Structure of Root Data and Smooth Regular Embeddings

Jay Taylor

New Perspectives in Representation Theory of Finite Groups October 17th 2017

University of Arizona

$SL_n(q)$

Representation Theory is "hard" $SL_n(q)$

Representation Theory Representation Theory is "hard" is "easier" $SL_n(q)$ $GL_n(q)$

Clifford's Theorem

•
$$\widetilde{G}/G$$
 is cyclic $\rightsquigarrow \operatorname{Res}_{G}^{\widetilde{G}}(\widetilde{\chi}) = \chi_{1} + \dots + \chi_{r}$

Clifford's Theorem

• \widetilde{G}/G is cyclic $\rightsquigarrow \operatorname{\mathsf{Res}}_{G}^{\widetilde{G}}(\widetilde{\chi}) = \chi_{1} + \dots + \chi_{r}$

•
$$g \in G$$
 and $\langle g \rangle_{\widetilde{G}} \cap G = \langle g \rangle_G$ then

$$\chi_i(g) = \frac{\widetilde{\chi}(g)}{r}$$

• **G** a connected reductive algebraic group over $\mathbb{F} = \overline{\mathbb{F}}_p$

- **G** a connected reductive algebraic group over $\mathbb{F} = \overline{\mathbb{F}}_p$
- $F : \mathbf{G} \to \mathbf{G}$ a Steinberg endomorphism

- **G** a connected reductive algebraic group over $\mathbb{F} = \overline{\mathbb{F}}_p$
- $F: \mathbf{G} \to \mathbf{G}$ a Steinberg endomorphism

Philosophical Observation

The representation theory of \mathbf{G}^F is harder when $Z(\mathbf{G})$ is disconnected.

- **G** a connected reductive algebraic group over $\mathbb{F} = \overline{\mathbb{F}}_p$
- $F: \mathbf{G} \to \mathbf{G}$ a Steinberg endomorphism

Philosophical Observation

The representation theory of \mathbf{G}^F is harder when $Z(\mathbf{G})$ is disconnected.

Deligne–Lusztig ('76):

- **G** a connected reductive algebraic group over $\mathbb{F} = \overline{\mathbb{F}}_p$
- $F : \mathbf{G} \to \mathbf{G}$ a Steinberg endomorphism $\mathbf{G}^F = [\alpha \in \mathbf{G} \mid \Gamma(\alpha) = \alpha] \alpha$ finite redu

Philosophical Observation

The representation theory of \mathbf{G}^F is harder when $Z(\mathbf{G})$ is disconnected.

Deligne–Lusztig ('76):

• Should embed $\mathbf{G}^F \lhd \widetilde{\mathbf{G}}^F$ as a normal subgroup such that $Z(\widetilde{\mathbf{G}})$ is connected.

- **G** a connected reductive algebraic group over $\mathbb{F} = \overline{\mathbb{F}}_p$
- *F* : G → G a Steinberg endomorphism
 → G^F = {g ∈ G | F(g) = g} a finite reductive group

Philosophical Observation

The representation theory of \mathbf{G}^F is harder when $Z(\mathbf{G})$ is disconnected.

Deligne–Lusztig ('76):

- Should embed $\mathbf{G}^F \lhd \widetilde{\mathbf{G}}^F$ as a normal subgroup such that $Z(\widetilde{\mathbf{G}})$ is connected.
- $\mathbb{F}^{\times} \times \cdots \times \mathbb{F}^{\times} \cong T \leqslant G$ an *F*-stable maximal torus

$$\mathbf{G} \times_{Z(\mathbf{G})} \mathbf{T} = (\mathbf{G} \times \mathbf{T}) / \{(z, z^{-1}) \mid z \in Z(\mathbf{G})\}$$

Example (G = $SL_n(\mathbb{F})$)

- if $p \nmid n$ then $\mathbf{G} \times_{Z(\mathbf{G})} \mathbf{T} \cong \mathsf{GL}_n(\mathbb{F})$
- if $n = p^k$ then $\mathbf{G} \times_{Z(\mathbf{G})} \mathbf{T} \cong \mathbf{G} \times \mathbf{T}$

Example (G = $SL_n(\mathbb{F})$)

- if $p \nmid n$ then $\mathbf{G} \times_{Z(\mathbf{G})} \mathbf{T} \cong \mathsf{GL}_n(\mathbb{F})$
- if $n = p^k$ then $\mathbf{G} \times_{Z(\mathbf{G})} \mathbf{T} \cong \mathbf{G} \times \mathbf{T}$

Regular Embedding (Lusztig '88)

A closed embedding $\iota : \mathbf{G} \hookrightarrow \widetilde{\mathbf{G}}$ is a regular embedding if:

- $\widetilde{\mathbf{G}} = \iota(\mathbf{G}) Z(\widetilde{\mathbf{G}})$ and $Z(\widetilde{\mathbf{G}})$ is connected
- $F: \widetilde{\mathbf{G}} \to \widetilde{\mathbf{G}}$ is a Steinberg endomorphism and $\iota \circ F = F \circ \iota$.

We then have $\mathbf{G}^F \cong \iota(\mathbf{G})^F \lhd \widetilde{\mathbf{G}}^F$.

• Root datum: $(\mathbf{G}, \mathbf{T}) \iff \Re(\mathbf{G}, \mathbf{T}) = (X(\mathbf{T}), \Phi, \check{X}(\mathbf{T}), \check{\Phi})$

- Root datum: $(\mathbf{G}, \mathbf{T}) \iff \Re(\mathbf{G}, \mathbf{T}) = (X(\mathbf{T}), \Phi, \check{X}(\mathbf{T}), \check{\Phi})$
 - $X(\mathbf{T}) = \operatorname{Hom}(\mathbf{T}, \mathbb{F}^{\times}) \cong \mathbb{Z}^n$
 - $\check{X}(\mathbf{T}) = \operatorname{Hom}(\mathbb{F}^{\times}, \mathbf{T}) \cong \mathbb{Z}^n$

(Recall: $\mathbf{T} \cong \mathbb{F}^{\times} \times \cdots \times \mathbb{F}^{\times}$.)

- Root datum: $(\mathbf{G}, \mathbf{T}) \iff \mathcal{R}(\mathbf{G}, \mathbf{T}) = (X(\mathbf{T}), \Phi, \check{X}(\mathbf{T}), \check{\Phi})$
 - $X(\mathbf{T}) = \operatorname{Hom}(\mathbf{T}, \mathbb{F}^{\times}) \cong \mathbb{Z}^n$
 - $\check{X}(\mathbf{T}) = \operatorname{Hom}(\mathbb{F}^{\times}, \mathbf{T}) \cong \mathbb{Z}^n$

(Recall: $\mathbf{T} \cong \mathbb{F}^{\times} \times \cdots \times \mathbb{F}^{\times}$.)

• $Z(\mathbf{G}) \hookrightarrow \mathbf{T} \quad \rightsquigarrow \quad X(\mathbf{T}) \twoheadrightarrow X(Z(\mathbf{G}))$

- Root datum: $(\mathbf{G}, \mathbf{T}) \iff \mathcal{R}(\mathbf{G}, \mathbf{T}) = (X(\mathbf{T}), \Phi, \check{X}(\mathbf{T}), \check{\Phi})$
 - $X(\mathbf{T}) = \operatorname{Hom}(\mathbf{T}, \mathbb{F}^{\times}) \cong \mathbb{Z}^n$
 - $\check{X}(\mathbf{T}) = \operatorname{Hom}(\mathbb{F}^{\times}, \mathbf{T}) \cong \mathbb{Z}^n$

(Recall: $\mathbf{T} \cong \mathbb{F}^{\times} \times \cdots \times \mathbb{F}^{\times}$.)

- $Z(\mathbf{G}) \hookrightarrow \mathbf{T} \quad \rightsquigarrow \quad X(\mathbf{T}) \twoheadrightarrow X(Z(\mathbf{G}))$
- $Z(\mathbf{G}) = \bigcap_{\alpha \in \Phi} \operatorname{Ker}(\alpha) \quad \rightsquigarrow \quad (X(\mathbf{T})/\mathbb{Z}\Phi)_{p'} \cong X(Z(\mathbf{G}))$

- Root datum: $(\mathbf{G}, \mathbf{T}) \iff \mathcal{R}(\mathbf{G}, \mathbf{T}) = (X(\mathbf{T}), \Phi, \check{X}(\mathbf{T}), \check{\Phi})$
 - $X(\mathbf{T}) = \operatorname{Hom}(\mathbf{T}, \mathbb{F}^{\times}) \cong \mathbb{Z}^n$
 - $\check{X}(\mathbf{T}) = \operatorname{Hom}(\mathbb{F}^{\times}, \mathbf{T}) \cong \mathbb{Z}^n$

(Recall: $\mathbf{T} \cong \mathbb{F}^{\times} \times \cdots \times \mathbb{F}^{\times}$.)

- $Z(\mathbf{G}) \hookrightarrow \mathbf{T} \quad \rightsquigarrow \quad X(\mathbf{T}) \twoheadrightarrow X(Z(\mathbf{G}))$
- $Z(\mathbf{G}) = \bigcap_{\alpha \in \Phi} \operatorname{Ker}(\alpha) \quad \rightsquigarrow \quad (X(\mathbf{T})/\mathbb{Z}\Phi)_{p'} \cong X(Z(\mathbf{G}))$

Lemma

 $Z(\mathbf{G})$ is connected if and only if $X(\mathbf{T})/\mathbb{Z}\Phi$ has no *p*'-torsion.

- Root datum: $(\mathbf{G}, \mathbf{T}) \iff \Re(\mathbf{G}, \mathbf{T}) = (X(\mathbf{T}), \Phi, \check{X}(\mathbf{T}), \check{\Phi})$
 - $X(\mathbf{T}) = \operatorname{Hom}(\mathbf{T}, \mathbb{F}^{\times}) \cong \mathbb{Z}^n$
 - $\check{X}(\mathbf{T}) = \operatorname{Hom}(\mathbb{F}^{\times}, \mathbf{T}) \cong \mathbb{Z}^n$

(Recall: $\mathbf{T} \cong \mathbb{F}^{\times} \times \cdots \times \mathbb{F}^{\times}$.)

- $Z(\mathbf{G}) \hookrightarrow \mathbf{T} \quad \rightsquigarrow \quad X(\mathbf{T}) \twoheadrightarrow X(Z(\mathbf{G}))$
- $Z(\mathbf{G}) = \bigcap_{\alpha \in \Phi} \operatorname{Ker}(\alpha) \quad \rightsquigarrow \quad (X(\mathbf{T})/\mathbb{Z}\Phi)_{p'} \cong X(Z(\mathbf{G}))$

Lemma

 $Z(\mathbf{G})$ is connected if and only if $X(\mathbf{T})/\mathbb{Z}\Phi$ has no p'-torsion.

Definition

 $Z(\mathbf{G})$ is smooth if $X(\mathbf{T})/\mathbb{Z}\Phi$ has no *p*-torsion.

Example

Example

 $\mathbf{G} = \mathsf{GL}_n(\mathbb{K})$, **T** diagonal matrices, then $X(\mathbf{T})$ has a natural basis { e_1, \ldots, e_n }.

Example

 $\mathbf{G} = \mathsf{GL}_n(\mathbb{K})$, **T** diagonal matrices, then $X(\mathbf{T})$ has a natural basis $\{e_1, \ldots, e_n\}$. We have

$$\mathbb{Z}\Phi = \{a_1e_1 + \dots + a_ne_n \mid a_1 + \dots + a_n = 0\}$$

= Span_{\mathbb{Z}} \{e_1 - e_2, \dots, e_{n-1} - e_n\}

and $X(\mathbf{T})/\mathbb{Z}\Phi$ has no torsion as $X(\mathbf{T}) = \mathbb{Z}\Phi \oplus \mathbb{Z}e_n$.

Example

 $\mathbf{G} = \mathsf{GL}_n(\mathbb{K})$, **T** diagonal matrices, then $X(\mathbf{T})$ has a natural basis $\{e_1, \ldots, e_n\}$. We have

$$\mathbb{Z}\Phi = \{a_1e_1 + \dots + a_ne_n \mid a_1 + \dots + a_n = 0\}$$

= Span_{\mathbb{Z}} \{e_1 - e_2, \dots, e_{n-1} - e_n\}

and $X(\mathbf{T})/\mathbb{Z}\Phi$ has no torsion as $X(\mathbf{T}) = \mathbb{Z}\Phi \oplus \mathbb{Z}e_n$.

Definition

A regular embedding $\iota : \mathbf{G} \hookrightarrow \widetilde{\mathbf{G}}$ is a smooth regular embedding if $Z(\widetilde{\mathbf{G}})$ is connected and smooth.

Example

 $\mathbf{G} = \mathsf{GL}_n(\mathbb{K})$, **T** diagonal matrices, then $X(\mathbf{T})$ has a natural basis $\{e_1, \ldots, e_n\}$. We have

$$\mathbb{Z}\Phi = \{a_1e_1 + \dots + a_ne_n \mid a_1 + \dots + a_n = 0\}$$

= Span_{\mathbb{Z}} \{e_1 - e_2, \dots, e_{n-1} - e_n\}

and $X(\mathbf{T})/\mathbb{Z}\Phi$ has no torsion as $X(\mathbf{T}) = \mathbb{Z}\Phi \oplus \mathbb{Z}e_n$.

Definition

A regular embedding $\iota : \mathbf{G} \hookrightarrow \widetilde{\mathbf{G}}$ is a smooth regular embedding if $Z(\widetilde{\mathbf{G}})$ is connected and smooth.

Example: $SL_n(\mathbb{F}) \hookrightarrow GL_n(\mathbb{F})$.

If we have a regular embedding $\iota: G \hookrightarrow \widetilde{G}$ then

$$\iota: \mathbf{T} \hookrightarrow \widetilde{\mathbf{T}} \quad \Longleftrightarrow \quad X(\widetilde{\mathbf{T}}) \twoheadrightarrow X(\mathbf{T})$$

If we have a regular embedding $\iota: G \hookrightarrow \widetilde{G}$ then

$$\iota:\mathbf{T}\hookrightarrow\widetilde{\mathbf{T}}\quad \Longleftrightarrow\quad X(\widetilde{\mathbf{T}})\twoheadrightarrow X(\mathbf{T})$$

•
$$\mathcal{R} = \mathcal{R}(\mathbf{G}, \mathbf{T}) = (X, \Phi, \check{X}, \check{\Phi}).$$

If we have a regular embedding $\iota: G \hookrightarrow \widetilde{G}$ then

$$\iota: \mathbf{T} \hookrightarrow \widetilde{\mathbf{T}} \quad \leftrightsquigarrow \quad X(\widetilde{\mathbf{T}}) \twoheadrightarrow X(\mathbf{T})$$

•
$$\mathcal{R} = \mathcal{R}(\mathbf{G}, \mathbf{T}) = (X, \Phi, \check{X}, \check{\Phi}).$$

• $A := X/\mathbb{Z}\Phi$ then we have a surjective map $f : X \twoheadrightarrow A$.

If we have a regular embedding $\iota: G \hookrightarrow \widetilde{G}$ then

$$\iota:\mathbf{T}\hookrightarrow\widetilde{\mathbf{T}}\quad \Longleftrightarrow\quad X(\widetilde{\mathbf{T}})\twoheadrightarrow X(\mathbf{T})$$

•
$$\mathcal{R} = \mathcal{R}(\mathbf{G}, \mathbf{T}) = (X, \Phi, \check{X}, \check{\Phi}).$$

- $A := X/\mathbb{Z}\Phi$ then we have a surjective map $f : X \rightarrow A$.
- $\mathfrak{T} = (T, \emptyset, \check{T}, \emptyset)$ and $h: T \twoheadrightarrow A$

$$X \oplus_{(A,f,h)} T = \{(x,t) \in X \oplus T \mid f(x) = h(t)\}.$$

and a surjective homomorphism

$$\phi: X \oplus_{(A,f,h)} T \twoheadrightarrow X.$$

• We have $(X \oplus_{(A,f,h)} T)/\mathbb{Z}\Phi \cong T$ has no torsion.

- We have $(X \oplus_{(A,f,h)} T)/\mathbb{Z}\Phi \cong T$ has no torsion.
- $X \oplus_{(A,f,h)} T \longrightarrow \mathcal{R} \oplus_{(A,f,h)} \mathcal{T} = \mathcal{R}(\mathbf{G}',\mathbf{T}')$

- We have $(X \oplus_{(A,f,h)} T)/\mathbb{Z}\Phi \cong T$ has no torsion.
- $X \oplus_{(A,f,h)} T \longrightarrow \mathcal{R} \oplus_{(A,f,h)} \mathfrak{T} = \mathcal{R}(\mathbf{G}',\mathbf{T}')$

Lemma (T.)

There exists a smooth regular embedding $\mathbf{G} \hookrightarrow \widetilde{\mathbf{G}}$.

- We have $(X \oplus_{(A,f,h)} T)/\mathbb{Z}\Phi \cong T$ has no torsion.
- $X \oplus_{(A,f,h)} T \longrightarrow \mathcal{R} \oplus_{(A,f,h)} \mathcal{T} = \mathcal{R}(\mathbf{G}',\mathbf{T}')$

Lemma (T.)

There exists a smooth regular embedding $\mathbf{G} \hookrightarrow \widetilde{\mathbf{G}}$.

Proposition (T.)

Assume G_n is one of

 $SL_{n+1}(\mathbb{F})$, $Sp_{2n}(\mathbb{F})$, $Spin_{2n+1}(\mathbb{F})$, or $Spin_{2n}(\mathbb{F})$.

- We have $(X \oplus_{(A,f,h)} T)/\mathbb{Z}\Phi \cong T$ has no torsion.
- $X \oplus_{(A,f,h)} T \longrightarrow \mathcal{R} \oplus_{(A,f,h)} \mathcal{T} = \mathcal{R}(\mathbf{G}',\mathbf{T}')$

Lemma (T.)

There exists a smooth regular embedding $\mathbf{G} \hookrightarrow \widetilde{\mathbf{G}}$.

Proposition (T.)

Assume G_n is one of

 $SL_{n+1}(\mathbb{F})$, $Sp_{2n}(\mathbb{F})$, $Spin_{2n+1}(\mathbb{F})$, or $Spin_{2n}(\mathbb{F})$.

There exists a smooth regular embedding $\mathbf{G}_n \hookrightarrow \widetilde{\mathbf{G}}_n$ such that each Levi subgroup of $\widetilde{\mathbf{G}}_n$ is isomorphic to

$$\mathsf{GL}_{n_1}(\mathbb{F}) \times \cdots \times \mathsf{GL}_{n_r}(\mathbb{F}) \times \widetilde{\mathbf{G}}_m$$

where $n = n_1 + \cdots + n_r + m$.

• $\mathscr{R} :=$ the isomorphism classes of root data.

- $\mathscr{R} :=$ the isomorphism classes of root data.
- We partition \mathscr{R} into smaller subsets

$$\mathscr{R} = \bigsqcup_{[\mathscr{R}, \mathfrak{T}, K]/\sim} \mathscr{R}[\mathscr{R}, \mathfrak{T}, K]$$

where $\mathscr{R} = (X, \Phi, \check{X}, \check{\Phi})$ is semisimple, $\mathfrak{T} = (T, \emptyset, \check{T}, \emptyset)$ is a torus, and $\Phi \subseteq K \subseteq X$ is a submodule.

- $\mathscr{R} :=$ the isomorphism classes of root data.
- We partition \mathscr{R} into smaller subsets

$$\mathscr{R} = \bigsqcup_{[\mathscr{R}, \mathfrak{T}, K]/\sim} \mathscr{R}[\mathscr{R}, \mathfrak{T}, K]$$

where $\mathscr{R} = (X, \Phi, \check{X}, \check{\Phi})$ is semisimple, $\mathfrak{T} = (T, \emptyset, \check{T}, \emptyset)$ is a torus, and $\Phi \subseteq K \subseteq X$ is a submodule.

Remark

Recall that $\mathbf{G} = \mathbf{G}_{der} Z^{\circ}(\mathbf{G})$. Assume $\mathfrak{R}(\mathbf{G}) \in \mathscr{R}[\mathfrak{R}, \mathfrak{T}, K]$ then

 $\mathcal{R}(\mathbf{G}_{der}) \cong \mathcal{R}$ $\mathcal{R}(Z^{\circ}(\mathbf{G})) \cong \mathcal{T}$ $X(\mathbf{G}_{der} \cap Z^{\circ}(\mathbf{G})) \cong (X/K)_{p'}$

•
$$\mathcal{R} = (X, \Phi, \check{X}, \check{\Phi})$$
 and $\mathcal{T} = (T, \emptyset, \check{T}, \emptyset)$

- $\mathcal{R} = (X, \Phi, \check{X}, \check{\Phi}) \text{ and } \mathcal{T} = (T, \emptyset, \check{T}, \emptyset)$
- A = X/K and $f : X \rightarrow A$ the natural projection

- $\mathcal{R} = (X, \Phi, \check{X}, \check{\Phi}) \text{ and } \mathcal{T} = (T, \emptyset, \check{T}, \emptyset)$
- A = X/K and $f : X \rightarrow A$ the natural projection
- $h: T \rightarrow A$ a surjective homomorphism

- $\mathcal{R} = (X, \Phi, \check{X}, \check{\Phi}) \text{ and } \mathcal{T} = (T, \emptyset, \check{T}, \emptyset)$
- A = X/K and $f : X \rightarrow A$ the natural projection
- $h: T \rightarrow A$ a surjective homomorphism

Theorem (T.)

The map $Aut(A) \to \mathscr{R}$ defined by $\psi \mapsto \mathcal{R} \oplus_{(A,f,\psi \circ h)} \mathcal{T}$ induces a bijection

 $\operatorname{Aut}_{(\mathcal{R},f)}(A) \setminus \operatorname{Aut}(A) / \operatorname{Aut}_{(\mathcal{T},h)}(A) \to \mathscr{R}[\mathcal{R},\mathcal{T},K].$

- $\mathcal{R} = (X, \Phi, \check{X}, \check{\Phi}) \text{ and } \mathcal{T} = (T, \emptyset, \check{T}, \emptyset)$
- A = X/K and $f : X \rightarrow A$ the natural projection
- $h: T \rightarrow A$ a surjective homomorphism

Theorem (T.)

The map $Aut(A) \to \mathscr{R}$ defined by $\psi \mapsto \mathcal{R} \oplus_{(A,f,\psi \circ h)} \mathcal{T}$ induces a bijection

 $\operatorname{Aut}_{(\mathcal{R},f)}(A) \setminus \operatorname{Aut}(A) / \operatorname{Aut}_{(\mathcal{T},h)}(A) \to \mathscr{R}[\mathcal{R},\mathcal{T},K].$

Corollary (T.)

If *A* has *s* invariant factors and $rk(T) \ge s + 1$ then $\mathscr{R}[\mathcal{R}, \mathcal{T}, K]$ has cardinality 1.

Assume **G** has a smooth connected centre and $\mathbf{G}_{der} \cong SL_n(\mathbb{F})$. How many isomorphism classes of such groups are there?

Assume **G** has a smooth connected centre and $\mathbf{G}_{der} \cong SL_n(\mathbb{F})$. How many isomorphism classes of such groups are there?

• dim
$$(Z^{\circ}(\mathbf{G})) = 0 \rightsquigarrow$$
 None,

Assume **G** has a smooth connected centre and $\mathbf{G}_{der} \cong SL_n(\mathbb{F})$. How many isomorphism classes of such groups are there?

• dim
$$(Z^{\circ}(\mathbf{G})) = 0 \rightsquigarrow$$
 None,

• dim $(Z^{\circ}(\mathbf{G})) = 1 \rightsquigarrow \phi(n)/2$, e.g., $\mathsf{GL}_n(\mathbb{F})$,

Assume **G** has a smooth connected centre and $\mathbf{G}_{der} \cong SL_n(\mathbb{F})$. How many isomorphism classes of such groups are there?

- dim $(Z^{\circ}(\mathbf{G})) = 0 \rightsquigarrow$ None,
- dim $(Z^{\circ}(\mathbf{G})) = 1 \rightsquigarrow \phi(n)/2$, e.g., $\mathsf{GL}_n(\mathbb{F})$,
- dim $(Z^{\circ}(\mathbf{G})) = 2 \rightsquigarrow$ there's only one, e.g., $\mathsf{GL}_n(\mathbb{F}) \times (\mathbb{F}^{\times})^k$.

- Reduce proving a property (P) for (G, F) to the case where G_{der} is simple and simply connected. This assumes F : G → G is a Frobenius endomorphism.
- Get new proofs of Asai's results and extend them to show that they are compatible with Steinberg endomorphisms.