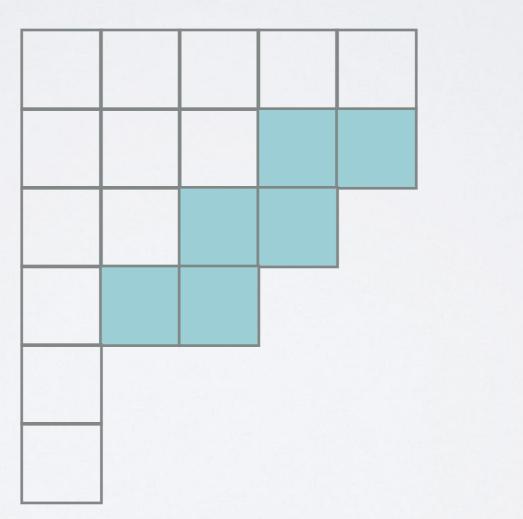




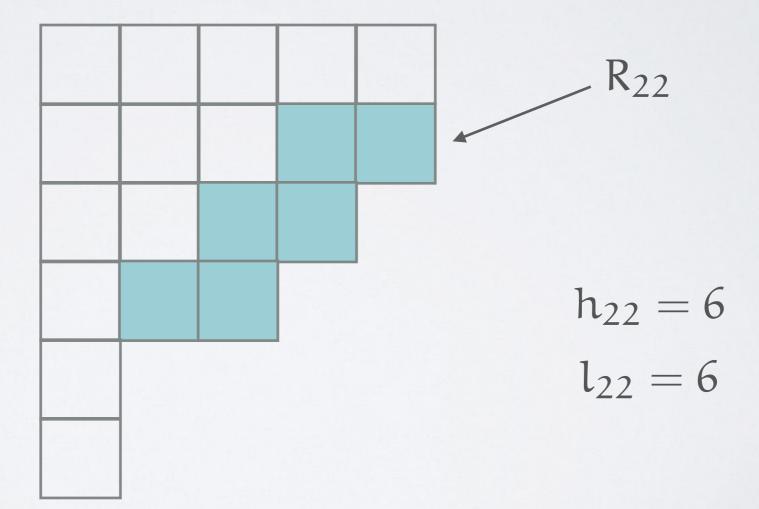


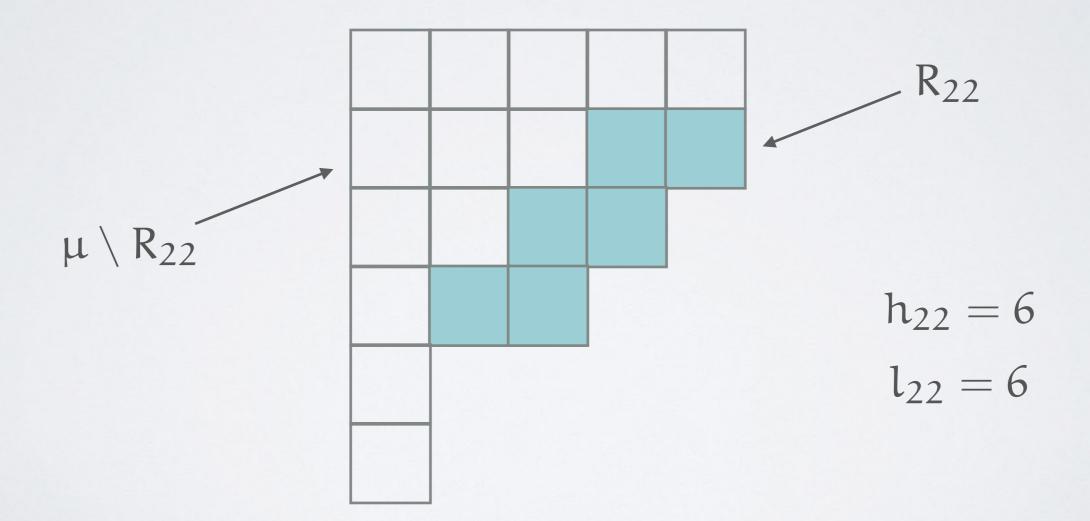


• Consider the partition $\mu = (5, 5, 4, 3, 1, 1) \in P(19)$.



 $h_{22} = 6$ $l_{22} = 6$





CHARACTERTABLE

Theorem (Murnaghan–Nakayama Formula)

Write $f \in \mathfrak{S}_n$ as a product $f_1 \circ \cdots \circ f_k$ of disjoint cycles. Assume f_k is a cycle of length m then the element

$$g = f_1 \circ \cdots \circ f_{k-1}$$

is contained in the symmetric group \mathfrak{S}_{n-m} . For any partition $\lambda \in P(n)$ we have

$$\chi^{\lambda}(f) = \sum_{h_{ij}=m} (-1)^{l_{ij}} \chi^{\lambda \setminus R_{ij}}(g)$$

CHARACTERTABLE

\mathfrak{S}_5	11111	2111	221	311	32	41	5
5	1	1	1	1	1	1	1
41	4	2	0	1	-1	0	—1
32	5	1	1	-1	1	-1	0
311	6	0	-2	0	0	0	1
221	5	-1	1	-1	-1	1	0
2111	4	-2	0	1	1	0	-1
11111	1	-1	1	1	-1	-1	1