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Abstract. In previous work Regev used part of the representation theory of Lie
superalgebras to compute the values of a character of the symmetric group whose
decomposition into irreducible constituents is described by semistandard (k, `)-
tableaux. In this short note we give a new proof of Regev’s result using skew
characters.

1. Introduction

1.1. For any partition α ∈ P(n) of an integer n > 0 we have a corresponding irre-
ducible character χα of the symmetric group Sn; we assume this labelling is as in [JK81].
In [Reg13] Regev observed that the values of the character Γn = ∑n

a=0 χ(a,1n−a) obtained
by summing over all hook partitions were particularly simple. Specifically if ν ∈ Pr(n)
is a partition of length r then we have

Γn(ν) =

2r−1 if all parts of ν are odd,

0 otherwise.

Here we write Γn(ν) for the value of Γn at an element of cycle type ν.
1.2. To prove this result Regev considered a more general but related problem which

we now recall. For any integers k, ` > 0 and any partition α ∈ P(n) we denote by sk,`(α)

the number of all semistandard (k, `)-tableaux of shape α, see 3.1 for the definition.
Motivated by the representation theory of Lie superalgebras Regev considered the fol-
lowing character of Sn

Λk,`
n = ∑

α∈P(n)
sk,`(α)χα.

The main result of [Reg13] is the following.

Theorem 1.3 (Regev). If ν = (ν1, . . . , νr) ∈ Pr(n) is a partition of length r then

Λk,`
n (ν) =

r

∏
i=1

(k + (−1)νi−1`).
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Remark 1.4. Note that sk,`(α) 6= 0 if and only if α is contained in the (k, `)-hook, as
defined in [BR87, 2.3]. In particular, we have Λk,`

n is the same as the character χϕ∗
(k,`),n

defined in [Reg13].

1.5. Using formulas for the coefficients sk,`(α) obtained in [BR87] Regev deduces
that Λ1,1

n = 2Γn from which the statement of 1.1 follows immediately. Although Theo-
rem 1.3 is stated purely in terms of the representation theory of the symmetric group
Regev’s proof uses, in an essential way, results of Berele–Regev on representations of
Lie superalgebras [BR87]. As is noted in the introduction to [Reg13] it is natural to ask
whether there is a proof of this result which uses only techniques from the symmetric
group. The purpose of this note is to provide such a proof. Our proof is based on a
description of the character Λk,`

n as a sum of skew characters1. With this we can use
the Murnaghan–Nakayama formula to compute the values of Λk,`

n and thus prove The-
orem 1.3. As a closing remark we use our description in terms of skew characters to
show that Λ1,1

n = 2Γn using the branching rule.
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University of Padova. We thank Chris Bowman for sharing his thoughts on an earlier
version of this article.

2. Background on Skew Characters

2.1. Let N = {1, 2, . . . } be the natural numbers and N0 = N ∪ {0}. Throughout we
use the term diagram to mean a subset of N2. For any two diagrams S, T ⊆N2 we write
S ≡ T if there exist integers i, j ∈ Z such that T = {(a+ i, b+ j) | (a, b) ∈ S}; we say such
diagrams are equivalent. The notion of connected diagram and connected components of
a diagram have their usual natural meanings, see [Mac95, I, §1] for details. A diagram T
will be called a horizontal line, resp., vertical line, if for any (i, j), (i′, j′) ∈ T we have i = i′,
resp., j = j′.

2.2. For any k ∈N0 we denote by Ck the set of all compositions α = (α1, . . . , αk) ∈Nk
0

of length k; we call αi a part of α. For such a composition we denote by |α| the sum
α1 + · · · + αk and by α◦ the composition obtained from α by removing all parts equal
to 0. If n ∈ N0 then we denote by Pk(n) the set of all α = (α1, . . . , αk) ∈ Ck such that
α1 > · · · > αk > 0 and |α| = n, which are the partitions of n of length k. Moreover we
denote by P(n) the set

⋃
k∈N Pk(n) of all partitions of n. To each partition α ∈ P(n) we

have a corresponding diagram Tα = {(i, j) | 1 6 j 6 αi} called the Young diagram of α.
For any two Young diagrams Tβ ⊆ Tα the difference Tα \ Tβ is called a skew diagram.

2.3. Let us denote by R the commutative unital graded ring
⊕

n∈N0
Rn where Rn is

the Z-module of all virtual characters of Sn. The multiplication ⊗̂ in this ring is given

1This idea was prompted by a recent question of Marcel Novaes on MathOverflow [Nov16], which is where
we also first learned of Regev’s work.
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by tensor induction, i.e., we have

χ⊗̂ψ = IndSm+n
Sm×Sn

(χ⊗ ψ)

for any χ ∈ Rm and ψ ∈ Rn. For any integer a ∈ Z we define an element [a] ∈ R by
setting

[a] =

χ(a) if a > 0,

0 if a < 0.

Note that [0] = χ(0) is the trivial character of S0 = {1}, which is the unit in R. Now
assume α ∈ P(n) is a partition then the corresponding irreducible character χα of Sn

can be expressed via the following determinantal formula

χα = det([αi − i + j]),

see [JK81, 2.3.15]. In such an expression we assume that i and j run over 1, . . . , k with k
larger than the length of α and any part of α which is undefined is set to 0. If S = Tα \ Tβ

is a skew diagram with |S| = n then following [JK81, 2.3.11] we define a corresponding
skew character of Sn by setting

ψS = det([αi − β j − i + j]).

The following are well known properties of skew characters which are easily deduced
from the above determinantal formulas, see the argument in [Mac95, I, 5.7] for a proof
of the first property.

Lemma 2.4. Assume S and S′ are skew diagrams then the following hold:

(a) if S1, . . . , Sr are the connected components of S then ψS = ψS1⊗̂ · · · ⊗̂ψSr ,

(b) if S ≡ S′ then ψS = ψS′ ,

(c) if S ≡ Tα for some partition α ∈ P(n) then ψS = χα.

2.5. For any k, `, n ∈ N0 we denote by Bk,`(n) ⊆ Ck × C` the set of all pairs (λ | µ)

of compositions such that |λ|+ |µ| = n; we call these bicompositions of n. Now for each
bicomposition (λ | µ) ∈ Bk,`(n) we denote by S(λ|µ) some (any) skew diagram whose
connected components H1, . . . , Hr, V1, . . . , Vs ⊆ S(λ;µ) are such that Hi is a horizontal
line, resp., Vj is a vertical line, and (|H1|, . . . , |Hr|) = λ◦, resp., (|V1|, . . . , |Vs|) = µ◦. It is
easy to see that such a diagram exists. We then get a corresponding character of Sn

ψ(λ|µ) := ψS(λ|µ) = χ(λ1)⊗̂ · · · ⊗̂χ(λk)⊗̂χ(1µ1 )⊗̂ · · · ⊗̂χ(1µ` ). (2.6)

This character does not depend upon the choice of skew diagram S(λ|µ) by (a) and (b)
of Lemma 2.4 because any two skew diagrams with equivalent connected components
yield the same character of Sn. The expression in terms of irreducible characters follows
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from (a) and (c) because each connected component of S(λ|µ) is equivalent to a Young
diagram.

Example 2.7. Consider the bicomposition (4, 0, 5; 2, 3) ∈ B3,2(14) then an example of a
corresponding skew diagram S(4,0,5;2,3) is given by T(11,7,2,2,2,1,1) \ T(7,2,1,1,1).

We then have ψ(4,0,5;2,3) = χ(4)⊗̂χ(0)⊗̂χ(5)⊗̂χ(12)⊗̂χ(13) = χ(4)⊗̂χ(5)⊗̂χ(12)⊗̂χ(13).

2.8. The main tool we will use to prove Theorem 1.3 is the Murnghan–Nakayama
formula for skew characters, which provides a recursive method for computing the
values of such characters. To state this result we need to recall some notions concerning
hooks, for which we follow [JK81, 2.3]. Recall that for any partition α ∈ Pr(n) we define
the rim of the corresponding Young diagram Tα to be

R(Tα) =
r⋃

i=1

{(i, j) | αi+1 6 j 6 αi}

where we set αr+1 = 0. Now assume S = Tα \ Tβ is a skew diagram then we define the
rim of this skew diagram to be

R(S) = R(Tα) ∩ S.

A rim hook of S is a connected diagram R ⊆ R(S) such that for any (k, `) ∈ R and any
(i, j) ∈ R(S) \ R we have either i < k or j < `. If we have |R| = a then we will also say
that R is an a-rim hook of S. Now given a rim hook R ⊆ R(S) we denote by max(R),
resp., min(R), the maximal, resp., minimal, integer i such that (i, j) ∈ R for some j ∈N.
The difference `(R) = max(R)−min(R) > 0 is called the leg length of the rim hook.

Remark 2.9. Note that if S is a skew diagram with connected components S1, . . . , Sr

then we have R(S) = R(S1) ∪ · · · ∪ R(Sr) and moreover R ⊆ R(S) is a rim hook if and
only if R ⊆ R(Si) is a rim hook for some connected component.

2.10. Note that a rim hook has the property that the difference S \ R is again a skew
diagram. Indeed, we have R ⊆ R(S) ⊆ R(Tα) is a rim hook of Tα, in the usual sense,
and it is easily checked that Tα \ R is the Young diagram of a partition. Moreover, by
assumption, we have Tβ ∩ R = ∅ and so clearly we have Tβ ⊆ Tα \ R and S \ R =

(Tα \ R) \ Tβ. With these ideas in place we may now state the Murnaghan–Nakayama
formula for skew characters.
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Theorem 2.11 ([JK81, 2.4.15]). Assume ν ∈ Pr(n) is a partition of n and let a ∈ N be a part
of ν then we denote by ν̂ ∈ Pr−1(n− a) the partition obtained by removing a. If S is a skew
diagram with |S| = n then

ψS(ν) = ∑
R⊆R(S)

(−1)`(R)ψS\R(ν̂)

where the sum is taken over all a-rim hooks of S.

Example 2.12. Consider the following skew diagram S = T(14,10,9,4,3,1) \ T(7,4,4,1,1,1).

The skew diagram S has four 3-rim hooks, namely

R1 = {(1, 12), (1, 13), (1, 14)} R2 = {(3, 9), (2, 9), (2, 10)}
R3 = {(3, 7), (3, 8), (3, 9)} R4 = {(5, 3), (4, 3), (4, 4)}.

Here we have highlighted the rim hooks R1 and R4 in dark grey and the remaining
nodes of the rim R(S) in light grey. Now let ν = (10, 4, 4, 3, 2) ∈ P5(23) and ν̂ =

(10, 4, 4, 2) ∈ P4(20), which is obtained from ν by removing the part 3, then applying
the Murnaghan–Nakayama formula we see that

ψS(ν) = ψS\R1
(ν̂)− ψS\R2

(ν̂) + ψS\R3
(ν̂)− ψS\R4

(ν̂)

because `(R1) = `(R3) = 0 and `(R2) = `(R4) = 1

3. Proof of Theorem 1.3

3.1. We will now prove Theorem 1.3 but before proceeding we recall some definitions
from [BR87, 2.1]. Specifically, let D = {1 < · · · < k < 1′ < · · · < `′} be a totally
ordered set. If α ∈ P(n) is a partition and (λ | µ) ∈ Bk,`(n) is a bicomposition then
we say a function f : Tα → D is a (k, `)-tableau of shape α and weight (λ | µ) if
λi = |{x ∈ Tα | f (x) = i}| for any 1 6 i 6 k and µj = |{x ∈ Tα | f (x) = j′}| for any
1 6 j 6 `. As in [BR87, 2.1] we say f is semistandard if Tf = f−1({1, . . . , k}) is a Young
tableau whose rows are weakly increasing and whose columns are strictly increasing
and Tα \ Tf is a skew tableau whose columns are weakly increasing and whose rows are
strictly increasing. If s(λ|µ)(α) is the number of semistandard (k, `)-tableaux of shape
α and weight (λ | µ) then sk,`(α) := ∑(λ|µ) s(λ|µ)(α) is the number of all semistandard
(k, `)-tableaux of shape α, where the sum runs over Bk,`(n).
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Lemma 3.2. For any k, `, n ∈N0 we have

Λk,`
n = ∑

(λ|µ)∈Bk,`(n)
ψ(λ|µ).

Proof. The decomposition of the character on the right hand side of (2.6) into irreducible
constituents has been described in [BR87, Lemma 3.23]. Specifically we have

ψ(λ|µ) = χ(λ1)⊗̂ · · · ⊗̂χ(λk)⊗̂χ(1µ1 )⊗̂ · · · ⊗̂χ(1µ` ) = ∑
α∈P(n)

s(λ|µ)(α)χα.

Note that when ` = 0 this statement is just Young’s rule and as in [BR87] the general
case can be proved easily by induction on ` using the definition of (k, `)-tableaux. With
this we see that

Λk,`
n = ∑

α∈P(n)
sk,`(α)χα = ∑

α∈P(n)
∑

(λ|µ)∈Bk,`(n)
s(λ|µ)(α)χα = ∑

(λ|µ)∈Bk,`(n)
ψ(λ|µ)

as desired. �

Proof (of Theorem 1.3). Choose a part a of ν and let ν̂ ∈ Pr−1(n − a) be the partition
obtained by removing the part a from ν. If λ ∈ Ck is a composition such that λi > a
then we denote by λ ↓i a ∈ Ck the composition obtained by replacing λi with λi − a.
Similarly, for any composition λ ∈ Ck we denote by λ ↑i a ∈ Ck the composition obtained
by replacing λi with λi + a. Consider the skew diagram S(λ|µ) with (λ | µ) ∈ Bk,`(n)
a bicomposition. If R ⊆ R(S(λ|µ)) is an a-rim hook then, by Remark 2.9, we have
R ⊆ R(V) for some connected component V ⊆ S(λ|µ). By definition V is either a
horizontal or vertical line. It is easy to see that such a diagram contains an a-rim hook
if and only if |V| > a and if such a rim hook exists then it is unique. Moreover we have
`(R) = 0 if V is a horizontal line and `(R) = a− 1 if V is a vertical line. Considering
the definition of the character ψ(λ|µ) and applying Theorem 2.11 we see that

ψ(λ|µ)(ν) = ∑
λi>a

ψ(λ↓ia|µ)(ν̂) + ∑
µj>a

(−1)a−1ψ(λ|µ↓ja)(ν̂)

where the first, resp., second, sum is over all 1 6 i 6 k, resp., 1 6 j 6 `, such that
λi > a, resp., µj > a. Now clearly every bicomposition (λ′ | µ′) ∈ Bk,`(n− a) arises from
exactly k + ` bicompositions (λ | µ) ∈ Bk,`(n) via the process ↓i a, specifically from the
k bicompositions (λ′ ↑i a | µ′) and the ` bicompositions (λ′ | µ′ ↑j a) with 1 6 i 6 k and
1 6 j 6 `. Putting things together we see that

Λk,`
n (ν) = ∑

(λ|µ)∈Bk,`(n)
ψ(λ|µ)(ν) = (k + (−1)a−1`)Λk,`

n−a(ν̂).

Here we have implicitly used Lemma 3.2. An easy induction argument completes the
proof. �

Remark 3.3. We now assume that k = ` = 1 then the skew characters occurring in Λ1,1
n



7

are of the form ψ(a|n−a) with 0 6 a 6 n. Applying Lemma 2.4 we see that ψ(a|n−a) = ψS

where S = Tα \ Tβ with α = (a + 1, 1n−a) and β = (1). By [JK81, 2.4.16] we have

ψ(a|n−a) = ∑
γ∈P(n)

cα
βγχγ

where cα
βγ is the usual Littlewood–Richardson coefficient. As β = (1) the Littlewood–

Richardson coefficient cα
βγ is described by the branching rule, c.f., [JK81, 2.4.3]. Applying

this rule we easily deduce that

ψ(a|n−a) =


χ(1n) if a = 0,

χ(a,1n−a) + χ(a+1,1n−a−1) if 0 < a < n,

χ(n) if a = n.

Alternatively viewing ψ(a|n−a) as the character χ(a)⊗̂χ(1n−a) one could apply Pieri’s rule
to deduce the same result. This gives an alternative way to see that Λ1,1

n = 2Γn.
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Dipartimento di Matematica, Universitá di Padova, Via Trieste 63, 35121 Padova,
Italy.

Email: taylor@math.unipd.it

http://mathoverflow.net/q/233009

	Introduction
	Background on Skew Characters
	Proof of thm:main

