Character Sheaves and GGGRs

Jay Taylor

Technische Universität Kaiserslautern

Global/Local Conjectures in Representation Theory of Finite Groups Banff, March 2014

- ullet G a connected reductive algebraic group defined over $\overline{\mathbb{F}_p}$.
- $F: \mathbf{G} \to \mathbf{G}$ a Frobenius endomorphism defining an \mathbb{F}_q -rational structure $\mathbf{G}^F = \{ g \in \mathbf{G} \mid F(g) = g \}.$
- ullet Fix a prime $\ell
 eq p$ and an algebraic closure $\overline{\mathbb{Q}_\ell}$. Interested in

$$\mathsf{Irr}(\mathbf{G}^F) \subset \mathsf{Cent}(\mathbf{G}^F) = \{f: \mathbf{G}^F \to \overline{\mathbb{Q}}_\ell \mid f(xgx^{-1}) = f(x)\}$$

Problem

Given $g \in \mathbf{G}^F$ and $\chi \in \operatorname{Irr}(\mathbf{G}^F)$ describe $\chi(g)$.

Two main cases to consider:

- $g \in \mathbf{G}_{ss}^F = \{ x \in \mathbf{G}^F \mid p \nmid o(x) \}$
- $g \in \mathbf{G}_{\mathrm{uni}}^F = \{x \in \mathbf{G}^F \mid \mathrm{o}(x) = p^a\}$

For any F-stable maximal torus $\mathbf{T} \leqslant \mathbf{G}$ and $\theta \in \operatorname{Irr}(\mathbf{T}^F)$ we have a virtual character

$$R_{\mathsf{T}}^{\mathsf{G}}(\theta) \in \mathbb{Z}\operatorname{Irr}(\mathsf{G}^F).$$

Theorem (Deligne-Lusztig, 1976)

For any $\chi \in \operatorname{Irr}(\mathbf{G}^F)$ and $s \in \mathbf{G}_{\operatorname{ss}}^F$ we have

$$\chi(s) = \sum_{(\mathsf{T}, \theta)/\sim} \langle R_\mathsf{T}^\mathsf{G}(\theta), \chi \rangle R_\mathsf{T}^\mathsf{G}(\theta)(s)$$

and

$$R_{\mathbf{T}}^{\mathbf{G}}(\theta)(s) = \frac{1}{|C_{\mathbf{G}}^{\circ}(s)^{F}|} \sum_{\substack{x \in \mathbf{G}^{F} \\ x^{-1} \leq x \in \mathbf{T}^{F}}} \theta(x^{-1}sx).$$

 $\mathscr{D}\mathbf{G}:=$ the bounded derived category of $\overline{\mathbb{Q}}_\ell$ -constructible sheaves on \mathbf{G} $\mathscr{M}\mathbf{G}:=$ the category of $\overline{\mathbb{Q}}_\ell$ -perverse sheaves on \mathbf{G}

• Can think of an object $A \in \mathscr{D}\mathbf{G}$ as a bounded "complex"

$$\cdots \longrightarrow A_{i-1} \longrightarrow A_i \longrightarrow A_{i+1} \longrightarrow \cdots$$

of $\overline{\mathbb{Q}}_{\ell}$ -sheaves on **G** such that for each $i \in \mathbb{Z}$ the cohomology sheaf $\mathscr{H}^i(A)$ is constructible.

• In particular, for each $x \in \mathbf{G}$, the stalk $\mathscr{H}_{x}^{i}(A)$ is a finite dimensional $\overline{\mathbb{Q}}_{\ell}$ -vector space. Furthermore we have $\mathscr{H}_{x}^{i}(A) \neq 0$ for only finitely many $i \in \mathbb{Z}$.

Definition

A character sheaf of **G** is a **G**-equivariant simple object in $\mathcal{M}\mathbf{G}$. We denote by $\widehat{\mathbf{G}}$ the set of character sheaves of **G**.

The Frobenius endomorphism $F: \mathbf{G} \to \mathbf{G}$ induces a functor

$$F^*: \mathscr{D}\mathbf{G} \to \mathscr{D}\mathbf{G}$$

which preserves $\widehat{\mathbf{G}}$. We say $A \in \mathscr{D}\mathbf{G}$ is F-stable if there exists an isomorphism

$$\phi_A: F^*A \to A \in \mathscr{D}G$$
.

We denote by $\widehat{\mathbf{G}}^F \subseteq \widehat{\mathbf{G}}$ the subset of F-stable character sheaves.

Definition

Assume now that $A \in \widehat{\mathbf{G}}^F$. For each $x \in \mathbf{G}^F$ and $i \in \mathbb{Z}$ we have

$$\mathscr{H}_{x}^{i}(F^{*}A) = \mathscr{H}_{F(x)}^{i}(A) = \mathscr{H}_{x}^{i}(A)$$

and ϕ_A induces an automorphism $\phi_A: \mathscr{H}_x^i(A) \to \mathscr{H}_x^i(A)$. We define the characteristic function of A to be $\chi_{A,\phi_A}: \mathbf{G}^F \to \overline{\mathbb{Q}}_\ell$ given by

$$\chi_{A,\phi_A}(g) = \sum_{i \in \mathbb{Z}} (-1)^i \operatorname{\mathsf{Tr}}(\phi_A, \mathscr{H}_g^i(A)).$$

Theorem (Lusztig, 1986, 2012)

There exists a family of isomorphisms $\{\phi_A: F^*A \to A \mid A \in \widehat{\mathbf{G}}^F\}$ (unique up to multiplication by roots of unity) such that

$$\{\chi_{A,\phi_A} \mid A \in \widehat{\mathbf{G}}^F\}$$

is an orthonormal basis for $Cent(\mathbf{G}^F)$.

Definition

We say $A \in \widehat{\mathbf{G}}$ is unipotently supported if $\mathscr{H}_u^i(A) \neq 0$ for some $i \in \mathbb{Z}$ and $u \in \mathbf{G}_{\mathrm{uni}}$.

Assume $P \leqslant G$ is a parabolic with Levi complement $L \leqslant P$. Lusztig has defined a map

$$A_0 \in \widehat{\mathbf{L}} \qquad \leadsto \qquad \mathsf{ind}_{\mathbf{L} \subseteq \mathbf{P}}^{\mathbf{G}}(A_0) \in \mathscr{M}\mathbf{G}$$

called induction. The complex $\operatorname{ind}_{\mathbf{L}\subseteq\mathbf{P}}^{\mathbf{G}}(A_0)$ satisfies the following properties:

- $\operatorname{ind}_{\mathbf{L}\subset\mathbf{P}}^{\mathbf{G}}(A_0)=A_0$ if $\mathbf{L}=\mathbf{P}=\mathbf{G}$.
- $\operatorname{ind}_{L\subseteq P}^{\mathbf{G}}(A_0)$ is semisimple and all indecomposable summands are character sheaves.
- for any $A \in \widehat{\mathbf{G}}$ there exists a Levi subgroup $\mathbf{L} \leqslant \mathbf{P}$ and a cuspidal character sheaf $A_0 \in \widehat{\mathbf{L}}$ such that $(A : \operatorname{ind}_{\mathbf{L} \subseteq \mathbf{P}}^{\mathbf{G}}(A_0)) \neq 0$. Furthermore the pair (\mathbf{L}, A_0) is unique up to \mathbf{G} -conjugacy.

Definition

We say $A \in \widehat{\mathbf{G}}$ is cuspidal if $(A : \operatorname{ind}_{\mathbf{L} \subset \mathbf{P}}^{\mathbf{G}}(A_0)) \neq 0$ implies $\mathbf{L} = \mathbf{P} = \mathbf{G}$.

Theorem (Lusztig)

If $A_0 \in \widehat{\mathbf{L}}$ is cuspidal and unipotently supported then

$$\mathcal{A}_0 = \mathsf{IC}(\overline{\mathcal{O}_0} Z^\circ(\mathbf{L}), \mathscr{E}_0 \boxtimes \mathscr{L})[\dim \mathcal{O}_0 + \dim Z^\circ(\mathbf{L})]$$

where:

- $\mathcal{O}_0 \subseteq \mathbf{G}$ is a unipotent conjugacy class,
- \mathscr{E}_0 is an **L**-equivariant cuspidal local system on \mathcal{O}_0 ,
- \mathscr{L} is a tame local system on $Z^{\circ}(\mathbf{L})$.

Furthermore, the quotient group $W_{\textbf{G}}(\textbf{L}) = N_{\textbf{G}}(\textbf{L})/\textbf{L}$ is a Weyl group and

$$\mathsf{End}_{\mathscr{D}\mathbf{G}}(\mathsf{ind}_{\mathbf{L}\subseteq\mathbf{P}}^{\mathbf{G}}(A_0))\cong\overline{\mathbb{Q}}_{\ell}W_{\mathbf{G}}(\mathbf{L},\mathscr{L})$$

In particular, we have a bijection

$$\{A \in \widehat{\mathbf{G}} \mid (A : \mathsf{ind}_{\mathbf{L}}^{\mathbf{G}}(A_0)) \neq 0\} \longleftrightarrow \mathsf{Irr}(W_{\mathbf{G}}(\mathbf{L}, \mathscr{L}))$$

Denote by $\mathcal{N}_{\mathbf{G}}$ the set of all pairs $\iota = (\mathcal{O}_{\iota}, \mathscr{E}_{\iota})$ where:

- $\mathcal{O}_{\iota} \subset \mathbf{G}$ is a unipotent class,
- \mathscr{E}_{ι} is a **G**-equivariant local system on \mathcal{O}_{ι} .

Theorem (Lusztig, 1984)

Denote by $\nu \in \mathcal{N}_{\mathbf{L}}$ the cuspidal pair $(\mathcal{O}_0, \mathscr{E}_0)$ and assume that $\mathscr{L} = \overline{\mathbb{Q}}_{\ell}$. Then there is a subset $\mathscr{I}(\mathbf{L}, \nu) \subseteq \mathcal{N}_{\mathbf{G}}$ and a natural bijection

$$\mathscr{I}(\mathbf{L}, \nu) \to \{A \in \widehat{\mathbf{G}} \mid (A : \operatorname{ind}_{\mathbf{L}}^{\mathbf{G}}(A_0)) \neq 0\}$$

$$\iota \mapsto \mathcal{K}_{\iota}.$$

Hence also a bijection

$$\mathscr{I}(\mathsf{L},\nu) \to \mathsf{Irr}(W_\mathsf{G}(\mathsf{L}))$$

$$\iota \mapsto \mathsf{E}_\iota.$$

Let $A \in \widehat{\mathbf{G}}^F$ be an F-stable summand of $\operatorname{ind}_{\mathbf{i}}^{\mathbf{G}}(A_0)$ then we can assume:

$$F(\mathbf{L}) = \mathbf{L} \qquad F(\mathcal{O}_0) = \mathcal{O}_0 \qquad F^*\mathscr{E}_0 \cong \mathscr{E}_0 \qquad F^*\mathscr{L} \cong \mathscr{L}.$$

In particular we have:

- F induces an automorphism of $W_{\mathbf{G}}(\mathbf{L})$ and $W_{\mathbf{G}}(\mathbf{L},\mathcal{L})$,
- If A is parameterised by $E \in Irr(W_{\mathbf{G}}(\mathbf{L}, \mathcal{L}))$ then this is fixed by F.

Proposition

Assume we fix an isomorphism $\varphi_0: F^*\mathscr{E}_0 \to \mathscr{E}_0$ and an extension \widetilde{E} of Eto $W_{\mathbf{G}}(\mathbf{L}, \mathcal{L}) \times \langle F \rangle$ (similarly an extension E_{ι} of E_{ι}). Then this induces isomorphisms

$$\phi_A: F^*A \to A$$
 $\phi_\iota: F^*K_\iota \to K_\iota$

Theorem (T., 2014)

$$\chi_{A,\phi_A}|_{\mathbf{G}_{\mathrm{uni}}^F} = \sum_{\iota \in \mathscr{I}(\mathbf{L},\nu)^F} \langle \widetilde{E}_{\iota}, \mathsf{Ind}_{W_{\mathbf{G}}(\mathbf{L},\mathscr{L}).F}^{W_{\mathbf{G}}(\mathbf{L}).F} (\widetilde{E}) \rangle_{W_{\mathbf{G}}(\mathbf{L}).F} \cdot \chi_{K_{\iota},\phi_{\iota}}$$

Theorem (Lusztig, T.)

Let $a_{\iota} = -\dim \mathcal{O}_{\iota} - \dim Z^{\circ}(\mathbf{L})$ then we have

$$\chi_{\mathcal{K}_{\iota},\phi_{\iota}}=(-1)^{\mathsf{a}_{\iota}}q^{(\mathsf{dim}\,\mathsf{G}+\mathsf{a}_{\iota})/2}P_{\iota',\iota}Y_{\iota'}$$

Theorem (Bonnafé, Shoji, Waldspurger)

Assume p is good for **G** and one of the following holds:

- Z(G) is connected and G/Z(G) is simple,
- **G** is $SL_n(\overline{\mathbb{F}_p})$, $Sp_{2n}(\overline{\mathbb{F}_p})$ or $SO_n(\overline{\mathbb{F}_p})$.

Then the functions $Y_{\iota'}$ are explicitly computable.

Assume now that p is good for G. By Kawanaka (1986) we have a map

$$u \in \mathbf{G}_{\mathsf{uni}}^{\mathsf{F}} \qquad \leadsto \qquad \gamma_u \in \mathsf{Cent}(\mathsf{G})$$

where γ_u is the character of a generalised Gelfand–Graev representation. These satisfy the following properties:

- γ_u is obtained by inducing a linear character from a *p*-subgroup of \mathbf{G}^F ,
- $\gamma_u = \gamma_v$ if $xux^{-1} = v$ for some $x \in \mathbf{G}^F$,
- γ_1 is the regular character and γ_u is a Gelfand–Graev character when u is a regular element.

Problem

Describe the multiplicities $\langle \gamma_u, \chi \rangle$ for all $\chi \in Irr(\mathbf{G}^F)$.

Consider $\mathbf{G}^F = \operatorname{GL}_n(q)$ and **B** the upper triangular matrices then

$$\operatorname{Ind}_{\mathsf{B}^F}^{\mathsf{G}^F}(1_{\mathsf{B}^F}) = \sum_{\rho \in \operatorname{Irr}(\mathfrak{S}_n)} \rho(1) \chi_\rho$$

and

$$\mathcal{E}(\mathbf{G}^F, 1) = \{ \chi_{\lambda} \mid \lambda \vdash n \}$$

is the set of unipotent characters.

Theorem (Kawanaka)

$$\langle \Gamma_{\mu}, \chi_{\lambda} \rangle = \begin{cases} 1 & \text{if } \lambda^* = \mu \\ 0 & \text{if } \lambda^* \triangleleft \mu \end{cases}$$

Example

 $\chi_{(n)} = 1_{\mathsf{GL}_n(q)}$ occurs in the regular representation with multiplicity 1 and in no other GGGR.

If p and q are sufficiently large then Lusztig has given an explicit decomposition

$$\gamma_u \qquad \leadsto \qquad \{\chi_{\mathcal{K}_\iota,\phi_\iota} \mid \iota \in \mathcal{N}_{\mathbf{G}}^F\}$$

and has conjectured an explicit decomposition

$$\chi \in \mathsf{Irr}(\mathbf{G}^F) \qquad \leadsto \qquad \{\chi_{A,\phi_A} \mid A \in \widehat{\mathbf{G}}^F\}$$

If we solve this conjecture then the multiplicity $\langle \gamma_u, \chi \rangle$ can be reduced to the multiplicities

$$\langle \chi_{A,\phi_A}, \chi_{K_\iota,\phi_\iota} \rangle$$

and these are given by our main theorem!