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REPRESENTATION GROWTH OF FUCHSIAN GROUPS AND MODULAR

FORMS

MICHAEL LARSEN, JAY TAYLOR, AND PHAM HUU TIEP

To the memory of Gary Seitz

Abstract. Let Γ be a cocompact, oriented Fuchsian group which is not on an explicit finite list
of possible exceptions and q a sufficiently large prime power not divisible by the order of any non-

trivial torsion element of Γ. Then |Hom(Γ,GLn(q))| ∼ cq,nq
(1−χ(Γ))n2

, where cq,n is periodic in n.
As a function of q, cq,n can be expressed as a Puiseux series in 1/q whose coefficients are periodic
in n and q. Moreover, this series is essentially the q-expansion of a meromorphic modular form of
half-integral weight.
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1. Introduction

Let Γ be a cocompact and oriented Fuchsian group (which, in what follows, we shall call simply
a Fuchsian group). Concretely, this means that Γ has a presentation

〈x1, y1, . . . , xg, yg, z1, . . . , zr|za11 , . . . , zarr , [x1, y1] · · · [xg, yg]z1 · · · zr〉,
where a1, a2, . . . , ar is a fixed (possibly empty) non-decreasing sequence of integers ai ≥ 2 such that
the Euler characteristic

χ(Γ) := 2− 2g −
r

∑

i=1

(1− 1

ai
)

is negative. Let Fq be a finite field. In this paper, we investigate the asymptotic growth in n of the
number of homomorphisms from Γ to the group GLn(q), which we denote Gn when the value of q
is understood.

The first author was partially supported by the NSF grants DMS-2001349 and DMS-2401098. The third author
gratefully acknowledges the support of the NSF (grant DMS-2200850) and the Joshua Barlaz Chair in Mathematics.
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There are two complementary points of view. On the one hand we can fix n and consider the
homomorphism scheme Hom(Γ,GLn) := Hom(Γ,GLn,Z), which is defined over Z. For fixed charac-
teristic p > 0, we can think of the fiber of Hom(Γ,GLn) over SpecFp as the variety Hom(Γ,GLn,Fp)
of homomorphisms from Γ to GLn over Fp. (Note that in this paper, a variety will be just an
affine scheme of finite type over a field; in particular, it need not be either irreducible or reduced.)
Applying the Lang-Weil theorem to this variety as q ranges over powers of p, we see that the num-
ber of homomorphisms ρ : Γ → GLn(q) determines its dimension, by which we mean the maximum
dimension of any of its irreducible components.

On the other hand, for fixed q, we can partition homomorphisms ρ according to the r-tuple of
Gn-conjugacy classes

(C1, . . . , Cr) = (ρ(z1)
Gn , . . . , ρ(zr)

Gn).

Each Ci must consist of elements of order dividing ai. For given (C1, . . . , Cr) satisfying this divis-
ibility condition, the number of homomorphisms Γ → Gn with ρ(zi) ∈ Ci for all i is given by a
theorem of Hurwitz [17, Proposition 3.2]:

(1.1) |G|2g−1|C1| · · · |Cr|
∑

χ∈Irr(Gn)

χ(C1) · · ·χ(Cr)
χ(1)2g+r−2

.

Summing (1.1) over all possible r-tuples (C1, . . . , Cr) we obtain a formula which can potentially be
used for fixed q to understand the asymptotic behavior of |Hom(Γ, Gn)| as n→ ∞.

These two ways of counting Hom(Γ,GLn(q)) are in some sense complementary. For instance,
just as we can use character methods to determine the dimension of Hom(Γ,GLn), we can use the
dimension of Hom(Γ,GLn) to get an upper bound on Hom(Γ,GLn(q)) for all large q. For the large
n limit, the first method of counting seems to be the more appropriate, and an analysis of (1.1) has
led us to the following conjecture:

Conjecture 1. Let A denote the least common multiple of a1, . . . , ar, which we take to be 1 if r = 0.
Let q be a prime power relatively prime to A.

(a) There exists a 2A-periodic sequence cq,1, cq,2, . . . of positive numbers such that

|Hom(Γ,GLn(q))| ∼ cq,nq
(1−χ(Γ))n2

.

(b) There exist a 2-dimensional array eΓ,q,n of rational numbers and a 2-dimensional array fΓ,q,n
of half-integral weight meromorphic modular forms, periodic in both q and n, such that

cq,n = (q − 1)qeΓ,q,nfΓ,q,n
( i log q

2π

)

.

Moreover, fΓ,q,n is holomorphic on the upper half plane and has integer Fourier coefficients at
i∞.

The problem of estimating the number of representations of a given Fuchsian group over a finite
field seems to have been first considered by Liebeck and Shalev [18]. There are a number of significant
differences in emphasis between that paper and ours; Γ need not be oriented in their paper, and the
target of homomorphisms from Γ could be a quasisimple group G(q) instead of GLn(q). They were
primarily interested in the “geometric” direction, that is, n fixed and q → ∞.. A key limitation of
their paper is that their method requires g ≥ 2.

Under this hypothesis, they showed that the contribution in (1.1) from non-linear characters
is negligible, which reduces the problem of estimating |Hom(Γ,GLn(q))| to that of estimating the
numbers jq,n(ai) of elements x ∈ GLn(q) satisfying x

ai = 1. They gave an asymptotic formula for
jq,n(a) when n is fixed and q → ∞, using work of Lawther [16]. In the case r = 0 (the surface
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group case) they proved that |Hom(Γ,GLn(q))| is asymptotic to (q − 1)|GLn(q)|2g−1. If η(z) is the
Dedekind function, then

|GLn(q)|
q1/24η( i log q2π )

= qn
2

∞
∏

i=n+1

(1− q−i)−1 ∼ qn
2
.

Setting eΓ,q,n = 2g−1
24 and fΓ,q,n = η2g−1 for all q, n, we deduce Conjecture 1 for surface groups.

In general, their analysis depends crucially on the fact that for g ≥ 2, the trivial upper bound
on |χ(Ci)| is good enough to allow us to ignore non-linear characters of Gn. This is certainly not
the case when g = 1, let alone when g = 0. However, the new character bounds developed by
Bezrukavnikov, Liebeck, Shalev, and Tiep [1] give us hope of making progress even for g = 0.

Using these bounds, Liebeck, Shalev, and Tiep proved [20] that for every Γ, if q ≡ 1 (mod A),
then

|Hom(Γ,GLn(q))| ≤ f(n)q(1−χ(Γ))n
2+1

where f(n) does not depend on q. This gives immediately an upper bound for the dimension of
the representation variety Hom(Γ,GLn,K) where K is any field in which A 6= 0, provided that n is
sufficiently large:

dimHom(Γ,GLn,K) ≤ (1− χ(Γ))n2 + 1.

They proved also a lower bound on dimension:

dimHom(Γ,GLn,K) ≥ (1− χ(Γ))n2 −
∑

i

ai.

In this paper, using ideas from [1, 25], we prove a new exponential character bound Theorem 2.9,
which applies to all semisimple elements and which plays an essential role in the proof of the main
theorems of this paper. The reason we can prove Conjecture 1 only when q is sufficiently large is
that the exponent in our bound only approaches its optimal value as q → ∞.

Proposition 3.2 gives a list, consisting of thirty-one triangle groups and one quadrilateral group,
where even for large q, our bounds are not strong enough to prove the conjecture. When Γ is not on
this list and q is sufficiently large and relatively prime to the ai, |Hom(Γ, Gn)| behaves as predicted.
Theorem A. Let Γ be a Fuchsian group which is not on the finite list of groups excluded by
Proposition 3.2. Then Conjecture 1 holds for Γ for all sufficiently large prime powers q prime to A.

In particular, the theorem holds for all Fuchsian groups Γ with Euler characteristic less than −1
6 .

We deduce Theorem A from an analogue of [18, Theorem 1.2 (i)]. Let Jq,n(a1, . . . , ar) denote the
cardinality of the set

(1.2)

{

(t1, . . . , tr) ∈ GLn(q) | taii = 1 ∀i,
∏

i

det(ti) = 1

}

.

Theorem B. If Γ is not on the excluded list of Proposition 3.2, and q is prime to A and sufficiently
large, then,

|Hom(Γ,GLn(q))| = (1 + o(1))(q − 1)Jq,n(a1, . . . , ar)|GLn(q)|2g−1,

where the term o(1) does not depend on q.

Theorem A allows us to compute the exact dimension of Hom(Γ,GLn) when n is sufficiently
large. Given Γ and n, we define σΓ,n to be either 1 or −1 according to the rule that it is −1 if and
only if ai ∈ 2Z implies n

ai
∈ Z, and

∑

{i|ai∈2Z}

n

ai
∈ 1 + 2Z.
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Let {x} denote the fractional part of x.
We have the following result:

Theorem C. Given Γ which is not on the excluded list of Proposition 3.2, if n is sufficiently large,
and K is any field of characteristic p ≥ 0, if p ∤ a1 for all i, we have

dimHom(Γ,GLn,K) = σΓ,n + (1− χ(Γ))n2 −
r

∑

i=1

ai

{ n

ai

}{

− n

ai

}

.

In particular, we have

dimHom(Γ,GLn,K) ≥ −1

2
+ (1− χ(Γ))n2 −

r
∑

i=1

ai
4
.

Unfortunately, the letter q has a standard meaning both for finite fields and for modular forms.
We use it only in the former sense, but we evaluate modular forms f at i log q

2π , which amounts to
plugging 1/q into the q-expansion for f .

2. An asymptotic character bound

The goal of this section is to prove an asymptotic version of the character bounds in [1, Theorem
1.1] and [25, Theorem 1.9] when G is a finite group of Lie-type A. We will achieve this by combining
the approach of [1] with the character level approach developed in [11] to bound |χ(g)|.

To this end, let us recall the approach of [1]. Throughout this section, q is a prime power,
G = G(Fq) is the group of Fq-points of a connected reductive Fq-group scheme. We assume G =
G(Fq) = GF is the finite group of Fq-points, where F : G → G is the Frobenius endomorphism.

The main case of interest to us will be when the underlying group scheme is GLǫn, where ǫ ∈ {+,−}
and we set GL+

n := GLn, the general linear group, and GL−
n := GUn, the general unitary group. In

this setting,
G = Gn := GLn(Fq)

is the general linear group of dimension n > 0 and F is either Fq or σFq, where Fq : G → G is the
standard Frobenius endomorphism and σ : G → G is the inverse transpose automorphism.

Suppose L = LF , where L < G is a proper F -stable Levi subgroup of G. If g ∈ GF is an element
such that CG(g) 6 L then by [25, Lemma 13.3] we have

(2.1) χ(g) = ∗RG
L(χ)(g) =

∑

η∈Irr(L)
〈η, ∗RG

L(χ)〉η(g),

where ∗RG
L denotes Deligne–Lusztig restriction. We also write RG

L for Deligne–Lusztig induction.
Following [1, Theorem 1.1], we define the constant α(L) to be the maximum over non-trivial

unipotent elements u ∈ L of
dimuL

dimuG
;

if L contains no such elements we take α(L) = 0. From the proof of [1, Theorem 1.1], see also [25,
§2], we get

(2.2) |η(g)| 6 η(1) 6 B1

(

q + 1

q − 1

)D/2

χ(1)α(L1),

for any η ∈ Irr(L) with 〈η, ∗RG
L(χ)〉 6= 0, where B1 > 0 is a constant that depends on GF . Further-

more, D = dim vG , where vG = O∗
χ is the wave front set of χ, defined by work of Kawanaka [13],

Lusztig [21], and Taylor [24].
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If fη ∈ Q[X] is the degree polynomial of η, so that η(1) = fη(q), then the constant B1 is chosen
such that B1fη ∈ Z[X]. When the underlying group scheme is GLǫn we have LF is a direct product
of groups GLǫini(q). Therefore, in this case, the constant B1 can be taken to be 1 because the degree

polynomial of any irreducible character of LF is already contained in Z[X].

Recall that ∗RG
L(χ) is a virtual character, unless L is split. To bound |χ(g)| it suffices, by the

triangle inequality, (2.1), and (2.2), to bound

(2.3)
∑

η∈Irr(L)
|〈η, ∗RG

L(χ)〉| 6
∑

η∈Irr(L)
〈η, ∗RG

L(χ)〉2 = 〈∗RG
L(χ),

∗RG
L(χ)〉,

where 〈−,−〉 is the usual inner product on class functions.
We know from [1, Proposition 2.2] and its proof, as well as the arguments in [25, §13], that (2.3)

is always bounded above by

(2.4) (n!)2.

However, we can do significantly better if n is large compared to both q and the true level

l
∗(χ) = j

of χ, as defined in [11, Definition 1(i)]. When G = GLn(q) then j is the smallest integer for which
χ is a constituent of τ j , where τ(g) is the number of fixed points of g acting on the natural module
V = Fnq of G.

In the next subsections we give upper bounds for (2.3) that incorporate the true level of χ.

2.1. Elements with split centralizer in GLn(q). In this subsection we consider the group scheme
GLn so that

G = Gn := GLn(q).

Fix a proper split Levi subgroup L, and let

(2.5) L = LF = GLm1(q)×GLm2(q)× . . .×GLmt(q) ⊂ G,

where mi ∈ Z≥1 and
∑t

i=1mi = n. In this case ∗RG
L is just Harish-Chandra restriction. With

1 ≤ j < n/2 fixed, consider a split Levi subgroup M and set

M = MF ∼= GLj(q)×GLn−j(q) ⊂ G.

By [11, Theorem 3.9(i)], l∗(χ) = j implies that χ is an irreducible constituent of the Harish-Chandra
induction

RG
M
(

α⊠ 1Gn−j
)

for a unique irreducible character α of Gj . Conjugating M by a suitable element g ∈ G, we may
assume that L and M are block-diagonal subgroups in the same basis (e1, e2, . . . , en) of V .

To bound (2.3), it therefore suffices to bound
〈∗RG

LR
G
M
(

α⊠ 1Gn−j
)

, ∗RG
LR

G
M
(

α⊠ 1Gn−j
)〉

.

By the Mackey formula for Harish-Chandra restriction and induction [6, Theorem 1.14],

(2.6) ∗RG
LR

G
M
(

α⊠ 1Gn−j
)

=
∑

x∈L\S(L,M)/M

RL
L∩xM

∗R
xM
L∩xM

(

(α⊠ 1Gn−j )
x
)

,

where S(L,M) is the set of elements y ∈ G such that L ∩ yM contains a maximal torus of G, and
the summation runs through the (L,M) double cosets of this set.
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For our pair of split Levi subgroups (L,M), there is an explicit description of L\S(L,M)/M , as
described in [3, 2.2c]. Embed the symmetric group Sn in Gn via permutation matrices, and consider
the Young subgroups

Sλ = Sm1 × Sm2 × . . . × Smt , Sµ = Sj × Sn−j
of the embedded Sn. Then in (2.6) we can just choose x as representatives of the set Sλ\Sn/Sµ, one
for each double coset. The set of double cosets Sλ\Sn/Sµ is in bijection with Sλ-orbits on the set of
Sn/Sµ, which may be identified with the set of j-subsets of {1, 2, . . . , n}. Hence each such double
coset can be labeled uniquely by a t-tuple

(2.7) κ = (k1, k2, . . . , kt), 0 ≤ ki ≤ mi,

t
∑

i=1

ki = j.

Correspondingly, we can choose x = xκ to be the element of G that sends the first j basis vectors
e1, . . . , ej of V to

e1, . . . , ek1 , em1+1, em1+2, . . . , em1+k2 , . . . , em1+...+mt−1+1, . . . , em1+m2+...+mt−1+kt

in the increasing order of the subscripts, and sends the last n − j basis vectors ej+1, . . . , en to the
remaining n − j basis vectors, again in the increasing order of the subscripts. We will say that
xκ(ei) = exκ(i), 1 ≤ i ≤ n.

For the reader’s convenience, let us give a justification for this statement in the case q ≥ 3.
Suppose y ∈ G is such that L ∩ yM contains a maximal torus T of G. Then T is a maximal torus
of (L ∩ yM)◦ which is F -stable and connected. By the Lang–Steinberg theorem, conjugating T
suitably, we may assume that it is F -stable. Then

T := T F ∼= Cqa1−1 × Cqa2−1 × . . . × Cqas−1

for some integers a1, a2, . . . , as ≥ 1. Since q ≥ 3, all cyclic direct factors in this decomposition are
nontrivial, and hence V = Fnq is a direct sum of s simple FqT -modules W1, . . . ,Ws of dimension
a1, a2, . . . , as, which are pairwise non-isomorphic (indeed, they have pairwise distinct kernels). On
the other hand, the FqL-module V decomposes as the sum ⊕t

i=1Vi of FqL-modules, where

V1 := 〈e1, . . . , em1〉Fq , V2 := 〈em1+1, . . . , em1+m2〉Fq , . . . , Vt := 〈em1+...+mt−1+1, . . . , en〉Fq .

As T ≤ L, each Vi is a direct sum of some of these Wl, 1 ≤ l ≤ s. Similarly, since V = Fjq ⊕Fn−jq as

an Fq
yM -module and T ≤ yM , each of Fjq and Fn−jq is a direct sum of some of these Wl. Using the

left multiplcation by L and right multiplication by M if needed, we may assume that Fjq is spanned
by

e1, . . . , ek1 , em1+1, em1+2, . . . , em1+k2 , . . . , em1+...+mt−1+1, . . . , em1+m2+...+mt−1+kt

(ki first vectors in the indicated basis of Vi for each 1 ≤ i ≤ t), and Fn−jq is spanned by the remaining
n− j basis vectors.

It is well known (and can be proved by an easy induction on t ≥ 1) that the total number N of
t-tuples κ in (2.7) is

(2.8) N =

(

j + t− 1

j

)

= t · t+ 1

2
· · · t+ j − 1

j
≤ tj ≤ nj

since t ≤ n. For each such κ, x = xκ sends ei to ex(i), and we can write

xM = xMx−1 = GL
(

〈ex(1), . . . , ex(j)〉Fq
)

×GL
(

〈ex(j+1), . . . , ex(n)〉Fq
) ∼= GLj(q)×GLn−j(q)

Now, L ∩ xM fixes each of the subspaces

〈e1, . . . , em1〉Fq ∩ 〈ex(1), . . . , ex(j)〉Fq = 〈e1, . . . , ek1〉Fq
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and

〈e1, . . . , em1〉Fq ∩ 〈ex(j+1), . . . , ex(n)〉Fq = 〈ek1+1, . . . , em1〉Fq
of V1, and similarly for Vi with 2 ≤ i ≤ t. It follows that

L ∩ xM =
t
∏

i=1

(

Ki ×Mi

)

,

where for each 1 ≤ i ≤ t, Ki
∼= GLki(q) is contained in the GLj(q)-factor of xM , and Mi

∼=
GLmi−ki(q) is contained in the GLn−j(q)-factor of xM . Moreover,

∏t
i=1Ki is a split Levi subgroup

of GLj(q), and
∏t
i=1Mi is a split Levi subgroup of GLn−j(q). Now, applying [8, Lemma 2.7(i)]

twice, we obtain
∗R

xM
L∩xM

(

(α⊠ 1Gn−j )
x
)

= ∗R
Gj
K1×...×Kt(α

x)⊠ 1M1×...×Mt.

Recall that αx is an irreducible character of GLj(q). So, by (2.4), the total sum of multiplicities of
irreducible constituents β in ∗R

xM
L∩xM

(

(α ⊠ 1Gn−j )
x
)

is at most

(2.9) (j!)2.

Consider any such irreducible constituent

β = α1 ⊠ α2 ⊠ . . .⊠ αt ⊠ 1M1×...×Mt .

By [11, Lemma 2.5(ii)],

RL
L∩xM(β) = ⊠t

i=1R
Gmi
Gki×Gmi−ki

(

αi ⊠ 1Gmi−ki

)

.

Let τq,n denote the permutation character of Gn on Fnq , see [11, (3.1)]. Then the character

γi := R
Gmi
Gki×Gmi−ki

(

αi ⊠ 1Gmi−ki

)

is contained in (τmi,q)
ki by [11, Proposition 3.2]. If ki = 0, then the total number N(γi) of multi-

plicities of irreducible constituents of γi is 1. If 1 ≤ ki ≤ mi/2, then

N(γi) ≤ 〈γi, γi〉 ≤ 〈τkimi,q, τ
ki
mi,q〉 = 〈τ2kimi,q, 1Gmi 〉,

which is the number of Gmi-orbits on ordered 2ki-tuples of vectors in Fmiq , and hence is at most

8qk
2
i ≤ q4k

2
i by [11, Lemma 2.4]. Suppose mi/2 < ki ≤ mi. Then γi is a character of degree at most

qmiki < q2k
2
i , and hence N(γi) < q2k

2
i . Thus in all cases we have

N(γi) ≤ q4k
2
i .

It follows that the total number N(β) of multiplicities of irreducible constituents of

RL
L∩xM(β) = ⊠t

i=1βi

is at most

q4
∑t
i=1 k

2
i ≤ q4(

∑t
i=1 ki)

2
= q4j

2
.

Combining this with (2.8) and (2.9), we have proved

Proposition 2.1. Let G = GF = GLn(q) and let χ be any irreducible character G of true level
j ≤ n/2. If L = LF is a proper split Levi subgroup of G, then the total number A of irreducible con-

stituents (counting multiplicities) of the Harish-Chandra restriction ∗RG
L(χ) is at most nj(j!)2q4j

2
.
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Corollary 2.2. Let G = GLn(q) and let g ∈ G be any element such that CG(g) is contained in
a split Levi subgroup L of G. Let χ ∈ Irr(G) be of true level j ≤ n/2, and let D = dim vG, with
vG = O∗

χ being the wave front set of χ. Then

|χ(g)| ≤ nj(j!)2q4j
2

(

q + 1

q − 1

)D/2

χ(1)α(L).

Proof. As mentioned above, in our case the constant B1 in (2.2) can be taken to be 1. We now
combine (2.1), (2.2), and (2.3) with Proposition 2.1. �

2.2. The general case. For semisimple elements whose centraliser is a non-split Levi subgroup, the
bound in Corollary 2.2 can be very poor; for instance, it says nothing at all about character values
for elements in anisotropic tori. However, the following result is almost as good for all semisimple
elements as Corollary 2.2 is in the split case, and moreover works for both GLn and GUn:

Theorem 2.3. Let G = GLǫn(q) and let g ∈ G be any element such that CG(g) is contained in a
proper F -stable Levi subgroup L1. Define L1 := LF1 . Let χ ∈ Irr(G) be of true level j, 0 ≤ j ≤ n,
and let D = dim vG, with vG = O∗

χ being the wave front set of χ. Then

|χ(g)| ≤ n3j
(

q + 1

q − 1

)D/2

χ(1)α(L1).

To prove this result we will use Deligne–Lusztig theory. However, before developing the necessary
results about Deligne–Lusztig characters we recall a few facts about cosets. Assume G is a group.
The set of conjugacy classes of G will be denoted by Cl(G). A subcoset of G is a coset Hw ⊆ NG(H)
of a subgroup H 6 G. Given any subsets X,Y ⊆ G we define

NX(Y ) := X ∩NG(Y ), CX(Y ) := X ∩CG(Y ),

where NG(Y ) and CG(Y ) are the usual normalizer and centralizer of Y . As usual

XY := {xy | x ∈ X and y ∈ Y }.
Now assume that Wγ ⊆ G is a finite subcoset. We denote by cf(Wγ) the space of W -invariant

functions f : Wγ → C, which we call class functions. This space has an inner product 〈−,−〉 and
if Hw ⊆Wγ is a subcoset then we have induction IndWγ

Hw : cf(Hw) → cf(Wγ) and restriction maps

ResWγ
Hw : cf(Wγ) → cf(Hw) which satisfy Frobenius reciprocity with respect to 〈−,−〉, see [2, §1.C]

or [25, §4].

The function πw = πWγ
w taking the value |CW (w)| at any W -conjugate of w ∈Wγ and the value

0 otherwise is clearly contained in cf(Wγ). We will need the following elementary calculation.

Lemma 2.4. For any subcoset Hw ⊆Wγ and x ∈Wγ we have

ResWγ
Hw(π

Wγ
x ) =

∑

z∈H\W/CW (x)
zx∈Hw

|CW (x)|
|CH(zx)|

πHwzx =
∑

z∈H\W
zx∈Hw

πHwzx

Proof. The first equality is easy and the second follows because

HzCW (x) =
⊔

c∈CH(zx)\CW (zx)

Hcz. �

We can also produce class functions in the following way. Consider the subgroupW 〈γ〉 6 NΓ(W )
and let ρ ∈ Irr(W ) be a γ-invariant irreducible character. The representation affording ρ can be
extended to a representation ofW 〈γ〉 containing γn in its kernel, for some n > 0. The trace function
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ρ̃ :W 〈γ〉 → C of such a representation is what we call an extension of ρ. Note the group W 〈γ〉 may
be infinite but, by design, ρ̃ factors through a finite quotient.

The restriction Res
W 〈γ〉
Wγ (ρ̃) of such an extension, which we usually again denote by ρ̃, is called

an irreducible character of Wγ. The set of irreducible characters is denoted by Irr(Wγ). We say
B ⊆ Irr(Wγ) is a basis if it is a basis of cf(Wγ). Every basis is orthonormal and is obtained by
choosing for each γ-stable ρ ∈ Irr(W ) exactly one extension to W 〈γ〉, see [5, Proposition 11.6.3].
We need the following analogue of [25, Corollary 4.11]

Lemma 2.5. Assume Hw ⊆ Wγ is a subcoset and ρi ∈ Irr(W ), with i ∈ {1, 2}, is γ-invariant. If
ρ̃i is an extension of ρi to W 〈γ〉 then

|〈ResWγ
Hw(ρ̃1),Res

Wγ
Hw(ρ̃2)〉| 6 〈ResWH (ρ1),Res

W
H (ρ2)〉

Proof. Expanding out in a basis B ⊆ Irr(Hw) and using the triangle inequality

|〈ResWγ
Hw(ρ̃1),Res

Wγ
Hw(ρ̃2)| 6

∑

η̃∈B
|〈η̃,ResWγ

Hw(ρ̃1)〉〈η̃,Res
Wγ
Hw(ρ̃2)〉|

=
∑

η̃∈B
|〈IndWγ

Hw(η̃), ρ̃1〉||〈Ind
Wγ
Hw(η̃), ρ̃2〉|.

Therefore, using [25, Lem. 4.10] we obtain

|〈ResWγ
Hw(ρ̃1),Res

Wγ
Hw(ρ̃2)| 6

∑

η∈Irr(H)

〈IndWH (η), ρ1〉〈IndWH (η), ρ2〉

=
∑

η∈Irr(H)

〈η,ResWH (ρ1)〉〈η,ResWH (ρ2)〉

= 〈ResWH (ρ1),Res
W
H (ρ2)〉. �

Recall that G = G(Fq) = GF is the group of Fq-points of a connected reductive Fq-group, with
Frobenius F . We form the semidirect product G〈F 〉 with the infinite cyclic group generated by
F , defined so that FgF−1 = F (g) for all g ∈ G. If Hn ⊆ GF is a subcoset then the centralizer
CH(n) 6 CG(n) is a finite group. Moreover, if H 6 G is closed and connected then, by the Lang–
Steinberg Theorem, H acts transitively by conjugation on Hn. If H is a Levi subgroup of G, resp.,
maximal torus of G, then we call Hn a Levi subcoset, resp., a toral subcoset.

We define

C (GF ) := {(g, n) ∈ G × GF | gn = ng}
to be the set of commuting pairs. The group G acts by simultaneous conjugation on C (GF ). We
write [g, n] for the orbit of (g, n) ∈ C (GF ) and C (GF )/G for the set of orbits.

Lemma 2.6. The map [g] 7→ [g, F ] is a well-defined bijection Cl(CG(F )) → C (GF )/G.
Proof. Clearly this is injective. If (g, n) ∈ C (GF ) then by the Lang–Steinberg Theorem n = F h for
some h ∈ G so [g, n] = [hg, F ]. �

Let cf(C (GF )) be the set of G-invariant functions f : C (GF ) → C. Via Lemma 2.6 we can
identify cf(C (GF )) with the space cf(CG(F )) of C-valued class functions on the finite group CG(F ).
We define Irr(C (GF )) to be those functions corresponding to Irr(CG(F )). The advantage of working
with C (GF ) is that we can work with the different (inner) forms CG(gF ) of G simultaneously.

If Lw ⊆ GF is a Levi subcoset then we can define Deligne–Lusztig induction and restriction maps

RGF
Lw : cf(C (Lw)) → cf(C (GF )) and ∗RGF

Lw : cf(C (GF )) → cf(C (Lw)).
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For our purposes this can be done as follows. We start first with the case of a coset LF where
L 6 G is an F -stable Levi subgroup. Making the identifications cf(CG(F )) → cf(C (GF )) and
cf(CL(F )) → cf(C (LF )) we define

RGF
LF := RG

L,
∗RGF

LF := ∗RG
L.

Now consider a general Levi subcoset Lw ⊆ GF . We pick an element g ∈ G such that F g ∈ Lw,
so that g(Lw) = L1F where L1 :=

gL is an F -stable Levi subgroup of G. If ιg : G〈F 〉 → G〈F 〉 is the
inner automorphism defined by ιg(x) =

gx then ιg(Lw) = L1F and we define

RGF
Lw := RGF

L1F
◦ (ι−1

g )∗ and ∗RGF
Lw := (ιg)

∗ ◦ ∗RGF
L1F

,

where (ι−1
g )∗ is the map f 7→ f ◦ ι−1

g and likewise for (ιg)
∗.

We note that the maps RGF
Lw and ∗RGF

Lw are defined only up to composition with (ιn)
∗ for some

n ∈ NG(Lw) = NCG(w)(L)L. We need the following interpretation of the Mackey formula.

Lemma 2.7. If Lw ⊆ GF is a Levi subcoset and T x ⊆ GF is a toral subcoset then

∗RGF
Lw ◦RGF

T x =
∑

z∈L\G
z(T x)⊆Lw

RLw
z(T x) ◦ (ι−1

z )∗

Proof. Fix elements hw, hx ∈ G such that w = F hw and x = F hx and let L1 := hwL and T1 := hxT
be corresponding F -stable subgroups of G. According to the Mackey formula, see [5, Thm 9.2.6],
we have

∗RG
L1

◦RG
T1 =

∑

u∈L1\G/T1
uT16L1

TL1
uT1 ◦ (ι

−1
u )∗ =

∑

u∈L1\G
uT16L1

RL1
uT1 ◦ (ι

−1
u )∗,

where L1 = CL1(F ), G = CG(F ), and T1 = CT1(F ). The second equality follows because if
uT1 6 L1 then uT1 6 L1 so

L1uT1 = L1(
uT1)u = L1u.

Consider the isomorphism of varieties ψ : G → G given by ψ(v) = hwvh
−1
x . If F ′ : G → G is the

morphism defined by F ′(v) = wvx−1 then we have Fψ = ψF ′. From this it follows that we have
bijections

(L\G)F ′ ψ−→ CL1\G(F ) −→ L1\G,

where CL1\G(F ) = {L1u ∈ L1\G | L1uF = L1Fu}, and (L\G)F ′

denotes the cosets fixed by F ′. The

second bijection is a simple consequence of the Lang–Steinberg Theorem. If z ∈ G then ψ(z)T1 6 L1

if and only if zT 6 L and F ′(Lz) = Lz if and only if zx ∈ Lw. It is clear that the combination of
these two conditions is equivalent to the condition: z(T x) ⊆ Lw.

Finally, conjugating the expression above we get

∗RGF
Lw ◦RG

T x =
∑

z∈L\G
z(T x)6Lw

(ιhw)
∗ ◦RL1

ψ(z)T1 ◦ (ι
−1
ψ(z))

∗ ◦ (ι−1
hx

)∗.

It suffices to show that (ιhw)
∗ ◦ RL1

ψ(z)T1 = RL
zT ◦ (ιhw)

∗ when F ′(z) = z, where RL
zT = RLw

(zT )w is

defined with respect to the Frobenius w on L. However, the arguments to prove this are identical
to those used to prove [5, Proposition 11.3.10], see also the arguments by Bonnafé in [22]. We omit
the details. �
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From now on we assume the underlying group scheme is GLǫn so that

G = Gn = GLn(Fq).

We will assume T 6 G is the diagonal maximal torus and we denote by W := NG(T )/T ∼= Sn

the corresponding Weyl group. The quotient NG〈F 〉(T )/T =W 〈F 〉 is isomorphic to the semidirect
product W ⋊ 〈F 〉, where we identify F with its natural image T F . The coset WF ⊆ W 〈F 〉 is, by
definition, the set of toral subcosets T n where n ∈ NGF (T ).

We wish to reinterpret Lemma 2.7 in the language of Lusztig’s almost characters. Recall that
GLǫn is self-dual. If (w, s) ∈WF × T is a pair such that ws = sw then we set

RGF
w (s) := RGF

x (θ),

where x ∈ WF and θ ∈ Irr(C (w)) correspond to (w, s) under a bijection obtained as in [5, Propo-
sition 11.1.16] from duality.

If s ∈ T and CWF (s) 6= ∅ then, following Lusztig [21, §8.4], we define

RGF
s : cf(CWF (s)) → cf(C (GF )), f 7→ 1

|CW (s)|
∑

w∈CWF (s)

f(w)RGF
w (s) ∈ cf(C (GF )).

where, as defined above, CX(s) = {w ∈ X | ws = sw} for any subset X ⊆W 〈F 〉.

Corollary 2.8. Assume T 6 L 6 G is a Levi subgroup and w ∈ NWF (L). Then for any s ∈ T
with CWF (s) 6= ∅ we have

∗RGF
Lw ◦ RGF

s =
∑

z∈H\W/CW (s)
CHw(

zs)6=∅

RLw
zs ◦ ResCWF (

zs)
CHw(zs)

◦(ι−1
z )∗

where H = NL(T )/T is the Weyl group of L.

Proof. By linearity it is enough to check both sides agree when evaluated at π
CWF (s)
x for some

x ∈ CWF (s). But in that case RGF
s (π

CWF (s)
x ) = RGF

x (s). Assume (x, s) corresponds to (y, θ).
Evaluating at θ we have by Lemma 2.4 that

∗RGF
Lw(R

GF
y (θ)) =

∑

z∈L\G
zy⊆Lw

RLw
zy (zθ).

If zy ⊆ Lw then zT 6 L so lzT = T for some l ∈ L. Therefore, we can take the sum over cosets
NL(T )\NG(T ) or similarly H\W . As zy ⊆ NGF (T ) the condition zy ⊆ Lw is equivalent to

zy ⊆ NGF (T ) ∩ Lw = NL(T )w

which in turn is equivalent to zy ∈ Hw. Breaking the sum in Lemma 2.7 along double cosets, as in
the proof of Lemma 2.4, gives

∗RGF
Lw(R

GF
y (θ)) =

∑

z∈H\W/CW (s)

∑

c∈CH(zs)/CW (zs)
czy∈Hw

RLw
czy(

czθ)

Picking a different double coset representative we can assume that zy ∈ Hw. We claim that
CHw(

zs) = CH(
zs)zy. Certainly zx ∈ CHw(

zs) by assumption. Now if d ∈ CW (zs) then d(zx) ∈
Hw if and only if d ∈ CH(

zs) = H ∩CW (zs). The statement now follows from Lemma 2.4. �

We are now ready to prove Theorem 2.3.
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Proof of Theorem 2.3. By assumption, χ has true level j. Embed the maximal diagonal torus T in
the natural F -stable Levi subgroup M = M1 ×M2, where M1

∼= Gj and M2
∼= Gn−j . Note that

F stabilises M1 and M2. We will identify M〈F 〉 with a subgroup of M1〈F 〉 ×M2〈F 〉, where we
again denote by F its restriction to Mi.

By [11, Theorem 3.9] our assumption on the level of χ implies that χ is a constituent of

RGF
MF (α⊠ 1)

for some α ∈ Irr(C (M1F )). Note that

CM(F ) = CM1(F )CM2(F )
∼= GLǫj(q)×GLǫn−j(q)

If Wi 6 W is the subgroup NMi
(T )/T then the subgroup W1W2 6 W is a direct product with

W1
∼= Sj and W2

∼= Sn−j.
By [5, Theorem 11.7.3] we have α = ±RM1F

s (φ̃) for some s ∈ M1 ∩ T , with CW1F (s) 6= ∅,

and some irreducible character φ̃ ∈ Irr(CW1F (s)) afforded by a representation over Q, see [21,
Proposition 3.2]. Note that CW1W2(s) = CW1(s)W2 is a reflection group and we have

CW1W2F (s) = CW1F (s)W2.

It is known, see [5, Proposition 11.6.6], that

RGF
MF (α⊠ 1M2F ) = ±RGF

s (Ind
CWF (s)
CW1W2F

(s)(φ̃⊠ 1))

from which it follows that χ = ±RGF
s (ψ̃) for some irreducible constituent ψ̃ ∈ Irr(CWF (s)) of the

induced function Ind
CWF (s)
CW1W2F

(s)(φ̃⊠ 1).

We denote again by φ̃ and ψ̃ irreducible characters of CW1(s)〈F 〉 and CW (s)〈F 〉 respectively,

yielding φ̃ and ψ̃ upon restriction to the respective cosets. By [25, Lemma 4.10]

|〈IndCWF (s)
CW1W2F

(s)(φ̃⊠ 1), ψ̃〉| 6 〈IndCW (s)
CW1W2

(s)(φ⊠ 1), ψ〉.

In particular, ψ is a constituent of Ind
CW (s)
CW1

(s)W2
(φ⊠ 1).

Following the proof of Corollary 2.2 it suffices to show that

(2.10)
∑

η∈Irr(L1)

|〈η, ∗RGF
L1F

(χ)〉| 6 〈∗RGF
L1F

(χ), ∗RGF
L1F

(χ)〉 6 n3j .

A straightforward argument shows that we may find a Levi subgroup T 6 L 6 G, an element
w ∈ NGF (T ), and an element h ∈ G such that h(Lw) = L1F , see [5, Proposition 11.4.1]. With this
we need only bound

〈∗RGF
Lw(χ),

∗RGF
Lw(χ)〉 = 〈∗RGF

Lw(RG
s (ψ̃)),

∗RGF
Lw(RG

s (ψ̃))〉.
By Corollary 2.8

∗RGF
Lw(RG

s (ψ̃)) =
∑

z∈H\W/CW (s)
CHw(

zs)6=∅

RLw
zs (Res

CWF (
zs)

CHw(zs)
(zψ̃)),

where H = NL(T )/T is the Weyl group of L. The number of double cosets appearing in this sum
is bounded above by

|H\W/CW (s)| 6 |W/CW (s)| 6 |W/W2| = |Sn/Sn−j| 6 nj

because W2 6 CW (s).
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Now, by the disjointness of Deligne–Lusztig characters, see [5, Proposition 11.3.2], the summands
are pairwise orthogonal because each zs lies in a distinct L-conjugacy class. So, using Lemma 2.5
it suffices to bound

|〈ResCWF (
zs)

CHw(zs)
(ψ̃),Res

CWF (
zs)

CHw(zs)
(ψ̃)〉| 6 〈ResCW (zs)

CH (zs) (ψ),Res
CW (zs)
CH(zs) (ψ)〉 6 ψ(1)2

But we know ψ is a constituent of Ind
CW (s)
CW1

(s)W2
(φ⊠ 1) so

ψ(1)2 6 Ind
CW (s)
CW1

(s)W2
(φ⊠ 1)(1)2

6 Ind
CW (s)
CW1

(s)W2
(φ⊠ 1)(1)2

6 |W/W2|2

6 n2j . �

2.3. An asymptotic version of [1, Theorem 1.1] and [25, Theorem 1.9]. Now we can prove the
main result of the section:

Theorem 2.9. For any ǫ > 0, there are some explicit positive constants N0 = N0(ǫ) and q0 = q0(ǫ),
such that the following statements holds for all integers n ≥ N0 and all prime powers q ≥ q0. Let
G = GLn(Fq) and let F : G → G be a Frobenius endomorphism so that GF ∈ {GLn(q),GUn(q)}.
Suppose we are in one of the following two cases.

(i) G := GF and g ∈ G is any element such that CG(g) is contained in a proper F -stable Levi
subgroup L of G and L := LF .

(ii) G := [G,G]F ∈ {SLn(q),SUn(q)}, g ∈ G, and either
(a) C[G,G](g) is contained in a proper split Levi subgroup L of [G,G] and L := LF , or
(b) g is non-central semisimple with L := CG(g).

Then

(2.11) |χ(g)| ≤ χ(1)α(L)+ǫ

for all χ ∈ Irr(G).

Proof. Note that (2.11) is obvious if α := α(L) ≥ 1− ǫ. So in what follows we will assume

α+ ǫ < 1,

in particular 0 < ǫ < 1.

(A) First we prove (2.11) in the cases of (i) and (ii)(a). Note that the upper bound on |χ(g)| in
Theorem 2.3 is obtained by combining (2.1), (2.2), and (2.10). If L is split, ϕ := ∗RGF

L1F
(χ) is a true

character of LF1 (in the notation of the proof of Theorem 2.3), hence this upper bound is actually
an upper bound on the degree of ϕ. Arguing as in part (ii) of the proof of [1, Theorem 1.1], it
therefore suffices to prove (2.11) for

G ∈ {GLn(q),GUn(q)}.

Let j = l(χ) be the level of χ in the sense of [11, Definition 1(ii)]. This means that multiplying
χ by a suitable linear character of G, we may assume that l

∗(χ) = j. Applying Theorem 2.3, it
suffices to prove

(2.12) n3j
(

q + 1

q − 1

)D/2

≤ χ(1)ǫ.
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Note that the degree of any irreducible character of G is a monic polynomial in variable q with
integer coefficients, in fact a product of a power of q and cyclotomic polynomials in q. Writing
D = dim vG , with vG = O∗

χ being the wave front set of χ, we therefore have

χ(1) ≥ (q − 1)D/2.

Choosing q0 = q0(ǫ) ≥ 3 such that
q0 + 1

q0 − 1
≤ (q0 − 1)ǫ/3,

it remains to prove

(2.13) n3j ≤ χ(1)2ǫ/3

for q ≥ q0 and n ≥ N0.
Choosing N0 ≥ 4 we have n2/4− 2 > n2/16 for n ≥ N0, and so, when j > n/2 we have

χ(1) > qn
2/16 > qn

2ǫ/16

by [11, Theorem 1.2(ii)]. Next, if n/4 < j ≤ n/2, then j(n − j) > n2/8, and so

χ(1) > qn
2/8

by [11, Theorem 1.2(i)]. If 0 ≤ j ≤ n/4, then j(n − j) ≥ 3nj/4, and so

(2.14) χ(1) ≥ q3nj/4

again by [11, Theorem 1.2(i)].

First we work in the regime
nǫ/12 ≤ j ≤ n.

Then (2.14) and the above arguments show that

χ(1) ≥ qn
2ǫ/16.

Choose N0 ≥ 4 such that

(2.15) n ≤ q
nǫ2/72
0

for all n ≥ N0. Then for q ≥ q0 we now have

n3j ≤ n3n ≤ q
n2ǫ2/24
0 ≤ χ(1)2ǫ/3,

yielding (2.13) in this case.
Assume now that j ≤ nǫ/12 ≤ n/12. Then for n ≥ N0 and q ≥ q0 we now have by (2.14) and

(2.15) that

n3j ≤ q
nǫ2j/24
0 < qnǫj/2 ≤ χ(1)2ǫ/3,

proving (2.13) in this case as well.

(B) Now we handle the case (ii)(b), embedding G in G̃ := GF . Letting L̃ := CG(g), note that

G̃ = GL̃ and g ∈ L̃. Letting χ̃ ∈ Irr(G̃) lie above χ, by Clifford’s theorem we have

χ̃|G =
t

∑

i=1

χxi ,

where x1, . . . , xt can be chosen from L̃. Since every xi centralizes g, we have

χ̃(1) = tχ(1), χ̃(g) = tχ(g).

By the case (i) proved in (A), |χ̃(g)| ≤ χ̃(1)α+ε. As α+ ε < 1, it follows that |χ(g)| ≤ χ(1)α+ε. �
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3. Some numerical estimates

This section is devoted to numerical estimates which allow us to determine a finite list of possible
exceptions to Conjecture 1.

Let

fa,x(δ) := min
(

(1

a
+ δ

)

x,
1

2

(1

a
+

a

a− 1
δ2
)

)

.

The main goal of this section is to give an explicit finite list of possible exceptions to the rule that
if 2 ≤ a1 ≤ a2 ≤ · · · ≤ ar are integers such that

∑r
i=1

1
ai
< r − 2, then

r
∑

i=1

fai,x(δi) < x+

r
∑

i=1

aiδ
2
i

ai − 1

when x ∈ [0, 1/2] and δi ∈ [0, ai−1
ai

] for all i. We will see that when the rule holds, Conjecture 1
holds for the corresponding genus 0 Fuchsian group. There is only one exception with r ≥ 4 and
thirty-one with r = 3.

Proposition 3.1. For all a ≥ 2, x ∈ (0, 1/2], and δ ∈ [0, 1− 1/a], the function

fa,x(δ) − aδ2

a−1

x

is bounded above by max
(

x
a , Ga,x,Ha,x

)

, where

Ga,x =

{

(a−1)x+4
4a , if x ≤ 2

√
3a+1−4
3(a−1)

−∞, if x > 2
√
3a+1−4
3(a−1)

and

Ha,x =

{
√

(a−1)2x2+2(a−1)x−(a−1)

a − (a−1)x
a + 1−x

ax , if (a− 1)x2 + ax ≥ 1

−∞, if (a− 1)x2 + ax < 1.

In particular,

(3.1) fa,x(δ) <
2x√
a
+

aδ2

a− 1
.

Proof. Let

ga,x(δ) :=
(1

a
+ δ

)

x− aδ2

a− 1
,

ha(δ) :=
1

2a
− aδ2

2(a− 1)
,

so

fa,x(δ) −
aδ2

a− 1
= min(ga,x(δ), ha(δ)).

For each fixed integer a ≥ 2, we wish to determine as a function of x ∈ (0, 1/2], the (unique) element
δ0(x) ∈

[

0, a−1
a

]

for which min(ga,x(δ), ha(δ)) achieves its maximum as a function of δ.
We note first that as functions of δ, ga,x(δ) and ha(δ) are strictly concave, and ha(δ) is decreasing

on [0,∞). Therefore, δ0(x) must either be the unique critical point (a−1)x
2a of ga,x(δ), the minimum

solution of ga,x(δ) = ha(δ) in the interval
[

0, a−1
a

]

, or one of the endpoints 0 and a−1
a of the interval.

For the endpoints, we have

min(ga,x(0), ha(0)) ≤ ga,x(0) =
x

a
,
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and

min
(

ga,x
(a− 1

a

)

, ha
(a− 1

a

)

)

≤ ha
(a− 1

a

)

=
1

a
− 1

2
≤ 0.

If the maximum occurs at (a−1)x
2a , it must be

ga,x

((a− 1)x

2a

)

=
(a− 1)x2 + 4x

4a
,

and this quantity must be less than or equal to

ha

( (a− 1)x

2a

)

=
4− (a− 1)x2

8a
,

so

x ≤ 2
√
3a+ 1− 4

3(a− 1)
.

Thus, for all x,

(3.2) Ga,x ≤ 1

a
+

√
3a+ 1− 2

6a
≤ 1

a
+

1√
2a

<
2√
a
.

The graphs of ga,x(δ) and ha(δ) intersect only if

(3.3) (a− 1)x2 + 2x ≥ 1,

in which case the smaller δ-value satisfying ga,x(δ) = ha(δ) is

δ =
(a− 1)x−

√

(a− 1)2x2 + 2(a− 1)x− (a− 1)

a
.

If this is δ0(x), we have

(3.4) Ha,x =

√

(a− 1)2x2 + 2(a− 1)x− (a− 1)x

a
− (a− 1)x2

a
+

1− x

a
≤ 1− x

a
≤ 1

a
.

By (3.3), x > 1
2
√
a
, so (3.4) implies

ga,x(δ0(x))

x
<

2√
a
.

Together with (3.2), this implies the proposition. �

Proposition 3.2. Let r ≥ 3 be an integer, a1 ≤ a2 ≤ · · · ≤ ar be integers ≥ 2, and δi be non-
negative numbers with 1

ai
+ δi ≤ 1 for all i. We assume that the product a1 · · · ar is not on the

following list:

(i) 23c, 7 ≤ c ≤ 24
(ii) 24c, 5 ≤ c ≤ 9
(iii) 25c, 5 ≤ c ≤ 7
(iv) 266,
(v) 33c, 4 ≤ c ≤ 6
(vi) 344,
(vii) 2223.

Then for all x ∈ (0, 1/2],
r

∑

i=1

fai,x(δi) < −ǫx+ (r − 2)x+
r

∑

i=1

aiδ
2
i

ai − 1
,

where ǫ is a positive constant which does not depend on x, r, the ai, or the δi.
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Proof. By (3.1) for a ≥ 100 and machine computation for 2 ≤ a < 100,

(3.5)
fa,x(δ) − aδ2

a−1

x
≤































.555 if a = 2,

.399 if a = 3,

.318 if 4 ≤ a < 100,

.2 if 100 ≤ a < 10000,

.02 if 10000 ≤ a.

Therefore, if r ≥ 5,

r − 2−
r

∑

i=1

fai,x(δi)−
aiδ2i
ai−1

x
> r − 2− .56 r ≥ .2.

If r = 4 and a4 ≥ 4, then

r − 2−
r

∑

i=1

fai,x(δi)−
aiδ2i
ai−1

x
> 2− .56 · 3− .318 = .002,

while if r = 4 and a3 ≥ 3, then

r − 2−
r

∑

i=1

fai,x(δi)−
aiδ2i
ai−1

x
> 2− .56 · 2− .4 · 2 = .08.

The only remaining possibility for r = 4 is 2223.
For r = 3, we may assume a2 ≥ 3, so if a3 ≥ 10000,

r − 2−
r

∑

i=1

fai,x(δi)−
aiδ2i
ai−1

x
> 1− .56− .4− .02 = .02.

The triples with a3 < 10000 can be handled exhaustively by machine, by partitioning the x-interval
[0, 1/2] into subintervals on which Gx,a and Hx,a are bounded above. �

We remark that it is feasible to give a proof of a somewhat weaker result which does not require
machine computation at all. An earlier version of this paper gave an explicit argument which holds
for all triangle groups of type abc except the following:

(a) a = 2, b = 3, 7 ≤ c ≤ 295
(b) a = 2, b = 4, 5 ≤ c ≤ 26
(c) a = 2, b = 5, 5 ≤ c ≤ 15
(d) a = 2, 6 = 6, 6 ≤ c ≤ 11
(e) (a, b, c) ∈ {(2, 7, 7), (2, 7, 8), (2, 7, 9), (2, 7, 10), (2, 8, 8)}
(f) a = b = 3, 4 ≤ c ≤ 11
(g) (a, b, c) ∈ {(3, 4, 4), (3, 4, 5), (3, 4, 6), (3, 4, 7), (3, 5, 5), (4, 4, 4)}

It holds, moreover, for r = 4 except in the case of groups of type 2223 and 2224 and for all groups
with r ≥ 5.

Lemma 3.3. Let g be a positive integer and r a non-negative integer such that if g = 1, then r > 0.
Let a1 ≤ a2 ≤ · · · ≤ ar be a (possibly empty) sequence of integers ≥ 2. Then for all x ∈

[

0, 12
]

,

r
∑

i=1

fai,x(δi) < −.44x+ (2g + r − 2)x+
r

∑

i=1

aiδ
2
i

ai − 1
.



18 MICHAEL LARSEN, JAY TAYLOR, AND PHAM HUU TIEP

Proof. If g = 1 and r ≥ 1, (3.5) implies

r
∑

i=1

fai,x(δi)−
aiδ

2
i

ai−1

x
< .56r ≤ −.44 + r = −.44 + (2g + r − 2).

If g ≥ 2 and r ≥ 0,

r
∑

i=1

fai,x(δi)−
aiδ2i
ai−1

x
≤ .56r. < −.44 + (2 + r) ≤ −.44 + (2g + r − 2). �

4. Asymptotics of jq,n(a)

Let t be an element of Gn = GLn(q) of order a. We assume q is prime to a, Let ζ = ζa be a
primitive ath root of unity in F̄q, so z

a − 1 = 0 has distinct roots ζ, ζ2, . . . , ζa = 1, in F̄q. Let
mi denote the multiplicity of ζ i as an eigenvalue of t. We write i ∼ j if ζ i and ζj have the same
Frobenius orbit. The vector (m1, . . . ,ma) satisfies the following conditions:

(1) mi ∈ Z for all i,
(2) m1 + · · ·+ma = n,
(3) mi = mj whenever i ∼ j,
(4) mi ≥ 0 for all i.

The element t is determined up to conjugacy in GLn(q) by the vector (m1, . . . ,ma). For given n,
the vector is determined by m1, . . . ,ma−1, so the number of possibilities is O(na−1).

Let S denote the subset of {1, . . . , a} consisting of the smallest element in each Frobenius orbit,
and let ls be the size of the orbit of s. The centralizer of t in GLn(q) can be written

∏

s∈S GLms(q
ls),

so the conjugacy class C = tGn satisfies
(4.1)

|C| =
qn

2 ∏n
j=1(1− q−j)

∏

s∈S

(

qlsm2
s

∏ms
j=1(1− q−lsj)

) =
qn

2−
∑a
i=1m

2
i q(1−a)/24η( i log q2π )

∏

s∈S η(
ils log q

2π )

∏

s∈S
∏∞
j=ms+1(1− q−lsj)

∏∞
j=n+1(1− q−j)

,

where η(z) is the Dedekind eta-function. The second multiplicand on the right hand side can be
bounded above in terms of a, and it approaches 1 as inf imi goes to ∞.

Writing

(4.2) n2 −
a

∑

i=1

m2
i = n2

(

1− 1

a

)

−
a

∑

i=1

(n

a
−mi

)2
,

we see that if mi ≤ n/2a, then

|C| = O(q(1−1/a−1/4a2)n2
),

so the sum of |C| over all conjugacy classes with infimi ≤ n/2a is o(q(1−1/a)n2
).

We define jq,n,k(a) to be the number of elements t ∈ GLn(q) with ta = 1 and det(a) = ζk.
Consider the subset of Za satisfying conditions (1)–(3) and the congruence condition

(4.3)

r
∑

i=1

imi ≡ k (mod a),

which is equivalent to the condition det(t) = ζk. This is a coset λn + Λ, where Λ is a subgroup of
Za which does not depend on n and λn ∈ Za has coordinate sum n. Moreover, adding 2 to each mi

and 2a to n preserves the sets satisfying conditions (1)–(3) and (4.3), so

λn+2a = λn + (2, 2, . . . , 2).
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Thus,

λ′n := λn −
(n

a
,
n

a
, . . . ,

n

a

)

,

is periodic in n with period 2A and has coordinate sum 0.
By (4.1) and (4.2),

jq,n,k(a) =
∑

(m1,...,ma)∈(λn+Λ)∩Na

qn
2 ∏n

j=1(1− q−j)
∏

s∈S

(

qlsm
2
s

∏ms
j=1(1− q−lsj)

)

=
∑

(m1,...,ma)∈(λn+Λ)∩Na

qn
2−

∑a
i=1m

2
i q(1−a)/24η( i log q2π )

∏

s∈S η(
ils log q

2π )
+ o(q(1−1/a)n2

)

=
q(1−a)/24η( i log q2π )
∏

s∈S η(
ils log q

2π )

∑

(m1,...,ma)∈λn+Λ

qn
2−

∑a
i=1m

2
i + o(q(1−1/a)n2

)

=
q(1−a)/24η( i log q2π )
∏

s∈S η(
ils log q

2π )
q(1−1/a)n2

∑

λ′∈λ′n+Λ

q−λ
′·λ′ + o(q(1−1/a)n2

),

where the implicit constant on the right hand side does not depend on q. Defining

θv(z) :=
∑

λ∈v+Λ

e2πi(λ·λ)z

and

fn(z) :=
η(z)θλ′n(z)
∏

s∈S η(lsz)
,

we have proved the following proposition:

Proposition 4.1. The periodic sequence f1, f2, f3, . . . of half-integral weight modular forms with
integral q-expansions satisfies

jq,n,k(a) =
(

fn
(i log q

2π

)

+ o(1)
)

q(1−a)/24q(1−1/a)n2
,

where the o(1) term does not depend on q.

From this, it is easy to deduce:

Corollary 4.2. Let a1, . . . , ar denote positive integers with least common multiple A. Then there
exists a 2A-periodic sequence of meromorphic modular forms f1, f2, f3, . . . with integral Fourier
coefficients, holomorphic except possibly at ∞, such that

Jq,n(a1, . . . , ar) =
(

fn
(i log q

2π

)

+ o(1)
)

q(r−a1−···−ar)/24q(r−1/a1−···−1/ar)n2
.

Proof. Let

Σ(a1, . . . , ar) := {(k1, . . . , kr) ∈ (Z/a1Z)× · · · × (Z/arZ) |
∏

ζkiai = 1}.

If taii = 1, then det(ti) = ζkiai for a well-defined ki ∈ Z/aiZ. Every element (t1, . . . , tr) of (1.2)

determines (k1, . . . , kr) ∈ Σ(a1, . . . , ar) such that det(ti) = ζk1ai . Therefore,

Jq,n(a1, . . . , ar) =
∑

(k1,...,kr)∈Σ(a1,...,ar)

r
∏

i=1

jq,n,ki(ai),

and the corollary follows immediately from Proposition 4.1. �
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5. Counting Fuchsian group representations

If ta = 1, and m1, . . . ,ma are the eigenvalue multiplicities of t, define δ := −1/a + supimi/n.
Thus, δ ≥ 0. Let j be chosen so mj = n/a+ δn.

Proposition 5.1. Let q be any sufficiently large prime power. For all ǫ > 0, there exists N such

that if n > N , if x ∈ (0, 1/2] and χ is an irreducible character of Gn of degree qxn
2
> 1, then

log |χ(t)|
n2 log q

≤ fa,x(δ) + o(x).

Proof. As
∑

i 6=j

(n

a
−mi

)

≥ δn,

by the Cauchy-Schwartz inequality.

∑

i 6=j

(n

a
−mi

)2 ≥ δ2n2

a− 1
.

By (4.2), the dimension of the centralizer of t in the algebraic group GLn is

(5.1)
n2

a
+

∑

i

(
n

a
−mi)

2 ≥ n2

a
+ δ2n2 + (a− 1)

δ2n2

(a− 1)2
=
n2

a
+
aδ2n2

a− 1
.

The centralizer of t in Gn is less than or equal to q to the power of the centralizer dimension, so
the centralizer bound implies that for every irreducible character χ ∈ Irr(Gn),

(5.2) |χ(t)| ≤ q
n2( 1

2a
+ aδ2

2(a−1)
)
.

On the other hand, by [1, Theorem 1.10], if L denotes the centralizer of t,

α(L) ≤ supimi

n
=

1

a
+ δ.

The character bound Theorem 2.9 therefore implies

|χ(t)| ≤ χ(1)
1
a
+δ+o(1) = qn

2x
(

1
a
+δ+o(1)

)

.

Combining this with (5.2), we obtain the proposition. �

Proposition 5.2. Let q be any sufficiently large prime power. There exists ǫ > 0 such that for all
r ≥ 3 and all 2 ≤ a1 ≤ a2 ≤ · · · ≤ ar not excluded in Proposition 3.2 above, there exists N such that
if q is prime to all ai, n > N , the elements ti ∈ Gn satisfy taii = 1, and χ is a non-linear irreducible
character of Gn, we have

∏

i

∣

∣ tGni
∣

∣

|Gn|

∏

i |χ(ti)|
χ(1)r−2

≤ q
n2
(

−1+
∑
i(1− 1

ai
)
)

χ(1)−ǫ.

Proof. Let x := log
qn2

χ(1), which by [14] is at least 1/2n. Let δi := µi − 1/ai, where µin is

the highest multiplicity of any eigenvalue of ti, Zi be the centralizer of ti in Gn, and din
2 be the

dimension of the centralizer of ti in the algebraic group GLn. By (5.1), for all i,

di ≥
1

ai
+

aiδ
2
i

ai − 1
,

and

|Zi| ≥ qdin
2

∞
∏

i=1

(1− q−i)−ai ≥ 4−aiqdin
2 ≥ q−2ai+din

2
.
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Thus,
∏r
i=1

∣

∣tGni
∣

∣

|Gn|
≤ q(

2
n2

(
∑
i ai)+r−1−

∑
i di)n

2

.

By Proposition 5.1,
∏

i

|χ(ti)| ≤ q(
∑
i fai,x(δi)+o(1))n

2
,

so
∏

i

∣

∣ tGni
∣

∣

|Gn|

∏

i |χ(ti)|
χ(1)r−2

≤ q((2−r)x+
∑
i fai,x(δi)−

∑
i di+(r−1)+o(1))n2

.

By Proposition 3.2, under the hypothesis on Γ, we have

(2− r)x+
∑

i

fai,x(δi)−
∑

i

di + (r − 1) ≤ (2− r)x+
∑

i

fai,x(δi)−
∑

i

1

ai
−

∑

i

aiδ
2
i

ai − 1
+ (r − 1)

< −ǫx−
∑

i

1

ai
+ (r − 1),

and the proposition follows. �

The positive genus variant of this result is as follows:

Lemma 5.3. Let q be any sufficiently large prime power. There exists N such that for all g ≥ 1,
r non-negative and positive if g = 1, 2 ≤ a1 ≤ a2 ≤ · · · ≤ ar, such that q is prime to ai for all i,
n > N , ti ∈ Gn satisfying taii = 1, and non-linear irreducible characters χ of Gn, we have

∏

i

∣

∣ tGni
∣

∣ |Gn|2g−1

∏

i |χ(ti)|
χ(1)2g+r−2

≤ q
n2
(

2g−1+
∑
i(1− 1

ai
)
)

χ(1)−.44.

Proof. The proof is exactly the same as that of Proposition 5.2 except that we use Lemma 3.3
instead of Proposition 3.2 �

Lemma 5.4. Let Hi = GLni(qi), where limi→∞ ni = ∞. Then for all ǫ > 0,
∑

χ∈Irr(Hi)
χ(1)−ǫ = qi − 1 + o

(

q
− ǫni

3
i

)

Proof. By [19, Theorem 1.2],
∑

χ∈Irr(SLni(qi))
χ(1)−ǫ/2 = 1 + o(1),

so if Di denotes the minimum degree of a non-trivial character of SLni(qi),
∑

χ∈Irr(SLni (qi))
χ(1)−ǫ = 1 + o(D−ǫ/2) = 1 + o

(

q
− ǫni

3
i

)

by [14]. The relation which assigns to each element of Irr(Hi) all the elements in Irr(SLni(qi)) which
are constituents of its restriction is at most q−1 to 1 and non-increasing in degree. There are qi−1
linear characters for Hi, all mapping to the trivial character of SLni(qi)). Therefore,

1− qi +
∑

χ∈Irr(Hi)
χ(1)−ǫ = o((qi − 1)q

−ǫni/3
i ),

and the lemma follows. �

We can now prove Theorems A and B.
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Proof. We assume first that g = 0, so Γ is determined by 2 ≤ a1 ≤ a2 ≤ · · · ≤ ar. A homomorphism
Γ → Gn is determined by the images t1, . . . , tr ∈ Gn of z1, . . . , zr ∈ Γ, which satisfy taii = 1 and
∏

i det(ti) = 1. We can partition the set of homomorphisms according to the conjugacy classes
C1, . . . , Cr to which the ti belong. By the Frobenius formula, the total number of homomorphisms
is

(5.3)
∑

(C1,...,Cr)

|C1 × · · · × Cr|
|Gn|

∑

χ∈Irr(Gn)

χ(C1) · · ·χ(Cr)
χ(1)r−2

.

The determinant condition implies that each linear character in the inner sum contributes 1, and
there are a total of q − 1 such characters. Their total contribution is therefore

(5.4) (q − 1)
∑ |C1 × · · · × Cr|

|Gn|
= (q − 1)Jq,n(a1, . . . , ar)|Gn|−1

By Lemma 5.4, the contribution of all non-linear characters χ to (5.3) is o(q−ǫn/3q(1−χ(Γ))n
2
). By

Corollary 4.2,

|Hom(Γ, G)| = (q − 1)q(r−a1−···−ar)/24(fn
( i log q

2π

)

+ o(1)
)

q(1−χ(Γ)))n
2
,

which implies Theorem A and Theorem B in the genus 0 case. The proof in the higher genus case
is the same except that we use Lemma 5.3 instead of Proposition 5.2. �

Proposition 5.5. Let a and n be positive integers, a ≥ 2, and let q be a prime power which is 1
(mod a). The minimum dimension of the centralizer in GLn of a semisimple element t ∈ GLn(q)

of order dividing a is n2

a + a{na}{−n
a }. If a is odd, t can be chosen to have determinant 1. If a is

even and n
a 6∈ Z, then t can be chosen to have determinant 1 or −1. If a is even and n

a ∈ Z, then

t must have determinant (−1)
n
a ; if this is −1, there is no element in GLn(q) whose centralizer has

dimension n2

a + 1, but there is an element t′ ∈ SLn(q) with centralizer dimension n2

a + 2.

Proof. If the multiplicities m1, . . . ,ma of the eigenvalues ζa, . . . , ζ
a
a of a semisimple t ∈ GLn(q)

satisfying ta = 1 are written n
a + εi, then the centralizer of t has dimension

∑

i

m2
i =

n2

a
+

∑

i

ε2i .

As
∑

i εi = 0, either all are zero (which can only happen in the case that a divides n, or at least
one is positive and at least one is negative. In the latter case, if any εi ≥ 1, then by reducing this
by 1 and increasing some negative εj by 1, we decrease

∑

i ε
2
i , and likewise if some εi ≤ −1. As

all εi are {na} (mod 1), each must be {na} or {na} − 1, and since they sum to zero, there must be

a− a{na} of the latter and a{na}, implying
∑

i ε
2
i = a{na}{−n

a }.
Next, we claim that as long as {na} 6= 0, there exists some sequence m1, . . . ,ma consisting of

a{na} copies of ⌈na ⌉ and a − a{na} copies of ⌊na ⌋ such that
∏

i ζ
imi
a is any desired power of ζa. To

prove this, it suffices to show that if 0 < k < a, the sums of k-element subsets S of {0, 1, . . . , a− 1}
represent all residue classes (mod a). Indeed, if S 6= {a − 1, a − 2, . . . , a − k}, there exists s ∈ S
such that s + 1 ∈ {0, 1, . . . , a − 1} r S. Thus, the set of sums of k-element subsets S includes all

integers from
(k
2

)

to
(a
2

)

−
(a−k
a

)

, a total of k(a − k) + 1 ≥ a consecutive integers, which therefore
represent all congruence classes (mod a).

Finally, assume a divides n, so m1 = · · · = ma = n
a gives the minimum value n2

a of
∑

im
2
i . Any

other choice of (m1, . . . ,ma) must have all εi integral and at least two non-zero, so
∑

im
2
i ≥ n2

a +2.
If m1 = · · · = ma and n

a is even or a is odd, then
∑

i imi is divisible by a, so det(t) = 1. If a is
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even and n
a is odd, then m1 = · · · = ma gives det(t) = −1. In this last case, setting ε1 = 1 and

εa/2+1 = −1 and all other εi = 0, we get
∑

i imi is divisible by a and
∑

im
2
i =

n2

a + 2. �

Let EΓ denote the set of i such that ai is even. As in the statement of Theorem C, for each
positive integer n, we define σΓ,n := −1 if n

ai
∈ Z for all i ∈ EΓ, and

∑

i∈EΓ

n
ai

is odd; otherwise
σΓ,n := 1.

Proposition 5.6. Suppose q ≡ 1 (mod ai) for all i. If (t1, . . . , tr) is an r-tuple of semisimple ele-
ments in GLn(q) such that taii = 1 and

∏

i det(ti) = 1, the minimum possible sum of the dimensions
of the centralizers of the ti in GLn is

1− σΓ,n +
r

∑

i=1

(n2

ai
+ ai

{ n

ai

}{

− n

ai

})

.

Proof. If there is at least one ai which is even and such that n
ai

6∈ Z, then we can choose ti to have
either determinant 1 or −1 and centralizer dimension

(5.5)
n2

ai
+ ai

{ n

ai

}{

− n

ai

}

.

For j 6= i, we can choose tj to have determinant in {±1} and centralizer n2

aj
+ aj

{

n
aj

}{

− n
aj

}

.

Therefore, we can choose minimal centralizer dimension for all ti while imposing the condition
∏

i det(ti) = 1.
If n

ai
∈ Z for all ai even, and the set of i such that ai is even and n

ai
is odd has even cardinality,

then we may choose ti whose centralizer has dimension (5.5) for all i and such that det(ti) = 1
except when ai is even and n

ai
is odd. In these cases, of which there are an odd number, det(ti) = 1,

so again
∏

i det(ti) = 1.
What remains is the case σΓ,n = −1, and here if ti has centralizer dimension (5.5) for all i, then

the product
∏

i det(ti) is −1 times a product of elements of odd order, so it cannot be 1. On the
other hand, if we choose one ti with ai even and n

ai
odd, and choose it to have determinant 1 and

centralizer dimension n2

ai
+2, and all other tj have minimal centralizer dimension and det(tj) = ±1,

then the product
∏

i det(ti) = 1. �

We now prove Theorem C.

Proof. By Theorem B, there exist Q and N such that if q > Q is relatively prime to A and n > N ,
then

1

2
<
q(1−2g)n2 |Hom(Γ,GLn(q))|

qJq,n(a1, . . . , ar)
<

3

2
.

For any fixed q and n, let Xq,n denote the variety Hom(Γ,GLn) over the field Fq. Then, for all
positive integers m,

1

2
<
q(1−2g)mn2 |Xq,n(Fqm)|
qmJqm,n(a1, . . . , ar)

<
3

2
.
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By Proposition 5.6,

dimXq,n = lim sup
m

logqm |Xq,n(Fqm)|

= 1 + (2g − 1)n2 + lim sup
m

logqm Jqm,n(a1, . . . , ar)

= 1 + (2g − 1)n2 + rn2 − 1 + σΓ,n −
r

∑

i=1

(n2

ai
+ ai

{ n

ai

}{

− n

ai

})

= σΓ,n + (1− χ(Γ))n2 −
r

∑

i=1

ai

{ n

ai

}{

− n

ai

}

.

The first claim of the theorem follows in the positive characteristic case.
For characteristic zero, we consider the scheme Hom(Γ,GLn,Z) over SpecZ whose Fp fiber is the

n-dimensional representation variety of Γ over Fp. By the constructibility of the set of dimensions
of irreducible fiber components [10, Proposition 9.5.5], the dimension of the generic fiber must be
the same as the common dimension of any infinite set of fibers over closed points.

Finally, for the second claim of the theorem, we observe that {t}{−t} ≥ −1
4 for all real t, so for

all i,

ai
{ n

ai

}{

− n

ai

}

≥ −ai
4
.

We have σΓ,n > −1
2 unless there is at least one value of i for which ai is even and n

ai
is integral. For

this value of i, ai ≥ 2, so

σΓ,n + ai
{ n

ai

}{

− n

ai

}

≥ −1

2
− ai

4
,

which finishes the proof. �
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