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A group is a pair           with     a set and                          a binary 
operation such that:
1. there exists an element            such that                            for 

all
2. for every            there exists an element                such that     

.
3.                                       for all 

x 2 G

(G, ?) G ? : G⇥G ! G

e 2 G
x ? e = e ? x = x

g 2 G g-1 2 G
g ? g-1 = g-1 ? g = e

a ? (b ? c) = (a ? b) ? c a, b, c 2 G.

Examples

•            with                                             ,
•               with                       where     denote the real numbers. 

(Z,+) Z = {. . . ,-2,-1, 0, 1, 2, . . . }

(R⇥,⇥) R⇥ = R \ {0} R
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• A representation of a group           is a map                         such 
that for all                we have
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V n C
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CHARACTERS
• Let                            be a representation of a group          .  The 

function                    defined by

is called the character of   .

e a b ab aba abab ababa ababab


0 1
1 0

�
1 0
0 1

� 
1 0
0 -1

� 
0 -1
1 0

� 
-1 0
0 1

� 
-1 0
0 -1

�
0 -1
-1 0

� 
0 1
-1 0

�

2 0 0 0 0 0 0-2

⇢ : G ! GLn(C) (G, ?)

�⇢ : G ! C

�⇢(a) = Tr(⇢(a))

⇢



CONJUGACY



CONJUGACY
• For any matrices                           recall thatA, B 2 GLn(C)

Tr(ABA-1) = Tr(B)



CONJUGACY
• For any matrices                           recall that

• Hence for any two elements                and any character                   
we have

A, B 2 GLn(C)

Tr(ABA-1) = Tr(B)

a, b 2 G � : G ! C

�(a ? b ? a-1) = �(b)



CONJUGACY
• For any matrices                           recall that

• Hence for any two elements                and any character                   
we have

• We say                are conjugate if there exists an element           
such that                         . 

A, B 2 GLn(C)

Tr(ABA-1) = Tr(B)

a, b 2 G � : G ! C

�(a ? b ? a-1) = �(b)

a, b 2 G x 2 G

x ? a ? x-1 = b



CONJUGACY
• For any matrices                           recall that

• Hence for any two elements                and any character                   
we have

• We say                are conjugate if there exists an element           
such that                         . 

• This defines an equivalence relation on    .  The resulting equivalence 
classes are called conjugacy classes.

A, B 2 GLn(C)

Tr(ABA-1) = Tr(B)

a, b 2 G � : G ! C

�(a ? b ? a-1) = �(b)

a, b 2 G x 2 G

x ? a ? x-1 = b

G
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IRREDUCIBLE CHARACTERS
• A representation                          is irreducible if there is no proper 

subspace             which is invariant under    . By this we mean that 
for all           we have                     .

• We have                          is irreducible if and only if 

• A character with this property is also called irreducible.

⇢ : G ! GL(V)

W ✓ V G

⇢(g)W ✓ W

1

|G|

X

g2G

�⇢(g)�⇢(g) = 1

g 2 G

⇢ : G ! GL(V)
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1

8
(22 + 0+ 0+ 0+ 0+ (-2)2 + 0+ 0) = 1
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Theorem 

The number of distinct irreducible characters of a finite 
group is equal to the number of conjugacy classes.

• Let                         be representatives for the conjugacy classes and 
let                   be the irreducible characters of    .  The square 
matrix

is called the character table of    .

g1, . . . , gn 2 G

G�1, . . . ,�n

G

(�i(gj))16i,j6n
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-1 -1

 

I2(4)
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•       is the group of all bijective functions                                        .

• We call       the symmetric group on     points.

•                 which can be very large even for small    . For example

Sn f : {1, . . . , n} ! {1, . . . , n}

Sn n

|Sn| = n! n

|S20| = 2432902008176640000
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• A function             is called a cycle of length    if there exists a 

subset                                               such that              for any 
integer          and    acts on the elements of     in the following wayi 62 X

x1

xk

xk-1

x4

x3

x2

f

f

f

f

f

f

f

f 2 Sn k

X = {x1, . . . , xk} ✓ {1, . . . , n} f(i) = i

f X
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that                               and                              .

• For example the partitions of    are

n µ = (µ1, . . . , µk)

µ1 + · · ·+ µk = nµ1 > · · · > µk > 1
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• A partition of     is a sequence                            of integers such 

that                               and                              .

• For example the partitions of    are

• Given             let                    be a decomposition of    into a 
product of disjoint cycles. If      denotes the length of the cycle     
then the sequence                                is a partition of    , after 
possibly reordering the entries.  We call        the cycle type of   .

n µ = (µ1, . . . , µk)

µ1 + · · ·+ µk = nµ1 > · · · > µk > 1

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)

f 2 Sn f1 � · · · � fk f

µi fi
µ(f) = (µ1, . . . , µk) n

µ(f) f

5
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Theorem 

Two elements of the symmetric group are conjugate if and 
only if they have the same cycle type.

• We will write         for the set of all partitions of    .

• For any partition                we denote by      an irreducible 
character of       .

P(n) n

|P(20)| = 627

� 2 P(n) ��

Sn
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HOOKS OF PARTITIONS
• Consider the partition                                           .µ = (5, 5, 4, 3, 1, 1) 2 P(19)

h22 = 6

l22 = 6

R22

µ \ R22
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Theorem (Murnaghan–Nakayama Formula) 

Write              as a product                     of disjoint cycles.  
Assume      is a cycle of length      then the element

is contained in the symmetric group            . For any partition
               we have 

f 2 Sn

� 2 P(n)

f1 � · · · � fk
fk m

g = f1 � · · · � fk-1

Sn-m

��(f) =
X

hij=m

(-1)lij��\Rij(g)
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11111 2111 221 311 32 41 5

5

41

32

311

221

2111

11111

1 1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

2 1

1

1

0 0 0

0

0

0

0

0

0

4

4

5

5

6

S5

-1 -1

-1 -1

0 -2

-1 -1 -1

-2 -1

-1 -1 -1


