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Abstract. Let G be a finite group with Sylow 2-subgroup P 6 G. Navarro–
Tiep–Vallejo have conjectured that the principal 2-block of NG(P) contains exactly
one irreducible Brauer character if and only if all odd-degree ordinary irreducible
characters in the principal 2-block of G are fixed by a certain Galois automorphism
σ ∈ Gal(Q|G|/Q). Recent work of Navarro–Vallejo has reduced this conjecture to
a problem about finite simple groups. We show that their conjecture holds for all
finite simple groups, thus establishing the conjecture for all finite groups.

1. Introduction

1.1. Let G be a finite group, ` > 0 a prime, and let Irr`′(G) ⊆ Irr(G) be the ordinary
irreducible characters of G whose degrees are coprime to `. The McKay conjecture pro-
poses that there is a bijection between the sets Irr`′(G) and Irr`′(NG(P)) where NG(P)
is the normaliser of a Sylow `-subgroup P ∈ Syl`(G). In [Nav04] Navarro proposed a
striking generalisation of this conjecture, which we refer to as the Galois-McKay conjec-
ture. This conjecture states that there exists a bijection Irr`′(G) → Irr`′(NG(P)) which is
compatible with the action of certain Galois automorphisms.

1.2. Currently very little is known about the validity of the Galois-McKay conjecture.
However, there is a known consequence of this conjecture which is much more tractable
than the conjecture itself, see [Nav04, 5.2]. From now until the end of this article we
denote by σ ∈ Gal(Qab/Q) the unique element of the Galois group of the maximal
abelian extension Q ⊆ Qab that fixes 2-roots of unity and squares odd roots of unity.

Conjecture 1.3 (Navarro). Assume G is a finite group and P ∈ Syl2(G). We have NG(P) = P
if and only if all odd-degree irreducible characters of G are σ-fixed.

1.4. The first author has reduced Conjecture 1.3 to showing that each finite simple
group is SN2S-Good, in the sense of [SF16, Definition 1]. Moreover, the combined efforts
of [SF16; SFT18; SF17] complete the programme of showing each finite simple group is
SN2S-Good, thus establishing Conjecture 1.3. Recently Navarro–Tiep–Vallejo [NTV18]
have considered an analogue of Conjecture 1.3 which involves the principal `-block.
They show their analogue holds when ` is odd but, again, the ` = 2 case seems to be
harder. Their conjecture in the case ` = 2, which is the focus of this article, is as follows.

Conjecture 1.5 (Navarro–Tiep–Vallejo). Assume G is a finite group and P ∈ Syl2(G). The
principal 2-block of NG(P) contains only one irreducible Brauer character if and only if every
odd-degree character in the principal 2-block of G is σ-fixed.
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1.6. In this form Conjecture 1.5 and Conjecture 1.3 do not appear to be related.
However, it is a result of Brauer that the principal `-block of a finite group has only
one irreducible Brauer character if and only if the group has a normal `-complement,
see [Nav98, Corollary 6.13]. In fact, it is shown in [NV17, 6.7] that Conjecture 1.3 is a
consequence of Conjecture 1.5 and [NV17, Theorem C]. In [NV17, Theorem B] Navarro–
Vallejo have shown that to establish Conjecture 1.5 for all finite groups it is enough to
establish the conjecture when G is an almost simple group whose socle is a finite non-
abelian simple group of 2-power index. Using this approach we are able to establish the
validity of Conjecture 1.5.

Theorem 1.7. If G is an almost simple group whose socle is non-abelian and has 2-power index,
then Conjecture 1.5 holds for G. In particular, Conjecture 1.5 holds for all finite groups.

1.8. Now let S be a finite non-abelian simple group and S 6 A 6 Aut(S) an almost
simple group with A/S a 2-group. As one might expect, checking that A satisfies Con-
jecture 1.5 is closely related to checking that S is SN2S-Good. Hence, we first consider
when our previous work [SF16; SFT18; SF17] establishes that Conjecture 1.5 holds for A.
This turns out to be the case unless S is one of the following groups: a group of Lie type
defined in characteristic 2, A±n−1(q), E

±
6 (q),

2G2(q), J1, J2, J3, Suz, HN. Therefore, these
are the cases that we must consider here.

1.9. The layout of this paper is as follows. In Sections 2 and 3 we recall some general
statements about normalisers of Sylow 2-subgroups and characters of principal 2-blocks.
This allows us to establish when Conjecture 1.5 is a consequence of being SN2S-Good, as
mentioned in 1.8, see Proposition 3.9. The sporadic groups mentioned in 1.8 and 2G2(q)
are treated in Section 4. In Section 5 we introduce finite reductive groups and give a
criterion for an irreducible character of a finite reductive group to be σ-fixed. Using this
and results of [SFT18; NT15] we treat the remaining exceptions from 1.8 in Sections 6
to 8.

2. Normalisers of Sylow 2-Subgroups

2.1. Assume S is a finite group with a trivial centre and let S 6 A 6 Aut(S) be an
extension of S whose quotient A/S is a 2-group. If Q ∈ Syl2(A) then SQ/S ∈ Syl2(A/S)
so we must have SQ/S = A/S, i.e., A = SQ. The intersection P = S ∩ Q ∈ Syl2(S) is
a Sylow 2-subgroup of S, which is normal in Q. We wish to record some elementary
lemmas regarding the relationship between NA(Q) and NS(P).

Lemma 2.2. If NS(P) = P× V has a normal 2-complement V, then NA(Q) = Q× CV(Q)

has a normal 2-complement CV(Q). In particular, if S has a self-normalising Sylow 2-subgroup,
then so does A.

Proof. By assumption we have NS(P) = P × V with V 6 NS(P) a 2′-group. An easy
calculation shows that NA(Q) = NS(Q)Q. Moreover, as NS(Q) 6 NS(P) we have
NS(Q) = P × NV(Q) so NA(Q) = Q o NV(Q). Note that CS(P) = Z(P) × V and
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as Q normalises both S and P it must normalise V. Hence Q normalises NV(Q) so
NA(Q) = Q× CV(Q) as desired. �

Lemma 2.3. Assume CS(P) = Z(P) and NA(Q) has a normal 2-complement. Then NA(Q) =

Q.

Proof. Assume NA(Q) = Q × V has a normal 2-complement V. Any element v ∈ V
has odd order and centralises P 6 Q. However, as A/S is a 2-group we must have
v ∈ CS(P) = Z(P) 6 P so v = 1. �

3. Passing From Almost Simple to Simple Groups

If G is a finite group then we denote by B0(G) the principal 2-block
of G. Moreover, we denote by Irr(B0(G)) the ordinary irreducible
characters of G contained in the block and by Irr2′(B0(G)) =

Irr(B0(G)) ∩ Irr2′(G) those that have odd degree.

3.1. The main result of [NV17] states that Conjecture 1.5 holds for all finite groups
if it holds for all almost simple groups A whose quotient A/S by its non-abelian socle
S is a 2-group. In this section we develop several lemmas which allow us to deduce, in
certain scenarios, that Conjecture 1.5 holds for A if it holds for S. Lemma 2.2 already
goes in this direction given the following result of Brauer, see [Nav98, Corollary 6.13].

Lemma 3.2 (Brauer). Let G be a finite group and P ∈ Syl2(G). Then the principal block B0(G)

contains only one irreducible Brauer character if and only if NG(P) has a normal 2-complement.

3.3. Let G be a finite group. We now turn our attention to the statement that every
character χ ∈ Irr2′(B0(G)) is σ-fixed. For a group X acting on the irreducible characters
Irr(G) we write Irr2′(G)X for the members of Irr2′(G) that are invariant under X.

Lemma 3.4. Assume G is a finite group with normal subgroup N C G whose quotient G/N
is a 2-group. Then given any odd-degree character χ ∈ Irr2′(G), the restriction ResG

N(χ) ∈
Irr2′(N)G/N is irreducible. Furthermore, χ ∈ Irr2′(B0(G)) if and only if ResG

N(χ) ∈ Irr2′(B0(N))G/N

and χ is σ-fixed if and only if ResG
N(χ) is σ-fixed.

Proof. Let χ ∈ Irr2′(G) and let ϕ ∈ Irr(N) satisfy 〈ResG
N(χ), ϕ〉 6= 0. By Clifford theory,

χ(1)/ϕ(1) divides the index [G : N] which is a 2-power. Since χ(1) is odd it follows
that χ(1) = ϕ(1) and ResG

N(χ) = ϕ is irreducible and invariant under G/N. The second
statement follows from the observation that the principal block B0(G) is the only block
of G that covers B0(N), which is a consequence of [Nav98, Theorem 8.11] since the trivial
character 1G is the unique irreducible Brauer character lying over 1N . The last statement
follows from [SF16, Lemma 3.4]. �

Corollary 3.5. Let A = SQ be an almost simple group with socle S and Q ∈ Syl2(A). Assume
NA(Q) has a normal 2-complement. If every Q-invariant χ ∈ Irr2′(B0(S)) is σ-fixed, then A
satisfies Conjecture 1.5.
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Proof. This is an immediate consequence of Lemmas 3.2 and 3.4. �

Corollary 3.6. Let S be a finite simple group such that NS(P) has a normal 2-complement for
some P ∈ Syl2(S). Assume every χ ∈ Irr2′(B0(S)) is σ-fixed, i.e., S satisfies Conjecture 1.5.
Then any almost simple group S 6 A 6 Aut(S) with A/S a 2-group satisfies Conjecture 1.5.

Proof. If Q ∈ Syl2(A) then by Lemma 2.2 NA(Q) has a normal 2-complement because
NS(P) does. Moreover, by Lemma 3.4 we have every member of Irr2′(B0(A)) is fixed by
σ because every member of Irr2′(B0(S)) is. �

3.7. It is known that all finite simple groups are SN2S-Good, see [SF16; SFT18; SF17].
We would like to use these previous results to deduce that if a finite simple group S is
SN2S-Good, then any almost simple group A with socle S and quotient A/S a 2-group
satisfies Conjecture 1.5. Unfortunately there are exceptions to this, but we deal with
all such cases in the following sections. Before proceeding we will need the following
lemma.

Lemma 3.8. Assume G is a finite group and N C G is a normal subgroup. If we identify
Irr(G/N) with a subset of Irr(G) then we have Irr(B0(G/N)) ⊆ Irr(B0(G)). Moreover, if N
is a 2-group and G/CG(N) is a 2-group then we have

Irr(B0(G/N)) = {χ ∈ Irr(B0(G)) | N 6 Ker(χ)}.

Proof. This is just [Nav98, 7.6] together with the observation that the trivial character of
G/N lifts to the trivial character of G. �

Proposition 3.9. Let S be a non-abelian finite simple group and let S 6 A 6 Aut(S) be an
almost simple group with A/S a 2-group. If S is SN2S-Good, in the sense of [SF16, Definition
1], then A satisfies Conjecture 1.5 unless S is one of the following finite simple groups:

• 2G2(q), J1, J2, J3, Suz, HN,

• a simple group of Lie type defined in characteristic 2 whose quasi-split maximal torus is
nontrivial,

• A±n−1(q) with q odd,

• E±6 (q) with q odd.

Proof. First suppose that S has a self-normalising Sylow 2-subgroup. Then A has a
self-normalising Sylow 2-subgroup by Lemma 2.2. Hence, by Corollary 3.5, we have A
satisfies Conjecture 1.5 if every χ ∈ Irr2′(B0(S)) is σ-fixed. However, if S is SN2S-Good
then all odd-degree irreducible characters of S are σ-fixed.

If S does not have a self-normalising Sylow 2-subgroup and is not in the stated list
of exceptions then, by [Kon05], S must be PSp2m(q) with q ≡ ±3 (mod 8) and m ≥ 2.

Now, note that since q ≡ ±3 (mod 8), q is an odd power of an odd prime so S
has index at most 2 in A. Specifically, if A 6= S then A = InnDiag(S). Furthermore,
InnDiag(S) has a self-normalising Sylow 2-subgroup by [SF17, Lemma 3.17]. By [MS16,
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Lemma 7.5] and [CE04, Lemma 21.14], we see that Irr2′(G) = Irr2′(B0(G)), where G =

Sp2n(q) is the Schur cover for S. Thus, by Lemma 3.8, we have Irr2′(S) = Irr2′(B0(S))
since S = G/Z(G) with |Z(G)| = 2. Using Corollary 3.5 we see that it suffices to show
that there exists a character χ ∈ Irr2′(S) which is not σ-fixed but that every InnDiag(S)-
invariant character χ ∈ Irr2′(S) is σ-fixed. That is, it suffices to show that S is SN2S-
Good. �

4. The Groups 2G2(q), J1, J2, J3, Suz, HN

Proposition 4.1. If S is one of the simple groups 2G2(q), J1, J2, J3, Suz, or HN and S 6 A 6
Aut(S) is an almost simple group with A/S a 2-group, then A satisfies Conjecture 1.5.

Proof. If S is either 2G2(q) or J1 then S does not have a self-normalising Sylow 2-
subgroup and the outer automorphism group has odd order or is trivial, respectively.
In the other cases the outer automorphism group is order 2 but Aut(S) has a self-
normalising Sylow 2-subgroup. Hence by Corollary 3.5, and [SF16, Theorems 4.2 and
4.3], it suffices to show that the odd degree characters illustrated in the proofs of [SF16,
Theorems 4.2 and 4.3] that are not fixed by σ also lie in the principal block.

In the case of the Ree groups 2G2(q) the character χ4 in the notation of [Gec+96],
mentioned in [SF16, Theorem 4.3] to not be σ-invariant, is the character ξ7 in the notation
of [LM80], which is shown there to be in the principal block.

From information in the GAP Character Table Library [Bre04] regarding J1, J2, J3, Suz,
and HN in characteristic 2, we see that there are two characters of degree 77, 21, 85, 5005,
and 133, respectively, which are interchanged by the action of σ and lie in the principal
block. �

5. Generalities on Reductive Groups

From now on we assume p > 0 is a fixed prime and K = Fp is an
algebraic closure of the finite field Fp of cardinality p.

5.1. Let G be a connected reductive algebraic group over K and let F : G → G
be a Steinberg endomorphism so that G = GF = {g ∈ G | F(g) = g} is a finite
reductive group. Given such a pair (G, F) we will denote by S(G, F) the set of all pairs
(T, s) consisting of an F-stable maximal torus T 6 G and a rational semisimple element
s ∈ TF. We fix a regular embedding ι : G → G̃, where G̃ is a connected reductive
algebraic group over K with connected centre. The Frobenius endomorphism on G̃ will
also be denoted by F and the group G̃ denotes the finite group G̃F.

5.2. Let (G?, F?) be a pair dual to (G, F) and similarly let (G̃?, F?) be a pair dual to
(G̃, F). We will assume that ι? : G̃? → G? is a surjective homomorphism of algebraic
groups dual to the regular embedding; note that F? ◦ ι? = ι? ◦ F?. To each pair (T?, s) ∈
S(G?, F?) we have a corresponding virtual character RG

T?(s) of G = GF. If [s] ⊆ G? :=
G?F?

is a G?F?
-conjugacy class of semisimple elements then we have a corresponding
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(rational) Lusztig series E(G, [s]) ⊆ Irr(G). These series form a partition

Irr(G) =
⊔

[s]⊆G?

E(G, [s])

of the irreducible characters. We will need the following well-known lemma concerning
restriction of characters from G̃ to G, see [Bon06, 11.7].

Lemma 5.3. Assume χ ∈ E(G, [s]) is an irreducible character and χ̃ ∈ Irr(G̃) is an irreducible
character covering χ. Then χ̃ ∈ E(G̃, [s̃]) with s̃ ∈ G̃? satisfying ι?(s̃) = s.

5.4. For the rest of this section we assume that γ ∈ Gal(Q|G̃|/Q) where Q|G̃| is the

field obtained from Q by adjoining a primitive |G̃|th root of unity. Moreover, we assume
that E(G, [s]) is a γ-invariant Lusztig series and χ ∈ E(G, [s]) is an irreducible character.
Let χ̃ ∈ Irr(G̃) be a character covering χ so that χ̃ ∈ E(G̃, s̃) with s̃ ∈ G̃? satisfying
ι?(s̃) = s by Lemma 5.3. The proof of [SFT18, 3.4] shows that E(G̃, [s̃])γ = E(G̃, [t̃]) for
some semisimple element t̃ ∈ G̃?. Now clearly χ̃γ ∈ E(G̃, [t̃]) and χγ is covered by χ̃γ

so another application of Lemma 5.3 shows that ι?(t̃) = s because χγ ∈ E(G, [s]) by
assumption.

5.5. The kernel Ker(ι?) is connected, see [Bon06, 2.5], so the Lang–Steinberg theorem
shows that there exists an element z̃ ∈ Ker(ι?)F?

such that t̃ = s̃z̃. By [Bon06, 2.6, 11.6]
we have a bijection

E(G̃, [s̃])→ E(G̃, [s̃z̃])

χ̃ 7→ χ̃⊗ θz̃

where θz̃ ∈ Irr(G̃) is the lift of an irreducible character of the quotient G̃/G. With this
we can prove the following.

Proposition 5.6. Let γ ∈ Gal(Q|G̃|/Q) be a Galois automorphism and E(G, [s]) a γ-invariant

Lusztig series. Assume s̃ ∈ G̃? is such that ι?(s̃) = s and χ̃ ∈ E(G̃, [s̃]) satisfies the following
property:

(?) for any χ̃′ ∈ E(G̃, [s̃]) we have 〈χ̃′, RG̃
T̃?(s̃)〉G̃ = 〈χ̃, RG̃

T̃?(s̃)〉G̃ for all (T̃?, s̃) ∈ S(G̃?, F?)

if and only if χ̃ = χ̃′.

Then if χ ∈ E(G, s) is a constituent of ResG̃
G(χ̃), so is χγ. In particular, if χ extends to G̃ then

χγ = χ.

Proof. The proof of [SFT18, 3.4] together with [Bon06, 11.5(b)] shows that, for some
z̃ ∈ Ker(ι?)F?

, we have
RG̃

T̃?(s̃)
γ = RG̃

T̃?(s̃z̃) = RG̃
T̃?(s̃)⊗ θz̃ (5.7)

for any (T̃?, s̃) ∈ S(G̃?, F?). Now, this implies that

〈χ̃, RG̃
T̃?(s̃)〉 = 〈χ̃γ, RG̃

T̃?(s̃)
γ〉 = 〈χ̃γ ⊗ θ−1

z̃ , RG̃
T̃?(s̃)〉
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for any (T̃?, s̃) ∈ S(G̃?, F?). By assumption (?) we thus have χ̃γ = χ̃⊗ θz̃. In particular,
we must have ResG̃

G(χ̃
γ) = ResG̃

G(χ̃), which implies χ and χγ are both constituents of
ResG̃

G(χ̃). �

Remark 5.8. It has been shown by Digne–Michel in [DM90, 6.3] that condition (?) in
Proposition 5.6 is satisfied in all but a few extreme cases. We also note that Proposi-
tion 5.6 is also true if γ is taken to be an automorphism of G̃ stabilising G.

6. Characteristic 2

In this section we assume that G is simple and that p = 2.

6.1. Recall that F : G → G is a Steinberg endomorphism. In particular, there exists
a unique minimal integer d > 1 for which Fd is a Frobenius endomorphism endowing
G with an Fq-rational structure, where q = 2a ∈ N for some a > 1. Recall that a
maximal torus T 6 G is said to be quasi-split if it is F-stable and contained in an F-stable
Borel subgroup. Moreover, we say the Frobenius endomorphism Fd is split if for some
maximal torus T 6 G we have Fd(t) = tq for all t ∈ T. We will need the following
lemma.

Lemma 6.2. Assume T 6 G is a quasi-split maximal torus such that TF = Z(G)F. Then
we must have q = 2 and one of the following holds: Fd is split, in which case TF = {1}, or
GF = SU3(2), which is solvable.

Proof. Let π : Gsc → G be a simply connected cover of G. We may lift F to a Stein-
berg endomorphism Gsc → Gsc, i.e., F ◦ π = π ◦ F. It follows from [DM91, 0.35] that
π(Z(Gsc)) = Z(G) so |Z(G)F| 6 |Z(Gsc)|.

Using the formula in [Car93, 2.9] we can easily compute |TF|. If q = 2 and Fd is
split then TFd

, hence also Z(G)F 6 TF, is trivial. Assume conversely that q > 2 and if
q = 2 then Fd is not split. Then by [Car93, 3.6.7] we have TF 6= {1}. We aim to show
that |Z(Gsc)| < |TF| which implies that TF 6= Z(G)F. If G is not of type An−1 or E6

then Z(Gsc) is trivial, see [MT11, Table 24.2]. If G is of type E6 then |Z(Gsc)| = 3 but
|TF| = (q− 1)6 > 36 if G is of type E6(q) and |TF| = (q− 1)4(q + 1)2 > 32 if G is of type
E−6 (q).

In the case of An−1 we have |Z(Gsc)| 6 n and if G is of type An−1(q) then |TF| = (q−
1)n−1 > 3n−1 > n. Assume now that G is of type 2An−1(q). Let us write n− 1 as 2k + δ,
where k = b(n− 1)/2c and δ ∈ {0, 1}. We then have |TF| = (q− 1)k+δ(q + 1)k > 3k and
|Z(Gsc)| 6 2k + 2 < 3k whenever k > 1. Thus we need only consider the cases 2A3 and
2A2. If G is of type 2A3 then Z(Gsc) is trivial so we’re done. If G is of type 2A2 then
Z(G) is trivial unless G = Gsc. If q ≥ 4, the above yields that |Z(Gsc)| < |TF|, so we are
left with the case GF = SU3(2), in which case |TF| = |Z(GF)| = 3. �

6.3. We assume T0 6 B0 6 G are an F-stable maximal torus and Borel subgroup
of G, respectively. We set U0 = Ru(B0) to be the unipotent radical of the Borel. If Φ
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are the roots of G with respect to T0 then for each α ∈ Φ we fix a closed embedding
xα : K+ → G such that

txα(c)t−1 = xα(α(t)c)

for all t ∈ T0 and c ∈ K+. If ∆ ⊆ Φ are the simple roots determined by B0 then the set
{xα(c) | ±α ∈ ∆, c ∈ K+} generates G by [Hum75, 27.5, Theorem].

6.4. Recall that we have a standard Frobenius endomorphism F2 : K → K given by
F2(c) = c2. There then exists a split Frobenius endomorphism F2 : G → G such that
F2 ◦ xα = xα ◦ F2 for all α ∈ Φ and F2(t) = t2 for all t ∈ T0. Note the groups U0 and B0

are F2-stable. More generally, if r = 2b with b > 0 we denote by Fr the b-fold composition
F2 ◦ · · · ◦ F2; we call this a field automorphism of G. If r = 1 then this is the identity and if
r > 2 then this is a split Frobenius endomorphism.

6.5. We define a graph automorphism of G to be a bijective morphism τ : G → G
such that T0 and B0 are τ-stable and τ ◦ xα = xρ(α) ◦ Fε(α)

2 for some bijection ρ : ∆ → ∆
and function ε : ∆ → {0, 1}. Here we have ε(α) = 0 unless G is of type B2 or F4

and α is a short root. Note that any graph automorphism commutes with F2. After
possibly composing with an inner automorphism of G we may, and will, assume that
our Steinberg endomorphism F is of the form F = Fr ◦ τ = τ ◦ Fr for some (possibly
trivial) graph automorphism τ and some r = 2b with b > 0. Note T0, U0, and B0 are
F-stable and we set T0 = TF

0 , U0 = UF
0 , and B0 = BF

0 .
6.6. Let us denote by Γ(G) 6 Aut(G) the subgroup generated by field and graph

automorphisms, so that Γ(G) = 〈F2, τ0, τ1〉 for some (possibly trivial) graph automor-
phisms τ0, τ1 ∈ Aut(G) satisfying τ2

0 ∈ {1, F2} and τ3
0 = 1. We have a natural surjective

map CAut(G)(F) → Aut(G), where G = GF, given by restriction and we denote by Γ(G)

the image of CΓ(G)(F) under this map. If G is simply connected and G is perfect then
the quotient S = G/Z, where Z := Z(G) = Z(G)F, is a finite simple group of Lie type
in characteristic 2, see [MT11, 24.13, 24.14]. Moreover, by [GLS98, 2.5.1, 2.5.12(a), 2.5.14]
we have

Aut(S) ∼= Aut(G) ∼= G̃/Z(G̃)o Γ(G).

In what follows we will denote by S̃ the group G̃/Z(G̃) and we will also identify S with
a subgroup of S̃. We will need the following consequence of Lemma 6.2.

Lemma 6.7. We have U0 6 G is a Sylow 2-subgroup, NG(U0) = B0 = U0 o T0, and
CG(U0) = Z(U0)Z. Moreover, if G is perfect, then NG(U0) has no normal 2-complement
unless q = 2 and Fd is split, in which case NG(U0) = U0.

Proof. The statements about U0, NG(U0), and CG(U0) are well known, see [MT11, 24.11]
and [CE04, 2.31]. It follows that NG(U0) has a normal 2-complement only when T0 = Z
so the last statement follows from Lemma 6.2. �

6.8. As U0 is a Sylow 2-subgroup of G and Z is a 2′-group we have P = U0Z/Z is
a Sylow 2-subgroup of S = G/Z. The quotient G̃/G ∼= S̃/S has odd order so P is a
Sylow 2-subgroup of S̃. Our explicit choice of P is Γ(G)-invariant so if Γ2(G) 6 Γ(G) is
a Sylow 2-subgroup of Γ(G), then P o Γ2(G) is a Sylow 2-subgroup of S̃ o Γ(G). Now,
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assume S 6 A 6 S̃ o Γ(G) is an almost simple group whose quotient A/S is a 2-group.
Up to conjugacy we can then assume that A = S o Q0 with Q0 6 Γ2(G) a 2-subgroup.
The group Q := P o Q0 6 S o Q0 is a Sylow 2-subgroup of A and P = S ∩Q.

Lemma 6.9. Assume G is simply connected and G is perfect so that S = G/Z is a finite non-
abelian simple group. If A = SoQ0 is an almost simple group with Q0 6 Γ(G) a 2-group, then
Q := P o Q0 ∈ Syl2(A) and we have NA(Q) = Q if and only if F2 ∈ Q0. If NA(Q) 6= Q,
then NA(Q) has no normal 2-complement.

Remark 6.10. Note that if q = 2 and Fd is split, then trivially we have F2 ∈ Q0 for
any subgroup Q0 6 Γ2(G) because F2 is the identity. Hence, if F = F2 then we have
NA(Q) = Q for any almost simple group A = S o Q0, which follows from Lemma 6.7.

Proof (of Lemma 6.9). By [NTT07, Lemma 2.1] we have NA(Q)/Q ∼= CNG(U0)/U0Z(Q0).
As we assume Q0 6 Γ2(G) we have the natural map T0/Z → NG(U0)/U0Z is a Q0-
equivariant isomorphism, hence CNG(U0)/U0Z(Q0) ∼= CT0/Z(Q0). Therefore, we have
NA(Q) = Q is self-normalising if and only if CT0/Z(Q0) = {1}. Furthermore, by
Lemma 2.3 if CT0/Z(Q0) 6= {1} then NA(Q) has no normal 2-complement.

One direction of the statement is clear. If tZ ∈ T0/Z is such that tZ = F2(tZ) = t2Z
then clearly t ∈ Z so (T0/Z)F2 = {1}. Hence, if F2 ∈ Q0 then CT0/Z(Q0) = {1}.

We now prove the other direction, i.e., we aim to prove that CT0/Z(Q0) 6= {1} assum-
ing F2 6∈ Q0. We will denote by Q̃0 6 CΓ(G)(F) the preimage of Q0 6 Γ(G) under the
restriction map CΓ(G)(F) → Γ(G). If Z = Z(G) then we have CT0/Z(Q0) ∼= CT0/Z(Q̃0)

because T0/Z ∼= (T0/Z)F. As F2 6∈ Q0 we have F2 6∈ Q̃0 so it suffices to show that
CT0/Z(Q̃0) 6= {1}.

If Q̃0 6 K then clearly CT0/Z(K) 6 CT0/Z(Q̃0) so it suffices to show that CT0/Z(K) 6=
{1} for some subgroup K 6 Γ(G) containing Q̃0. Note that for any element γ ∈ Γ(G)

we have Z(Gγ) = Z(G)γ. If γ is a Steinberg endomorphism then this is just [MT11,
24.13] but an identical argument treats the general case. In particular, for any γ ∈ Γ(G)

we have an inclusion map

Tγ
0 /Zγ → (T0/Z)γ = CT0/Z(γ). (6.11)

Assume G is of type A1, Bn or Cn (n > 2), E7, E8, or G2, then Q̃0 = 〈φ〉 where φ = Fm
2

for some m > 1. By Lemma 6.2 we have Tφ
0 /Zφ 6= {1} so we’re done by (6.11) because

CT0/Z(Q̃0) = CT0/Z(φ). If G is of type B2 or F4 then Q̃0 = 〈φ〉 where φ = τm
0 for some

m > 2. The exact same argument treats this case.
Finally, assume G is of type An (n > 2), Dn (n > 4) or E6 then, as Q0 is a 2-group, we

have Q̃0 6 〈F2, ψ〉 where ψ 6= 1 is exactly one of τ0 or τ1. We have 〈F2, ψ〉 = 〈F2〉 × 〈ψ〉
and a simple application of Goursat’s Lemma shows that, up to conjugacy in Γ(G), we
have Q̃0 6 〈Fm

2 , ψ〉 for some m > 1 or Q̃0 6 〈Fm
2 ψ〉 for some m > 1. As Fm

2 ψ is a Steinberg
endomorphism the case where Q̃0 6 〈Fm

2 ψ〉 can be treated as above.
Now, let K = 〈φ, ψ〉 where φ = Fm

2 for some m > 1. As ψ is an automorphism of
G as an algebraic group we have by [GLS98, 1.15.2(d)], see also [Spr09, 10.3.5], that the
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group Ḡ = Gψ 6 G is a simple algebraic group with maximal torus and Borel subgroup
T̄ = Tψ

0 6 B̄ = Bψ
0 . These subgroups are stable under F2 so φ restricts to a split Frobenius

endomorphism on these groups endowing Ḡ with an F2m -rational structure, see [Gec03,
4.1.5]. As T̄ is a quasi-split maximal torus of Ḡ with respect to φ we have by Lemma 6.2
that T̄φ/Z(Ḡ)φ 6= {1} is non-trivial so CT0/Z(K) = CT0/Z(φ) ∩ CT0/Z(ψ) 6= {1}. �

Proposition 6.12. Assume G is simple and simply connected and p = 2. If G is perfect, so that
S = G/Z is a non-abelian simple group, and S 6 A 6 Aut(S) is an almost simple group with
A/S a 2-group, then A satisfies Conjecture 1.5.

Proof. The group S has a strongly split BN-pair, in the sense of [CE04, 2.20], and satisfies
the hypothesis in [CE04, 6.14]. Indeed, G satisfies this hypothesis by [CE04, 6.15] hence
so does S because it’s a quotient of G by a 2′-group. According to [CE04, 6.18], as
CS(P) = Z(P), we have every 2-block of S is either the principal block or a block of
defect zero. In particular, this implies that

Irr2′(S) = Irr2′(B0(S)) (6.13)

because any irreducible character of S with maximal defect is in the principal block.
We will write A = S o Q0, with Q0 6 Γ2(G) a 2-group, and set Q = P o Q0 a Sylow

2-subgroup of A as in 6.8. If F2 ∈ Q0 then we are in the case that NA(Q) = Q by
Lemma 6.9. It follows from the proof of [SFT18, 5.8] that every Q0-invariant member of
Irr2′(S) is fixed by σ, so A satisfies Conjecture 1.5 by Corollary 3.5. Now assume F2 6∈ Q0

then NA(Q) has no normal 2-complement, c.f., Lemma 6.9. We must show that there
exists an odd degree character χ ∈ Irr2′(B0(A)) which is not σ-fixed.

It suffices to find an A-invariant character χ ∈ Irr2′(S) which is not σ-fixed and
extends to A. Indeed, if χ̃ ∈ Irr2′(A) is such an extension, then χ̃ is in the principal
block of A and is not σ-fixed, see (6.13) and Lemma 3.4. If q = 2 and F is twisted, then
Γ(G) has cardinality two or three, so A = S because S̃/S is odd and F2 6∈ Q0. In this
case the existence of an odd degree character of S which is not σ-fixed was shown in the
closing paragraphs of the proofs of [SF16, 4.9, 4.11, 4.12, and 4.15].

Now we can assume q > 2. In the proof of [SFT18, 6.4] and [SF16, 4.12] it is shown
that there exists an odd-degree character χ ∈ Irr2′(G) with the following properties: χ

extends to G̃, is Q0-invariant, has Z in its kernel, and is not σ-fixed. As χ extends to G̃, it
follows from [Spä12, 3.4] that χ extends to its inertia group G o Γ(G)χ in the semidirect
product G o Γ(G). Let χ̃ ∈ Irr(G o Γ(G)χ) be such an extension. Then clearly Z is in the
kernel of χ̃ so we may view this as a character of S o Γ(G)χ. As Q0 6 Γ(G)χ we have
ResSoΓ(G)χ

A (χ̃) is an extension of χ so A satisfies Conjecture 1.5. �

6.14. We end this section by making some remarks on the work in [SFT18, §5, §6]
concerning groups in characteristic 2. For the following remarks we adopt the notation
of [SFT18]. Assuming G is simply connected and G is perfect the statement of [SFT18,
5.7] is correct but there is insufficient detail in the proof. The statement we require (and
use) is that CNG(P)/PZ(Q) = {1} if and only if F2 ∈ ΓQ(G) where Z = Z(G). Arguing
exactly as in the proof of [SFT18, 5.7] we have CNG(P)/PZ(Q) ∼= CT0/Z(ΓQ(G)). The proof
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of Lemma 6.9 now shows that CT0/Z(ΓQ(G)) = {1} if and only if F2 ∈ ΓQ(G) giving the
statement.

6.15. In the proof of [SFT18, 6.4] one has to be more careful. Writing F = Fq ◦ τ one
should really work with q̄ = qd instead of q, where d is the order of τ. Replacing q by
q̄ the argument given in [SFT18, 6.4] works for twisted groups but needs to be modified
for split groups, specifically addressing the case that ΓQ(G) contains an automorphism
of the form Fs

2 ◦ τ0 for some integer s ≥ 1. Arguments analogous to those in [SFT18, 6.4],
[SF16] work here, considering semisimple elements s of the form

tr,γ(η) = qα(η) · γ(qα)(ηr) · · · γe−1(qα)(ηre−1
),

for appropriate choices of η ∈ K× and integral powers r of 2. Here q∆ = {qα1, . . . , qαn} are
the simple coroots, γ ∈ Γ(G) is an appropriate graph automorphism of order e > 1, and
qα ∈ q∆ is a fixed simple coroot whose γ-orbit has length e.

7. Type An−1

In this section we assume G = SLn(K) and p 6= 2.

Lemma 7.1. If s ∈ G? is a 2-element, then χσ = χ for all χ ∈ E(G, [s]) ∩ Irr2′(G) unless
G = SL2(q) and q ≡ ±3 (mod 8). In this latter case if χ ∈ E(G, [s]) ∩ Irr2′(G) does not
extend to G̃, then it is not σ-fixed.

Proof. As s is a 2-element we have E(G, s) is σ-invariant by [SFT18, 3.4]. Assume
χ ∈ E(G, [s]) is an odd-degree irreducible character and let χ̃ ∈ Irr(G̃) be a charac-
ter covering χ. By [DM90, 6.3] the condition (?) in Proposition 5.6 is satisfied so we
have χ̃ covers χσ. Moreover, if χ extends to G̃ then χσ = χ. It is shown in [SFT18, 10.2]
that if χ does not extend to G̃ then n = 2r, for some r > 1, and ResG̃

G(χ̃) = χ + gχ for
some g ∈ G̃. If r > 1 then one can show that χ and gχ are σ-fixed using the argument
of [SFT18, §10]. The case of SL2(q) is easily checked using the character table given in
[Bon11].

Proposition 7.2. Assume G = SLn(K) and p 6= 2. If G is perfect, so that S = G/Z(G) is a
non-abelian simple group, and S 6 A 6 Aut(S) is an almost simple group with A/S a 2-group,
then A satisfies Conjecture 1.5.

Proof. Let us start with the case where G = SL2(q) and q ≡ ±3 (mod 8). If P 6 S
is a Sylow 2-subgroup then NS(P) ∼= SL2(3) does not have a normal 2-complement.
There are precisely 2 odd degree characters of G that do not extend to G̃ and these are
labelled R′σ(θ0) in [Bon11, Table 5.4]; they are both in the principal block of G by [Bon11,
7.1.1(e)]. As G is perfect and R′σ(θ0) has odd degree it must have Z(G) ∼= C2 in its kernel
so R′σ(θ0) ∈ Irr2′(B0(S)) by Lemma 3.8. As these are not σ-fixed, cf., Lemma 7.1, we
have Conjecture 1.5 holds for S.

Assume now that A 6= S. Recall that if q = pm then Aut(S) ∼= PGL2(q)o Cm, where
the cyclic group acts via field automorphisms. As p is odd and q ≡ ±3 (mod 8) we
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must have m is odd, so A ∼= PGL2(q). We thus have A has a self-normalising Sylow
2-subgroup, see [CF64, Lemma 3]. It follows easily from the character table of GL2(q),
see [DM91, §15.9], that the only odd degree characters of PGL2(q) are the trivial and
Steinberg characters, which are σ-fixed; thus Conjecture 1.5 holds for A.

We now consider the case where either G 6= SL2(q) or q ≡ ±1 (mod 8). As G is of
type A and q is odd we have by [CE04, 21.14] that

Irr(B0(G)) =
⋃

s∈G?

E(G, [s]) (7.3)

where the sum is taken over all 2-elements in the dual group G?. Lemma 7.1 thus
implies that every member of Irr2′(B0(G)) is fixed by σ and by Lemma 3.8, the same
is true of Irr2′(B0(S)). According to [Kon05, §1, Corollary] the normaliser NS(P) has a
normal 2-complement, so A satisfies Conjecture 1.5 by Corollary 3.6. �

8. Type E6

In this section we assume G is simply connected of type E6 and
p 6= 2.

Proposition 8.1. Assume G is simply connected of type E6 and p 6= 2. If G is perfect, so that
S = G/Z(G) is a non-abelian simple group, and S 6 A 6 Aut(S) is an almost simple group
with A/S a 2-group, then A satisfies Conjecture 1.5.

Proof. Write A = SQ where Q ∈ Syl2(A). First, note that if P ∈ Syl2(S), then NS(P) has
a normal 2-complement, see [Kon05, §1, Corollary]. Thus it suffices by Corollary 3.6 to
show that every member of Irr2′(B0(S)) is σ-fixed.

Consider an adjoint quotient G̃ → G̃ad of G̃. The kernel of this map is the (con-
nected) centre of G̃, so by the Lang–Steinberg theorem we have G̃/Z(G̃) ∼= G̃F

ad. Now
let χ ∈ Irr2′(B0(S)) be non-unipotent. By [NT15, Lemma 4.13], together with the pro-
ceeding remark, χ extends to a character χ̃ ∈ Irr(G̃/Z(G̃)). By inflation, we may view
χ as a character of G and χ̃ as a character of G̃ extending χ. By Lemma 3.8, we have
χ ∈ Irr(B0(G)), so a result of Broué–Michel shows that χ ∈ E(G, [s]) with s ∈ G? a
2-element, see [CE04, 9.12]. By [SFT18, 3.4] the series E(G, [s]) is σ-stable and condition
(?) of Proposition 5.6 is satisfied by [DM90] because χ is not unipotent. Hence, as χ

extends to G̃, we have χ is σ-fixed by Proposition 5.6. �
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[Spä12] B. Späth, Inductive McKay condition in defining characteristic, Bull. Lond. Math. Soc. 44
(2012) no. 3, 426–438.

[Spr09] T. A. Springer, Linear algebraic groups, Modern Birkhäuser Classics, Boston, MA:
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