Decomposition Matrices of Unipotent Blocks JAY TAYLOR

(joint work with Olivier Brunat and Olivier Dudas)

Assume G is a finite group and $\operatorname{Irr}(G)$ is the set of complex-valued irreducible characters of G. Fix a prime $\ell > 0$ and let $\operatorname{IBr}(G)$ be the ℓ -modular Brauer characters of G, which are functions $G_{\ell'} \to \mathbb{C}$ where $G_{\ell'} \subseteq G$ is the set of elements whose order is coprime to ℓ .

If $f: G \to \mathbb{C}$ is a function then we denote by $f^0 := f|_{G_{\ell'}}$ the restriction of f to the ℓ' -elements of G. It is well known that if $\chi \in \operatorname{Irr}(G)$ then there exist integers $d_{\chi,\varphi} \ge 0$ such that

$$\chi^0 = \sum_{\varphi \in \mathrm{IBr}(G)} d_{\chi,\varphi} \varphi.$$

The resulting matrix $(d_{\chi,\varphi})$ is the $(\ell$ -)decomposition matrix of G. Obtaining information about this matrix is a central problem in the representation theory of finite groups and calculating exactly the entries $d_{\chi,\varphi}$ is an extremely challenging problem in general.

We will consider the case where $G = \mathbf{G}(k)$ is a finite reductive group and $\ell \neq p := \operatorname{char}(k)$, i.e., G is the group of k-points of a connected reductive algebraic group \mathbf{G} defined over a finite field k. We will denote by \bar{k} an algebraic closure of k. We then have a corresponding group $\mathbf{G}(\bar{k})$ of \bar{k} -points which contains G as a subgroup. We will let $C_{u}(\mathbf{G})$ denote the set of unipotent conjugacy classes of $\mathbf{G}(\bar{k})$.

After [7, 2, 6] we can associate to each irreducible character $\chi \in \operatorname{Irr}(G)$ a class $\mathcal{O}_{\chi} \in \mathcal{C}_{\mathrm{u}}(\mathbf{G})$, called the *unipotent support* of χ . It is a little delicate to define this class in general but if p is good for \mathbf{G} and the centre $Z(\mathbf{G}(\bar{k}))$ is connected then it is shown in [8] that \mathcal{O}_{χ} is the unique unipotent class satisfying the following conditions:

- $\chi(u) \neq 0$ for some $u \in \mathcal{O}_{\chi} \cap G \neq \emptyset$
- if $v \in G$ is a unipotent element and $\chi(v) \neq 0$ then $v \in \overline{\mathcal{O}_{\chi}}$ (the Zariski closure of \mathcal{O}_{χ}).

Example. If $1_G \in \operatorname{Irr}(G)$ is the trivial character then \mathcal{O}_{1_G} is the class of regular unipotent elements and if $\operatorname{St}_G \in \operatorname{Irr}(G)$ is the Steinberg character then $\mathcal{O}_{\operatorname{St}_G}$ is the trivial unipotent class.

For finite reductive groups one has an important set of characters $\mathcal{E}(G,1) \subseteq \operatorname{Irr}(G)$, defined using ℓ -adic cohomology, known as the set of *unipotent characters*. These characters are a generic model for all the irreducible characters of G. Using the unipotent support we obtain a partition of the unipotent characters

$$\mathcal{E}(G,1) = \bigsqcup_{\mathcal{O} \in \mathcal{C}_{u}(\mathbf{G})} \mathcal{E}(G,1,\mathcal{O})$$

where $\mathcal{E}(G, 1, \mathcal{O}) = \{\chi \in \mathcal{E}(G, 1) \mid \mathcal{O}_{\chi} = \mathcal{O}\}$. Note this set might be empty in general and the non-empty such sets are known as *families* of unipotent characters.

Example. Assume $G = \operatorname{Sp}_4(k)$ then $\mathcal{C}_u(\mathbf{G}) = \{\mathcal{O}_{(1^4)}, \mathcal{O}_{(2,1^2)}, \mathcal{O}_{(2^2)}, \mathcal{O}_{(4)}\}$ where each class is labelled by the sizes of the Jordan blocks in the Jordan normal form of an element under the natural representation $\operatorname{Sp}_4(\bar{k}) \to \operatorname{GL}_4(\bar{k})$. It is well known that $|\mathcal{E}(G, 1)| = 6$ and the sizes of the corresponding sets $\mathcal{E}(G, 1, \mathcal{O})$ are

O	$\mathcal{O}_{(1^4)}$	$\mathcal{O}_{(2,1^2)}$	$\mathcal{O}_{(2^2)}$	$\mathcal{O}_{(4)}$
$ \mathcal{E}(G,1,\mathcal{O}) $	1	0	4	1

Here $\mathcal{E}(G, 1, \mathcal{O}_{(1^4)}) = \{ \text{St}_G \}$ and $\mathcal{E}(G, 1, \mathcal{O}_{(4)}) = \{ 1_G \}.$

On the modular side we have a corresponding subset $\mathcal{B}(G,1) \subseteq \operatorname{IBr}(G)$ of Brauer characters, which is the union of the *unipotent blocks* of G. This set is defined by a corresponding subset $\mathcal{E}_{\ell}(G,1) \subseteq \operatorname{Irr}(G)$ of irreducible characters, which contains the set of unipotent characters. This correspondence is such that if $\chi \in \mathcal{E}_{\ell}(G,1)$ and $\varphi \in \operatorname{IBr}(G)$ then $d_{\chi,\varphi} \neq 0$ implies $\varphi \in \mathcal{B}(G,1)$.

In what follows we will be interested in the following part of the decomposition matrix

$$D = (d_{\chi,\varphi} \mid \chi \in \mathcal{E}_{\ell}(G, 1) \text{ and } \varphi \in \mathcal{B}(G, 1)).$$

This matrix is, in general, not square as $|\mathcal{E}_{\ell}(G,1)| \ge |\mathcal{B}(G,1)|$. However, it has been shown by Geck–Hiß that under some mild assumptions on ℓ we have $|\mathcal{E}(G,1)| = |\mathcal{B}(G,1)|$, this holds for instance if ℓ is very good for **G**. This is known to be false in general.

Let us recall that we have a natural partial order \leq on $C_u(\mathbf{G})$ defined by $\mathcal{O}' \leq \mathcal{O}$ if and only if $\mathcal{O}' \subseteq \overline{\mathcal{O}}$ (the Zariski closure). With this in hand we can state Geck's conjecture on the decomposition matrix of G. To avoid introducing more notation we will work with a stronger assumption on ℓ than is actually stated in the conjecture. We note that a weak version of this conjecture was first proposed in Geck's PhD Thesis [3]. It was then further strengthened by Geck–Hiß [5] and reached the form we state here in [4].

Geck's Unitriangularity Conjecture. Assume ℓ is a very good prime for **G**. Let $S_{\mathbf{G}} = \{\mathcal{O} \in \mathfrak{Cl}_{\mathfrak{u}}(\mathbf{G}) \mid \mathcal{E}(G, 1, \mathcal{O}) \neq \emptyset\} = \{\mathcal{O}_1, \ldots, \mathcal{O}_r\}$ where $\mathcal{O}_r \leq \cdots \leq \mathcal{O}_1$ is a total order refining the partial order \preceq on $S_{\mathbf{G}}$. Then there is an ordering of the Brauer characters in $\mathcal{B}(G, 1)$ such that

$$D = \begin{bmatrix} D_1 & 0 & 0 \\ \star & \ddots & 0 \\ \\ \hline \star & \star & D_r \\ \hline \hline \star & \star & \star \end{bmatrix} \begin{array}{c} \mathcal{E}(G, 1, \mathcal{O}_1) \\ \vdots \\ \mathcal{E}(G, 1, \mathcal{O}_r) \end{array}$$

where each D_i is the identity matrix with rows labelled by the irreducible characters in $\mathcal{E}(G, 1, \mathcal{O}_i)$.

Example. The poset $(\mathcal{S}_{\mathbf{G}}, \preceq)$ contains a unique maximal element, namely the class $\mathcal{O}_{\text{reg}} \in \mathcal{S}_{\mathbf{G}}$ of regular unipotent elements, because $\mathcal{E}(G, 1, \mathcal{O}_{\text{reg}}) = \{1_G\}$. In

the statement of the conjecture $\mathcal{O}_1 = \mathcal{O}_{\text{reg}}$ and thus we should have 1_G^0 is an irreducible Brauer character, which it certainly is.

Similarly, the poset $(\mathcal{S}_{\mathbf{G}}, \preceq)$ contains a unique minimal element, namely the trivial class $\mathcal{O}_{\text{triv}} \in \mathcal{S}_{\mathbf{G}}$, because $\mathcal{E}(G, 1, \mathcal{O}_{\text{triv}}) = \{\text{St}_G\}$. In the statement of the conjecture $\mathcal{O}_r = \mathcal{O}_{\text{triv}}$ and St_G^0 could potentially have many irreducible constituents.

Since its inception several people have worked towards obtaining a proof of this conjecture. The conjecture was shown to be true by Dipper when $G = \operatorname{GL}_n(k)$ and Geck when $G = \operatorname{GL}_n(k)$. A particularly notable milestone in the life of the conjecture was achieved by Gruber–Hiß who showed the conjecture was true when G is a classical group and ℓ is a so-called linear prime for G. Together with O. Brunat and O. Dudas we have established the following.

Theorem (Brunat–Dudas–T.). Assume p is good for **G** and ℓ is very good for **G**. If G has no component of type E_8 and $q \equiv 1 \pmod{4}$ if G has a component of type E_7 then Geck's Unitriangularity Conjecture holds.

We are optimistic that our methods will be able to treat the cases of E_7 and E_8 and thus we hope to establish Geck's conjecture for all finite reductive groups, with appropriate assumptions on p and ℓ . As mentioned above the assumption that ℓ is very good is stronger than the assumption imposed in the original statement of the conjecture. Our result can be established with an assumption on ℓ matching that made in [4]. In fact, after work of Denoncin [1], it seems likely that some version of the unitriangularity can be established assuming only that ℓ is a good prime for **G**.

References

- D. DENONCIN, Stable basic sets for finite special linear and unitary groups, Adv. Math. 307 (2017), 344?368.
- [2] M. GECK, On the average values of the irreducible characters of finite groups of Lie type on geometric unipotent classes, Doc. Math. 1 (1996), no. 15, 293–317.
- M. GECK, Verallgemeinerte Gelfand-Graev Charaktere und Zerlegungszahlen endlicher Gruppen vom Lie-Typ, Dissertation, RWTH Aachen, 1990.
- [4] M. GECK, Remarks on modular representations of finite groups of Lie type in non-defining characteristic. Algebraic groups and quantum groups, 71–80, Contemp. Math. 565, Amer. Math. Soc., Providence, RI, 2012.
- [5] M. GECK AND G. HISS, Modular representations of finite groups of Lie type in nondefining characteristic. Finite reductive groups (Luminy, 1994), 195–249, Progr. Math. 141, Birkhäuser Boston, Boston, MA, 1997.
- [6] M. GECK AND G. MALLE, On the existence of a unipotent support for the irreducible characters of a finite group of Lie type, Trans. Amer. Math. Soc. 352 (2000), no. 1, 429–456.
- [7] G. LUSZTIG, A unipotent support for irreducible representations, Adv. Math. 94 (1992), no. 2, 139–179.
- [8] J. TAYLOR, The Structure of Root Data and Smooth Regular Embeddings of Reductive Groups, Proc. Edinb. Math. Soc. (2) 62 (2019), no. 2, 523-552.