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Abstract. Navarro has conjectured a necessary and sufficient condition for a finite
group G to have a self-normalising Sylow 2-subgroup, which is given in terms of
the ordinary irreducible characters of G. The first-named author has reduced the
proof of this conjecture to showing that certain related statements hold when G
is quasisimple. In this article we show that these conditions are satisfied when
G/Z(G) is PSLn(q), PSUn(q), or a simple group of Lie type defined over a finite
field of characteristic 2.

1. Introduction

1.1. For any integer n > 1 we will denote by Qn the nth cyclotomic field, obtained
from the rationals Q by adjoining a primitive nth root of unity. In [SF16], the first-named
author began an investigation into the following conjecture.

Conjecture 1.2 (Navarro). Let G be a finite group and let σ ∈ Gal(Q|G|/Q) be an automor-
phism fixing 2-roots of unity and squaring 2′-roots of unity. Then G has a self-normalising
Sylow 2-subgroup if and only if every ordinary irreducible character of G with odd degree is fixed
by σ.

1.3. This statement would be an immediate consequence of the Galois-McKay con-
jecture, which is a refinement of the well-known McKay conjecture due to Navarro, see
[Nav04, Conjecture A]. For a finite group G we denote by Irr(G) the set of ordinary irre-
ducible characters and given a prime ` we denote by Irr`′(G) ⊆ Irr(G) those irreducible
characters whose degree is coprime to `. The Galois-McKay conjecture then posits that
for any finite group G, prime `, and Sylow `-subgroup P 6 G, there should exist a bi-
jection between Irr`′(G) and Irr`′(NG(P)), as predicted by the McKay conjecture, which
behaves nicely with respect to the action of certain elements of the Galois group.

1.4. While the McKay conjecture has been reduced to proving certain inductive state-
ments for simple groups in [IMN07], and even recently proven for ` = 2 in [MS15], no
such reduction yet exists for Galois-McKay. Further, a reduction for Galois-McKay seems
further from fruition in the case ` = 2 than for odd primes. However, a proof of Con-
jecture 1.2 would provide more evidence for the conjecture, and we consider it to be a
weak form of the Galois-McKay refinement for ` = 2. We hope that some of the obser-
vations made in the course of proving Conjecture 1.2 will be useful in working with an
eventual reduction for Galois-McKay for ` = 2. We also remark that the corresponding
weak form for odd ` has been proven in [NTT07].
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1.5. The main result of [SF16] is a reduction of Conjecture 1.2 to certain inductive
statements for simple groups, which we recall below in Section 2, and the verification
of these statements for some simple groups. The goal of this work is to extend and
simplify the proofs there in order to complete the verification for simple groups of Lie
type in characteristic 2 and simple groups of type A in all characteristics. Specifically we
prove the following.

Theorem A. Assume G is a simple and simply connected algebraic group defined over K = Fp,
an algebraic closure of the finite field Fp of prime order p > 0, and let F : G→ G be a Frobenius
endomorphism of G. If either p = 2 or G = SLn(K), then whenever the quotient GF/Z(GF)

is simple, it is SN2S-Good.

1.6. One of our key tools used in the proof of Theorem A is Kawanaka’s generalised
Gelfand–Graev representations (GGGRs). These are a family of characters which have
already shown themselves to be remarkably useful for deducing the action of automor-
phisms of a finite reductive group on the set of irreducible characters, see [CS15] and
[Tay16a]. One of the reasons why they are so useful is that the image of a GGGR under
an automorphism of the group is again a GGGR and the resulting GGGR can be easily
described. Here we show that the same holds for certain Galois automorphisms, see
Proposition 4.10. The statement holds whenever the GGGRs are defined and may be of
independent interest.

1.7. In [SF16] it is shown that all sporadic simple groups and simple alternating
groups are SN2S-Good. Thus we are left with checking that most simple groups of Lie
type defined over a field of odd characteristic are SN2S-Good. In this situation one
should be able to employ the Harish-Chandra techniques used by Malle and Späth in
[MS15] to solve the McKay Conjecture for ` = 2. However, this is ultimately quite
different from our line of argument here and will be considered elsewhere.

1.8. We now outline the structure of the paper. In Section 2, we discuss the reduction
of Conjecture 1.2 to simple groups proved in [SF16]. In Section 3, we introduce some
general notation regarding finite reductive groups and the action of the Galois group
on Lusztig series under specific conditions. In Section 4, we continue this discussion by
introducing generalized Gelfand-Graev characters and their behavior under the action
of the Galois group. Sections 5 and 6 are dedicated to proving Theorem A in the case
that p = 2. In the remaining sections, we prove Theorem A for G = SLn(K).

2. The Reduction Statements for Simple Groups

2.1. In [SF16] it was shown that Conjecture 1.2 holds for any finite group if every
finite simple group is SN2S-Good. The notion of being SN2S-Good is comprised of two
conditions. One condition is on the simple group itself and the second is on its qua-
sisimple covering groups. Before stating these conditions, we introduce some notation.

2.2. Notation. Let G be a finite group. We will denote by Aut(G) the automorphism
group of G. If Q 6 Aut(G) is any subgroup then we denote by GQ the semidirect
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product of Q acting on G. As in the introduction, Irr(G) denotes the set of ordinary
irreducible characters of G and Irr`′(G) ⊆ Irr(G) is the set of those irreducible characters
whose degree is coprime to `, where ` is a prime. The set of all Sylow `-subgroups of
G will be denoted by Syl`(G). If H 6 G is a subgroup of G and χ ∈ Irr(H) is an
irreducible character then we denote by Irr(G|χ) the set of all irreducible characters
ψ ∈ Irr(G) whose restriction ResG

H(ψ) to H contains χ as an irreducible constituent; we
say that ψ covers χ. Moreover, for any element g ∈ G we denote by gχ the irreducible
character of gH = gHg−1 defined by gχ(h) = χ(g−1hg) for all h ∈ gH. We will write
Irr`′(G|χ) for the intersection Irr(G|χ) ∩ Irr`′(G).

From this point forward σ ∈ Gal(Q|G|/Q) will denote the Galois automorphism fixing
2-roots of unity and squaring 2′-roots of unity, c.f., Conjecture 1.2.

Condition 2.3. Let G be a finite quasisimple group with centre Z 6 G and Q 6 Aut(G)

a 2-group. Assume there exists a Q-invariant Sylow 2-subgroup P/Z ∈ Syl2(G/Z) such
that CNG(P)/P(Q) = 1. Then for any Q-invariant and σ-fixed λ ∈ Irr(Z), we have χσ = χ

for any Q-invariant χ ∈ Irr2′(G|λ).

Condition 2.4. Let S be a finite nonabelian simple group and Q 6 Aut(S) a 2-group.
Assume P ∈ Syl2(S) is a Q-invariant Sylow then if every Q-invariant χ ∈ Irr2′(S) is fixed
by σ we have CNS(P)/P(Q) = 1.

Definition 2.5. Let S be a finite non-abelian simple group. We say S is SN2S-Good if
Condition 2.4 holds for S and Condition 2.3 holds for any quasisimple group G satisfy-
ing G/Z ∼= S.

2.6. We end this section with some remarks concerning the above conditions. Firstly,
if P 6 G and Q 6 Aut(G) are as in Condition 2.3 then the condition that CNG(P)/P(Q) =

1 is equivalent to GQ/Z having a self-normalising Sylow 2-subgroup, see [NTT07,
Lemma 2.1(ii)]. Secondly, assume G is quasisimple with simple quotient S = G/Z and
let Ĝ be a universal perfect central extension, or Schur cover, of S. It is easily checked
that if Condition 2.3 holds for Ĝ then it holds for G. Indeed, as Ĝ is a Schur cover there
exists a surjective homomorphism Ĝ → G with central kernel. This induces an injective
map Irr(G) → Irr(Ĝ) and a surjective homomorphism Aut(Ĝ) → Aut(G), see [GLS98,
Corollary 5.1.4(a)], and the claim follows.

Remark 2.7. We note that a simplified version of one side of the reduction, namely
Condition 2.3, has been proven in [NT15]. However, for the purposes of this paper, we
work with our stronger condition.

3. Galois Automorphisms and Lusztig Series

From this point forward we denote by K = Fp an algebraic closure of the finite field of
prime order p. Moreover, ` denotes a prime.
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3.1. The Basic Setup. We introduce here the basic setup that will be used through-
out this article. In particular, G will be a connected reductive algebraic group defined
over K and F : G → G will be a Frobenius endomorphism admitting an Fq-rational
structure G = GF. Moreover, we denote by ι : G ↪→ G̃ a regular embedding, in the
sense of [Lus88, §7]. The Frobenius endomorphism of G̃ will again be denoted by F and
G̃ = G̃F will be the resulting finite reductive group.

We assume fixed pairs (G?, F?) and (G̃?, F?) dual to (G, F) and (G̃, F) respectively.
As before we set G? = G?F?

and G̃? = G̃?F?
. We now choose an F-stable maximal torus

T0 6 G and a dual F?-stable maximal torus T?
0 6 G?. The group T̃0 := ι(T0)Z(G̃)

is then an F-stable maximal torus of G̃. Recall that the regular embedding ι induces
a surjective homomorphism ι? : G̃? → G? which is defined over Fq. If T̃?

0 6 G̃? is
a torus dual to T̃0 then ι?(T̃?

0) = T?
0 and ι? is unique up to composing with an inner

automorphism affected by an element of T̃?
0 .

3.2. We will denote by C(G, F) the set of all pairs (T, θ) consisting of an F-stable
maximal torus T 6 G and an irreducible character θ ∈ Irr(TF). Note we have an
action of G on ∇(G, F) defined by g · (T, θ) = (gT, gθ); we write C(G, F)/G for the
orbits under this action and [T, θ] for the orbit containing (T, θ). Dually, we denote by
S(G?, F?) the set of all pairs (T?, s) consisting of an F?-stable maximal torus T? 6 G?

and a semisimple element s ∈ T?F?
. Again we have an action of G? on S(G?, F?) defined

by g · (T?, s) = (gT?, gs), and we write S(G?, F?)/G? for the corresponding orbits and
[T?, s] for the orbit containing (T?, s). By [DL76, 5.21.3], see also [DM91, 13.13], we have
a bijection

Π : C(G, F)/G → S(G?, F?)/G?

between these orbits. Note that this bijection depends on the choice of a group isomor-
phism ı : (Q/Z)p′ → K× and an injective group homomorphism  : Q/Z ↪→ Q

×
` , so we

implicitly assume that such homomorphisms have been chosen.

3.3. For any semisimple element s ∈ G? we denote by C(G, F, s) ⊆ C(G, F) the
set of all pairs (T, θ) such that Π([T, θ]) = [T?, t] and t is G?-conjugate to s. Now, to
each pair (T, θ) ∈ C(G, F), there is a corresponding Deligne–Lusztig character RG

T (θ),
and we denote by E(G, T, θ) the set {χ ∈ Irr(G) | 〈χ, RG

T (θ)〉G 6= 0} of its irreducible
constituents. Note we will sometimes also write RG

T?(s) for RG
T (θ) when Π([T, θ]) =

[T?, s]. The union
E(G, s) =

⋃
(T,θ)∈C(G,F,s)

E(G, T, θ)

is, by definition, a rational Lusztig series. The set of all irreducible characters is then
a disjoint union Irr(G) =

⋃ E(G, s), where we run over all G?-conjugacy classes of
semisimple elements, see [Bon06, 11.8]. If H is a finite group and x ∈ H is an element
then we denote by x`, resp., x`′ , the `-part, resp., `′-part, of x = x`x`′ = x`′x`. With this
we have the following.

Lemma 3.4. Let s ∈ G? be a semisimple element and let b, b′ ∈ Z be integers. If γ ∈
Gal(Q|G|/Q) is an automorphism such that γ(ζ) = ζ`

b
for all `′-roots of unity and γ(ζ) = ζb′
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for all `-roots of unity, then E(G, s)γ = E(G, sb′
` s`

b

`′ ).

Proof. Assume (T, θ) ∈ C(G, F). Then by the character formula for RG
T (θ) [Car93,

7.2.8], and the fact that Green functions are integral valued, we easily deduce that
RG

T (θ)
γ = RG

T (θ
γ). In particular, as γ is an isometry we have E(G, T, θ)γ = E(G, T, θγ).

Now, if Π([T, θ]) = [T?, s], then it is an easy consequence of the description of the map
Π, see [DM91, §13], and the definition of γ that Π([T, θγ]) = [T?, sb′

` s`
b

`′ ]. In particu-
lar this shows that E(G, s)γ ⊆ E(G, sb′

` s`
b

`′ ). An almost identical argument shows that
E(G, s) ⊆ E(G, sb′

` s`
b

`′ )
γ−1 ⊆ E(G, t) for some semisimple element t ∈ G?. However, by

the disjointness of the rational series we must have equality which proves the lemma.�

3.5. For any irreducible character χ ∈ Irr(G) we denote by ωχ : Z(G)→ Q
×
` the cen-

tral character determined by χ. This is a linear character defined by ωχ(z) = χ(z)/χ(1)
for any z ∈ Z(G). The following will prove to be useful later; it follows from [Bon06,
11.1(d)].

Lemma 3.6. For any two irreducible characters χ, ψ ∈ E(G, s) we have ωχ = ωψ. In partic-
ular, if γ ∈ Gal(Q|G|/Q) is an automorphism and E(G, s)γ = E(G, s) then ω

γ
χ = ωχγ = ωχ

for all χ ∈ E(G, s).

3.7. Trying to understand the action of the Galois group on the elements of a rational
Lusztig series is, in general, a difficult problem. However, in this section we will deal
with two special cases. To describe these cases we need to introduce some notation. For
s ∈ G? a semisimple element, we denote by T?

s 6 G? a fixed F?-stable maximal torus
containing s; note that we then have T?

s is contained in the centraliser CG?(s). We denote
by W◦(s) = NC◦G? (s)(T

?
s )/T?

s the Weyl group of the connected centraliser with respect
to this maximal torus. For each w ∈ W◦(s) we choose an F?-stable maximal torus
T?

s,w = gT?
s 6 C◦G?(s), where g ∈ C◦G?(s) is an element such that g−1F?(g) ∈ NC◦G? (s)(T

?
s )

represents w. By [Bon06, 15.11] there then exists a sign such that

ρs = ±
1

|W◦(s)| ∑
w∈W◦(s)

RG
T?

s,w
(s),

is a character of G. Each irreducible constituent of this character is contained in the
rational Lusztig series E(G, s) and is a semisimple character. Recall that a character is
called semisimple if it is contained in the Alvis–Curtis dual of a Gelfand–Graev char-
acter, see [DM91, 8.8, 14.39]. We first consider the action of the Galois group on these
characters.

Proposition 3.8. Let γ be as in Lemma 3.4 and assume s ∈ G? is a semisimple element such
that E(G, s)γ = E(G, s), then the following hold:

(a) ρs is fixed by γ,

(b) every semisimple character contained in E(G, s) is fixed by γ if every Gelfand–Graev
character of G is fixed by γ.
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Proof. If E(G, s)γ = E(G, s), then we have s is G?-conjugate to sb′
` s`

b

`′ . From the ar-
guments in the proof of Lemma 3.4 it is clear that, under this assumption, we have
RG

T?
s,w
(s)γ = RG

T?
s,w
(s) so clearly ρs is fixed by γ. Now, if Γ is a Gelfand–Graev character

of G and DG denotes Alvis–Curtis duality, see [DM91, 8.8], then there exists a unique
irreducible constituent χ of ρs such that 〈DG(Γ), χ〉G 6= 0, see [Bon06, 15.11]. Certainly
we have χγ is both a constituent of ρ

γ
s = ρs and DG(Γ)γ. From the definition of DG,

and the character formula for Harish-Chandra induction/restriction [DM91, 4.5], it is
not difficult to see that DG(Γ)γ = DG(Γγ). Hence, if Γγ = Γ then we must have χγ is a
constituent of DG(Γ); but this implies χγ = χ by the uniqueness. �

3.9. The next case we wish to consider is that of GLn(K). First, we introduce some
notation that will be useful later. Specifically, let s ∈ G? be a semisimple element. Then
the Frobenius F? induces an automorphism F? : W◦(s)→W◦(s) because T?

s is assumed
to be F?-stable. We denote by W̃◦(s) the semidirect product W◦(s)o 〈F?〉 and for any
class function f : W̃◦(s)→ Q` we define a corresponding class function

RG
f (s) =

1
|W◦(s)| ∑

w∈W◦(s)
f (wF?)RG

T?
s,w
(s)

of G. With this we can prove the following.

Proposition 3.10. Assume G is GLn(K), γ is as in Lemma 3.4, and s ∈ G? is a semisimple
element such that E(G, s)γ = E(G, s). Then every χ ∈ E(G, s) is fixed by γ.

Proof. By [Lus84, 3.2, 4.23] every irreducible character in the Lusztig series E(G, s) is of
the form RG

f (s) where f : W̃◦(s)→ Q` is a rational valued irreducible character, see also
[DM91, 13.25(ii), §15.4]. The statement now follows immediately from the fact that each
RG

T?
s,w
(s) is fixed by γ, c.f., the proof of Proposition 3.8. �

4. GGGRs and Galois Automorphisms

In this section, and in this section only, we assume that p is a good prime for G and that
G is a proximate algebraic group in the sense of [Tay16b, 2.10]. Recall that this means
some (any) simply connected covering of the derived subgroup of G is seperable.

4.1. To any unipotent element u ∈ G Kawanaka has defined a corresponding gen-
eralised Gelfand–Graev representation (GGGR) of G which we denote Γu, see [Kaw85;
Tay16b]. If u is a regular unipotent element then Γu is a Gelfand–Graev character. More-
over, we have Γgug−1 = Γu for any g ∈ G. In this section we wish to determine the effect
of σ on the GGGRs of G; for this we must recall their construction. Let g denote the
Lie algebra of G and let N ⊆ g, resp., U ⊆ G, denote the nilpotent cone of g, resp.,
the unipotent variety of G. The Frobenius endomorphism F : G → G induces a corre-
sponding Frobenius endomorphism F : g → g on the Lie algebra. We have F(U ) = U
and F(N ) = N .
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4.2. Let Gm denote the set K \ {0} viewed as a multiplicative algebraic group and let
qX(G) = Hom(Gm, G) be the set of all cocharacters of G. Let Fq : Gm → Gm denote the
Frobenius endomorphism given by Fq(k) = kq, with q as in 3.1. Then for any λ ∈ qX(G)

we define a new cocharacter F · λ ∈ qX(G) by setting

(F · λ)(k) = F(λ(F−1
q (k)))

for all k ∈ Gm. We denote by qX(G)F ⊆ qX(G) the set of all cocharacters λ satisfying
F · λ = λ.

4.3. To each cocharacter λ ∈ qX(G) we have a corresponding parabolic subgroup
P(λ) 6 G with unipotent radical U(λ) 6 P(λ) and Levi complement L(λ) = CG(λ(Gm)),
see [Spr09, 3.2.15, 8.4.5]. The group G acts on g via the adjoint representation Ad : G→
GL(g). Through Ad we have each cocharacter λ defines a Z-grading g =

⊕
i∈Z g(λ, i)

on the Lie algebra. For any i > 0 we have u(λ, i) =
⊕

j>i g(λ, j) is a subalgebra of the Lie
algebra of U(λ) and it is the Lie algebra of a closed connected subgroup U(λ, i) 6 U(λ)

which is normal in P(λ). The group L(λ) preserves each weight space g(λ, i) and we de-
note by g(λ, 2)reg ⊆ g(λ, 2) the unique open dense orbit of L(λ) acting on g(λ, 2). Note
that if λ ∈ qX(G)F then the subgroups P(λ), U(λ), U(λ, i), and L(λ) are all F-stable and
we set P(λ) = P(λ)F, U(λ) = U(λ)F, U(λ, i) = U(λ, i)F, and L(λ) = L(λ)F.

4.4. The action of G on g preserves N and the action of G on itself by conjugation
preserves U ; we denote the resulting sets of orbits by N/G and O/G. Recall that
each nilpotent orbit O ∈ N/G is of the form O = (Ad G)g(λ, 2)reg for some λ ∈
qX(G), see [Tay16b, 3.22]. Moreover, if O is F-stable then we may assume that λ ∈
qX(G)F, see [Tay16b, 3.25]. Following [Tay16b, §4, §5] we assume a chosen G-equivariant
isomorphism of varieties φspr : U → N which commutes with F and whose restriction to
each U(λ) is a Kawanaka isomorphism. In particular, the map φspr satisfies the following
two properties:

(K1) φspr(U(λ, 2)) ⊆ u(λ, 2),

(K2) φspr(uv)− φspr(u)− φspr(v) ∈ u(λ, 3) for any u, v ∈ U(λ, 2).

Note also that φspr induces a bijection U/G → N/G. Before introducing the GGGRs
we consider the following lemmas, which were not covered in [Tay16b].

Lemma 4.5. For each cocharacter λ ∈ qX(G) we have φspr(U(λ, 2)) = u(λ, 2).

Proof. As φspr is an isomorphism we have φspr(U(λ, 2)) is a closed subset of the same
dimension as u(λ, 2). As u(λ, 2) is irreducible we must have φspr(U(λ, 2)) = u(λ, 2). �

Lemma 4.6. AssumeO ∈ U/G is such that φspr(O) = (Ad G)g(λ, 2)reg for some cocharacter
λ ∈ qX(G). ThenO∩U(λ, 2) is an open dense subset of U(λ, 2) and is a single P(λ)-conjugacy
class.

Proof. Choose an element e ∈ g(λ, 2)reg and let u ∈ U be the unique unipotent element
satisfying φspr(u) = e. By Lemma 4.5 we have u ∈ U(λ, 2) so the P(λ)-conjugacy
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class OP(λ) containing u is contained in O ∩U(λ, 2) ⊆ U(λ, 2). We thus clearly have a
corresponding sequence of closed sets

OP(λ) ⊆ O ∩U(λ, 2) ⊆ O ∩U(λ, 2) ⊆ U(λ, 2).

According to [Tay16b, 3.22(ii.b)] we have φspr(OP(λ)) = (Ad P(λ))e = u(λ, 2). As φspr is
an isomorphism it follows from Lemma 4.5 that OP(λ) = U(λ, 2) so all of these contain-
ments above must be equalities. This certainly shows O ∩U(λ, 2) is dense and as O is
open in O we have the intersection is also open.

Let v ∈ O ∩ U(λ, 2) be another element in the intersection and denote by O′ ⊆
O ∩ U(λ, 2) the P(λ)-conjugacy class containing v. As v is G-conjugate to u we have
dim CG(v) = dim CG(u) so

dimO′ = dim P(λ)− dim CP(λ)(v) > dim P(λ)− dim CG(u) = dim U(λ, 2),

where the last equality follows from [Tay16b, 3.22(ii)]. As O′ ⊆ U(λ, 2) we must have
dimO′ = dim U(λ, 2) so O′ = U(λ, 2), because U(λ, 2) is irreducible, and O′ is also a
dense open subset of U(λ, 2). Again, as U(λ, 2) is irreducible this implies OP(λ) ∩O′ 6=
∅ which shows OP(λ) = O ∩U(λ, 2). �

Corollary 4.7. Let u ∈ U F be a rational unipotent element and let O ∈ U/G be the F-stable
class containing u. If λ ∈ qX(G)F is such that φspr(O) = (Ad G)g(λ, 2)reg then any element
contained in O ∩U(λ, 2) is of the form hlu with h ∈ U(λ) and l ∈ L(λ).

Proof. Assume v ∈ O ∩ U(λ, 2), so by Lemma 4.6 there exists an element g ∈ P(λ)
such that v = gu. As F(v) = v we must have g−1F(g) ∈ CP(λ)(u). If we set AP(λ)(u) =
CP(λ)(u)/C◦P(λ)(u) then the map gu 7→ g−1F(g)C◦P(λ)(u) induces a bijection between the
P(λ)-conjugacy classes contained in O ∩U(λ, 2) = (O ∩U(λ, 2))F and the F-conjugacy
classes of AP(λ)(u), see [Gec03, 4.3.5]. If AL(λ)(u) = CL(λ)(u)/C◦L(λ)(u) then it’s known
that the embedding CL(λ)(u) ↪→ CP(λ)(u) induces an isomorphism AL(λ)(u)→ AP(λ)(u).
Indeed, arguing as in the proof of [Tay16b, 3.22] we obtain from [Pre03, 2.3] that CP(λ)(u) =
CL(λ)(u)nCU(λ)(u) from which the statement follows immediately. Applying the Lang–
Steinberg theorem to the connected group L(λ) there exists an element l1 ∈ L(λ) such
that l−1

1 F(l1)C◦P(λ)(u) = g−1F(g)C◦P(λ)(u). We therefore have l1 u and v are P(λ) conju-
gate. As P(λ) = U(λ)o L(λ) the statement follows. �

4.8. We are now ready to introduce GGGRs. For this we assume a chosen G-
invariant trace form κ(−,−) : g × g → K, which is not too degenerate in the sense
of [Tay16b, 5.6], and an Fq-opposition automorphism † : g → g, see [Tay16b, 5.1] for
the definition. Moreover, we assume χq : F+

q → Q
×
` is a character of the finite field

Fq viewed as an additive group. Let u ∈ U F be a rational unipotent element and let
λ ∈ qX(G)F be a cocharacter such that e = φspr(u) ∈ g(λ, 2)reg. Following [Tay16b, 5.10]
we define a linear character ϕu : U(λ, 2)→ Q` by setting

ϕu(x) = χq(κ(e†, φspr(x))).
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With this we have the following definition of the GGGR Γu.

Definition 4.9. The index [U(λ, 1) : U(λ, 2)] is an even power of q and the class function

Γu = [U(λ, 1) : U(λ, 2)]−1/2 IndG
U(λ,2)(ϕu).

is a character of G known as a generalised Gelfand–Graev representation (GGGR).

Proposition 4.10. Let γ ∈ Gal(Q|G|/Q) be a Galois automorphism such that γ(ζ) = ζn for
all p-roots of unity, where n ∈ Z is an integer coprime to p. Then for any unipotent element
u ∈ U F we have Γγ

u = Γun .

Proof. We assume e and λ are as in 4.8. Let O ∈ U/G be the class containing u. As n
is coprime to p we have u and un generate the same cyclic subgroup of G so un ∈ O
by [LS12, Corollary 3]. Now clearly un ∈ O ∩ U(λ, 2) so by Corollary 4.7 there exist
elements h ∈ U(λ) and l ∈ L(λ) such that un = hlu. We thus have φspr(un) = φspr(hlu) =
(Ad hl)e.

By property (K2) above we have φspr(un) ≡ ne (mod u(λ, 3)). As φspr(un) = (Ad hl)e
and h ∈ U(λ) we conclude from [McN04, Lemma 10] that

(Ad l)e ≡ ne (mod u(λ, 3)).

However, as L(λ) preserves each weight space we have (Ad l)e ∈ g(λ, 2) so it must be
that (Ad l)e = ne. As mentioned in 4.1 we have Γun = Γhlu = Γlu so it is sufficient to
show that Γγ

u = Γlu. Clearly φspr(lu) = (Ad l)e ∈ g(λ, 2)reg so it is sufficient from the
definition of the GGGR to show that ϕ

γ
u = ϕlu.

As F+
q is an abelian p-group and χq : F+

q → Q` is a homomorphism it is clear that
χq(a)γ = χq(na) for any a ∈ F+

q . Now, for any x ∈ U(λ, 2) we thus have

ϕ
γ
u(x) = χq(nκ(e†, φspr(x))) = χq(κ((ne)†, φspr(x))) = ϕlu(x)

as desired. �

5. Condition 2.3 when p = 2

In this section and the following section we assume that p = 2.

5.1. In [SF16, §4.1] the first author showed that G satisfies Condition 2.3 in most cases
where G is a quasisimple group. The purpose of this section is to complete this work
to show that all quasisimple groups of Lie type in characteristic 2 satisfy Condition 2.3.
We will do this using a general statement which describes precisely which odd degree
characters of G are fixed by σ. Note the techniques and ideas we use here are a synthesis
of those already used in [SF16]. When q > 2 these characters are always semisimple
and we may apply Proposition 3.8, which generalises [SF16, 4.6]. When q = 2 not all
odd degree characters are semisimple and we must provide some additional ad-hoc
arguments to deal with these cases.
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Lemma 5.2 (Malle, [Mal07, 6.8]). Assume either that q > 2 or the Dynkin diagram of G is
simply laced then the only odd degree unipotent character is the trivial character.

Proposition 5.3. An odd degree character χ ∈ E(G, s) is σ-fixed if and only if s is G?-conjugate
to s2.

Proof. Let χ ∈ E(G, s) be an irreducible character of G of odd degree and choose an
irreducible character χ̃ ∈ Irr(G̃|χ) covering χ. By [Lus88, Proposition 10] the restriction
ResG̃

G(χ̃) is multiplicity free so χ̃(1) = [G̃ : IG̃(χ)]χ(1), where G 6 IG̃(χ) is the inertia
group of χ. The order of the quotient G̃/G is coprime to p, hence so is [G̃ : IG̃(χ)]. This
implies χ̃(1) is odd.

Now, assume χ̃ is contained in the Lusztig series E(G̃, s̃) then by [Lus84, 4.23] there
exists a bijection Ψs̃ : E(G̃, s̃) → E(CG̃?(s̃), 1) such that χ̃(1) = [G̃ : CG̃?(s̃)]p′Ψs̃(χ̃)(1),
see also [DM91, 13.23, 13.24]. As χ̃(1) is odd we must therefore have that Ψs(χ̃)(1) is
also odd.

Let us assume, for the moment, that q > 2. Then according to Lemma 5.2, there
is only one unipotent character of CG̃?(s̃) of odd degree, namely the trivial character.
Consequently, this implies that E(G̃, s̃) contains a unique character of odd degree and
so χ̃ must be the unique semisimple character contained in this series, see [Car93, 8.4.8].
The character χ must therefore also be semisimple. Now any Gelfand–Graev character
of G is obtained by inducing a linear character from a Sylow p-subgroup of G. As p = 2
this implies all Gelfand–Graev characters are σ-fixed so χσ = χ by Proposition 3.8.

We now assume that q = 2. If the Dynkin diagram of CG̃?(s̃) is simply laced then we
may apply the previous argument; so assume this is not the case. The Dynkin diagram
of G must then also have a component which is not simply laced. This corresponds to a
semisimple subgroup of G which has a trivial centre so splits off as a direct factor. With
this it is clear that we need only consider the case where G is simple of type Bn, Cn, F4,
or G2.

Let F ⊆ Irr(W◦(s)) be an F?-stable family of characters of the Weyl group of
CG?(s) = C◦G?(s). For each F?-fixed character in F we choose one of its extensions
to W̃◦(s) which is defined over Q, c.f., [Lus84, 3.2], and denote by F̃ ⊆ Irr(W̃◦(s)) the
resulting set of extensions. According to [Lus84, 4.23] there is a unique family such that
〈χ, RG

f (s)〉G 6= 0 for some f ∈ F̃ , c.f., 3.9. Now as each f ∈ F̃ is rational valued we see
that

〈χ, RG
f (s)〉G = 〈χσ, RG

f (s)
σ〉G = 〈χσ, RG

f (s)〉G

If G is of type Bn or Cn then these multiplicities uniquely determine the character χ

so we must have χ = χσ in these cases, see [DM90, 6.3]. This statement is not true
in general when G is of type G2 or F4. However, comparing the tables of unipotent
characters in [Car93, §13.9] with [DM90, 6.3] we see the statement still holds for those
of odd degree. �

From now until the end of this article we assume that G is simple and simply connected.
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5.4. If G is perfect then the quotient S = G/Z is a simple group of Lie type defined
in characteristic 2. We now wish to show that G satisfies Condition 2.3. With regards to
this let Q 6 Aut(G) be a 2-group which stabilises a Sylow P ∈ Syl2(G). The normaliser
B0 = NG(P) is a Borel subgroup of G, c.f., [CE04, 2.29(i)], because p = 2. We may
clearly replace P and Q by any G-conjugate so we may assume that B0 contains our
fixed maximal torus T0, c.f., 3.1. In particular, we have B0 = P o T0 so NG(P)/P ∼= T0.
Note that as Q stabilises P it also stabilises B0 and hence also T0. We will denote by
B0 6 G an F-stable Borel subgroup such that B0 = BF

0 .

5.5. As we are working in characteristic 2, we have to be careful when dealing with
small fields. Namely we have to be mindful of degenerate tori, in the sense of [Car93,
3.6.1]. For instance, it can happen when q = 2 that the torus T0 is the trivial subgroup,
c.f., [Car93, 3.6.7]. The following shows that T0 is degenerate only when q = 2.

Lemma 5.6. The maximal torus T0 is non-degenerate if and only if q > 2 or G is 2An(2) with
n > 2.

Proof. To show that T0 is non-degenerate we must show that for any root α ∈ Φ ⊆
X(T0) there exists an element t ∈ T0 such that α(t) 6= 1.

We start by treating the case where G is of type 2An(q) with n > 2. We may assume
that G = SLn+1(K) and T0 6 B0 are the subgroups of diagonal matrices and upper
triangular matrices respectively. Moreover, we assume that F = Fq ◦ φ = φ ◦ Fq where
Fq : G→ G is the Frobenius endomorphism raising each matrix entry to the power q and
φ : G → G is the automorphism defined by φ(x) = (x−T)n0 , where n0 ∈ NG(T0) is the
permutation matrix representing the longest element in the symmetric group. For any
1 6 i 6 n we consider the usual homomorphisms ε i : T0 → K× and qε i : K× → T0 such
that {±ε i ∓ ε j | 1 6 i < j 6 n + 1} is the set of roots and {±qε i ∓ qε j | 1 6 i < j 6 n + 1}
is the set of coroots.

Given an element ζ ∈ F×q2 6 K× and an integer 1 6 i 6 n + 1 we define a corre-
sponding element

ti(ζ) = (qε i − qqεn+2−i)(ζ) ∈ T0.

Now assume α = ε i − ε j with 1 6 i < j 6 n + 1. If j = n + 2 − i then we have
α(ti(ζ)) = ζ2 and if j 6= n + 2− i then we have α(ti(ζ

−1)tn+2−j(ζ)) = ζq−1. Thus, as we
can clearly choose ζ 6∈ F×q we see that T0 is always non-degenerate. With this case dealt
with we may assume that G is not of type 2An(q) with n > 2.

Now let us denote by 〈−,−〉 : X(T0) × qX(T0) the usual perfect pairing between
the character and cocharacter groups of T0. Let τ : Φ → Φ and qτ : qΦ → qΦ be the
permutation of the roots and coroots induced by F. Given α ∈ Φ we denote by k > 1
the smallest integer such that qτk(qα) = qα. Given an element ζ ∈ F×qk 6 K× we define a
corresponding element tα(ζ) ∈ T by setting

tα(ζ) = qα(ζ) · qτ(qα)(ζq) · · · qτk−1(qα)(ζqk−1
)

As we assume that G is not of type 2An(q) we have by [Spr09, 10.3.2(iii)] that 〈α, qτi(qα)〉 =
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0 for any 1 6 i 6 k− 1 and so

α(tα(ζ)) = ζ〈α,qα〉ζq〈α,qτ(qα)〉 · · · ζqk−1〈α,qτk−1(qα)〉 = ζ2.

Hence, if F×qk contains a non-trivial element then we have the torus is non-degenerate.
This is the case if q > 2.

Now assume that q = 2. If F is split then we have T0 = {1} by [Car93, 3.6.7], so
certainly the torus is degenerate in this case. Finally, it is an easy exercise with root
systems to show that T0 is degenerate when G is 2Dn(2) (n > 4), 3D4(2), or 2E6(2). We
leave the details to the reader. �

5.7. As G is simply connected, any automorphism of G can be obtained by restrict-
ing a bijective morphism of G which commutes with F. Now recall that, with respect
to T0 and B0, we have the notions of a graph, field, and diagonal automorphism, see
[Ste68, Theorem 30, pg. 158]. In particular, the automorphism x 7→ x2 of K determines a
bijective morphism of G that generates the cyclic subgroup of all field automorphisms.
We refer to this automorphism as a generating field automorphism. Now any ϕ ∈ Aut(G)

can be written as a product αβγδ where α is an inner automorphism, β is a field auto-
morphism, γ is a graph automorphism, and δ is a diagonal automorphism. We note,
however, that graph automorphisms are omitted when F is twisted, see [Ste68, Theorem
36, pg. 195]. With these notions in place we have the following relating to Condition 2.3.

Lemma 5.8. Keep the notation and assumptions of 5.4 and furthermore assume that T0 is non-
degenerate. Then we have CNG(P)/P(Q) ∼= CT0(Q) = {1} if and only if Q contains a generating
field automorphism.

Proof. Rephrasing, we have CT0(Q) = {t ∈ T0 | ϕ(t) = t for all ϕ ∈ Q}. Now assume
ϕ ∈ Q. Then, as above, we write ϕ as a product αβγδ. Firstly, by definition, we have
δ acts trivially on T0 so we may assume ϕ = αβγ. By assumption ϕ stabilises B0 and
T0, c.f., 5.4, which implies that α stabilises B0 and T0 because β and γ do by definition.
This implies that α is affected by an element of B0 because NG(B0) = B0. As T0 is non-
degenerate we have by [Car93, 3.6.7] that NG(T0) = NG(T0)F so NB0(T0) = T0, hence α

acts trivially on T0. We may thus assume that ϕ = βγ.
Assume F is twisted, so that ϕ = β and for any t ∈ T0 we have ϕ(t) = t2a

for some
a ∈ N. Identifying T0 with a direct product F×qm1 × · · · × F×qmk we see that ϕ has a non-
trivial fixed point if and only if a > 1. Now assume F is split. Then we may identify
T0 with a direct product F×q × · · · × F×q such that γ permutes factors and β acts as a
2-power map. If γ is non-trivial then ϕ will have a non-trivial fixed point, so we are
reduced to the previous case. �

Proposition 5.9. Assume G is perfect, so the quotient G/Z is simple. Then any quasisimple
group whose simple quotient is isomorphic to G/Z satisfies Condition 2.3.

Proof. We will assume that G has a trivial Schur multiplier because the remaining cases
were dealt with in [SF16, §4] using explicit computations with GAP. This means G is a
Schur cover and it suffices to show that Condition 2.3 holds for G, c.f., 2.6.
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We start with the assumption that the maximal torus T0 is non-degenerate. Let Q and
P ∈ Syl2(G) be as in 5.4 such that CNG(P)/P(Q) = {1}. Then Q contains a generating
field automorphism ϕ by Lemma 5.8. We will denote by χ ∈ E(G, s) a Q-invariant
character of odd degree.

The bijective morphism ϕ may be extended to a bijective morphism ϕ̃ : G̃ → G̃
by setting ϕ̃(z) = z2 for any z ∈ Z(G̃). There then exists a dual bijective morphism
ϕ? : G̃? → G̃? such that F? ◦ ϕ̃? = ϕ̃? ◦ F? and ϕ̃?(t) = t2 for all t ∈ T̃?

0 . This map
also descends to a homomorphism ϕ? : T?

0 → T?
0 defined by ϕ?(t) = ι?(ϕ̃?(t̃)) where

t̃ ∈ T̃?
0 satisfies ι?(t̃) = t. This map is well defined because Ker(ι?) = Z(G̃?), which is

preserved by ϕ̃?.
As the quotient G̃/G is an abelian, hence solvable, 2′-group and 〈ϕ̃〉 6 Aut(G̃) is

a 2-group we have by Glauberman’s Lemma [Isa06, 13.28] that there exists a character
χ̃ ∈ Irr(G̃|χ) covering χ which is fixed by ϕ̃. Now, if χ̃ is contained in the Lusztig series
E(G̃, s̃) then it is also contained in the Lusztig series E(G̃, ϕ̃?(s̃)) by [NTT08, 2.4]. This
implies s̃ and ϕ?(s̃) are G̃?-conjugate.

There exists an element g ∈ G̃? such that g s̃ ∈ T̃?
0 so g−1 ϕ̃?(g) ϕ̃?(s̃) = s̃2, which means

that ϕ̃?(s̃) is G̃?-conjugate to s̃2. However, G̃?-conjugacy is equivalent to G̃?-conjugacy
so this implies that s̃ is G̃?-conjugate to s̃2. By [Bon06, 11.7] we have χ ∈ E(G, s) where
s = ι?(s̃). Clearly we have s is G?-conjugate to s2 so every odd degree character in
E(G, s) is σ-fixed by Proposition 5.3. This shows that Condition 2.3 holds in this case.

Now consider the case where the maximal torus T0 is degenerate. By Lemma 5.6 we
have q = 2 but G is not 2An(2) with n > 2. As we assumed that G has a trivial Schur
multiplier we have G is not 2E6(2) and so G has a trivial centre. This implies G ∼= G?

is a finite simple group so the argument in [GMN04, Lemma 2.4] shows that every
semisimple element s ∈ G? is G?-conjugate to s2. By Lemma 3.4 and Proposition 5.3
we thus have every odd degree character of G is σ-fixed so Condition 2.3 holds in this
case. �

6. Condition 2.4 when p = 2

6.1. Assume G is perfect with centre Z, so the quotient S = G/Z is simple. We now
wish to outline a strategy for showing that S satisfies Condition 2.4. Firstly, we note
that the homomorphism Aut(G) → Aut(S) induced by the natural surjection G → S
is an isomorphism, see [GLS98, Theorem 2.5.14(d)]. Now assume A = SQ = GQ/Z
for some 2-group Q 6 Aut(S) ∼= Aut(G). We wish to show that if A does not have a
self-normalising Sylow 2-subgroup, then there exists a character χ ∈ Irr2′(S) which is A-
invariant but is not fixed by σ. We will construct such a character by finding a character
χ̃ ∈ Irr2′(G̃) such that χ̃σ 6= χ̃ and the restriction χ = ResG̃

G(χ̃) ∈ Irr(G) is irreducible,
Q-invariant, and has Z in its kernel. We’re then done by viewing χ as a character of S.

6.2. Let s be a semisimple element of G̃? then there exists a unique semisimple
character χ̃s ∈ E(G̃, s) of G̃, which has degree χ̃s(1) = [G̃? : CG̃?(s)]p′ . Recall that the

number of irreducible constituents of χ := ResG̃
G(χ̃s) is exactly the number of irreducible
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characters θ ∈ Irr(G̃/G) satisfying χ̃sθ = χ̃s. Furthermore, we have Irr(G̃/G) = {χ̃t |
t ∈ Z(G̃?)} and E(G̃, s)χ̃t = E(G̃, st) for such t ∈ Z(G̃?), see [DM91, 13.30]. Hence
we see that χ is irreducible if and only if s is not G̃?-conjugate to st for any nontrivial
t ∈ Z(G̃?). Moreover, if s ∈ [G̃?, G̃?] then χ̃s is trivial on Z(G̃) so ResG̃

G(χ̃s) is trivial on
Z(G), see [NT13, Lemma 4.4(ii)]. Note that, by construction, the character χ is fixed by
all inner and diagonal automorphisms of G.

6.3. Assume now that s has odd order, so by Lemma 3.4 and [NTT08, Corollary 2.4],
we have χσ

s = χs2 and χ
ψ
s = χψ?(s) for any ψ ∈ Aut(G), where ψ? : G̃? → G̃? is an

automorphism dual to ψ. Hence to prove that Condition 2.4 holds it suffices to find an
element s ∈ [G̃?, G̃?] such that the following hold:

(S1) s has odd order and [G̃ : CG̃(s)]p′ is odd,

(S2) s is not G̃?-conjugate to s2,

(S3) s is not G̃?-conjugate to st for any t ∈ Z(G̃?),

(S4) s is G?-conjugate to ψ?(s) for any field or graph automorphism ψ ∈ Q.

With this in place we may now complete the proof of Theorem A when p = 2. Indeed,
we have already shown that Condition 2.3 holds in Proposition 5.9 so it suffices to show
that Condition 2.4 holds under this assumption.

Proposition 6.4. Assume p = 2. If G is perfect, then the finite simple group S = G/Z satisfies
Condition 2.4.

Proof. Assume q = 2. If F is split then T0 = {1} so G ∼= S and NS(P)/P ∼= T0 = {1}, so
certainly Condition 2.4 holds in this case. The cases 2An(2), 2Dn(2), 3D4(2), and 2E6(2)
are dealt with in [SF16] so we may assume that q > 2. We will now prove the statement
by finding a semisimple element s ∈ [G̃?, G̃?] satisfying the conditions outlined in 6.3.
What follows is a synthesised version of the arguments in [SF16].

We will denote by qΦ? ⊆ qX(T̃?
0) the coroots of G̃? with respect to T̃?

0 . Clearly for
any qα ∈ qΦ? and ζ ∈ K× we have qα(ζ) ∈ [G̃?, G̃?]. We now choose a set of simple
coroots q∆? = {qα1, . . . , qαn} ⊆ qΦ?, which corresponds to choosing a Borel subgroup of G̃?

containing T̃?
0 . With this in place we fix a coroot

qα0 = qα1 + · · ·+ qαn ∈ qΦ.

Note this is always a coroot for any indecomposable root system, as is easily checked.
As p = 2 we have Ker(qα) = {1} for any coroot qα ∈ qΦ?, c.f., the proof of [Spr09,

7.3.5]. In particular, the map K× × · · · ×K× → T̃?
0 defined by

(ζ1, . . . , ζn) 7→ qα1(ζ1) · · ·qαn(ζn) (6.5)

is an injective morphism of algebraic groups. The torus T0 is non-degenerate because we
assume q > 2, c.f., Lemma 5.6, so A has a self-normalising Sylow 2-subgroup if and only
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if Q contains a generating field automorphism which we denote by ϕ, c.f., Lemma 5.8.
Let us write q = pa for some integer a > 1. By assumption, Q is a 2-group so it may
contain any field automorphism of the form ϕi where i > 1 is a divisor of a such that
a/i is a 2-power.

With this in mind let us write a = 2tm with t > 0 and m > 1 odd. We define an
automorphism

ψ =

ϕm if m > 1,

ϕ2 if m = 1.

Note that ψ generates the subgroup of all field automorphisms that may possibly be
contained in Q. For the moment we will assume that q > 4. We now fix an element
ζ0 ∈ K× with the following properties:

(i) if m > 1 then ζ2
0 6= ζ−1

0 and ζ2m−1
0 = 1,

(ii) if m = 1 then ζ0 ∈ K× is an element of order 5.

Now consider the corresponding element s0 = qα0(ζ0) ∈ T̃?
0 . One readily checks that if

q > 4 then the element s0 is F?-fixed. Now assume q = 4 and denote by ẇ ∈ NG̃?(T̃?
0) an

element representing the reflection of qα0. If g ∈ G̃? is an element such that g−1F?(g) = ẇ
then clearly the conjugate s = gs0 is F?-fixed. Hence, in all cases we have defined a
rational semisimple element s ∈ T̃?

0 contained in the derived subgroup [G̃?, G̃?]. We
now show that the conditions (S1) to (S4) hold for s.

(S1). As p = 2 this clearly holds for any semisimple element.
(S2). We claim that s and s2 are not G̃?-conjugate, hence are not G̃?-conjugate. If they

were G̃?-conjugate then s0 would be G̃?-conjugate to s2
0 so by [Car93, 3.7.1] there would

exist an element ẇ ∈ NG̃?(T̃?
0), representing w ∈ WG̃?(T̃?

0) := NG̃?(T̃?
0)/T̃?

0 , such that
ẇs0 = s2

0. Assume w(qα0) = a1qα1 + · · ·+ anqαn with ai ∈ Z then ẇs0 = qα1(ζ
a1
0 ) · · ·qαn(ζ

an
0 ).

Clearly w(qα0) ∈ qΦ? is a coroot. Inspecting the indecomposable root systems one easily
observes that one of the following is true: ai = ±1 or (ai, aj) = (±2,±3) for some
1 6 i, j 6 n. In particular, the condition ẇs0 = s2

0 implies that either ζ2
0 = ζ±1

0 or
ζ2

0 = ζ±2
0 = ζ±3

0 . From the choice of our element ζ0 one easily confirms that this is
impossible, so s cannot be G̃?-conjugate to s2.

(S3). We need only show that CG?(s) = gCG?(s0) is connected, see [Bon05, 2.8(a)].
The argument used above shows that an element ẇ ∈ NG?(T?

0), representing w ∈
WG?(T?

0), satisfies ẇs0 = s0 if and only if w(qα0) = qα0. The centraliser of qα0 in WG?(T?
0)

is a parabolic subgroup, see [MT11, A.29], which implies that CG?(s0) is connected by
[DM91, 2.4]. We thus have CG?(s) is connected.

(S4). Assume γ ∈ Q is a graph or field automorphism. As CG?(s) is connected we
have γ?(s) is G?-conjugate to s if and only γ?(s) is G?-conjugate to s. Moreover, it is clear
that γ?(s) is G?-conjugate to s if and only γ?(s0) is G?-conjugate to s0. Now certainly
s0 is fixed by all graph automorphisms. If m > 1 then we have ψ?(s0) = s2m

0 = s0 and
if m = 1 then we have ψ?(s0) = s4

0 = s−1
0 . However if ẇ ∈ NG?(T?

0) represents the
reflection of qα0 then ẇs0 = s−1

0 so we’re done. �
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7. Sylow 2-Subgroups of GLε
n(q)

From this point forward we assume that p is odd, G = SLn(K), G̃ = GLn(K), and ι is the
natural inclusion map. Moreover, we assume that G? = PGLn(K), G̃? = GLn(K), and
ι? is the natural projection. The Frobenius endomorphism F will be assumed to denote
either the morphism Fq or Fqφ = φFq, with the notation as in the proof of Lemma 5.6. The
reference tori T0, T?

0 , T̃0, T̃?
0 will be taken to be the maximal tori of diagonal matrices.

7.1. Throughout we will adopt the following convention: The split group GFq , resp.,
twisted group GFqφ, which we continue to refer to as G, will be denoted by SL+1

n (q),
resp., SL−1

n (q). To unify this we let ε denote ±1 and simply write SLε
n(q) to denote the

two rational forms of SLn(K). We also write GLε
n(q) and PGLε

n(q) to have the corre-
sponding meanings. Furthermore we define q to be q if ε = 1 and q2 if ε = −1. With
this we have natural embeddings SLε

n(q) 6 SLn(q), GLε
n(q) 6 GLn(q), and PGLε

n(q) 6
PGLn(q). Recall that in this setting, G̃ = G̃? = GLε

n(q), G? = PGLε
n(q), and we write Z

for the centre Z(G) of SLε
n(q).

7.2. In this section we recall results of Carter–Fong on the Sylow 2-subgroups of
GLε

n(q). For this we introduce the following notation. For r > 0 an integer, we denote
by Sε

r(q) a Sylow 2-subgroup of GLε
2r(q). With this in place we have the following, see

[CF64, Theorem 1, Theorem 4].

Theorem 7.3 (Carter–Fong). Let n = 2r1 + · · ·+ 2rt , with 0 6 r1 < · · · < rt, be an integer
written in its 2-adic expansion. If P̃ 6 G̃ is a Sylow 2-subgroup of G̃ = GLε

n(q) then P̃ ∼=
∏t

i=1 Sε
ri
(q) and

NG̃(P̃) ∼= P̃× C(q−ε)2′
× · · · × C(q−ε)2′

(7.4)

with t copies of the cyclic group C(q−ε)2′
.

7.5. The group NG̃(P̃) can be described more explicitly. Firstly, the Sylow P̃ can be
realised by embedding ∏t

i=1 Sε
ri
(q) 6 ∏t

i=1 GLε
2ri (q) block-diagonally in a natural way.

Now for each 1 ≤ j ≤ t the corresponding factor C(q−ε)2′
is embedded as the largest

odd-order subgroup of the centre Z(GLε
2rj (q)). In particular, writing Ik for the identity

of GLk(q), elements of NG̃(P̃) are of the form xz where x ∈ P̃ and

z =
t⊕

i=1

λj I2rj = diag(λ1 I2r1 , . . . , λt I2rt ) (7.6)

with λj ∈ C(q−ε)2′
≤ F×q . In what follows, we will use the notation z =

⊕t
j=1 zj for this

matrix with zj = λj I2rj for each 1 ≤ j ≤ t. We close this section with a result which will
be used as part of the proof of Lemma 10.2.

Lemma 7.7. Let m = 2r1 + · · ·+ 2rt ∈N, with 0 6 r1 < · · · < rt, be an integer written in its
2-adic expansion. Then

[GLε
2m(q) : GLε

m(q)
2]2 = 2t
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where n2 denotes the 2-part of an integer n > 1.

Proof. As 2m = 2r1+1 + · · · + 2rt+1 is clearly the 2-adic expansion of 2m, we have by
Theorem 7.3 that

[GLε
2m(q) : GLε

m(q)
2]2 =

t

∏
i=1

(
|Sε

ri+1(q)|/|Sε
ri
(q)|2

)
.

According to [CF64, Eq. (4)] we have |Sε
r+1(q)| = 2|Sε

r(q)|2 for any integer r > 0. From
this the result follows immediately. �

8. Condition 2.4 for Type A

8.1. Let P̃ be a Sylow 2-subgroup of G̃, so that P = P̃ ∩ G is a Sylow 2-subgroup of
G which is normal in P̃. Then [Kon05, Theorem 1] yields that

NG̃(P) = P̃CG̃(P̃) = NG̃(P̃), (8.2)

and hence we see that NG(P) = NG(P̃) = NG̃(P̃) ∩ G. Now, if n is not a power of 2,
write

n = 2r1 + 2r2 + ... + 2rt (8.3)

with t ≥ 2 and r1 > r2 > ... > rt ≥ 0 for the 2-adic expansion of n. We now wish to
describe when the quotient GQ/Z, with Q 6 Aut(G) a 2-group, has a self-normalising
Sylow 2-group; thus allowing us to show Condition 2.4 holds. The following gives a
complete description of those subgroups Q with this property.

Lemma 8.4 (see [Kon05]). A simple group PSLε
n(q) has a self-normalising Sylow 2-subgroup

if and only if one of the following holds:

(i) n = 2r for some r > 2,

(ii) n 6= 2r for any r > 2 and (q− ε)2′ = 1,

(iii) n = 2r1 + 2r2 for some r1 > r2 > 0 and (q− ε)2′ = (n, q− ε)2′ .

Lemma 8.5. Write q = pa and let Q 6 Aut(G) be a 2-group. The quotient GQ/Z has a
self-normalising Sylow 2-subgroup if and only if at least one of the following is satisfied:

(1) G/Z has a self-normalising Sylow 2-subgroup;

(2) Q contains a graph automorphism in case ε = 1 or an involutary field automorphism in
case ε = −1, either of which we may identify as the map φ, up to inner and diagonal
automorphisms;

(3) ε = 1, a is a 2-power, (p − 1)2′ = 1, and Q contains a field automorphism of order a
(which we identify with Fp, up to inner and diagonal automorphisms);

(4) ε = 1, a is a 2-power, p = 3, and Q contains a field automorphism of order a/2 (which we
identify with F2

3 , up to inner and diagonal automorphisms); or
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(5) ε = 1, n = 2r1 + 2r2 for integers r1 > r2 ≥ 0, (pm − 1)2′ = gcd(n, pm − 1)2′ for some
m dividing a, and Q contains a field automorphism of order a/m (which we identify with
Fm

p , up to inner and diagonal automorphisms).

Remark 8.6. Since the involutary field automorphism Fq induces the map φ on GUn(q),
condition (2) in the case ε = −1 includes the case that Q contains any field automor-
phism whose order is a power of 2.

Proof (of Lemma 8.5). Let P be a Sylow 2-subgroup of G stabilized by Q. Specifically,
we may choose P as in the setup for (8.2).

(I) First suppose that one of (1), (2), (3), (4), or (5) holds. Note that in case (1), the
statement is certainly true, since then NG(P) = PZ, so CNG(P)/PZ(Q) = 1. Hence we
may assume that G/Z does not have a self-normalising Sylow 2-subgroup and that Q
contains an outer automorphism. Specifically, either Q contains a graph automorphism
(in case ε = 1) or involutary field automorphism (in case ε = −1), which we identify
with φ on G, up to conjugation in G̃; or ε = 1 and Q contains a field automorphism,
which we identify as Fpm on G, up to conjugation in G̃, for some m ≥ 1. Write ϕ

for the corresponding graph or field automorphism, respectively. We will show that
CNG(P)/PZ(ϕ) = 1. Write N := NG(P)/PZ and let g denote the image of an element
g ∈ NG(P) in N. Suppose g ∈ NG(P) satisfies that g ∈ CN(ϕ). That is, g is fixed by ϕ.

Write n as in (8.3), so that by (7.6) and (8.2) we have g = xz for some x ∈ P and
z =

⊕t
j=1 λj I2rj as in (7.6) such that ∏t

j=1 λ2rj

j = 1. Then observing the action of ϕ on
the 2′-part of g, we see ϕ(z) = zy for some y ∈ Z of odd order. Write y = η In for some
(n, q− ε)-root of unity η in F×q . Then since the block sizes 2rj are distinct, we must have

that λjη = λ−1
j or λ

pm

j , respectively, for each 1 ≤ j ≤ t.
(IA) Hence if condition (2), (3), or (4) holds, then there is some integer c ≥ 1 such

that λ2c

j = η for each 1 ≤ j ≤ t. (Recall that in situation (3) p− 1 is a power of 2, and
in situation (4), pm = 9, so pm − 1 is also a power of 2.) Then in these cases, for each j
there is a 2c-root of unity ζ j satisfying λ1 = ζ jλj, and we may write z as the product of
λ1 In and a diagonal matrix d whose diagonal entries are 2-power roots of unity. Further,
since z has determinant 1, |d| has 2-power order, and the multiplicative order of λ1 is
odd, it follows that λ1 In ∈ Z and d ∈ P. We therefore see that g ∈ PZ, so that g = 1,
yielding that in cases (2), (3), and (4), CN(ϕ) = 1.

(IB) Now assume condition (5) holds, so that t = 2, ε = 1, and (pm − 1)2′ =

gcd(n, pm − 1)2′ . Note then that PSLn(pm) and PGLn(pm) have self-normalising Sylow
2-subgroups, see Lemma 8.4. Note that λ

pm−1
1 = η = λ

pm−1
2 , so that λ1 = ζλ2, for some

(pm − 1)-root of unity ζ in F×q .
Then as an element of GLn(q), we may write z as the product of the central element

λ1 In and a diagonal matrix d whose diagonal entries are (pm − 1)-roots of unity. In
particular, d ∈ GLn(pm) is an element centralising a Sylow 2-subgroup P̃m contained
in P̃ (see the constructions in [CF64]), where P̃ is a Sylow 2-subgroup of GLn(q) such
that P = P̃ ∩ G. Hence the image of z in G/Z ∼= GZ(G̃)/Z(G̃) must be trivial, since
PGLn(pm) has a self-normalising Sylow 2-subgroup and z has odd order. Then again,
g = 1, yielding that CN(ϕ) = 1 in case (5) as well.
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(II) Now, assume that none of (1) to (5) hold. We will show that CNG(P)/PZ(Q) 6= 1, so
that GQ/Z does not have a self-normalising Sylow 2-subgroup. We do this by exhibiting
a nontrivial element of N := NG(P)/PZ which is fixed by all possible elements of Q.
Note that we may assume Q contains an outer automorphism.

Since (1) does not hold, we see that neither n nor (q − ε) is a power of 2, see
Lemma 8.4. Hence writing n as in (8.3), we see t ≥ 2 and there exist nonidentity el-
ements of the the form z = ⊕t

j=1λj I2rj as in (7.6). Since (2) does not hold, Q does not
contain φ up to conjugation in G̃. Further, any diagonal automorphism in Q is induced
by the quotient group P̃/P, and therefore is centralised by such a z by construction.
Hence it suffices to exhibit a z such that ϕ(z) = z for each field automorphism ϕ con-
tained in Q, the λj for 1 ≤ j ≤ t are not all the same, and λ2r1

1 · ... · λ2rt
t = 1.

(IIA) Suppose that Q contains no field automorphisms. (In particular, this is the case
if ε = −1.) Let λj = 1 for j > 2 and let λ2 be a primitive (q − ε)2′ root of unity in
F×q and λ1 = λb

2, where b ≡ −2r2−r1 (mod (q− ε)2′). (Note that this is possible since
(q− ε)2′ 6= 1 and 2 is invertible modulo (q− ε)2′ .) Then the determinant of z is

λ2r1
1 · λ2r2

2 = λ2r1 b
2 · λ2r2

2 = λ
−2r1 (2r2−r1 )
2 · λ2r2

2 = λ−2r2+2r2
2 = 1,

so that z ∈ G. Further, if t > 2, then the λj are not all the same, so z is not central, and
the proof is complete in this case.

If t = 2, then since (1) does not hold, we know by Lemma 8.4 that gcd(n, q− ε)2′ 6=
(q− ε)2′ , so gcd(2r1−r2 + 1, q− ε)2′ 6= (q− ε)2′ . This yields that b 6≡ 1 mod (q− ε)2′ , so
λ1 6= λ2, and z is again not central.

(IIB) Now assume that ε = 1 and that Q contains a field automorphism. Write
q = pa. Without loss, we may identify the generator of the subgroup of Q consisting of
field automorphisms as Fm

p for some m|a. Further, it suffices to assume that Fm
p generates

the largest 2-group of automorphisms possible without inducing conditions (3)-(5). Note
that since (5) does not hold, we have (pm − 1)2′ 6= gcd(n, pm − 1)2′ if t = 2.

Note that if (p− 1)2′ 6= 1, then also (pm − 1)2′ 6= 1. If p− 1 and a are both powers of
2, then since neither (3) nor (4) hold, we may assume that 2|m when p 6= 3 and that 4|m
when p = 3. Then (pm − 1)2′ 6= 1, since both of p− 1 and p + 1 cannot simultaneously
be a power of 2 unless p = 3, in which case 34 − 1 is not a 2-power. If p− 1 is a power
of 2 but a is not, then we may assume that m is divisible by a2′ , the odd part of a. Then
(pm − 1)2′ is divisible by the a2′ ‘th cyclotomic polynomial evaluated at p, which is odd
since a2′ and p are.

Hence in all cases, we may assume pm − 1 is not a 2-power. Then repeating the
argument in (IIA) with q replaced with pm, we may choose λ1, λ2 ∈ F×pm so that z is
non-central and lies in SLn(pm). Hence z is fixed by the field automorphisms in Q and
has the required form. �

Proposition 8.7. If G is perfect then the simple group G/Z = PSLε
n(q) satisfies Condition 2.4.

Proof. By Proposition 6.4 our assumption that p is odd is not restrictive. We will argue
this by proving the contrapositive, as in Section 6. Specifically we assume A = SQ =
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GQ/Z ≤ Aut(S) is a group obtained by adjoining a 2-group Q of automorphisms to
S. We wish to show that if A does not have a self-normalizing Sylow 2-subgroup,
i.e., Q is not as in (1) to (5) of Lemma 8.5, then there exists a character χ ∈ Irr2′(S)
which is A-invariant but not fixed by σ. We do this by finding a semisimple element
s ∈ [G̃?, G̃?] = SLε

n(q) satisfying the conditions in 6.3.
Since A has no self-normalising Sylow 2-subgroup, we see by Lemma 8.4 that neither

n nor q− ε is a power of 2. Write

n = 2r1 + 2r2 + ... + 2rt

with t ≥ 2 and r1 > r2 > ... > rt ≥ 0 for the 2-adic expansion of n. From the discussion
in Section 7, to ensure that s has odd order and centralises a Sylow 2-subgroup of G̃?, it
suffices to choose a nonidentity s in the form s =

⊕t
j=1 λj · I2rj , as in (7.6).

If s is non-central, then since the block sizes 2rj are distinct, it follows that this choice
of s is not conjugate in GLε

n(q) to s2 or st for any nontrivial t ∈ Z(GLε
n(q)).

We note further that A does not contain a graph automorphism, by Lemma 8.5.
Hence it suffices to exhibit an s as above such that: ϕ(s) is conjugate to s for each
field automorphism ϕ contained in A, the λj for 1 ≤ j ≤ t are not all the same, and
λ2r1

1 · ... · λ2rt
t = 1 so that s ∈ SLε

n(q).
Letting s be the element z obtained in parts (IIA) and (IIB) of the proof of Lemma 8.5,

we see that the conjugacy class of s is fixed by A and has the required form. �

9. Covering Odd Degree Characters of SLε
n(q)

9.1. We wish to show that G satisfies the hypotheses of Condition 2.3. As we already
saw in the proof of Proposition 5.9 it is important to know that a σ-invariant odd degree
character of G can be covered by a σ-invariant character of G̃. Unfortunately, we cannot
appeal to Glauberman’s Lemma as in the proof of Proposition 5.9. The following gives
the desired covering result.

Proposition 9.2. Let S = G/Z and suppose Q 6 Aut(S) is a 2-group such that GQ/Z has
a self-normalising Sylow 2-subgroup. Assume λ ∈ Irr(Z) is σ-fixed and Q-invariant and let
χ ∈ Irr2′(G|λ) be Q-invariant. Then there exists an irreducible character χ̃ ∈ Irr(G̃|χ) covering
χ which is contained in a Lusztig series E(G̃, s̃) labelled by an element s̃ of 2-power order. In
particular, we have χ̃σ = χ̃.

Proof. Let χ be as in the statement, so χ ∈ Irr(G) has odd degree. Then, in particular, χ

lies in a series E(G, s) for some semisimple element s ∈ G? for which [G? : CG?(s)]p′ is
odd. This implies s centralises, hence normalises, a Sylow 2-subgroup of G?.

Now, the characters χ̃ ∈ Irr(G̃|χ) lying above χ are members of rational series of the
form E(G̃, s̃), where s̃ ∈ G̃? satisfies ι?(s̃) = s, see [Bon06, Corollaire 9.7]. We will write
Z̃ for the centre Z(G̃?) and denote by P̃ a Sylow 2-subgroup of G̃? such that s centralises
P̃Z̃/Z̃. We aim to show that s̃ may be chosen to have 2-power order. If this is the case
then by Lemma 3.4 and Proposition 3.10 we must have χ̃σ = χ̃.
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First, suppose that Q is as in Lemma 8.5(1), so that S has a self-normalising Sylow
2-subgroup. Then PGLε

n(q) also has a self-normalising Sylow 2-subgroup, so s must be
contained in the Sylow 2-subgroup P̃Z̃/Z̃ of PGLε

n(q). Let s̃′ = rz be a pre-image of s,
where r ∈ P̃ and z ∈ Z̃. Then noting that s̃ = s̃′z−1 is another pre image of s, the claim
is proved in this case.

Next, assume condition (2), (3), (4), or (5) of Lemma 8.5 holds. Then either Q contains
a graph automorphism (in case ε = 1) or involutary field automorphism (in case ε = −1),
which we identify with φ on G̃ ∼= G̃? ∼= GLε

n(q); or ε = 1 and Q contains a field
automorphism, which we identify as Fpm on G̃ ∼= G̃? ∼= GLn(q), for some m ≥ 1. By an
abuse of notation, write ϕ for φ or Fpm , respectively, on G̃ and G̃?. Then χϕ = χ, and
in particular, E(G, s)ϕ = E(G, s), yielding that the class (s) is fixed by ϕ, by [NTT08,
Corollary 2.4].

Let s̃ ∈ GLε
n(q) be a pre-image of s. Then if x ∈ P̃, we see s̃xs̃−1 ∈ xZ̃. But further,

s̃xs̃−1 has order a power of 2, so must be contained in the unique Sylow 2-subgroup P̃
of P̃Z̃. We therefore see that s̃ normalises P̃.

Write n = 2r1 + 2r2 + ... + 2rt with r1 > r2 > ... > rt for the 2-adic expansion of n.
From the discussion in Section 7, we may then choose s̃ in the form s̃ = s2z, where
s2 ∈ P̃ and z =

⊕t
j=1 λj · I2rj , as in (7.6).

Further, since ϕ(s) is conjugate in PGLε
n(q) to s, we see that ϕ(s̃) is conjugate in

GLε
n(q) to s̃y for some y ∈ Z̃. Then ϕ(z) is conjugate to zy2′ , where y2′ denotes the

odd part of y. Let η ∈ F×q be such that y2′ = η In. Then as in part (I) of the proof of
Lemma 8.5, since the block sizes 2rj are distinct, we must have that these eigenvalues
satisfy λjη = λ−1

j or λ
pm

j , respectively, for each 1 ≤ j ≤ t.
Hence if condition (2), (3), or (4) holds, arguing exactly as in part (IA) of the proof of

Lemma 8.5 yields that we may write z as the product of λ1 In ∈ Z̃ and a diagonal matrix
whose diagonal entries are 2-power roots of unity. We may then replace s̃ with s̃λ−1

1 ,
which is also a pre-image of s and has 2-power order, completing the proof in this case.

Finally, assume condition (5) of Lemma 8.5 holds, so that t = 2, ε = 1, and (pm −
1)2′ = gcd(n, pm − 1)2′ . Note then that PSLn(pm) and PGLn(pm) have self-normalising
Sylow 2-subgroups. Further, by multiplying by the central element λ−1

2 In, we may as-
sume that z = λ1 I2r1 ⊕ I2r2 , and η = 1. Therefore it must be that λ

pm−1
1 = 1, yielding

that λ1 I2r1 is an element of order dividing (pm − 1)2′ in Z(GL2r1 (pm)). That is, z is con-
tained in the centraliser in GLn(pm) of a Sylow 2-subgroup P̃m contained in P̃ (see the
constructions in [CF64]). Then the image of z in PGLn(q) is an element of odd order
in PGLn(pm) centralising P̃mZ̃/Z̃, which is self-normalising in PGLn(pm). This yields
that the image of z in PGLn(q) is trivial, so s is a 2-element. Arguing as in the case that
Lemma 8.5(1) holds, the proof is complete. �

10. Condition 2.3 for Type A

10.1. We wish to understand the effect of the Galois automorphism σ on the odd
degree characters of G. For this we will use results of Navarro–Tiep on the extension of
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odd degree characters from G to G̃. Specifically we have the following slight refinement
of results from [NT15].

Lemma 10.2 (Navarro–Tiep). Assume χ ∈ Irr(G) is an odd degree character and χ̃ ∈ Irr(G̃|χ)
covers χ. Then one of the following holds:

(a) χ̃(1) = χ(1),

(b) χ̃(1) = 2χ(1) and n = 2r for some r > 1.

Proof. The case n = 2 is easily checked so we may assume that n > 2. Let us assume
χ̃ ∈ E(G̃, s̃) then according to [NT15, Lemma 4.5, Lemma 4.6] we have either (a) holds
or the following holds

• χ̃(1) = 2χ(1) and CG̃(s̃)
∼= GLε

m(q)2 with n = 2m.

By Lusztig’s Jordan decomposition of characters we see that the index [G̃ : CG̃(s̃)]p′
divides χ̃(1), see [DM91, Remark 13.24], so [G̃ : CG̃(s̃)]2 divides χ̃(1) because p is odd.
If m = 2r1 + · · · + 2rt is the 2-adic expansion of m then we have [G̃ : CG̃(s̃)]2 = 2t by
Lemma 7.7. However χ(1) is odd so we must have t = 1, which proves the statement.�

10.3. By Proposition 3.10 we know the effect of σ on the irreducible characters of G̃.
Hence when an odd degree character of G extends to G̃ we can easily determine the
effect of σ on such a character. Thus we are left with considering the second case of
Lemma 10.2. For this case, we record the following observations.

Lemma 10.4. Assume χ ∈ Irr(G) is an irreducible character and χ̃ ∈ Irr(G̃|χ) covers χ. If the
G-conjugacy class of g ∈ G is invariant under conjugation by G̃, then χ(g) = χ̃(1)χ̃(g)/χ(1).
In particular, we have χ(g)σ = χ(g) if and only if χ̃(g)σ = χ̃(g).

Proof. This follows immediately from the fact that ResG̃
G(χ̃) is multiplicity free. �

Lemma 10.5. Recall our assumption that p is odd and let χ ∈ Irr(G) be an irreducible character.
Then χ(u)σ = χ(u2) for any unipotent element u ∈ G.

Proof. Let X be a complex representation affording χ. Then χ(u) is the sum ∑χ(1)
i=1 λi of

eigenvalues λi of the matrix X(u) and χ(u2) is the sum ∑χ(1)
i=1 λ2

i of eigenvalues of the
matrix X(u)2. Hence, since u is a 2′-element, each λi is a 2′-root of unity, so χ(u)σ =

∑χ(1)
i=1 λ2

i = χ(u2). �

10.6. As we will see below, the case when n = 4, i.e., when G = SLε
4(q), will need to

be treated separately with ad-hoc methods. In particular, we will need some knowledge
of the Levi subgroup

L = {diag(A, B) | A, B ∈ GL2(K) and det(B) = det(A)−1} 6 G = SL4(K). (10.7)

Note this subgroup is stable by the Frobenius endomorphism F. Let W = NG(T0)/T0 be
the Weyl group of G with respect to T0 and let WL = NL(T0)/T0 be the corresponding
parabolic subgroup determined by L.
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The section NG(L)/L of G is isomorphic to the section NW(WL)/WL of W, which
has order 2. Identifying W with S4 in the usual way, we have the non-trivial coset
of NW(WL)/WL is represented by the permutation (1, 3)(2, 4). Let n ∈ NG(T0) be the
permutation matrix representing (1, 3)(2, 4); note this matrix has determinant 1. If ın :
L→ L denotes the conjugation map defined by ın(l) = nln−1 then the map ınF : L→ L
is a Frobenius endomorphism of L stabilising T0. Now assume M = gL is an F-stable
G-conjugate of L. After possibly replacing g by gl, for some l ∈ L, we may assume that
conjugation by g identifies the pair (M, F) with either (L, F) or (L, ınF). With this we
are ready to prove the following lemmas.

Lemma 10.8. Assume n = 4 so that G = SLε
4(q) and recall that p is odd. If M = gL is an

F-stable G-conjugate of L, then any rational unipotent element u ∈ MF is MF-conjugate to u2.

Proof. By 10.6 each pair (M, F) can be identified with the pair (L, F′) where F′ denotes
either F or nF, hence it suffices to prove the statement for the pair (L, F′). The unipotent
conjugacy classes of L are parameterised by the Jordan normal form. Let O ⊆ L be
a unipotent conjugacy class. Then O is invariant under the map x 7→ x2 because the
elements have the same Jordan normal form.

Assume now that O is F′-stable and u ∈ OF′ . As the component group CL(u)/C◦L(u)
has order at most |Z(L)/Z◦(L)| = 2 we have either OF′ is a single LF′-conjugacy class or
it’s a union of two such classes, see [Gec03, 4.3.5]. Therefore, it suffices to show that for
one element u ∈ OF′ we have u is LF′-conjugate to u2. Applying [Gec03, 4.3.5] it suffices
to find an element t ∈ T0 such that tu = u2 and t−1F(t) ∈ C◦T0

(u) 6 C◦L(u).
Let J =

[
1 1
0 1

]
and let u be one of the elements diag(J, J), diag(J, I2), diag(I2, J), or

diag(I2, I2). These elements represent the unipotent conjugacy classes of L. Setting t =
diag(2a, a, a−1, 2−1a−1), for some a ∈ Gm, one easily checks that tu = u2 and t−1F′(t) ∈
C◦T0

(u) as desired. �

Lemma 10.9. Assume n = 4 so that G = SLε
4(q) and recall that p is odd. If u ∈ G is a

non-regular unipotent element then u is G-conjugate to u2. In particular, we have Γσ
u = Γu for

any non-regular unipotent element u ∈ G.

Proof. If u ∈ G is a unipotent element then u and u2 have the same Jordan normal form
so they are G-conjugate. Each unipotent element has a connected centraliser unless
u is either regular or conjugate to diag(J, J) with J =

[
1 1
0 1

]
. The arguments used in

the proof of Lemma 10.8 show the first statement. The last statement follows from
Proposition 4.10. �

Remark 10.10. As 2 is a generator of F×p we see from the proof of [TZ04, 6.7] that if
u ∈ G = SLε

4(q) is regular unipotent then we need not necessarily have u is G-conjugate
to u2.

10.11. To understand the effect of σ on the odd degree characters of G we will need
to be able to distinguish between odd degree characters which are contained in the same
G̃-orbit. To do this we will use the GGGRs of G, see Section 4. In this direction we will
need the following consequence of [TZ04].
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Proposition 10.12. Let Γu be a GGGR of G = SLε
n(q). Then the following hold.

(a) For any g ∈ G we have Γu(g) ∈ Q(
√

ηp), where η ∈ {±1} is such that p ≡ η (mod 4),

(b) if q is a square, n is odd, or n/(n, q− ε) is even then Γu(g) ∈ Z for all g ∈ G.

In particular, if q ≡ ±1 (mod 8), n is odd, or n/(n, q− ε) is even, then Γσ = Γ.

Proof. This follows from [TZ04, Theorem 1.8, Lemma 2.6, and Theorem 10.10], together
with the fact that Γ is a unipotently supported character of G. The last statement follows
by noting that

√
pσ =

√
p if p ≡ ±1 (mod 8) and

√
pσ = −√p if p ≡ ±3 (mod 8), since

if q is not a square, then q ≡ p (mod 8). �

10.13. We are now in a position to prove the second part of Theorem A, thus con-
cluding its proof. Namely, we need to show that the simple groups PSLε

n(q) are SN2S-
Good. Note that Propositions 5.9 and 6.4 show that PSLε

n(q) is SN2S-Good when q is
even so our standing assumption that q is odd is not restrictive. As we have already
shown in Proposition 8.7 that Condition 2.4 holds for PSLε

n(q), we need only show that
Condition 2.3 holds for the corresponding quasisimple groups. Parts of the argument
are similar to that used in [SF16, Theorem 4.15, part (3)] but we include it here for
completeness.

Proposition 10.14. Assume G is perfect so the quotient G/Z = PSLε
n(q) is simple. Then any

quasisimple group whose simple quotient is isomorphic to PSLε
n(q) satisfies Condition 2.3.

Proof. We may assume that G has a trivial Schur multiplier because the case PSL2(9) ∼=
A6 was treated in [SF16]. In this case G is a Schur cover of S and it suffices to show that
G satisfies Condition 2.3, c.f., 2.6.

Let Q and χ ∈ Irr2′(G) be as in the hypothesis of Condition 2.3. By Proposition 9.2
there exists a σ-fixed irreducible character χ̃ ∈ Irr(G̃|χ) covering χ. A well known
result of Kawanaka assures that there exists a unipotent element u ∈ G ⊆ G̃ whose
corresponding GGGR Γ̃u of G̃ satisfies 〈Γ̃u, χ̃〉G̃ = 1, see [Kaw85, 3.2.18] or [Tay16b,

15.7]. By the construction of the GGGRs we have Γ̃u = IndG̃
G(Γu) where Γu is the GGGR

of G determined by u. Hence, applying Frobenius reciprocity we have the restriction
ResG̃

G(χ̃) contains a unique irreducible constituent χ0 ∈ Irr(G) satisfying 〈Γu, χ0〉G = 1.
Assume that Γσ

u = Γu. Then as χ̃σ = χ̃ we have χσ
0 is also a constituent of ResG̃

G(χ̃)

satisfying 〈Γu, χσ
0 〉G = 1. The uniqueness of such a character forces χσ

0 = χ0. By Clifford
theory, we may write χ = χ

g
0 for some g ∈ G̃, so χσ = (χσ

0 )
g = χ.

If either q ≡ ±1 (mod 8), or n/(n, q− ε) is even, then by Proposition 10.12 we have
each GGGR Γu of G is σ-fixed so the above argument applies and Condition 2.3 holds
for G. Thus we may assume that q ≡ ±3 (mod 8) and n/(n, q− ε) is odd. If χ extends
to G̃ then Gallagher’s theorem implies that ResG̃

G(χ̃) = χ so χσ = χ. We may therefore
assume that χ does not extend to G̃, so by Lemma 10.2 we must have n = 2r for some
r > 1. Now, as n/(n, q− ε) is odd, we must have n = 2r divides the 2-part (q− ε)2 of
q− ε. But q− ε ≡ ±3− ε (mod 8), which is either ±2 (mod 8) or 4 (mod 8). Hence
(q− ε)2 is either 2 or 4 so n is either 2 or 4.
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The case n = 2 is treated in [SF16] so we need only show that Condition 2.3 holds
for G = SLε

4(q) with q ≡ ±3 (mod 8). By Lemma 10.9 we have Γσ
u = Γu unless u

is regular unipotent, so the above argument shows that χσ = χ unless χ is a regular
character. Assume the σ-invariant character χ̃ ∈ Irr(G̃|χ) covering χ is contained in the
Lusztig series E(G̃, s̃). Then by Proposition 9.2 we may assume s̃ is of 2-power order; in
particular s is of 2-power order.

We now aim to show that χ(g)σ = χ(g) for each g ∈ G, thus showing χσ = χ. First,
assume g is semisimple. Then as G is simply connected, we have CG(g) is connected.
This easily implies that the G-conjugacy class containing g is invariant under conjugation
by G̃ so χ(g)σ = χ(g) in this case by Lemma 10.4. Next, assume g is unipotent, so by
Lemma 10.5 we have χ(g)σ = χ(g2). If g is not a regular unipotent element then g and
g2 are G-conjugate, c.f., Lemma 10.9, so again χ(g)σ = χ(g).

If g is regular unipotent then we claim χ(g) = 0, thus trivially χ(g)σ = χ(g). By
[DM91, Corollary 14.38] we have χ(g) = 0 if DG(χ) does not occur as a constituent
of any Gelfand–Graev character. Assume for a contradiction that DG(χ) does occur in
some Gelfand–Graev character. Then χ is both regular and semisimple. This implies χ̃

is both regular and semisimple. However, by [Bon06, 15.6, 15.10] this can only happen
if the trivial and sign character of the Weyl group of CG̃(s) coincide. Clearly this is not
the case, so we must have χ(g) = 0 as desired.

We now need only consider the case where g = gsgu = gugs with gs 6= 1 semisimple
and gu 6= 1 unipotent. Note that we have CG(g) = CCG(gs)(gu) and the centraliser
CG(gs) is a Levi subgroup of G. The subgroup CG(gs) is G-conjugate to a standard Levi
subgroup of G so CG(gs) is isomorphic to either GL3(K), GL2(K)×Gm, or the subgroup
L defined in (10.7). In the first two cases the centraliser of every unipotent element is
connected, which implies CG(g) is connected. As argued above we can conclude from
Lemma 10.4 that χ(g)σ = χ(g).

Thus we are left with the case where CG(gs) is G-conjugate to L. As is remarked in
[Bon06, §25.A] we have χ(g) = ∗RG

CG(gs)
(χ)(g) so we need only show that ∗RG

CG(gs)
(χ)(g)σ =

∗RG
CG(gs)

(χ)(g). The class function ∗RG
CG(gs)

(χ) is a Z-linear combination of irreducible
characters, so it suffices to show that λ(g)σ = λ(g) for each irreducible constituent λ of
∗RG

CG(gs)
(χ).

Assume λ is such a constituent. Then λ is a contained in a Lusztig series of CG(gs)

labelled by a semisimple element which is G?-conjugate to s, see [Bon06]. As mentioned
above, we have s is of 2-power order, hence so is any G?-conjugate of s. By Lemma 3.4
we thus have the Lusztig series containing λ is σ-invariant. If ωλ : Z(CG(gs)) → Q

×
`

is the central character of λ, then λ(g) = ωλ(gs)λ(gu) because gs ∈ Z(CG(gs)). As the
Lusztig series containing λ is σ-invariant, we have ωλ(gs)σ = ωλ(gs) by Lemma 3.6.
Applying Lemma 10.5, we see that λ(gu)σ = λ(g2

u). However, by Lemma 10.8 we must
have λ(g2

u) = λ(gu) because CG(gs) is an F-stable G-conjugate of L. In particular, we
have λ(g)σ = ωλ(gs)σλ(gu)σ = ωλ(gs)λ(gu) = λ(g) as desired. �
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