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@ G a connected reductive algebraic group defined over IFp,.

@ F: G — G a Frobenius endomorphism defining an [F-rational
structure GF = {g € G| F(g) = g}

@ Fix a prime £ # p and an algebraic closure Q. Interested in

Irr(GF) € Cent(GF) = {f : GF = Q, | f(xgx™1) = f(x)}

Problem
Given g € G and x € Irr(GF) describe x(g). J

Two main cases to consider:
° gEGfS:{XGGF|pJ(o(X)}
o g Gl . ={xeGF|o(x)=p?}

uni
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Introduction The Semisimple Case

For any F-stable maximal torus T < G and 6 € Irr(T") we have a virtual

character
R&(0) € ZIrr(GF).

Theorem (Deligne—Lusztig, 1976)
For any x € Irr(GF) and s € G, we have

X(s)= ) (RF(6). \)RF(6)(s)

(T.0)/~
and 1
© €Gr
x"lsxeTF
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[QETEIGIEIEEVSI  Definition

2G := the bounded derived category of Q,-constructible sheaves on G
MG := the category of Q/-perverse sheaves on G

@ Can think of an object A € ZG as a bounded “complex”
s — A1 —>A,‘—>A,'+1 —
of Q;-sheaves on G such that for each i € Z the cohomology sheaf

H'(A) is constructible.

o In particular, for each x € G, the stalk ! (A) is a finite dimensional
Qy-vector space. Furthermore we have 7%/ (A) # 0 for only finitely
many i € Z.

Definition
A character sheaf of G is a G-equivariant simple object in MG. We
denote by G the set of character sheaves of G.
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Character Sheaves Characteristic Functions

The Frobenius endomorphism F : G — G induces a functor
F*: 292G — 929G

which preserves G. We say A € G is F-stable if there exists an
isomorphism

oa: FFA— A€ 2G.
We denote by GF - G the subset of F-stable character sheaves.

Definition

Assume now that A € G’. For each x € G and i € Z we have

S A) = A (A) = Hi(A)

X

and ¢4 induces an automorphism ¢4 : ) (A) — S (A). We define the
characteristic function of A to be xa4, : GF — Qy given by

Xasa(8) = D_(=1) Tr(¢a, 5 (A)).

iE€Z
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Character Sheaves Characteristic Functions

Theorem (Lusztig, 1986, 2012)

There exists a family of isomorphisms {¢a: F*A — A| A € GF} (unique
up to multiplication by roots of unity) such that

{XA#?A ‘ A€ aF}

is an orthonormal basis for Cent(GF).

Definition

We say A € G is unipotently supported if #7(A) # 0 for some i € Z and
u € Gy
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Character Sheaves Induction

Assume P < G is a parabolic with Levi complement L < P. Lusztig has
defined a map

AveLl  ~  indfcp(A) € 4G

called induction. The complex indfgp(Ao) satisfies the following
properties:
@ indicp(Ad) = Ao ifL=P =G.
° indfgp(Ao) is semisimple and all indecomposable summands are
character sheaves.

o forany A € G there exists a Levi subgroup L < P and a cuspidal
character sheaf Ap € L such that (A: indng(Ao)) # 0. Furthermore
the pair (L, Ag) is unique up to G-conjugacy.

Definition
We say A € G is cuspidal if (A: indEgP(Ao)) # 0 impliess L =P = G.
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Character Sheaves Cuspidal Objects

Theorem (Lusztig)

If Ag € Lis cuspidal and unipotently supported then
Ao = IC(OpZ°(L), 6 X L) [dim Op + dim Z°(L)]

where:
o Oy C G is a unipotent conjugacy class,
@ & is an L-equivariant cuspidal local system on Oy,
e Z is a tame local system on Z°(L).

Furthermore, the quotient group Wg(L) = Ng(L)/L is a Weyl group and
Endgg(indfcp(Ao)) = Q We(L, 2)

In particular, we have a bijection

{A€ G| (A:indf(Ag)) # 0} «— Irr(Wg(L,.2))
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Character Sheaves The Generalised Springer Correspondence

Denote by Ng the set of all pairs . = (O,, &,) where:
e O, C G is a unipotent class,
e &, is a G-equivariant local system on O,.
Theorem (Lusztig, 1984)

Denote by v € Ny the cuspidal pair (Og, &) and assume that £ = Q,.
Then there is a subset .#(L,v) C Ng and a natural bijection

F(L,v) = {AecG|(A:indf(Ay)) # 0}
t— K,.

Hence also a bijection

F(L,v) — lrr(Wg(L))
L— E,.
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Character Sheaves The Generalised Springer Correspondence

Let A € GF be an F-stable summand of ind(Ao) then we can assume:
F(L)=L F(Op) = Oy F*& = & Fr¥~ &,

In particular we have:
@ F induces an automorphism of Wg(L) and Wg(L,-%),
o If Ais parameterised by E € lrr(Wg(L, %)) then this is fixed by F.

Proposition

Assume we fix an isomorphism g : F*&y —>~é"o and an extension E of E
to Wg(L,.Z) x (F) (similarly an extension E, of E,). Then this induces

isomorphisms
pa: FFA— A ¢, F*K, — K,

Jay Taylor (TU Kaiserslautern) Character Sheaves Banff, March 2014 10 / 14



Theorem (T., 2014)

= Wg(L).F =
XA7¢A|Gani = Z <EL7 IndwggL?g),F(E)>Wc(L)-F " XK, ¢,
eF(Ly)F

Theorem (Lusztig, T.)
Let a, = —dim O, — dim Z°(L) then we have

XK,.6, = (_1)an(dim G+aL)/2PL/,L YL/

Theorem (Bonnafé, Shoji, Waldspurger)

Assume p is good for G and one of the following holds:
e Z(G) is connected and G/Z(G) is simple,
o G is SLy(Fp), Spa,(Fp) or SON(F)).

Then the functions Y,: are explicitly computable.
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Applications Generalised Gelfand—Graev Representations

Assume now that p is good for G. By Kawanaka (1986) we have a map

F

ue G, ~ Yu € Cent(G)

where 7y, is the character of a generalised Gelfand—Graev representation.
These satisfy the following properties:
@ 7, is obtained by inducing a linear character from a p-subgroup of G,

1

e v, =, if xux~! = v for some x € GF,

@ 1 is the regular character and +, is a Gelfand—Graev character when
u is a regular element.
Problem
Describe the multiplicities (7, x) for all x € Irr(GF). J
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Consider G = GL,(q) and B the upper triangular matrices then
F
Ind§-(1gF) = Z p(1)x,
pElrr(S5)

and
EGF, 1) ={xx | AFn}

is the set of unipotent characters.

Theorem (Kawanaka)

1 ifAN =pu
) =
Y {0 i <

Example

X(n) = laL,(q) occurs in the regular representation with multiplicity 1 and
in no other GGGR.

v
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Applications Multiplicities

If p and g are sufficiently large then Lusztig has given an explicit
decomposition
Yu ~ {XKbyd)L | L e Ng}

and has conjectured an explicit decomposition
Xe(G")  ~  {xap|AeG"}

If we solve this conjecture then the multiplicity (74, x) can be reduced to
the multiplicities
(XApas XK. 0,)

and these are given by our main theorem!
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