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Clifford’s Theorem

e G/Gis cyclic ~ Resg(f() =x14-+Xr
e g€ Gand (g): NG = (g)c then

xi(g) = x(8)

r
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e G a connected reductive algebraic group over F =T,

e F:G — G a Steinberg endomorphism
~ GF ={¢g € G| F(g) = g} a finite reductive group

Philosophical Observation

The representation theory of G! is harder when Z(G) is
disconnected.

Deligne-Lusztig ('76):

e Should embed GF <1 GF as a normal subgroup such that

Z(G) is connected.

e F* x ... xF* =T < G an F-stable maximal torus

Gxz)T=(GxT)/{(z.z") | z€ Z(G)}
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Example (G = SL,(F))

o if p{nthen G xzg) T = GL,(IF)
e ifn=p"thenGxz g T=GxT

Regular Embedding (Lusztig "88)

A closed embedding 1 : G — Gisa regular embedding if:

e G= L(G)Z(é) and Z(é) is connected

e F:G—Gisa Steinberg endomorphism and 1o F = Fo L.

We then have GF = ((G)F « GF.
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e X(T) = Hom(T,F*) = Z"
e X(T) = Hom(F*,T) = Z"

(Recal: T=TF* x--- xF*))
e Z(G) =T ~ X(T)— X(Z(G))
* Z(G) =Nyeo Ker(a)  ~  (X(T)/Z2®), = X(Z(G))

Lemma
Z(G) is connected if and only if X(T)/Z® has no p’-torsion.

Definition
Z(G) is if X(T)/Z® has no p-torsion.

5/12



Smooth Regular Embeddings

Example

6/12



Smooth Regular Embeddings

Example
G = GL,(K), T diagonal matrices, then X(T) has a natural
basis {eq, . .., ent.

6/12



Smooth Regular Embeddings

Example
G = GL,(K), T diagonal matrices, then X(T) has a natural
basis {eq, . .., e, }. We have

ZO ={ae1+---+aye, |a;+---+a, =0}

6/12



Smooth Regular Embeddings

Example
G = GL,(K), T diagonal matrices, then X(T) has a natural
basis {eq, . .., e, }. We have

7O ={ae1+---+aye, |ay +---+a, =0}

and X(T)/Z® has no torsion as X(T) = Z® ¢ Ze,,.
Definition

A regular embedding ¢: G < G is a

if Z(G) is connected and smooth.

6/12



Smooth Regular Embeddings

Example
G = GL,(K), T diagonal matrices, then X(T) has a natural
basis {eq, . .., e, }. We have

7O ={ae1+---+aye, |ay +---+a, =0}

and X(T)/Z® has no torsion as X(T) = Z® ¢ Ze,,.
Definition

A regular embedding ¢: G < G is a

if Z(G) is connected and smooth.

Example: SL,,(F) — GL,(IF).
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Remark

If we have a regular embedding 1 : G — G then

TS T v X(T) - X(T)

e R=R(G,T) = (X, X, ).
o A:= X/ZO then we have a surjective map f : X — A.
e T=(T,0,T,0)and h: T — A

XGurm T={xt) e X®T|f(x) =h(t)}
and a surjective homomorphism

d):X@(Af,h)T—»X.
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e We have (X @) T)/Z® =T has no torsion.
O X@(A,f,h)T ~ fR@(Ayfyh){I:fR(G’,T/)

Lemma (T.)

There exists a smooth regular embedding G — 2,

Proposition (T.)

Assume G, is one of
SLut1(IF),  Spy,(IF),  Spiny,.1(IF), or Spiny,(TF).

There exists a smooth regular embedding G,, — (N}n such
that each Levi subgroup of G, is isomorphic to

GLy, (IF) X - - - X GLy,, (IF) x Gy

where n =ny +--- +n, + m.
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Isomorphism Classes of Root Data

o Z := the isomorphism classes of root data.

e We partition Z into smaller subsets

#Z= || #®R7.K
[R,T K]/~

where Z = (X, @, )v( dv)) is semisimple, T = (T, 0, T 0)is a
torus, and ® C K C X is a submodule.

Remark
Recall that G = Gg..Z°(G). Assume R(G) € Z[R, T, K] then

R(Gaer) =R R(Z°(G)) =T  X(GaerNZ°(G)) = (X/K)p
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e R=(X,® X &) and T = (T,0,T,0)
e A=X/Kandf:X — A the natural projection

e : T — A a surjective homomorphism

Theorem (T.)
The map Aut(A) — Z defined by ) — R ® 4, yon) T induces
a bijection

Aut(gq’f) (A)\ Aut(A)/ Aut(gvh) (A) = Z[R, T, K.
Corollary (T.)

If A has s invariant factors and rk(T) > s + 1 then Z[R, T, K]
has cardinality 1.
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Isomorphism Classes of Root Data

Example

Assume G has a smooth connected centre and Gge, = SL,(IF).
How many isomorphism classes of such groups are there?

e dim(Z°(G)) = 0 ~ None,
e dim(Z°(G)) =1~ ¢(n)/2, e.g., GLy(F),
e dim(Z°(G)) = 2 ~ there’s only one, e.g., GL,(IF) x (IF*)~.
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Asai’s Reduction Techniques

e Reduce proving a property (P) for (G, F) to the case where
Gger is simple and simply connected. This assumes
F: G — G is a Frobenius endomorphism.

o Get new proofs of Asai’s results and extend them to show
that they are compatible with Steinberg endomorphisms.
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