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Abstract. Let G be a connected reductive algebraic group over Fp and let
F : G→ G be a Frobenius endomorphism endowing G with an Fq-rational struc-
ture. Bonnafé–Michel have shown that the Mackey formula for Deligne–Lusztig
induction and restriction holds for the pair (G, F) except in the case where q = 2
and G has a quasi-simple component of type E6, E7, or E8. Using their techniques
we show that if q = 2 and Z(G) is connected then the Mackey formula holds
unless G has a quasi-simple component of type E8. This establishes the Mackey
formula, for instance, in the case where (G, F) is of type E7(2). Using this, to-
gether with work of Bonnafé–Michel, we can conclude that the Mackey formula
holds on the space of unipotently supported class functions if Z(G) is connected.

1. Introduction

1.1. Let G be a connected reductive algebraic group over an algebraic closure Fp

of the finite field Fp of prime cardinality p. Moreover, let F : G → G be a Frobenius
endomorphism endowing G with an Fq-rational structure, where Fq ⊆ Fp is the finite
field of cardinality q. We assume fixed a prime ` 6= p and an algebraic closure Q` of the
field of `-adic numbers. If Γ is a finite group then we denote by Class(Γ) the functions
f : Γ→ Q` invariant under Γ-conjugation.

1.2. If P 6 G is a parabolic subgroup of G with F-stable Levi complement L then
Deligne–Lusztig have defined a pair of linear maps RG

L⊂P : Class(LF) → Class(GF) and
∗RG

L⊂P : Class(GF) → Class(LF) known as Deligne–Lusztig induction and restriction.
The Mackey formula, which is an analogue of the usual Mackey formula from finite
groups, is then defined to be the following equality

∗RG
L⊂P ◦ RG

M⊂Q = ∑
g∈LF\SG(L,M)F/MF

RL
L∩gM⊂L∩gQ ◦ ∗R

gM
L∩gM⊂P∩gM ◦ (ad g)MF

(MG,F,L,P,M,Q)
of linear maps Class(MF) → Class(LF), where Q 6 G is a parabolic subgroup with
F-stable Levi complement M 6 Q. Here

SG(L, M) = {g ∈ G | L ∩ gM contains a maximal torus of G}
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and (ad g)MF is the linear map Class(MF) → Class(gMF) induced by the isomorphism
gMF → MF obtained by restricting the inner automorphism (ad g)GF of GF defined by
conjugation with g.

1.3. The Mackey formula is a fundamental tool in the representation theory of finite
reductive groups. Its importance to ordinary representation theory is made abundantly
clear in the book of Digne–Michel [DM91]. However it also plays a prominent role
in modular representation theory via e-Harish-Chandra theory. The formula was first
proposed by Deligne in the case where P and Q are both F-stable; a proof of this case
appears in [LS79, 2.5]. Deligne–Lusztig were also able to establish the formula when
either L or M is a maximal torus, see [DL83, Theorem 7] and [DM91, 11.13]. We note that
a consequence of the Mackey formula, namely the inner product formula for Deligne–
Lusztig characters, had been shown to hold in earlier work of Deligne–Lusztig, see
[DL76, 6.8].

1.4. A possible approach to proving the Mackey formula is suggested by the early
work of Deligne–Lusztig, see the proof of [DL76, 6.8]. Here the idea is to argue by
induction on dim G. In a series of articles [Bon98; Bon00; Bon03] Bonnafé made exten-
sive progress on the Mackey formula, specifically establishing criteria that a minimal
counterexample must satisfy. In fact, Bonnafé was able to establish the Mackey for-
mula assuming either that q is sufficiently large (with an explicit bound on q) or if all
the quasi-simple components of G are of type A. In the latter case Lusztig’s theory of
cuspidal local systems [Lus84] plays a prominent role in the proofs.

1.5. Using the inductive approach mentioned above, together with computer calcu-
lations performed with CHEVIE [Mic15], Bonnafé–Michel [BM11] were able to show the
Mackey formula holds assuming either that q > 2 or that G has no quasi-simple com-
ponents of type E6, E7 or E8. Our contribution to this problem is to observe that the
following holds.

Theorem 1.6. Assume that q = 2 and G is such that Z(G) is connected and G has no quasi-
simple component of type E8 then the Mackey formula (MG,F,L,P,M,Q) holds.

1.7. Our approach to proving Theorem 1.6 is exactly the same as that of [BM11];
namely we argue by induction on dim G. As remarked in [BM11, 3.10] to show the
Mackey formula holds for all tuples (G, F, L, P, M, Q) it is sufficient to show the Mackey
formula holds when (G, F) is of type 2Esc

6 (2) and M is a Levi subgroup of type A2A2.
Our observation is that by considering the adjoint group 2Ead

6 (2) the problematic Levi
subgroup of type A2A2 is circumvented.

1.8. In the very first step of the proof of [BM11, 3.9] one encounters the following
problem. If Z(G) is connected then it is not necessarily the case that Z(C◦G(s)) is con-
nected for all semisimple elements s ∈ G. This means one cannot apply directly, to
C◦G(s), any induction hypothesis which relies on the centre being connected. However,
in the cases under consideration we have enough control over the structure of C◦G(s) to
make use of the induction hypothesis, see Lemma 2.4. Let us note now that our proof
of Theorem 1.6 relies on all the previously established cases of the Mackey formula.
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1.9. Unfortunately we cannot push our argument through to the case where GF is
E8(2). Here there exists a semisimple element s ∈ GF such that C◦G(s)

F is a product
2Esc

6 (2) · 2Asc
2 (2). Thus we arrive back to the problem of dealing with the case of 2Esc

6 (2).
However, we can establish one general statement about (MG,F,L,P,M,Q) assuming Z(G)

is connected. For this we need the following notation. Let Guni ⊆ G be the variety of
all unipotent elements in G. We then denote by Classuni(GF) ⊆ Class(GF) the space
of unipotently supported class functions of GF, i.e., those functions f ∈ Class(GF) for
which f (g) 6= 0 implies g ∈ GF

uni.

Theorem 1.10. Assume Z(G) is connected then the Mackey formula (MG,F,L,P,M,Q) holds on
Classuni(MF).

Acknowledgments: This work was carried out during a visit of the author to the TU
Kaiserslautern. The author would kindly like to thank the Fachbereich Mathematik for
its hospitality and the DFG for financially supporting this visit through grant TRR-195.
Finally, we thank Gunter Malle for useful discussions on this work and the referee for
their comments, which helped improve the clarity of this work.

2. Centralisers of Semisimple Elements

2.1. Throughout we assume that G and F : G → G are as in 1.1. In what follows
we will write G as a product G1 · · ·GnZ(G) where G1, . . . , Gn are the quasi-simple
components of G. With this notation in place we have the following.

Lemma 2.2. Let H = H1 · · ·HnZ(G) 6 G be an F-stable subgroup of G where Hi 6 Gi is a
closed connected reductive subgroup of Gi. If π : H → H/Z◦(H) denotes the natural quotient
map and Z(G) 6 Z◦(H) then we have a bijective morphism of varieties

π(H1)× · · · × π(Hn)→ H/Z◦(H)

(h1, . . . , hn) 7→ h1 · · · hn

which is defined over Fq. Moreover, if Z(Hi) 6 Z◦(H) then we have π(Hi) has a trivial centre.

Proof. Recall that for any 1 6 i 6 n we have Gi ∩ ∏j 6=i Gj 6 Z(G) 6 Z◦(H). As
Hi ∩∏j 6=i Hj 6 Gi ∩∏j 6=i Gj we have π(Hi) ∩∏j 6=i π(Hj) = {1} which establishes the
bijective morphism. Now, let us consider the case where Z(Hi) 6 Z◦(H). We know that
Hi/Z(Hi) 6 H/Z(Hi) has a trivial centre and we have a surjective homomorphism

H/Z(Hi)→ H/Z◦(H)

which restricts to a bijective homomorphism Hi/Z(Hi) → π(Hi). Thus π(Hi) also has
a trivial centre. �

2.3. Our application of Lemma 2.2 will be to the case where H is the connected
centraliser of a semisimple element of G. Specifically we will need the following.
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Lemma 2.4. Assume that p = 2 and G is such that Z(G) is connected and all the quasi-simple
components of G are of type A, E6, or E7. Then if s ∈ GF is a semisimple element there exist
F-stable closed connected reductive subgroups H1, H2 6 C◦G(s) with the following properties:

(a) H1 has a trivial centre and has no quasi-simple component of type E8,

(b) all the quasi-simple components of H2 are of type A or D,

(c) there exists a bijective homomorphism of algebraic groups

H1 ×H2 → C◦G(s)/Z◦(C◦G(s))

which is defined over Fq.

Proof. As above we write G as a product G1 · · ·GnZ(G) where the Gi are the quasi-
simple components of G. Similarly we may write s as a product s1 · · · snz where si ∈
Gi and z ∈ Z(G). We then have C◦G(s) = C◦G1

(s1) · · ·C◦Gn
(sn)Z(G), see [Bon05, 2.2]

for instance. By assumption each Gi is of type A, E6, or E7 which implies one of the
following holds:

• all the quasi-simple components of C◦Gi
(si) are of type A or D,

• Gi is of type E7 and C◦Gi
(si) is a Levi subgroup of type E6,

• Gi = C◦Gi
(si) is of type E6 or E7.

As p = 2 we have in the second case that Z(Gi) = {1} which implies that Z(C◦Gi
(si)) is

connected because C◦Gi
(si) is a Levi subgroup of Gi. In particular, we have Z(C◦Gi

(si)) 6

Z◦(C◦G(s)). In the third case we have Z(C◦Gi
(si)) = Z(Gi) 6 Z(G) 6 Z◦(C◦G(s)) be-

cause, by assumption, we have Z(G) is connected. The statement now follows from
Lemma 2.2. �

3. Around the Mackey Formula

3.1. Assume we are given a tuple (G, F, L, P, M, Q) as in 1.1 then we set

∆G
L⊂P,M⊂Q = ∗RG

L⊂P ◦ RG
M⊂Q − ∑

g∈LF\SG(L,M)F/MF

RL
L∩gM⊂L∩gQ ◦ ∗R

gM
L∩gM⊂P∩gM ◦ (ad g)M.

The Mackey formula (MG,F,L,P,M,Q) is therefore equivalent to the statement ∆G
L⊂P,M⊂Q =

0. Note that ∆G
L⊂P,M⊂Q is a linear map Class(MF) → Class(LF). In what follows we

will say that the Mackey formula holds for (G, F), or for short that it holds for G, if
∆G

L⊂P,M⊂Q = 0 for all possible quadruples (L, P, M, Q).
3.2. Recall that a homomorphism ι : G → G̃ is said to be isotypic if the following

hold: G and G̃ are connected reductive algebraic groups, the kernel Ker(ι) is central in
G and the image Im(ι) contains the derived subgroup of G̃. If ι is defined over Fq then
this restricts to a homomorphism ι : GF → G̃F and we have a corresponding restriction
map ResG̃F

GF : Class(G̃F) → Class(GF) defined by ResG̃F

GF( f ) = f ◦ ι. If K 6 G is a closed
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subgroup of G then we denote by K̃ the subgroup ι(K)Z(G̃) 6 G̃. With this notation
we have by [BM11, 3.7] that

ResL̃F

LF ◦∆G̃
L̃⊂P̃,M̃⊂Q̃

= ∆G
L⊂P,M⊂Q ◦ ResM̃F

MF . (3.3)

The following is an easy consequence of (3.3).

Lemma 3.4. If ι : G → G̃ is a bijective morphism of algebraic groups defined over Fq then the
Mackey formula holds for (G, F) if and only if it holds for (G̃, F).

3.5. Now assume s ∈ GF is a semisimple element then for any class function f ∈
Class(GF) we define a function dG

s ( f ) : C◦G(s)
F → Q` by setting

dG
s ( f )(g) =

 f (sg) if g is unipotent,

0 otherwise.

Note that dG
s ( f ) ∈ Classuni(C◦G(s)

F) is a unipotently supported class function so we have
defined a Q`-linear map dG

s : Class(GF)→ Classuni(C◦G(s)
F). In particular, if z ∈ Z(G)F

then we obtain a Q`-linear map dG
z : Class(GF) → Classuni(GF). Now, if s ∈ LF is a

semisimple element then by [BM11, 3.5] we have

dL
s ◦ ∆G

L⊂P,M⊂Q = ∑
g∈GF

s∈gM

|C◦gM(s)F|
|MF||C◦G(s)F|∆

C◦G(s)
C◦L(s)⊂C◦P(s),C

◦
gM

(s)⊂C◦gQ
(s) ◦ d

gM
s ◦ (ad g)M. (3.6)

Moreover, if s ∈ Z(G)F 6 LF ∩MF it follows that

dL
s ◦ ∆G

L⊂P,M⊂Q = ∆G
L⊂P,M⊂Q ◦ dM

s , (3.7)

see [BM11, 3.6].

Lemma 3.8. Assume ι : G → G̃ is a surjective isotypic morphism such that Ker(ι) 6
Z◦(G) then the map dG

1 ◦ ResG̃F

GF : Class(G̃F) → Classuni(GF) restricts to an isomorphism
Classuni(G̃F)→ Classuni(GF).

Proof. Note that ι restricts to a bijection ι : GF
uni → G̃F

uni. We will denote by ι−1 : G̃F
uni →

GF
uni the inverse of this map. Now, if f ∈ Classuni(GF) then we define f̃ : G̃F → Q` by

setting

f̃ (g) =

 f (ι−1(g)) if g ∈ G̃F
uni

0 otherwise.

The proof of [BM11, 3.8] shows that u, v ∈ GF
uni are GF-conjugate if and only if ι(u), ι(v) ∈

G̃F
uni are G̃F-conjugate because Ker(ι) 6 Z◦(G) and ι is surjective. This implies f̃ ∈

Class(G̃F) so we’re done. �
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4. Proof of Main Results

Proof (of Theorem 1.6). We will denote by � the lexicographic order on N×N. With
this we assume that (G, F, L, P, M, Q) is a tuple such that the following hold:

(H1) Z(G) is connected and G has no quasi-simple component of type E8,

(H2) ∆G
L⊂P,M⊂Q 6= 0,

(H3) (dim G, dim L + dim M) is minimal, with respect to �, amongst all the tuples
satisfying (H1) and (H2).

Arguing on the minimality of (dim G, dim L +dim M) we aim to show that such a tuple
cannot exist. We follow precisely the argument used in the proof of [BM11, 3.9].

As p = 2 and (H1) holds there exist F-stable closed connected reductive subgroups
G1, G2 6 G such that the following hold:

• all the quasi-simple components of G1 are of type A, E6, or E7,

• all the quasi-simple components of G2 are of type B, C, D, F4, or G2,

• the product map G1×G2 → G is a bijective morphism of algebraic groups defined
over Fq.

As (H2) holds for G we have by Lemma 3.4 that the same must be true of the direct
product G1×G2. Now, by [BM11, 3.9], the Mackey formula holds for G2 so as Deligne–
Lusztig induction is compatible with respect to direct products we can assume that the
Mackey formula fails for G1. Applying (H3) and Lemma 3.4 we may thus assume that
all the quasi-simple components of G are of type A, E6, or E7.

Let us denote by µ ∈ Class(MF) a class function such that ∆G
L⊂P,M⊂Q(µ) 6= 0. By

[BM11, 3.2] there must exist a semisimple element s ∈ LF such that dL
s (∆G

L⊂P,M⊂Q(µ)) 6=
0. Applying (3.6) there thus exists an element g ∈ GF such that

∆C◦G(s)
C◦L(s)⊂C◦P(s),C

◦
gM

(s)⊂C◦gQ
(s)(

gµ) 6= 0.

We set M′ = gM, Q′ = gQ and λ = dM′
s (gµ) ∈ Classuni(C◦M′(s)

F).
If K 6 G is a closed subgroup of G then we denote by Ks the subgroup C◦K(s) 6

G and by K̄s the image of KsZ◦(C◦G(s)) under the natural quotient map C◦G(s) →
C◦G(s)/Z◦(C◦G(s)). Note this quotient map is a surjective isotypic morphism with con-
nected kernel. Therefore, by Lemma 3.8, there exists a unique unipotently supported
class function λ̄ ∈ Classuni(ḠF

s ) such that λ = dG
1 (ResḠF

s
GF

s
(λ̄)). Applying (3.3) and (3.7)

we see that
dM′s

1 (ResM̄′Fs
M′Fs

(∆Ḡs
L̄s⊂P̄s,M̄′s⊂Q̄′s

(λ̄)) = ∆Gs
Ls⊂Ps,M′s⊂Q′s

(λ) 6= 0

so ∆Ḡs
L̄s⊂P̄s,M̄′s⊂Q̄′s

(λ̄) 6= 0.
Let us now assume that H1, H2 6 Ḡs are closed subgroups as in Lemma 2.4. By

[BM11, 3.9] we have the Mackey formula holds for H2 so, arguing as above, we may
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assume the Mackey formula fails for H1. Now, we have dim H1 6 dim Gs 6 dim G
and H1 satisfies (H1). Thus by (H3) we can assume these inequalities are equalities. In
particular, this implies that Gs = G and the quotient map G→ G/Z◦(G) = G/Z(G) is
bijective.

As the kernel of an adjoint quotient of G is the same as the kernel of the map
G → G/Z(G) we have any adjoint quotient of G is bijective so by Lemma 3.4 we can
assume G is semisimple and adjoint. In particular, we have G is a direct product of
its quasi-simple components and by compatibility with direct products we can assume
that F cyclically permutes these quasi-simple components. Finally we can assume that
either all the quasi-simple components are of type E6 or they are all of type E7 because
the Mackey formula holds if they are of type A by [BM11, 3.9]. To recapitulate we may
assume the following holds:

(P1’) G is semisimple and adjoint and F permutes cyclically the quasi-simple compo-
nents of G,

(P2’) all the quasi-simple components of G are of type E6 or E7.

Recall that µ ∈ Class(MF) is a class function satisfying ∆G
L⊂P,M⊂Q(µ) 6= 0 and s ∈ LF

is a semisimple element such that dL
s (∆G

L⊂P,M⊂Q(µ)) 6= 0. The above argument shows
that we must have Gs = G so s ∈ Z(G) = {1}. We therefore have dL

1 (∆
G
L⊂P,M⊂Q(µ)) =

∆G
L⊂P,M⊂Q(d

M
1 (µ)) 6= 0 by (3.7) so replacing µ by dM

1 (µ) we can assume that there exists
a unipotently supported class function µ ∈ Classuni(MF) satisfying ∆G

L⊂P,M⊂Q(µ) 6= 0.
Now let (G?, F?) be a pair dual to (G, F) and let M? 6 G? be a Levi subgroup dual

to M 6 G. We note that G? is simply connected as G is adjoint. Arguing exactly as in
the proof of [BM11, 3.9] we may assume that the following properties hold:

(P3) M is not a maximal torus and M 6= G,

(P4) there exists an F-stable unipotent class of M which supports an F-stable cuspidal
local system, in the sense of [Lus84, 2.4],

(P5) Q is not contained in an F-stable proper parabolic subgroup of G,

(P6) there exists a semisimple element s ∈ M?F?
which is quasi-isolated in both M?

and G? such that sz is G?F?
-conjugate to s for every z ∈ Z(M?)F?

.

Indeed, (P3) follows immediately from the fact that the Mackey formula holds if either L
or M is a maximal torus. Moreover, (P5) follows from the formula in [BM11, 3.4] together
with the fact that the Mackey formula holds if both P and Q are F-stable. The remaining
properties (P4) and (P6) are established by using the fact that (H1) holds for all proper
Levi subgroups of G and that there exists a unipotently supported class function µ ∈
Classuni(MF) satisfying ∆G

L⊂P,M⊂Q(µ) 6= 0. In particular, the Mackey formula holds for
all proper Levi subgroups of G.

It is already established in [BM11, Lemma (E7)] that if the quasi-simple components
of G are of type E7 then there is no pair (M, Q) satisfying (P3) to (P6). Hence we can
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assume that all the quasi-simple components are of type E6. As G is adjoint and p = 2
the only possible choice for M satisfying (P3) and (P4) is a Levi subgroup of type D4,
see [Lus84, 15.1]. However the exact same argument used in the proof of [BM11, 2.2(f)]
shows that no such Levi subgroup can satisfy both (P5) and (P6). This completes the
proof. �

Proof (of Theorem 1.10). Assume for a contradiction that µ ∈ Classuni(MF) is a unipo-
tently supported class function satisfying ∆G

L⊂P,M⊂Q(µ) 6= 0. By [BM11, 3.9] we can
assume that q = 2. By Theorem 1.6 and Lemma 3.4 and compatibility with direct
products we can assume that all the quasi-simple components of G are of type E8 and
that F cyclically permutes these quasi-simple components. Note that G is necessarily
semisimple and simply connected.

We note that any proper F-stable Levi subgroup of G has connected centre and has
no quasi-simple component of type E8. Thus by Theorem 1.6 the Mackey formula holds
for any proper F-stable Levi subgroup. With this we may argue as above, and exactly
as in the proof of [BM11, 3.9], that the pair (M, Q) satisfies the properties (P1) to (P6) of
[BM11, 2.1]. However, [BM11, 2.1] establishes precisely that there is no such pair (M, Q)

satisfying these properties, so we must have ∆G
L⊂P,M⊂Q(µ) = 0. �

References
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