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SLn(q)

C GLn(q)G := =: G̃

Representation Theory
is "hard"

Representation Theory
is "easier"

Clifford’s Theorem

• G̃/G is cyclic  ResG̃
G(χ̃) = χ1 + · · ·+ χr

• g ∈ G and 〈g〉G̃ ∩G = 〈g〉G then

χi(g) =
χ̃(g)

r
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• G a connected reductive algebraic group over F = Fp

• F : G→ G a Steinberg endomorphism
 GF = {g ∈ G | F(g) = g} a finite reductive group

Philosophical Observation

The representation theory of GF is harder when Z(G) is
disconnected.

Deligne–Lusztig (’76):

• Should embed GF C G̃F as a normal subgroup such that
Z(G̃) is connected.

• F× × · · · ×F× ∼= T 6 G an F-stable maximal torus

G×Z(G) T = (G×T)/{(z, z−1) | z ∈ Z(G)}
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Example (G = SLn(F))

• if p - n then G×Z(G) T ∼= GLn(F)

• if n = pk then G×Z(G) T ∼= G×T

Regular Embedding (Lusztig ’88)

A closed embedding ι : G ↪→ G̃ is a regular embedding if:

• G̃ = ι(G)Z(G̃) and Z(G̃) is connected

• F : G̃→ G̃ is a Steinberg endomorphism and ι ◦ F = F ◦ ι.

We then have GF ∼= ι(G)F C G̃F.
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Smooth Regular Embeddings

• Root datum: (G, T)! R(G, T) = (X(T),Φ, qX(T), qΦ)

• X(T) = Hom(T, F×) ∼= Zn

• qX(T) = Hom(F×, T) ∼= Zn

(Recall: T ∼= F× × · · · ×F×.)

• Z(G) ↪→ T  X(T)� X(Z(G))

• Z(G) =
⋂
α∈Φ Ker(α)  (X(T)/ZΦ)p ′ ∼= X(Z(G))

Lemma

Z(G) is connected if and only if X(T)/ZΦ has no p ′-torsion.

Definition

Z(G) is smooth if X(T)/ZΦ has no p-torsion.
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Smooth Regular Embeddings

Example

G = GLn(K), T diagonal matrices, then X(T) has a natural
basis {e1, . . . , en}. We have

ZΦ = {a1e1 + · · ·+ anen | a1 + · · ·+ an = 0}

= SpanZ{e1 − e2, . . . , en−1 − en}

and X(T)/ZΦ has no torsion as X(T) = ZΦ⊕Zen.

Definition

A regular embedding ι : G ↪→ G̃ is a smooth regular
embedding if Z(G̃) is connected and smooth.

Example: SLn(F) ↪→ GLn(F).

6/12



Smooth Regular Embeddings

Example

G = GLn(K), T diagonal matrices, then X(T) has a natural
basis {e1, . . . , en}.

We have

ZΦ = {a1e1 + · · ·+ anen | a1 + · · ·+ an = 0}

= SpanZ{e1 − e2, . . . , en−1 − en}

and X(T)/ZΦ has no torsion as X(T) = ZΦ⊕Zen.

Definition

A regular embedding ι : G ↪→ G̃ is a smooth regular
embedding if Z(G̃) is connected and smooth.

Example: SLn(F) ↪→ GLn(F).

6/12



Smooth Regular Embeddings

Example

G = GLn(K), T diagonal matrices, then X(T) has a natural
basis {e1, . . . , en}. We have

ZΦ = {a1e1 + · · ·+ anen | a1 + · · ·+ an = 0}

= SpanZ{e1 − e2, . . . , en−1 − en}

and X(T)/ZΦ has no torsion as X(T) = ZΦ⊕Zen.

Definition

A regular embedding ι : G ↪→ G̃ is a smooth regular
embedding if Z(G̃) is connected and smooth.

Example: SLn(F) ↪→ GLn(F).

6/12



Smooth Regular Embeddings

Example

G = GLn(K), T diagonal matrices, then X(T) has a natural
basis {e1, . . . , en}. We have

ZΦ = {a1e1 + · · ·+ anen | a1 + · · ·+ an = 0}

= SpanZ{e1 − e2, . . . , en−1 − en}

and X(T)/ZΦ has no torsion as X(T) = ZΦ⊕Zen.

Definition

A regular embedding ι : G ↪→ G̃ is a smooth regular
embedding if Z(G̃) is connected and smooth.

Example: SLn(F) ↪→ GLn(F).

6/12



Smooth Regular Embeddings

Example

G = GLn(K), T diagonal matrices, then X(T) has a natural
basis {e1, . . . , en}. We have

ZΦ = {a1e1 + · · ·+ anen | a1 + · · ·+ an = 0}

= SpanZ{e1 − e2, . . . , en−1 − en}

and X(T)/ZΦ has no torsion as X(T) = ZΦ⊕Zen.

Definition

A regular embedding ι : G ↪→ G̃ is a smooth regular
embedding if Z(G̃) is connected and smooth.

Example: SLn(F) ↪→ GLn(F).

6/12



Remark

If we have a regular embedding ι : G ↪→ G̃ then

ι : T ↪→ T̃ ! X(T̃)� X(T)

• R = R(G, T) = (X,Φ, qX, qΦ).
• A := X/ZΦ then we have a surjective map f : X� A.
• T = (T, ∅, qT, ∅) and h : T � A

X⊕(A,f ,h) T = {(x, t) ∈ X⊕ T | f (x) = h(t)}.

and a surjective homomorphism

φ : X⊕(A,f ,h) T � X.
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• We have (X⊕(A,f ,h) T)/ZΦ ∼= T has no torsion.

• X⊕(A,f ,h) T  R⊕(A,f ,h) T = R(G ′, T ′)

Lemma (T.)

There exists a smooth regular embedding G ↪→ G̃.

Proposition (T.)

Assume Gn is one of

SLn+1(F), Sp2n(F), Spin2n+1(F), or Spin2n(F).

There exists a smooth regular embedding Gn ↪→ G̃n such
that each Levi subgroup of G̃n is isomorphic to

GLn1(F)× · · · ×GLnr(F)× G̃m

where n = n1 + · · ·+ nr + m.

8/12
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Isomorphism Classes of Root Data

• R := the isomorphism classes of root data.

• We partition R into smaller subsets

R =
⊔

[R,T,K]/∼

R[R,T, K]

where R = (X,Φ, qX, qΦ) is semisimple, T = (T, ∅, qT, ∅) is a
torus, and Φ ⊆ K ⊆ X is a submodule.

Remark

Recall that G = GderZ◦(G). Assume R(G) ∈ R[R,T, K] then

R(Gder) ∼= R R(Z◦(G)) ∼= T X(Gder ∩Z◦(G)) ∼= (X/K)p ′

9/12
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Isomorphism Classes of Root Data

• R = (X,Φ, qX, qΦ) and T = (T, ∅, qT, ∅)

• A = X/K and f : X� A the natural projection
• h : T � A a surjective homomorphism

Theorem (T.)

The map Aut(A)→ R defined by ψ 7→ R⊕(A,f ,ψ◦h) T induces
a bijection

Aut(R,f)(A) \Aut(A)/Aut(T,h)(A)→ R[R,T, K].

Corollary (T.)

If A has s invariant factors and rk(T) > s + 1 then R[R,T, K]
has cardinality 1.
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Isomorphism Classes of Root Data

Example

Assume G has a smooth connected centre and Gder
∼= SLn(F).

How many isomorphism classes of such groups are there?

• dim(Z◦(G)) = 0 None,

• dim(Z◦(G)) = 1 ϕ(n)/2, e.g., GLn(F),

• dim(Z◦(G)) = 2 there’s only one, e.g., GLn(F)× (F×)k.

11/12



Isomorphism Classes of Root Data

Example

Assume G has a smooth connected centre and Gder
∼= SLn(F).

How many isomorphism classes of such groups are there?

• dim(Z◦(G)) = 0 None,

• dim(Z◦(G)) = 1 ϕ(n)/2, e.g., GLn(F),

• dim(Z◦(G)) = 2 there’s only one, e.g., GLn(F)× (F×)k.

11/12



Isomorphism Classes of Root Data

Example

Assume G has a smooth connected centre and Gder
∼= SLn(F).

How many isomorphism classes of such groups are there?

• dim(Z◦(G)) = 0 None,

• dim(Z◦(G)) = 1 ϕ(n)/2, e.g., GLn(F),

• dim(Z◦(G)) = 2 there’s only one, e.g., GLn(F)× (F×)k.

11/12



Isomorphism Classes of Root Data

Example

Assume G has a smooth connected centre and Gder
∼= SLn(F).

How many isomorphism classes of such groups are there?

• dim(Z◦(G)) = 0 None,

• dim(Z◦(G)) = 1 ϕ(n)/2, e.g., GLn(F),

• dim(Z◦(G)) = 2 there’s only one, e.g., GLn(F)× (F×)k.

11/12



Asai’s Reduction Techniques

• Reduce proving a property (P) for (G, F) to the case where
Gder is simple and simply connected. This assumes
F : G→ G is a Frobenius endomorphism.

• Get new proofs of Asai’s results and extend them to show
that they are compatible with Steinberg endomorphisms.
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