A Note on Skew Characters of Symmetric
Groups

Jay Taylor

Abstract. In previous work Regev used part of the representation theory of Lie
superalgebras to compute the values of a character of the symmetric group whose
decomposition into irreducible constituents is described by semistandard (k, ¢)-
tableaux. In this short note we give a new proof of Regev’s result using skew
characters.

1. Introduction

1.1. For any partition « € P(n) of an integer n > 0 we have a corresponding irre-
ducible character x, of the symmetric group &,; we assume this labelling is as in [JK81].
In [Reg13] Regev observed that the values of the character I', = ) X(a,1n-+) Obtained
by summing over all hook partitions were particularly simple. Specifically if v € P,(n)
is a partition of length r then we have

r(v) 2r-1 jfall parts of v are odd,
v g
! 0 otherwise.

Here we write I',(v) for the value of ', at an element of cycle type v.

1.2. To prove this result Regev considered a more general but related problem which
we now recall. For any integers k, ¢ > 0 and any partition « € P(n) we denote by sy ¢(«)
the number of all semistandard (k, ¢)-tableaux of shape &, see 3.1 for the definition.
Motivated by the representation theory of Lie superalgebras Regev considered the fol-
lowing character of &,

AIrC/: Z Sk,é(“)%a-
aeP(n)

The main result of [Reg13] is the following.
Theorem 1.3 (Regev). If v = (v1,...,v,) € P,(n) is a partition of length r then
r

A (v) = [Ttk + (=1)" ).

i=1
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Remark 1.4. Note that s, ¢(«) # 0 if and only if « is contained in the (k, £)-hook, as
defined in [BR87, 2.3]. In particular, we have A]f{e is the same as the character X0om
defined in [Reg13].

1.5. Using formulas for the coefficients sy ¢(x) obtained in [BR87] Regev deduces
that A%’l = 2I', from which the statement of 1.1 follows immediately. Although Theo-
rem 1.3 is stated purely in terms of the representation theory of the symmetric group
Regev’s proof uses, in an essential way, results of Berele-Regev on representations of
Lie superalgebras [BR87]. As is noted in the introduction to [Reg13] it is natural to ask
whether there is a proof of this result which uses only techniques from the symmetric
group. The purpose of this note is to provide such a proof. Our proof is based on a
description of the character A'f{g as a sum of skew characters'. With this we can use
the Murnaghan-Nakayama formula to compute the values of A% and thus prove The-
orem 1.3. As a closing remark we use our description in terms of skew characters to

show that A,l{1 = 2I', using the branching rule.
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2. Background on Skew Characters

2.1. Let N = {1,2,... } be the natural numbers and Ny = IN U {0}. Throughout we
use the term diagram to mean a subset of IN2. For any two diagrams S, T C IN? we write
S = T if there exist integers i,j € Zsuch that T = {(a+i,b+j) | (a,b) € S}; we say such
diagrams are equivalent. The notion of connected diagram and connected components of
a diagram have their usual natural meanings, see [Mac95, I, §1] for details. A diagram T
will be called a horizontal line, resp., vertical line, if for any (i, ), (i',j') € T we have i = i/,
resp., j = .

2.2. Forany k € INg we denote by C; the set of all compositions & = (a1,...,0p) € ]NS
of length k; we call «; a part of a. For such a composition we denote by |a| the sum
a1 + - -+ + ax and by a° the composition obtained from « by removing all parts equal
to 0. If n € Ny then we denote by P(n) the set of all «® = (ay,...,a;) € C such that
a1 = -+ = ap > 0and || = n, which are the partitions of n of length k. Moreover we
denote by P(n) the set Uren P (1) of all partitions of n. To each partition « € P(n) we
have a corresponding diagram T, = {(i,j) | 1 < j < a;} called the Young diagram of «.
For any two Young diagrams Ty C T, the difference T, \ Tp is called a skew diagram.

2.3. Let us denote by R the commutative unital graded ring @neNo R,, where R, is
the Z-module of all virtual characters of &,. The multiplication ® in this ring is given

I This idea was prompted by a recent question of Marcel Novaes on MathOverflow [Nov16], which is where
we also first learned of Regev’s work.



by tensor induction, i.e., we have

X®y = Indg" s (X ® )

for any x € Ry, and ¢ € R,,. For any integer 2 € Z we define an element [a] € R by

ifa>0,
] = X(a) 1 a
0 if a <O.

setting

Note that [0] = x(q) is the trivial character of &y = {1}, which is the unit in R. Now
assume a € P(n) is a partition then the corresponding irreducible character x, of &,

can be expressed via the following determinantal formula
X = det([a; —i+j]),

see [JK81, 2.3.15]. In such an expression we assume that i and j run over 1,...,k with k
larger than the length of « and any part of « which is undefined is set to 0. If S = T, \ T
is a skew diagram with |S| = n then following [JK81, 2.3.11] we define a corresponding
skew character of &,, by setting

Ps = det([a; — B — i+ j]).

The following are well known properties of skew characters which are easily deduced
from the above determinantal formulas, see the argument in [Mac95, I, 5.7] for a proof
of the first property.

Lemma 2.4. Assume S and S’ are skew diagrams then the following hold:
(a) if S,..., S, are the connected components of S then Ps = g, @ - - - Q1ps,,
(b) if S =S then Ys = g,
(c) if S = Ty for some partition « € P(n) then Ps = xa.

2.5. For any k, ¢,n € Ny we denote by By (1) C C x Cy the set of all pairs (A | u)
of compositions such that |A| 4 |u| = n; we call these bicompositions of n. Now for each
bicomposition (A | ) € By,(n) we denote by S|,y some (any) skew diagram whose
connected components Hy,..., H,, Vy,..., Vs C S( A are such that H; is a horizontal
line, resp., V; is a vertical line, and (|Hy|,..., |H;|) = A, resp., (|V1],...,|V;s|) = p°. Itis
easy to see that such a diagram exists. We then get a corresponding character of G,

~ ~ ~ ~ ~

Palw) = Psp = X))@ OX (1) @X (1)@ - - - X (1) (2.6)

This character does not depend upon the choice of skew diagram S, ) by (a) and (b)
of Lemma 2.4 because any two skew diagrams with equivalent connected components
yield the same character of &,,. The expression in terms of irreducible characters follows



from (a) and (c) because each connected component of S 1s equivalent to a Young
diagram.

Example 2.7. Consider the bicomposition (4,0,5;2,3) € B3,(14) then an example of a
corresponding skew diagram S (4,0,52,3) is given by T(11,7,2,2,2,1,1) \ T(7,2,1,1,1)'

[ [T T]

We then have §(40523) = X (4)0X(0)OX (5 ©X (1) X (13) = X (4)OX (5)OX (1) EX (13)-

2.8. The main tool we will use to prove Theorem 1.3 is the Murnghan-Nakayama
formula for skew characters, which provides a recursive method for computing the
values of such characters. To state this result we need to recall some notions concerning
hooks, for which we follow [JK81, 2.3]. Recall that for any partition « € P,(n) we define
the rim of the corresponding Young diagram T, to be

r
R(To) = UL, )) | i1 <j < i}
i=1
where we set a1 = 0. Now assume S = T, \ T is a skew diagram then we define the
rim of this skew diagram to be

A rim hook of S is a connected diagram R C R(S) such that for any (k, ¢) € R and any
(i,7) € R(S) \ R we have either i < k or j < ¢. If we have |R| = a then we will also say
that R is an a-rim hook of S. Now given a rim hook R C R(S) we denote by max(R),
resp., min(R), the maximal, resp., minimal, integer i such that (i,j) € R for some j € IN.
The difference /(R) = max(R) — min(R) > 0 is called the leg length of the rim hook.

Remark 2.9. Note that if S is a skew diagram with connected components Sy,..., S,
then we have R(S) = R(S1) U---UR(S,) and moreover R C R(S) is a rim hook if and
only if R C R(S;) is a rim hook for some connected component.

2.10. Note that a rim hook has the property that the difference S \ R is again a skew
diagram. Indeed, we have R C R(S) C R(T,) is a rim hook of T, in the usual sense,
and it is easily checked that T, \ R is the Young diagram of a partition. Moreover, by
assumption, we have Tg "R = & and so clearly we have Tg C T, \ R and S\ R =
(Tx \ R) \ Tg. With these ideas in place we may now state the Murnaghan-Nakayama
formula for skew characters.



Theorem 2.11 ([JK81, 2.4.15]). Assume v € P,(n) is a partition of n and let a € IN be a part
of v then we denote by U € P,_1(n — a) the partition obtained by removing a. If S is a skew
diagram with |S| = n then

ps(v) = ), <_1)€(R)¢S\R(ﬁ)

RCR(S)
where the sum is taken over all a-rim hooks of S.

Example 2.12. Consider the following skew diagram S = T(14109431) \ T(7,44,1,1,1)-

The skew diagram S has four 3-rim hooks, namely

Ry = {(1,12),(1,13),(1,14)} R: = {(3,9),(2,9),(2,10)}
R3 ={(3,7),(3,8),(3,9)} Ry ={(5,3),(43),(44)}.

Here we have highlighted the rim hooks R; and R4 in dark grey and the remaining
nodes of the rim R(S) in light grey. Now let v = (10,4,4,3,2) € P5(23) and 7 =
(10,4,4,2) € P4(20), which is obtained from v by removing the part 3, then applying
the Murnaghan-Nakayama formula we see that

Ps(v) = Ys\r, (V) — ¥s\r, (V) + ¥s\r, (V) — Y5\, (V)

because ¢/(R1) = {(R3) =0and ¢(Ry) = ¢(Ry4) =1
3. Proof of Theorem 1.3

3.1. We will now prove Theorem 1.3 but before proceeding we recall some definitions
from [BR87, 2.1]. Specifically, let D = {1 < --- <k <1 < --- < /'} be a totally
ordered set. If « € P(n) is a partition and (A | p) € By (n) is a bicomposition then
we say a function f : T, — D is a (k, {)-tableau of shape a and weight (A | u) if
Ai=|{x €Ty | f(x) =i} forany 1 <i<kand p; = [{x € T, | f(x) = j'}| for any
1 <j < (. Asin[BR87,2.1] we say f is semistandard if T = f~*({1,...,k}) is a Young
tableau whose rows are weakly increasing and whose columns are strictly increasing
and T, \ Ty is a skew tableau whose columns are weakly increasing and whose rows are
strictly increasing. If s(,|,)(«) is the number of semistandard (k, £)-tableaux of shape
a and weight (A | p) then sps(a) := ¥ (5|, S(aju) (&) is the number of all semistandard
(k, £)-tableaux of shape &, where the sum runs over By ;(n).



Lemma 3.2. For any k,¢,n € Ny we have

A=Y Yo

(Mp)€Bye(n)

Proof. The decomposition of the character on the right hand side of (2.6) into irreducible
constituents has been described in [BR87, Lemma 3.23]. Specifically we have

Pa) = X @ BX X @ Bxary = Y S (
aeP(n)
Note that when ¢ = 0 this statement is just Young’s rule and as in [BR87] the general
case can be proved easily by induction on ¢ using the definition of (k, ¢)-tableaux. With
this we see that

A=Y s@xe= Y Y sam@xa= X Y

aeP(n) aeP(n) (Aln)€By(n) (Alp)€By ()
as desired. [

Proof (of Theorem 1.3). Choose a part a of v and let ¥ € P,_(n — a) be the partition
obtained by removing the part a from v. If A € Cj is a composition such that A; > a
then we denote by A |; a € C; the composition obtained by replacing A; with A; — a.
Similarly, for any composition A € C; we denote by A 1; a € C; the composition obtained
by replacing A; with A; +a. Consider the skew diagram S,|,,y with (A | u) € By,(n)
a bicomposition. If R C R(S(y,)) is an a-rim hook then, by Remark 2.9, we have
R C R(V) for some connected component V C S(My)' By definition V is either a
horizontal or vertical line. It is easy to see that such a diagram contains an a-rim hook
if and only if |V| > a and if such a rim hook exists then it is unique. Moreover we have
¢(R) = 0 if V is a horizontal line and ¢(R) = a — 1 if V is a vertical line. Considering
the definition of the character ¥,),) and applying Theorem 2.11 we see that

¢ /\|y Z lIJ (Aalp) ) + Z (_1)11711/)(/\|w]-a)(17>

Aiza ]1]2ﬂ

where the first, resp., second, sum is over all 1 < i < k, resp., 1 < j < 4, such that
Ai = a, resp., pj > a. Now clearly every bicomposition (A’ | u') € Byy(n — a) arises from
exactly k + ¢ bicompositions (A | u) € By (1) via the process |; a, specifically from the
k bicompositions (A’ 1; a | #’) and the £ bicompositions (A" | p' 1; a) with 1 <i <k and
1 < j < £. Putting things together we see that

AW = ) = k()T (0).

(M) €Bye(n)

Here we have implicitly used Lemma 3.2. An easy induction argument completes the
proof. n

Remark 3.3. We now assume that k = ¢ = 1 then the skew characters occurring in A



are of the form 9 ,,,_,) with 0 < a < n. Applying Lemma 2.4 we see that §,,_q) = s
where S = T, \ Tg with a = (a+1,1"7") and B = (1). By [JK81, 2.4.16] we have

Qb(a|n—a): Z CEAYXW

YEP(11)

where c%v is the usual Littlewood-Richardson coefficient. As p = (1) the Littlewood-
Richardson coefficient cg, is described by the branching rule, c.f., [JK81, 2.4.3]. Applying
this rule we easily deduce that

X ifa=0,
Ylajn—a)y = X(ar—a) T X(a+1,1n-0-1) if0<a<n,
X(n) if a = n.

Alternatively viewing (,,_,) as the character X(a)®X(ln—a) one could apply Pieri’s rule
to deduce the same result. This gives an alternative way to see that A} = 2T,.
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