REPRESENTATION GROWTH OF FUCHSIAN GROUPS AND MODULAR FORMS

MICHAEL LARSEN, JAY TAYLOR, AND PHAM HUU TIEP
To the memory of Gary Seitz

Abstract

Let Γ be a cocompact, oriented Fuchsian group which is not on an explicit finite list of possible exceptions and q a sufficiently large prime power not divisible by the order of any nontrivial torsion element of Γ. Then $\left|\operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n}(q)\right)\right| \sim c_{q, n} q^{(1-\chi(\Gamma)) n^{2}}$, where $c_{q, n}$ is periodic in n. As a function of $q, c_{q, n}$ can be expressed as a Puiseux series in $1 / q$ whose coefficients are periodic in n and q. Moreover, this series is essentially the q-expansion of a meromorphic modular form of half-integral weight.

Contents

1. Introduction 1
2. An asvmptotic character bound 4
2.1. Elements with split centralizer in $\mathrm{GL}_{n}(q)$ 5
2.2. The general case 8
2.3. An asymptotic version of [1, Theorem 1.1] and 25. Theorem 1.9] 13
3. Some numerical estimates 15
4. Asvmptotics of $i_{a n}(a)$ 18
5. Counting Fuchsian group representations 20
References 24

1. Introduction

Let Γ be a cocompact and oriented Fuchsian group (which, in what follows, we shall call simply a Fuchsian group). Concretely, this means that Γ has a presentation

$$
\left\langle x_{1}, y_{1}, \ldots, x_{g}, y_{g}, z_{1}, \ldots, z_{r} \mid z_{1}^{a_{1}}, \ldots, z_{r}^{a_{r}},\left[x_{1}, y_{1}\right] \cdots\left[x_{g}, y_{g}\right] z_{1} \cdots z_{r}\right\rangle
$$

where $a_{1}, a_{2}, \ldots, a_{r}$ is a fixed (possibly empty) non-decreasing sequence of integers $a_{i} \geq 2$ such that the Euler characteristic

$$
\chi(\Gamma):=2-2 g-\sum_{i=1}^{r}\left(1-\frac{1}{a_{i}}\right)
$$

is negative. Let \mathbb{F}_{q} be a finite field. In this paper, we investigate the asymptotic growth in n of the number of homomorphisms from Γ to the group $\mathrm{GL}_{n}(q)$, which we denote G_{n} when the value of q is understood.

[^0]There are two complementary points of view. On the one hand we can fix n and consider the homomorphism scheme $\operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n}\right):=\operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n}, \mathbb{Z}\right)$, which is defined over \mathbb{Z}. For fixed characteristic $p>0$, we can think of the fiber of $\operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n}\right)$ over $\operatorname{Spec} \mathbb{F}_{p}$ as the variety $\operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n, \mathbb{F}_{p}}\right)$ of homomorphisms from Γ to GL_{n} over \mathbb{F}_{p}. (Note that in this paper, a variety will be just an affine scheme of finite type over a field; in particular, it need not be either irreducible or reduced.) Applying the Lang-Weil theorem to this variety as q ranges over powers of p, we see that the number of homomorphisms $\rho: \Gamma \rightarrow \mathrm{GL}_{n}(q)$ determines its dimension, by which we mean the maximum dimension of any of its irreducible components.

On the other hand, for fixed q, we can partition homomorphisms ρ according to the r-tuple of G_{n}-conjugacy classes

$$
\left(C_{1}, \ldots, C_{r}\right)=\left(\rho\left(z_{1}\right)^{G_{n}}, \ldots, \rho\left(z_{r}\right)^{G_{n}}\right) .
$$

Each C_{i} must consist of elements of order dividing a_{i}. For given $\left(C_{1}, \ldots, C_{r}\right)$ satisfying this divisibility condition, the number of homomorphisms $\Gamma \rightarrow G_{n}$ with $\rho\left(z_{i}\right) \in C_{i}$ for all i is given by a theorem of Hurwitz [17, Proposition 3.2]:

$$
\begin{equation*}
|G|^{2 g-1}\left|C_{1}\right| \cdots\left|C_{r}\right| \sum_{\chi \in \operatorname{Irr}\left(G_{n}\right)} \frac{\chi\left(C_{1}\right) \cdots \chi\left(C_{r}\right)}{\chi(1)^{2 g+r-2}} . \tag{1.1}
\end{equation*}
$$

Summing (1.1) over all possible r-tuples $\left(C_{1}, \ldots, C_{r}\right)$ we obtain a formula which can potentially be used for fixed q to understand the asymptotic behavior of $\left|\operatorname{Hom}\left(\Gamma, G_{n}\right)\right|$ as $n \rightarrow \infty$.

These two ways of counting $\operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n}(q)\right)$ are in some sense complementary. For instance, just as we can use character methods to determine the dimension of $\operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n}\right)$, we can use the dimension of $\operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n}\right)$ to get an upper bound on $\operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n}(q)\right)$ for all large q. For the large n limit, the first method of counting seems to be the more appropriate, and an analysis of (1.1) has led us to the following conjecture:

Conjecture 1. Let A denote the least common multiple of a_{1}, \ldots, a_{r}, which we take to be 1 if $r=0$. Let q be a prime power relatively prime to A.
(a) There exists a $2 A$-periodic sequence $c_{q, 1}, c_{q, 2}, \ldots$ of positive numbers such that

$$
\left|\operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n}(q)\right)\right| \sim c_{q, n} q^{(1-\chi(\Gamma)) n^{2}} .
$$

(b) There exist a 2-dimensional array $e_{\Gamma, q, n}$ of rational numbers and a 2-dimensional array $f_{\Gamma, q, n}$ of half-integral weight meromorphic modular forms, periodic in both q and n, such that

$$
c_{q, n}=(q-1) q^{e_{\Gamma, q, n}} f_{\Gamma, q, n}\left(\frac{i \log q}{2 \pi}\right) .
$$

Moreover, $f_{\Gamma, q, n}$ is holomorphic on the upper half plane and has integer Fourier coefficients at $i \infty$.

The problem of estimating the number of representations of a given Fuchsian group over a finite field seems to have been first considered by Liebeck and Shalev [18]. There are a number of significant differences in emphasis between that paper and ours; Γ need not be oriented in their paper, and the target of homomorphisms from Γ could be a quasisimple group $G(q)$ instead of $\mathrm{GL}_{n}(q)$. They were primarily interested in the "geometric" direction, that is, n fixed and $q \rightarrow \infty$.. A key limitation of their paper is that their method requires $g \geq 2$.

Under this hypothesis, they showed that the contribution in (1.1) from non-linear characters is negligible, which reduces the problem of estimating $\left|\operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n}(q)\right)\right|$ to that of estimating the numbers $j_{q, n}\left(a_{i}\right)$ of elements $x \in \mathrm{GL}_{n}(q)$ satisfying $x^{a_{i}}=1$. They gave an asymptotic formula for $j_{q, n}(a)$ when n is fixed and $q \rightarrow \infty$, using work of Lawther [16]. In the case $r=0$ (the surface
group case) they proved that $\left|\operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n}(q)\right)\right|$ is asymptotic to $(q-1)\left|\mathrm{GL}_{n}(q)\right|^{2 g-1}$. If $\eta(z)$ is the Dedekind function, then

$$
\frac{\left|\mathrm{GL}_{n}(q)\right|}{q^{1 / 24} \eta\left(\frac{i \log q}{2 \pi}\right)}=q^{n^{2}} \prod_{i=n+1}^{\infty}\left(1-q^{-i}\right)^{-1} \sim q^{n^{2}} .
$$

Setting $e_{\Gamma, q, n}=\frac{2 g-1}{24}$ and $f_{\Gamma, q, n}=\eta^{2 g-1}$ for all q, n, we deduce Conjecture 1 for surface groups. In general, their analysis depends crucially on the fact that for $g \geq 2$, the trivial upper bound on $\left|\chi\left(C_{i}\right)\right|$ is good enough to allow us to ignore non-linear characters of G_{n}. This is certainly not the case when $g=1$, let alone when $g=0$. However, the new character bounds developed by Bezrukavnikov, Liebeck, Shalev, and Tiep [1] give us hope of making progress even for $g=0$.

Using these bounds, Liebeck, Shalev, and Tiep proved [20] that for every Γ, if $q \equiv 1(\bmod A)$, then

$$
\left|\operatorname{Hom}\left(\Gamma, \operatorname{GL}_{n}(q)\right)\right| \leq f(n) q^{(1-\chi(\Gamma)) n^{2}+1}
$$

where $f(n)$ does not depend on q. This gives immediately an upper bound for the dimension of the representation variety $\operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n, K}\right)$ where K is any field in which $A \neq 0$, provided that n is sufficiently large:

$$
\operatorname{dim} \operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n, K}\right) \leq(1-\chi(\Gamma)) n^{2}+1
$$

They proved also a lower bound on dimension:

$$
\operatorname{dim} \operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n, K}\right) \geq(1-\chi(\Gamma)) n^{2}-\sum_{i} a_{i}
$$

In this paper, using ideas from [1, 25], we prove a new exponential character bound Theorem [2.9, which applies to all semisimple elements and which plays an essential role in the proof of the main theorems of this paper. The reason we can prove Conjecture 1 only when q is sufficiently large is that the exponent in our bound only approaches its optimal value as $q \rightarrow \infty$.

Proposition 3.2 gives a list, consisting of thirty-one triangle groups and one quadrilateral group, where even for large q, our bounds are not strong enough to prove the conjecture. When Γ is not on this list and q is sufficiently large and relatively prime to the $a_{i},\left|\operatorname{Hom}\left(\Gamma, G_{n}\right)\right|$ behaves as predicted.

Theorem A. Let Γ be a Fuchsian group which is not on the finite list of groups excluded by Proposition 3.2. Then Conjecture 1 holds for Γ for all sufficiently large prime powers q prime to A.

In particular, the theorem holds for all Fuchsian groups Γ with Euler characteristic less than $-\frac{1}{6}$.
We deduce Theorem A from an analogue of [18, Theorem 1.2 (i)]. Let $J_{q, n}\left(a_{1}, \ldots, a_{r}\right)$ denote the cardinality of the set

$$
\begin{equation*}
\left\{\left(t_{1}, \ldots, t_{r}\right) \in \operatorname{GL}_{n}(q) \mid t_{i}^{a_{i}}=1 \forall i, \prod_{i} \operatorname{det}\left(t_{i}\right)=1\right\} . \tag{1.2}
\end{equation*}
$$

Theorem B. If Γ is not on the excluded list of Proposition 3.2, and q is prime to A and sufficiently large, then,

$$
\left|\operatorname{Hom}\left(\Gamma, \operatorname{GL}_{n}(q)\right)\right|=(1+o(1))(q-1) J_{q, n}\left(a_{1}, \ldots, a_{r}\right)\left|\mathrm{GL}_{n}(q)\right|^{2 g-1}
$$

where the term o(1) does not depend on q.
Theorem (A allows us to compute the exact dimension of $\operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n}\right)$ when n is sufficiently large. Given Γ and n, we define $\sigma_{\Gamma, n}$ to be either 1 or -1 according to the rule that it is -1 if and only if $a_{i} \in 2 \mathbb{Z}$ implies $\frac{n}{a_{i}} \in \mathbb{Z}$, and

$$
\sum_{\left\{i \mid a_{i} \in 2 \mathbb{Z}\right\}} \frac{n}{a_{i}} \in 1+2 \mathbb{Z} .
$$

Let $\{x\}$ denote the fractional part of x.
We have the following result:
Theorem C. Given Γ which is not on the excluded list of Proposition 3.2, if n is sufficiently large, and K is any field of characteristic $p \geq 0$, if $p \nmid a_{1}$ for all i, we have

$$
\operatorname{dim} \operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n, K}\right)=\sigma_{\Gamma, n}+(1-\chi(\Gamma)) n^{2}-\sum_{i=1}^{r} a_{i}\left\{\frac{n}{a_{i}}\right\}\left\{-\frac{n}{a_{i}}\right\} .
$$

In particular, we have

$$
\operatorname{dim} \operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n, K}\right) \geq-\frac{1}{2}+(1-\chi(\Gamma)) n^{2}-\sum_{i=1}^{r} \frac{a_{i}}{4} .
$$

Unfortunately, the letter q has a standard meaning both for finite fields and for modular forms. We use it only in the former sense, but we evaluate modular forms f at $\frac{i \log q}{2 \pi}$, which amounts to plugging $1 / q$ into the q-expansion for f.

2. An asymptotic character bound

The goal of this section is to prove an asymptotic version of the character bounds in [1, Theorem 1.1] and [25, Theorem 1.9] when G is a finite group of Lie-type A. We will achieve this by combining the approach of [1] with the character level approach developed in [11] to bound $|\chi(g)|$.

To this end, let us recall the approach of [1]. Throughout this section, q is a prime power, $\mathcal{G}=\mathcal{G}\left(\overline{\mathbb{F}_{q}}\right)$ is the group of $\overline{\mathbb{F}_{q}}$-points of a connected reductive $\mathbb{F}_{q^{-}}$-group scheme. We assume $G=$ $\mathcal{G}\left(\mathbb{F}_{q}\right)=\mathcal{G}^{F}$ is the finite group of \mathbb{F}_{q}-points, where $F: \mathcal{G} \rightarrow \mathcal{G}$ is the Frobenius endomorphism.

The main case of interest to us will be when the underlying group scheme is $\mathrm{GL}_{n}^{\epsilon}$, where $\epsilon \in\{+,-\}$ and we set $\mathrm{GL}_{n}^{+}:=\mathrm{GL}_{n}$, the general linear group, and $\mathrm{GL}_{n}^{-}:=\mathrm{GU}_{n}$, the general unitary group. In this setting,

$$
\mathcal{G}=\mathcal{G}_{n}:=\mathrm{GL}_{n}\left(\overline{\mathbb{F}_{q}}\right)
$$

is the general linear group of dimension $n>0$ and F is either F_{q} or σF_{q}, where $F_{q}: \mathcal{G} \rightarrow \mathcal{G}$ is the standard Frobenius endomorphism and $\sigma: \mathcal{G} \rightarrow \mathcal{G}$ is the inverse transpose automorphism.

Suppose $L=\mathcal{L}^{F}$, where $\mathcal{L}<\mathcal{G}$ is a proper F-stable Levi subgroup of \mathcal{G}. If $g \in \mathcal{G}^{F}$ is an element such that $\mathbf{C}_{\mathcal{G}}(g) \leqslant \mathcal{L}$ then by [25, Lemma 13.3] we have

$$
\begin{equation*}
\chi(g)={ }^{*} R_{\mathcal{L}}^{\mathcal{G}}(\chi)(g)=\sum_{\eta \in \operatorname{Irr}(L)}\left\langle\eta, R_{\mathcal{L}}^{\mathcal{G}}(\chi)\right\rangle \eta(g), \tag{2.1}
\end{equation*}
$$

where ${ }^{*} R_{\mathcal{L}}^{\mathcal{G}}$ denotes Deligne-Lusztig restriction. We also write $R_{\mathcal{L}}^{\mathcal{G}}$ for Deligne-Lusztig induction.
Following [1, Theorem 1.1], we define the constant $\alpha(L)$ to be the maximum over non-trivial unipotent elements $u \in L$ of

$$
\frac{\operatorname{dim} u^{\mathcal{L}}}{\operatorname{dim} u^{\mathcal{G}}} ;
$$

if L contains no such elements we take $\alpha(L)=0$. From the proof of [1, Theorem 1.1], see also [25, §2], we get

$$
\begin{equation*}
|\eta(g)| \leqslant \eta(1) \leqslant B_{1}\left(\frac{q+1}{q-1}\right)^{D / 2} \chi(1)^{\alpha\left(L_{1}\right)} \tag{2.2}
\end{equation*}
$$

for any $\eta \in \operatorname{Irr}(L)$ with $\left\langle\eta,{ }^{*} R_{\mathcal{L}}^{\mathcal{L}}(\chi)\right\rangle \neq 0$, where $B_{1}>0$ is a constant that depends on \mathcal{G}^{F}. Furthermore, $D=\operatorname{dim} v^{\mathcal{G}}$, where $v^{\mathcal{G}}=\mathcal{O}_{\chi}^{*}$ is the wave front set of χ, defined by work of Kawanaka [13], Lusztig [21], and Taylor [24].

If $f_{\eta} \in \mathbb{Q}[X]$ is the degree polynomial of η, so that $\eta(1)=f_{\eta}(q)$, then the constant B_{1} is chosen such that $B_{1} f_{\eta} \in \mathbb{Z}[X]$. When the underlying group scheme is GL ${ }_{n}^{\epsilon}$ we have \mathcal{L}^{F} is a direct product of groups $\mathrm{GL}_{n_{i}}^{\epsilon_{i}}(q)$. Therefore, in this case, the constant B_{1} can be taken to be 1 because the degree polynomial of any irreducible character of \mathcal{L}^{F} is already contained in $\mathbb{Z}[X]$.

Recall that ${ }^{*} R_{\mathcal{L}}^{\mathcal{G}}(\chi)$ is a virtual character, unless \mathcal{L} is split. To bound $|\chi(g)|$ it suffices, by the triangle inequality, (2.1), and (2.2), to bound

$$
\begin{equation*}
\sum_{\eta \in \operatorname{Irr}(L)}\left|\left\langle\eta,{ }^{*} R_{\mathcal{L}}^{\mathcal{G}}(\chi)\right\rangle\right| \leqslant \sum_{\eta \in \operatorname{Irr}(L)}\left\langle\eta,{ }^{*} R_{\mathcal{L}}^{\mathcal{G}}(\chi)\right\rangle^{2}=\left\langle{ }^{*} R_{\mathcal{L}}^{\mathcal{G}}(\chi),{ }^{*} R_{\mathcal{L}}^{\mathcal{G}}(\chi)\right\rangle, \tag{2.3}
\end{equation*}
$$

where $\langle-,-\rangle$ is the usual inner product on class functions.
We know from [1, Proposition 2.2] and its proof, as well as the arguments in [25, §13], that (2.3) is always bounded above by

$$
\begin{equation*}
(n!)^{2} \tag{2.4}
\end{equation*}
$$

However, we can do significantly better if n is large compared to both q and the true level

$$
\mathfrak{l}^{*}(\chi)=j
$$

of χ, as defined in [11, Definition 1(i)]. When $G=\mathrm{GL}_{n}(q)$ then j is the smallest integer for which χ is a constituent of τ^{j}, where $\tau(g)$ is the number of fixed points of g acting on the natural module $V=\mathbb{F}_{q}^{n}$ of G.

In the next subsections we give upper bounds for (2.3) that incorporate the true level of χ.
2.1. Elements with split centralizer in $\mathrm{GL}_{n}(q)$. In this subsection we consider the group scheme GL_{n} so that

$$
G=G_{n}:=\mathrm{GL}_{n}(q) .
$$

Fix a proper split Levi subgroup \mathcal{L}, and let

$$
\begin{equation*}
L=\mathcal{L}^{F}=\mathrm{GL}_{m_{1}}(q) \times \mathrm{GL}_{m_{2}}(q) \times \ldots \times \mathrm{GL}_{m_{t}}(q) \subset G, \tag{2.5}
\end{equation*}
$$

where $m_{i} \in \mathbb{Z}_{\geq 1}$ and $\sum_{i=1}^{t} m_{i}=n$. In this case ${ }^{*} R_{\mathcal{L}}^{\mathcal{G}}$ is just Harish-Chandra restriction. With $1 \leq j<n / 2$ fixed, consider a split Levi subgroup \mathcal{M} and set

$$
M=\mathcal{M}^{F} \cong \mathrm{GL}_{j}(q) \times \mathrm{GL}_{n-j}(q) \subset G
$$

By [11, Theorem 3.9(i)], $\mathfrak{l}^{*}(\chi)=j$ implies that χ is an irreducible constituent of the Harish-Chandra induction

$$
R_{\mathcal{M}}^{\mathcal{G}}\left(\alpha \boxtimes 1_{G_{n-j}}\right)
$$

for a unique irreducible character α of G_{j}. Conjugating \mathcal{M} by a suitable element $g \in G$, we may assume that L and M are block-diagonal subgroups in the same basis $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ of V.

To bound (2.3), it therefore suffices to bound

$$
\left\langle{ }^{*} R_{\mathcal{L}}^{\mathcal{G}} R_{\mathcal{M}}^{\mathcal{G}}\left(\alpha \boxtimes 1_{G_{n-j}}\right),{ }^{*} R_{\mathcal{L}}^{\mathcal{G}} R_{\mathcal{M}}^{\mathcal{G}}\left(\alpha \boxtimes 1_{G_{n-j}}\right)\right\rangle .
$$

By the Mackey formula for Harish-Chandra restriction and induction [6, Theorem 1.14],

$$
\begin{equation*}
{ }^{*} R_{\mathcal{L}}^{\mathcal{G}} R_{\mathcal{M}}^{\mathcal{G}}\left(\alpha \boxtimes 1_{G_{n-j}}\right)=\sum_{x \in L \backslash \mathcal{S}(\mathcal{L}, \mathcal{M}) / M} R_{\mathcal{\mathcal { L }} \cap^{x} \mathcal{M}}^{\mathcal{\mathcal { M }}} R_{\mathcal{\mathcal { L }} \cap^{x} \mathcal{M}}^{x}\left(\left(\alpha \boxtimes 1_{G_{n-j}}\right)^{x}\right), \tag{2.6}
\end{equation*}
$$

where $\mathcal{S}(\mathcal{L}, \mathcal{M})$ is the set of elements $y \in G$ such that $\mathcal{L} \cap{ }^{y} \mathcal{M}$ contains a maximal torus of \mathcal{G}, and the summation runs through the (L, M) double cosets of this set.

For our pair of split Levi subgroups $(\mathcal{L}, \mathcal{M})$, there is an explicit description of $L \backslash \mathcal{S}(\mathcal{L}, \mathcal{M}) / M$, as described in [3, 2.2c]. Embed the symmetric group S_{n} in G_{n} via permutation matrices, and consider the Young subgroups

$$
\mathrm{S}_{\lambda}=\mathrm{S}_{m_{1}} \times \mathrm{S}_{m_{2}} \times \ldots \times \mathrm{S}_{m_{t}}, \mathrm{~S}_{\mu}=\mathrm{S}_{j} \times \mathrm{S}_{n-j}
$$

of the embedded S_{n}. Then in (2.6) we can just choose x as representatives of the set $\mathrm{S}_{\lambda} \backslash \mathrm{S}_{n} / \mathrm{S}_{\mu}$, one for each double coset. The set of double cosets $S_{\lambda} \backslash S_{n} / S_{\mu}$ is in bijection with S_{λ}-orbits on the set of S_{n} / S_{μ}, which may be identified with the set of j-subsets of $\{1,2, \ldots, n\}$. Hence each such double coset can be labeled uniquely by a t-tuple

$$
\begin{equation*}
\kappa=\left(k_{1}, k_{2}, \ldots, k_{t}\right), 0 \leq k_{i} \leq m_{i}, \sum_{i=1}^{t} k_{i}=j . \tag{2.7}
\end{equation*}
$$

Correspondingly, we can choose $x=x_{\kappa}$ to be the element of G that sends the first j basis vectors e_{1}, \ldots, e_{j} of V to

$$
e_{1}, \ldots, e_{k_{1}}, e_{m_{1}+1}, e_{m_{1}+2}, \ldots, e_{m_{1}+k_{2}}, \ldots, e_{m_{1}+\ldots+m_{t-1}+1}, \ldots, e_{m_{1}+m_{2}+\ldots+m_{t-1}+k_{t}}
$$

in the increasing order of the subscripts, and sends the last $n-j$ basis vectors e_{j+1}, \ldots, e_{n} to the remaining $n-j$ basis vectors, again in the increasing order of the subscripts. We will say that $x_{\kappa}\left(e_{i}\right)=e_{x_{\kappa}(i)}, 1 \leq i \leq n$.

For the reader's convenience, let us give a justification for this statement in the case $q \geq 3$. Suppose $y \in G$ is such that $\mathcal{L} \cap{ }^{y} \mathcal{M}$ contains a maximal torus \mathcal{T} of \mathcal{G}. Then \mathcal{T} is a maximal torus of $\left(\mathcal{L} \cap{ }^{y} \mathcal{M}\right)^{\circ}$ which is F-stable and connected. By the Lang-Steinberg theorem, conjugating \mathcal{T} suitably, we may assume that it is F-stable. Then

$$
T:=\mathcal{T}^{F} \cong C_{q^{a_{1}}-1} \times C_{q^{a_{2}}-1} \times \ldots \times C_{q^{a_{s}}-1}
$$

for some integers $a_{1}, a_{2}, \ldots, a_{s} \geq 1$. Since $q \geq 3$, all cyclic direct factors in this decomposition are nontrivial, and hence $V=\mathbb{F}_{q}^{n}$ is a direct sum of s simple $\mathbb{F}_{q} T$-modules W_{1}, \ldots, W_{s} of dimension $a_{1}, a_{2}, \ldots, a_{s}$, which are pairwise non-isomorphic (indeed, they have pairwise distinct kernels). On the other hand, the $\mathbb{F}_{q} L$-module V decomposes as the sum $\oplus_{i=1}^{t} V_{i}$ of $\mathbb{F}_{q} L$-modules, where

$$
V_{1}:=\left\langle e_{1}, \ldots, e_{m_{1}}\right\rangle_{\mathbb{F}_{q}}, V_{2}:=\left\langle e_{m_{1}+1}, \ldots, e_{m_{1}+m_{2}}\right\rangle_{\mathbb{F}_{q}}, \ldots, V_{t}:=\left\langle e_{m_{1}+\ldots+m_{t-1}+1}, \ldots, e_{n}\right\rangle_{\mathbb{F}_{q}} .
$$

As $T \leq L$, each V_{i} is a direct sum of some of these $W_{l}, 1 \leq l \leq s$. Similarly, since $V=\mathbb{F}_{q}^{j} \oplus \mathbb{F}_{q}^{n-j}$ as an $\mathbb{F}_{q}{ }^{y} M$-module and $T \leq{ }^{y} M$, each of \mathbb{F}_{q}^{j} and \mathbb{F}_{q}^{n-j} is a direct sum of some of these W_{l}. Using the left multiplcation by L and right multiplication by M if needed, we may assume that \mathbb{F}_{q}^{j} is spanned by

$$
e_{1}, \ldots, e_{k_{1}}, e_{m_{1}+1}, e_{m_{1}+2}, \ldots, e_{m_{1}+k_{2}}, \ldots, e_{m_{1}+\ldots+m_{t-1}+1}, \ldots, e_{m_{1}+m_{2}+\ldots+m_{t-1}+k_{t}}
$$

(k_{i} first vectors in the indicated basis of V_{i} for each $1 \leq i \leq t$), and \mathbb{F}_{q}^{n-j} is spanned by the remaining $n-j$ basis vectors.

It is well known (and can be proved by an easy induction on $t \geq 1$) that the total number N of t-tuples κ in (2.7) is

$$
\begin{equation*}
N=\binom{j+t-1}{j}=t \cdot \frac{t+1}{2} \cdots \cdot \frac{t+j-1}{j} \leq t^{j} \leq n^{j} \tag{2.8}
\end{equation*}
$$

since $t \leq n$. For each such $\kappa, x=x_{\kappa}$ sends e_{i} to $e_{x(i)}$, and we can write

$$
{ }^{x} M=x M x^{-1}=\mathrm{GL}\left(\left\langle e_{x(1)}, \ldots, e_{x(j)}\right\rangle_{\mathbb{F}_{q}}\right) \times \mathrm{GL}\left(\left\langle e_{x(j+1)}, \ldots, e_{x(n)}\right\rangle_{\mathbb{F}_{q}}\right) \cong \mathrm{GL}_{j}(q) \times \mathrm{GL}_{n-j}(q)
$$

Now, $L \cap{ }^{x} M$ fixes each of the subspaces

$$
\left\langle e_{1}, \ldots, e_{m_{1}}\right\rangle_{\mathbb{F}_{q}} \cap\left\langle e_{x(1)}, \ldots, e_{x(j)}\right\rangle_{\mathbb{F}_{q}}=\left\langle e_{1}, \ldots, e_{k_{1}}\right\rangle_{\mathbb{F}_{q}}
$$

and

$$
\left\langle e_{1}, \ldots, e_{m_{1}}\right\rangle_{\mathbb{F}_{q}} \cap\left\langle e_{x(j+1)}, \ldots, e_{x(n)}\right\rangle_{\mathbb{F}_{q}}=\left\langle e_{k_{1}+1}, \ldots, e_{m_{1}}\right\rangle_{\mathbb{F}_{q}}
$$

of V_{1}, and similarly for V_{i} with $2 \leq i \leq t$. It follows that

$$
L \cap^{x} M=\prod_{i=1}^{t}\left(K_{i} \times M_{i}\right)
$$

where for each $1 \leq i \leq t, K_{i} \cong \mathrm{GL}_{k_{i}}(q)$ is contained in the $\mathrm{GL}_{j}(q)$-factor of ${ }^{x} M$, and $M_{i} \cong$ $\mathrm{GL}_{m_{i}-k_{i}}(q)$ is contained in the $\mathrm{GL}_{n-j}(q)$-factor of ${ }^{x} M$. Moreover, $\prod_{i=1}^{t} K_{i}$ is a split Levi subgroup of $\mathrm{GL}_{j}(q)$, and $\prod_{i=1}^{t} M_{i}$ is a split Levi subgroup of $\mathrm{GL}_{n-j}(q)$. Now, applying [8, Lemma 2.7(i)] twice, we obtain

$$
{ }^{*} R_{\mathcal{L}^{x} \mathcal{M}}^{x}\left(\left(\alpha \boxtimes 1_{G_{n-j}}\right)^{x}\right)={ }^{*} R_{K_{1} \times \ldots \times K_{t}}^{\mathcal{G}_{j}}\left(\alpha^{x}\right) \boxtimes 1_{M_{1} \times \ldots \times M_{t}} .
$$

Recall that α^{x} is an irreducible character of $\mathrm{GL}_{j}(q)$. So, by (2.4), the total sum of multiplicities of irreducible constituents β in ${ }^{*} R_{\mathcal{\mathcal { L }} \cap^{x} \mathcal{M}}^{\mathcal{M}^{\prime}}\left(\left(\alpha \boxtimes 1_{G_{n-j}}\right)^{x}\right)$ is at most

$$
\begin{equation*}
(j!)^{2} \tag{2.9}
\end{equation*}
$$

Consider any such irreducible constituent

$$
\beta=\alpha_{1} \boxtimes \alpha_{2} \boxtimes \ldots \boxtimes \alpha_{t} \boxtimes 1_{M_{1} \times \ldots \times M_{t}} .
$$

By [11, Lemma 2.5(ii)],

$$
R_{\mathcal{L} \cap^{x} \mathcal{M}}^{\mathcal{L}}(\beta)=\boxtimes_{i=1}^{t} R_{\mathcal{G}_{k_{i}} \times \mathcal{G}_{m_{i}-k_{i}}}^{\mathcal{G}_{m_{i}}}\left(\alpha_{i} \boxtimes 1_{G_{m_{i}-k_{i}}}\right) .
$$

Let $\tau_{q, n}$ denote the permutation character of G_{n} on \mathbb{F}_{q}^{n}, see [11, (3.1)]. Then the character

$$
\gamma_{i}:=R_{\mathcal{G}_{k_{i}} \times \mathcal{G}_{m_{i}-k_{i}}}^{\mathcal{G}_{m_{i}}}\left(\alpha_{i} \boxtimes 1_{G_{m_{i}-k_{i}}}\right)
$$

is contained in $\left(\tau_{m_{i}, q}\right)^{k_{i}}$ by [11, Proposition 3.2]. If $k_{i}=0$, then the total number $N\left(\gamma_{i}\right)$ of multiplicities of irreducible constituents of γ_{i} is 1 . If $1 \leq k_{i} \leq m_{i} / 2$, then

$$
N\left(\gamma_{i}\right) \leq\left\langle\gamma_{i}, \gamma_{i}\right\rangle \leq\left\langle\tau_{m_{i}, q}^{k_{i}}, \tau_{m_{i}, q}^{k_{i}}\right\rangle=\left\langle\tau_{m_{i}, q}^{2 k_{i}}, 1_{G_{m_{i}}}\right\rangle
$$

which is the number of $G_{m_{i}}$-orbits on ordered $2 k_{i}$-tuples of vectors in $\mathbb{F}_{q}^{m_{i}}$, and hence is at most $8 q^{k_{i}^{2}} \leq q^{4 k_{i}^{2}}$ by [11, Lemma 2.4]. Suppose $m_{i} / 2<k_{i} \leq m_{i}$. Then γ_{i} is a character of degree at most $q^{m_{i} k_{i}}<q^{2 k_{i}^{2}}$, and hence $N\left(\gamma_{i}\right)<q^{2 k_{i}^{2}}$. Thus in all cases we have

$$
N\left(\gamma_{i}\right) \leq q^{4 k_{i}^{2}}
$$

It follows that the total number $N(\beta)$ of multiplicities of irreducible constituents of

$$
R_{\mathcal{L} \cap^{x} \mathcal{M}}^{\mathcal{L}}(\beta)=\boxtimes_{i=1}^{t} \beta_{i}
$$

is at most

$$
q^{4 \sum_{i=1}^{t} k_{i}^{2}} \leq q^{4\left(\sum_{i=1}^{t} k_{i}\right)^{2}}=q^{4 j^{2}} .
$$

Combining this with (2.8) and (2.9), we have proved
Proposition 2.1. Let $G=\mathcal{G}^{F}=\mathrm{GL}_{n}(q)$ and let χ be any irreducible character G of true level $j \leq n / 2$. If $L=\mathcal{L}^{F}$ is a proper split Levi subgroup of G, then the total number A of irreducible constituents (counting multiplicities) of the Harish-Chandra restriction ${ }^{*} R_{\mathcal{L}}^{\mathcal{G}}(\chi)$ is at most $n^{j}(j!)^{2} q^{4 j^{2}}$.

Corollary 2.2. Let $G=\mathrm{GL}_{n}(q)$ and let $g \in G$ be any element such that $\mathbf{C}_{G}(g)$ is contained in a split Levi subgroup \mathcal{L} of G. Let $\chi \in \operatorname{Irr}(G)$ be of true level $j \leq n / 2$, and let $D=\operatorname{dim} v^{\mathcal{G}}$, with $v^{\mathcal{G}}=\mathcal{O}_{\chi}^{*}$ being the wave front set of χ. Then

$$
|\chi(g)| \leq n^{j}(j!)^{2} q^{4 j^{2}}\left(\frac{q+1}{q-1}\right)^{D / 2} \chi(1)^{\alpha(L)} .
$$

Proof. As mentioned above, in our case the constant B_{1} in (2.2) can be taken to be 1 . We now combine (2.1), (2.2), and (2.3) with Proposition 2.1 .
2.2. The general case. For semisimple elements whose centraliser is a non-split Levi subgroup, the bound in Corollary 2.2 can be very poor; for instance, it says nothing at all about character values for elements in anisotropic tori. However, the following result is almost as good for all semisimple elements as Corollary 2.2 is in the split case, and moreover works for both GL_{n} and GU_{n} :

Theorem 2.3. Let $G=\mathrm{GL}_{n}^{\epsilon}(q)$ and let $g \in G$ be any element such that $\mathbf{C}_{\mathcal{G}}(g)$ is contained in a proper F-stable Levi subgroup \mathcal{L}_{1}. Define $L_{1}:=\mathcal{L}_{1}^{F}$. Let $\chi \in \operatorname{Irr}(G)$ be of true level $j, 0 \leq j \leq n$, and let $D=\operatorname{dim} v^{\mathcal{G}}$, with $v^{\mathcal{G}}=\mathcal{O}_{\chi}^{*}$ being the wave front set of χ. Then

$$
|\chi(g)| \leq n^{3 j}\left(\frac{q+1}{q-1}\right)^{D / 2} \chi(1)^{\alpha\left(L_{1}\right)}
$$

To prove this result we will use Deligne-Lusztig theory. However, before developing the necessary results about Deligne-Lusztig characters we recall a few facts about cosets. Assume \mathfrak{G} is a group. The set of conjugacy classes of \mathfrak{G} will be denoted by $\mathrm{Cl}(\mathfrak{G})$. A subcoset of \mathfrak{G} is a coset $H w \subseteq \mathbf{N}_{\mathfrak{G}}(H)$ of a subgroup $H \leqslant \mathfrak{G}$. Given any subsets $X, Y \subseteq \mathfrak{G}$ we define

$$
\mathbf{N}_{X}(Y):=X \cap \mathbf{N}_{\mathfrak{G}}(Y), \quad \mathbf{C}_{X}(Y):=X \cap \mathbf{C}_{\mathfrak{G}}(Y),
$$

where $\mathbf{N}_{\mathfrak{G}}(Y)$ and $\mathbf{C}_{\mathfrak{G}}(Y)$ are the usual normalizer and centralizer of Y. As usual

$$
X Y:=\{x y \mid x \in X \text { and } y \in Y\} .
$$

Now assume that $W \gamma \subseteq \mathfrak{G}$ is a finite subcoset. We denote by $\operatorname{cf}(W \gamma)$ the space of W-invariant functions $f: W \gamma \rightarrow \mathbb{C}$, which we call class functions. This space has an inner product $\langle-,-\rangle$ and if $H w \subseteq W \gamma$ is a subcoset then we have induction $\operatorname{Ind}_{H w}^{W \gamma}: \operatorname{cf}(H w) \rightarrow \operatorname{cf}(W \gamma)$ and restriction maps $\operatorname{Res}_{H w}^{W \gamma}: \operatorname{cf}(W \gamma) \rightarrow \operatorname{cf}(H w)$ which satisfy Frobenius reciprocity with respect to $\langle-,-\rangle$, see [2, §1.C] or [25, §4].

The function $\pi_{w}=\pi_{w}^{W \gamma}$ taking the value $\left|\mathbf{C}_{W}(w)\right|$ at any W-conjugate of $w \in W \gamma$ and the value 0 otherwise is clearly contained in $\operatorname{cf}(W \gamma)$. We will need the following elementary calculation.

Lemma 2.4. For any subcoset $H w \subseteq W \gamma$ and $x \in W \gamma$ we have

$$
\operatorname{Res}_{H w}^{W \gamma}\left(\pi_{x}^{W \gamma}\right)=\sum_{\substack{z \in H \backslash W / \mathbf{C}_{W}(x)}} \frac{\left|\mathbf{C}_{W}(x)\right|}{\left|\mathbf{C}_{H}\left({ }^{z} x\right)\right|} \pi_{z \in H w}^{H w}=\sum_{\substack{z \in H \backslash W \\ z x \in H w}} \pi_{z}^{H w}
$$

Proof. The first equality is easy and the second follows because

$$
H z \mathbf{C}_{W}(x)=\bigsqcup_{c \in \mathbf{C}_{H}\left({ }^{z} x\right) \backslash \mathbf{C}_{W}\left({ }^{z} x\right)} H c z
$$

We can also produce class functions in the following way. Consider the subgroup $W\langle\gamma\rangle \leqslant \mathbf{N}_{\Gamma}(W)$ and let $\rho \in \operatorname{Irr}(W)$ be a γ-invariant irreducible character. The representation affording ρ can be extended to a representation of $W\langle\gamma\rangle$ containing γ^{n} in its kernel, for some $n>0$. The trace function
$\tilde{\rho}: W\langle\gamma\rangle \rightarrow \mathbb{C}$ of such a representation is what we call an extension of ρ. Note the group $W\langle\gamma\rangle$ may be infinite but, by design, $\tilde{\rho}$ factors through a finite quotient.

The restriction $\operatorname{Res}_{W \gamma}^{W\langle\gamma\rangle}(\tilde{\rho})$ of such an extension, which we usually again denote by $\tilde{\rho}$, is called an irreducible character of $W \gamma$. The set of irreducible characters is denoted by $\operatorname{Irr}(W \gamma)$. We say $\mathcal{B} \subseteq \operatorname{Irr}(W \gamma)$ is a basis if it is a basis of $\operatorname{cf}(W \gamma)$. Every basis is orthonormal and is obtained by choosing for each γ-stable $\rho \in \operatorname{Irr}(W)$ exactly one extension to $W\langle\gamma\rangle$, see [5, Proposition 11.6.3]. We need the following analogue of [25, Corollary 4.11]

Lemma 2.5. Assume $H w \subseteq W \gamma$ is a subcoset and $\rho_{i} \in \operatorname{Irr}(W)$, with $i \in\{1,2\}$, is γ-invariant. If $\tilde{\rho}_{i}$ is an extension of ρ_{i} to $W\langle\gamma\rangle$ then

$$
\left|\left\langle\operatorname{Res}_{H w}^{W \gamma}\left(\tilde{\rho}_{1}\right), \operatorname{Res}_{H w}^{W \gamma}\left(\tilde{\rho}_{2}\right)\right\rangle\right| \leqslant\left\langle\operatorname{Res}_{H}^{W}\left(\rho_{1}\right), \operatorname{Res}_{H}^{W}\left(\rho_{2}\right)\right\rangle
$$

Proof. Expanding out in a basis $\mathcal{B} \subseteq \operatorname{Irr}(H w)$ and using the triangle inequality

$$
\begin{aligned}
\mid\left\langle\operatorname{Res}_{H w}^{W \gamma}\left(\tilde{\rho}_{1}\right), \operatorname{Res}_{H w}^{W \gamma}\left(\tilde{\rho}_{2}\right)\right| & \leqslant \sum_{\tilde{\eta} \in \mathcal{B}}\left|\left\langle\tilde{\eta}, \operatorname{Res}_{H w}^{W \gamma}\left(\tilde{\rho}_{1}\right)\right\rangle\left\langle\bar{\eta}, \operatorname{Res}_{H w}^{W \gamma}\left(\tilde{\rho}_{2}\right)\right\rangle\right| \\
& =\sum_{\tilde{\eta} \in \mathcal{B}}\left|\left\langle\operatorname{Ind}_{H w}^{W \gamma}(\tilde{\eta}), \tilde{\rho}_{1}\right\rangle\right|\left|\left\langle\operatorname{Ind}_{H w}^{W \gamma}(\tilde{\eta}), \tilde{\rho}_{2}\right\rangle\right| .
\end{aligned}
$$

Therefore, using [25, Lem. 4.10] we obtain

$$
\begin{aligned}
\mid\left\langle\operatorname{Res}_{H w}^{W \gamma}\left(\tilde{\rho}_{1}\right), \operatorname{Res}_{H w}^{W \gamma}\left(\tilde{\rho}_{2}\right)\right| & \leqslant \sum_{\eta \in \operatorname{Irr}(H)}\left\langle\operatorname{Ind}_{H}^{W}(\eta), \rho_{1}\right\rangle\left\langle\operatorname{Ind}_{H}^{W}(\eta), \rho_{2}\right\rangle \\
& =\sum_{\eta \in \operatorname{Irr}(H)}\left\langle\eta, \operatorname{Res}_{H}^{W}\left(\rho_{1}\right)\right\rangle\left\langle\eta, \operatorname{Res}_{H}^{W}\left(\rho_{2}\right)\right\rangle \\
& =\left\langle\operatorname{Res}_{H}^{W}\left(\rho_{1}\right), \operatorname{Res}_{H}^{W}\left(\rho_{2}\right)\right\rangle .
\end{aligned}
$$

Recall that $\mathcal{G}=\mathcal{G}\left(\overline{\mathbb{F}_{q}}\right)=\mathcal{G}^{F}$ is the group of $\overline{\mathbb{F}_{q}}$-points of a connected reductive $\mathbb{F}_{q^{-}}$-group, with Frobenius F. We form the semidirect product $\mathcal{G}\langle F\rangle$ with the infinite cyclic group generated by F, defined so that $F g F^{-1}=F(g)$ for all $g \in \mathcal{G}$. If $\mathcal{H} n \subseteq \mathcal{G} F$ is a subcoset then the centralizer $\mathbf{C}_{\mathcal{H}}(n) \leqslant \mathbf{C}_{\mathcal{G}}(n)$ is a finite group. Moreover, if $\mathcal{H} \leqslant \mathcal{G}$ is closed and connected then, by the LangSteinberg Theorem, \mathcal{H} acts transitively by conjugation on $\mathcal{H} n$. If \mathcal{H} is a Levi subgroup of \mathcal{G}, resp., maximal torus of \mathcal{G}, then we call $\mathcal{H} n$ a Levi subcoset, resp., a toral subcoset.

We define

$$
\mathscr{C}(\mathcal{G} F):=\{(g, n) \in \mathcal{G} \times \mathcal{G} F \mid g n=n g\}
$$

to be the set of commuting pairs. The group \mathcal{G} acts by simultaneous conjugation on $\mathscr{C}(\mathcal{G} F)$. We write $[g, n]$ for the orbit of $(g, n) \in \mathscr{C}(\mathcal{G} F)$ and $\mathscr{C}(\mathcal{G} F) / \mathcal{G}$ for the set of orbits.
Lemma 2.6. The map $[g] \mapsto[g, F]$ is a well-defined bijection $\operatorname{Cl}\left(\mathbf{C}_{\mathcal{G}}(F)\right) \rightarrow \mathscr{C}(\mathcal{G} F) / \mathcal{G}$.
Proof. Clearly this is injective. If $(g, n) \in \mathscr{C}(\mathcal{G} F)$ then by the Lang-Steinberg Theorem $n=F^{h}$ for some $h \in \mathcal{G}$ so $[g, n]=\left[{ }^{h} g, F\right]$.

Let $\operatorname{cf}(\mathscr{C}(\mathcal{G} F))$ be the set of \mathcal{G}-invariant functions $f: \mathscr{C}(\mathcal{G} F) \rightarrow \mathbb{C}$. Via Lemma 2.6 we can identify $\operatorname{cf}(\mathscr{C}(\mathcal{G} F))$ with the space $\operatorname{cf}\left(\mathbf{C}_{\mathcal{G}}(F)\right)$ of \mathbb{C}-valued class functions on the finite group $\mathbf{C}_{\mathcal{G}}(F)$. We define $\operatorname{Irr}(\mathscr{C}(\mathcal{G} F))$ to be those functions corresponding to $\operatorname{Irr}\left(\mathbf{C}_{\mathcal{G}}(F)\right)$. The advantage of working with $\mathscr{C}(\mathcal{G} F)$ is that we can work with the different (inner) forms $\mathbf{C}_{\mathcal{G}}(g F)$ of \mathcal{G} simultaneously.

If $\mathcal{L} w \subseteq \mathcal{G} F$ is a Levi subcoset then we can define Deligne-Lusztig induction and restriction maps

$$
R_{\mathcal{L} w}^{\mathcal{G} F}: \operatorname{cf}(\mathscr{C}(\mathcal{L} w)) \rightarrow \operatorname{cf}(\mathscr{C}(\mathcal{G} F)) \quad \text { and } \quad{ }^{*} R_{\mathcal{L} w}^{\mathcal{G} F}: \operatorname{cf}(\mathscr{C}(\mathcal{G} F)) \rightarrow \operatorname{cf}(\mathscr{C}(\mathcal{L} w)) .
$$

For our purposes this can be done as follows. We start first with the case of a coset $\mathcal{L} F$ where $\mathcal{L} \leqslant \mathcal{G}$ is an F-stable Levi subgroup. Making the identifications $\operatorname{cf}\left(\mathbf{C}_{\mathcal{G}}(F)\right) \rightarrow \operatorname{cf}(\mathscr{C}(\mathcal{G} F))$ and $\operatorname{cf}\left(\mathbf{C}_{\mathcal{L}}(F)\right) \rightarrow \operatorname{cf}(\mathscr{C}(\mathcal{L} F))$ we define

$$
R_{\mathcal{L} F}^{\mathcal{G} F}:=R_{\mathcal{L}}^{\mathcal{G}},{ }^{*} R_{\mathcal{L} F}^{\mathcal{G} F}:={ }^{*} R_{\mathcal{L}}^{\mathcal{G}} .
$$

Now consider a general Levi subcoset $\mathcal{L} w \subseteq \mathcal{G} F$. We pick an element $g \in \mathcal{G}$ such that $F^{g} \in \mathcal{L} w$, so that ${ }^{g}(\mathcal{L} w)=\mathcal{L}_{1} F$ where $\mathcal{L}_{1}:={ }^{g} \mathcal{L}$ is an F-stable Levi subgroup of \mathcal{G}. If $\iota_{g}: \mathcal{G}\langle F\rangle \rightarrow \mathcal{G}\langle F\rangle$ is the inner automorphism defined by $\iota_{g}(x)={ }^{g} x$ then $\iota_{g}(\mathcal{L} w)=\mathcal{L}_{1} F$ and we define

$$
R_{\mathcal{L} w}^{\mathcal{G} F}:=R_{\mathcal{L}_{1} F}^{\mathcal{G} F} \circ\left(\iota_{g}^{-1}\right)^{*} \quad \text { and } \quad{ }^{*} R_{\mathcal{L} w}^{\mathcal{G} F}:=\left(\iota_{g}\right)^{*} \circ{ }^{*} R_{\mathcal{L}_{1} F}^{\mathcal{G} F},
$$

where $\left(\iota_{g}^{-1}\right)^{*}$ is the map $f \mapsto f \circ \iota_{g}^{-1}$ and likewise for $\left(\iota_{g}\right)^{*}$.
We note that the maps $R_{\mathcal{L} w}^{\mathcal{G} F}$ and ${ }^{*} R_{\mathcal{L} w}^{\mathcal{G} F}$ are defined only up to composition with $\left(\iota_{n}\right)^{*}$ for some $n \in \mathbf{N}_{\mathcal{G}}(\mathcal{L} w)=\mathbf{N}_{\mathbf{C}_{\mathcal{G}}(w)}(\mathcal{L}) \mathcal{L}$. We need the following interpretation of the Mackey formula.

Lemma 2.7. If $\mathcal{L} w \subseteq \mathcal{G} F$ is a Levi subcoset and $\mathcal{T} x \subseteq \mathcal{G} F$ is a toral subcoset then

$$
{ }^{*} R_{\mathcal{L} w}^{\mathcal{G} F} \circ R_{\mathcal{T} x}^{\mathcal{G} F}=\sum_{\substack{z \in \mathcal{L} \backslash \mathcal{G} \\ z(\mathcal{T} x) \subseteq \mathcal{L} w}} R_{z(\mathcal{T} x)}^{\mathcal{L} w} \circ\left(\iota_{z}^{-1}\right)^{*}
$$

Proof. Fix elements $h_{w}, h_{x} \in \mathcal{G}$ such that $w=F^{h_{w}}$ and $x=F^{h_{x}}$ and let $\mathcal{L}_{1}:={ }^{h_{w}} \mathcal{L}$ and $\mathcal{T}_{1}:={ }^{h_{x}} \mathcal{T}$ be corresponding F-stable subgroups of \mathcal{G}. According to the Mackey formula, see [5, Thm 9.2.6], we have

$$
{ }^{*} R_{\mathcal{L}_{1}}^{\mathcal{G}} \circ R_{\mathcal{T}_{1}}^{\mathcal{G}}=\sum_{\substack{u \in L_{1} \backslash G / T_{1} \\ u \mathcal{T}_{1} \leqslant \mathcal{L}_{1}}} T_{u}^{\mathcal{L}_{1}} \circ\left(\iota_{u}^{-1}\right)^{*}=\sum_{\substack{u \in L_{1} \backslash G \\ u \mathcal{T}_{1} \leqslant \mathcal{L}_{1}}} R_{u}^{\mathcal{L}_{1}} \circ\left(\iota_{u}^{-1}\right)^{*},
$$

where $L_{1}=\mathbf{C}_{\mathcal{L}_{1}}(F), G=\mathbf{C}_{\mathcal{G}}(F)$, and $T_{1}=\mathbf{C}_{\mathcal{T}_{1}}(F)$. The second equality follows because if ${ }^{u} \mathcal{T}_{1} \leqslant \mathcal{L}_{1}$ then ${ }^{u} T_{1} \leqslant L_{1}$ so

$$
L_{1} u T_{1}=L_{1}\left({ }^{u} T_{1}\right) u=L_{1} u
$$

Consider the isomorphism of varieties $\psi: \mathcal{G} \rightarrow \mathcal{G}$ given by $\psi(v)=h_{w} v h_{x}^{-1}$. If $F^{\prime}: \mathcal{G} \rightarrow \mathcal{G}$ is the morphism defined by $F^{\prime}(v)=w v x^{-1}$ then we have $F \psi=\psi F^{\prime}$. From this it follows that we have bijections

$$
(\mathcal{L} \backslash \mathcal{G})^{F^{\prime}} \xrightarrow{\psi} \mathbf{C}_{\mathcal{L}_{1} \backslash \mathcal{G}}(F) \longrightarrow L_{1} \backslash G,
$$

where $\mathbf{C}_{\mathcal{L}_{1} \backslash \mathcal{G}}(F)=\left\{\mathcal{L}_{1} u \in \mathcal{L}_{1} \backslash \mathcal{G} \mid \mathcal{L}_{1} u F=\mathcal{L}_{1} F u\right\}$, and $(\mathcal{L} \backslash \mathcal{G})^{F^{\prime}}$ denotes the cosets fixed by F^{\prime}. The second bijection is a simple consequence of the Lang-Steinberg Theorem. If $z \in \mathcal{G}$ then ${ }^{\psi(z)} \mathcal{T}_{1} \leqslant \mathcal{L}_{1}$ if and only if ${ }^{z} \mathcal{T} \leqslant \mathcal{L}$ and $F^{\prime}(\mathcal{L} z)=\mathcal{L} z$ if and only if ${ }^{z} x \in \mathcal{L} w$. It is clear that the combination of these two conditions is equivalent to the condition: ${ }^{z}(\mathcal{T} x) \subseteq \mathcal{L} w$.

Finally, conjugating the expression above we get

$$
{ }^{*} R_{\mathcal{L} w}^{\mathcal{G} F} \circ R_{\mathcal{T} x}^{\mathcal{G}}=\sum_{\substack{z \in \mathcal{L}) \mathcal{G} \\ z(\mathcal{T} x) \leqslant \mathcal{L} w}}\left(\iota_{h_{w}}\right)^{*} \circ R_{\psi(z)}^{\mathcal{\mathcal { L } _ { 1 }}} \circ\left(\iota_{\psi(z)}^{-1}\right)^{*} \circ\left(\iota_{h_{x}}^{-1}\right)^{*} .
$$

It suffices to show that $\left(\iota_{h_{w}}\right)^{*} \circ R_{\psi(z) \mathcal{T}_{1}}^{\mathcal{L}_{1}}=R_{\mathcal{\mathcal { T }}}^{\mathcal{L}} \circ\left(\iota_{h_{w}}\right)^{*}$ when $F^{\prime}(z)=z$, where $R_{z \mathcal{T}}^{\mathcal{L}}=R_{(z \mathcal{T}) w}^{\mathcal{L} w}$ is defined with respect to the Frobenius w on \mathcal{L}. However, the arguments to prove this are identical to those used to prove [5, Proposition 11.3.10], see also the arguments by Bonnafé in [22]. We omit the details.

From now on we assume the underlying group scheme is $\mathrm{GL}_{n}^{\epsilon}$ so that

$$
\mathcal{G}=\mathcal{G}_{n}=\mathrm{GL}_{n}\left(\overline{\mathbb{F}_{q}}\right)
$$

We will assume $\mathcal{T} \leqslant \mathcal{G}$ is the diagonal maximal torus and we denote by $W:=\mathbf{N}_{\mathcal{G}}(\mathcal{T}) / \mathcal{T} \cong \mathrm{S}_{n}$ the corresponding Weyl group. The quotient $\mathbf{N}_{\mathcal{G}\langle F\rangle}(\mathcal{T}) / \mathcal{T}=W\langle F\rangle$ is isomorphic to the semidirect product $W \rtimes\langle F\rangle$, where we identify F with its natural image $\mathcal{T} F$. The coset $W F \subseteq W\langle F\rangle$ is, by definition, the set of toral subcosets $\mathcal{T} n$ where $n \in \mathbf{N}_{\mathcal{G} F}(\mathcal{T})$.

We wish to reinterpret Lemma 2.7 in the language of Lusztig's almost characters. Recall that $\mathrm{GL}_{n}^{\epsilon}$ is self-dual. If $(w, s) \in W F \times \mathcal{T}$ is a pair such that $w s=s w$ then we set

$$
R_{w}^{\mathcal{G} F}(s):=R_{x}^{\mathcal{G} F}(\theta)
$$

where $x \in W F$ and $\theta \in \operatorname{Irr}(\mathscr{C}(w))$ correspond to (w, s) under a bijection obtained as in [5, Proposition 11.1.16] from duality.

If $s \in \mathcal{T}$ and $\mathbf{C}_{W F}(s) \neq \varnothing$ then, following Lusztig [21, §8.4], we define

$$
\mathcal{R}_{s}^{\mathcal{G} F}: \operatorname{cf}\left(\mathbf{C}_{W F}(s)\right) \rightarrow \operatorname{cf}(\mathscr{C}(\mathcal{G} F)), f \mapsto \frac{1}{\left|\mathbf{C}_{W}(s)\right|} \sum_{w \in \mathbf{C}_{W F}(s)} f(w) R_{w}^{\mathcal{G} F}(s) \in \operatorname{cf}(\mathscr{C}(\mathcal{G} F))
$$

where, as defined above, $\mathbf{C}_{X}(s)=\{w \in X \mid w s=s w\}$ for any subset $X \subseteq W\langle F\rangle$.
Corollary 2.8. Assume $\mathcal{T} \leqslant \mathcal{L} \leqslant \mathcal{G}$ is a Levi subgroup and $w \in \mathbf{N}_{W F}(\mathcal{L})$. Then for any $s \in \mathcal{T}$ with $\mathbf{C}_{W F}(s) \neq \varnothing$ we have

$$
{ }^{*} R_{\mathcal{L} w}^{\mathcal{G} F} \circ \mathcal{R}_{s}^{\mathcal{G} F}=\sum_{\substack{z \in H \backslash W / \mathbf{C}_{W}(s) \\ \mathbf{C}_{H w}(z) \neq \varnothing}} \mathcal{R}_{z_{s}}^{\mathcal{L} w} \circ \operatorname{Res}_{\mathbf{C}_{H w}\left(z_{s}\right)}^{\mathbf{C}_{W F}(z s)} \circ\left(\iota_{z}^{-1}\right)^{*}
$$

where $H=\mathbf{N}_{\mathcal{L}}(\mathcal{T}) / \mathcal{T}$ is the Weyl group of \mathcal{L}.
Proof. By linearity it is enough to check both sides agree when evaluated at $\pi_{x}^{\mathbf{C}_{W F}(s)}$ for some $x \in \mathbf{C}_{W F}(s)$. But in that case $\mathcal{R}_{s}^{\mathcal{G} F}\left(\pi_{x}^{\mathbf{C}_{W F}(s)}\right)=R_{x}^{\mathcal{G} F}(s)$. Assume (x, s) corresponds to (y, θ). Evaluating at θ we have by Lemma 2.4 that

$$
{ }^{*} R_{\mathcal{L} w}^{\mathcal{G} F}\left(R_{y}^{\mathcal{G} F}(\theta)\right)=\sum_{\substack{z \in \mathcal{L} \backslash \mathcal{G} \\{ }_{z} \subseteq \mathcal{L} w}} R_{z}^{\mathcal{L} w}\left({ }^{z} \theta\right)
$$

If ${ }^{z} y \subseteq \mathcal{L} w$ then ${ }^{z} \mathcal{T} \leqslant \mathcal{L}$ so ${ }^{l z} \mathcal{T}=\mathcal{T}$ for some $l \in \mathcal{L}$. Therefore, we can take the sum over cosets $\mathbf{N}_{\mathcal{L}}(\mathcal{T}) \backslash \mathbf{N}_{\mathcal{G}}(\mathcal{T})$ or similarly $H \backslash W$. As ${ }^{z} y \subseteq \mathbf{N}_{\mathcal{G} F}(\mathcal{T})$ the condition ${ }^{z} y \subseteq \mathcal{L} w$ is equivalent to

$$
{ }^{z} y \subseteq \mathbf{N}_{\mathcal{G} F}(\mathcal{T}) \cap \mathcal{L} w=\mathbf{N}_{\mathcal{L}}(\mathcal{T}) w
$$

which in turn is equivalent to ${ }^{z} y \in H w$. Breaking the sum in Lemma 2.7 along double cosets, as in the proof of Lemma 2.4, gives

$$
{ }^{*} R_{\mathcal{L} w}^{\mathcal{G} F}\left(R_{y}^{\mathcal{G} F}(\theta)\right)=\sum_{z \in H \backslash W / \mathbf{C}_{W}(s)} \sum_{\substack{c \in \mathbf{C}_{H_{c z}(z s) / \mathbf{C}_{W}\left({ }^{z} s\right)}^{y \in H w}}} R_{c z}^{\mathcal{L} w}\left({ }^{c z} \theta\right)
$$

Picking a different double coset representative we can assume that ${ }^{z} y \in H w$. We claim that $\mathbf{C}_{H w}\left({ }^{z} s\right)=\mathbf{C}_{H}\left({ }^{z} s\right)^{z} y$. Certainly ${ }^{z} x \in \mathbf{C}_{H w}\left({ }^{z} s\right)$ by assumption. Now if $d \in \mathbf{C}_{W}\left({ }^{z} s\right)$ then $d\left({ }^{z} x\right) \in$ $H w$ if and only if $d \in \mathbf{C}_{H}\left({ }^{z} s\right)=H \cap \mathbf{C}_{W}\left({ }^{z} s\right)$. The statement now follows from Lemma 2.4.

We are now ready to prove Theorem 2.3.

Proof of Theorem [2.3. By assumption, χ has true level j. Embed the maximal diagonal torus \mathcal{T} in the natural F-stable Levi subgroup $\mathcal{M}=\mathcal{M}_{1} \times \mathcal{M}_{2}$, where $\mathcal{M}_{1} \cong \mathcal{G}_{j}$ and $\mathcal{M}_{2} \cong \mathcal{G}_{n-j}$. Note that F stabilises \mathcal{M}_{1} and \mathcal{M}_{2}. We will identify $\mathcal{M}\langle F\rangle$ with a subgroup of $\mathcal{M}_{1}\langle F\rangle \times \mathcal{M}_{2}\langle F\rangle$, where we again denote by F its restriction to \mathcal{M}_{i}.

By [11, Theorem 3.9] our assumption on the level of χ implies that χ is a constituent of

$$
R_{\mathcal{M} F}^{\mathcal{G F}}(\alpha \boxtimes 1)
$$

for some $\alpha \in \operatorname{Irr}\left(\mathscr{C}\left(\mathcal{M}_{1} F\right)\right)$. Note that

$$
\mathbf{C}_{\mathcal{M}}(F)=\mathbf{C}_{\mathcal{M}_{1}}(F) \mathbf{C}_{\mathcal{M}_{2}}(F) \cong \mathrm{GL}_{j}^{\epsilon}(q) \times \mathrm{GL}_{n-j}^{\epsilon}(q)
$$

If $W_{i} \leqslant W$ is the subgroup $\mathbf{N}_{\mathcal{M}_{i}}(\mathcal{T}) / \mathcal{T}$ then the subgroup $W_{1} W_{2} \leqslant W$ is a direct product with $W_{1} \cong \mathrm{~S}_{j}$ and $W_{2} \cong \mathrm{~S}_{n-j}$.

By [5, Theorem 11.7.3] we have $\alpha= \pm \mathcal{R}_{s}^{\mathcal{M}_{1} F}(\tilde{\phi})$ for some $s \in \mathcal{M}_{1} \cap \mathcal{T}$, with $\mathbf{C}_{W_{1} F}(s) \neq \varnothing$, and some irreducible character $\tilde{\phi} \in \operatorname{Irr}\left(\mathbf{C}_{W_{1} F}(s)\right)$ afforded by a representation over \mathbb{Q}, see [21, Proposition 3.2]. Note that $\mathbf{C}_{W_{1} W_{2}}(s)=\mathbf{C}_{W_{1}}(s) W_{2}$ is a reflection group and we have

$$
\mathbf{C}_{W_{1} W_{2} F}(s)=\mathbf{C}_{W_{1} F}(s) W_{2} .
$$

It is known, see [5, Proposition 11.6.6], that

$$
R_{\mathcal{M} F}^{\mathcal{G} F}\left(\alpha \boxtimes 1_{\mathcal{M}_{2} F}\right)= \pm \mathcal{R}_{s}^{\mathcal{G} F}\left(\operatorname{Ind}_{\mathbf{C}_{W_{1} W_{2} F}(s)}^{\mathbf{C}_{W_{F}(s)}}(\tilde{\phi} \boxtimes 1)\right)
$$

from which it follows that $\chi= \pm \mathcal{R}_{s}^{\mathcal{G} F}(\tilde{\psi})$ for some irreducible constituent $\tilde{\psi} \in \operatorname{Irr}\left(\mathbf{C}_{W F}(s)\right)$ of the induced function $\operatorname{Ind}_{\mathbf{C}_{W_{1} W_{2} F}(s)}^{\mathbf{C}_{W_{F}(s)}}(\tilde{\phi} \boxtimes 1)$.

We denote again by $\tilde{\phi}$ and $\tilde{\psi}$ irreducible characters of $\mathbf{C}_{W_{1}}(s)\langle F\rangle$ and $\mathbf{C}_{W}(s)\langle F\rangle$ respectively, yielding $\tilde{\phi}$ and $\tilde{\psi}$ upon restriction to the respective cosets. By [25, Lemma 4.10]

$$
\left|\left\langle\operatorname{Ind}_{\mathbf{C}_{W_{1} W_{2} F}(s)}^{\mathbf{C}_{W_{F}(s)}}(\tilde{\phi} \boxtimes 1), \tilde{\psi}\right\rangle\right| \leqslant\left\langle\operatorname{Ind}_{\mathbf{C}_{W_{1} W_{2}}(s)}^{\mathbf{C}_{W^{\prime}}(s)}(\phi \boxtimes 1), \psi\right\rangle .
$$

In particular, ψ is a constituent of $\operatorname{Ind}_{\mathbf{C}_{W_{1}}(s) W_{2}}^{\mathbf{C}_{W_{2}}(s)}(\phi \boxtimes 1)$.
Following the proof of Corollary 2.2 it suffices to show that

$$
\begin{equation*}
\sum_{\eta \in \operatorname{Irr}\left(L_{1}\right)}\left|\left\langle\eta,{ }^{*} R_{\mathcal{L}_{1} F}^{\mathcal{G} F}(\chi)\right\rangle\right| \leqslant\left\langle{ }^{*} R_{\mathcal{L}_{1} F}^{\mathcal{G} F}(\chi),{ }^{*} R_{\mathcal{L}_{1} F}^{\mathcal{G} F}(\chi)\right\rangle \leqslant n^{3 j} . \tag{2.10}
\end{equation*}
$$

A straightforward argument shows that we may find a Levi subgroup $\mathcal{T} \leqslant \mathcal{L} \leqslant \mathcal{G}$, an element $w \in \mathbf{N}_{\mathcal{G} F}(\mathcal{T})$, and an element $h \in \mathcal{G}$ such that ${ }^{h}(\mathcal{L} w)=\mathcal{L}_{1} F$, see [5, Proposition 11.4.1]. With this we need only bound

$$
\left\langle{ }^{*} R_{\mathcal{L} w}^{\mathcal{G} F}(\chi),{ }^{*} R_{\mathcal{L} w}^{\mathcal{G} F}(\chi)\right\rangle=\left\langle{ }^{*} R_{\mathcal{L} w}^{\mathcal{G} F}\left(\mathcal{R}_{s}^{\mathcal{G}}(\tilde{\psi})\right),{ }^{*} R_{\mathcal{L} w}^{\mathcal{G} F}\left(\mathcal{R}_{s}^{\mathcal{G}}(\tilde{\psi})\right)\right\rangle .
$$

By Corollary 2.8

$$
{ }^{*} R_{\mathcal{L} w}^{\mathcal{G} F}\left(\mathcal{R}_{s}^{\mathcal{G}}(\tilde{\psi})\right)=\sum_{\substack{z \in H \backslash W / \mathbf{C}_{W}(s) \\ \mathbf{C}_{H w}\left(z_{s}\right) \neq \varnothing}} \mathcal{R}_{z_{s} w}^{\mathcal{L} w}\left(\operatorname{Res}_{\mathbf{C}_{H w}\left(z^{\prime}\right)}^{\mathbf{C}_{W F}\left(z_{s}\right)}(z \tilde{\psi})\right),
$$

where $H=\mathbf{N}_{\mathcal{L}}(\mathcal{T}) / \mathcal{T}$ is the Weyl group of \mathcal{L}. The number of double cosets appearing in this sum is bounded above by

$$
\left|H \backslash W / \mathbf{C}_{W}(s)\right| \leqslant\left|W / \mathbf{C}_{W}(s)\right| \leqslant\left|W / W_{2}\right|=\left|\mathrm{S}_{n} / \mathrm{S}_{n-j}\right| \leqslant n^{j}
$$

because $W_{2} \leqslant \mathbf{C}_{W}(s)$.

Now, by the disjointness of Deligne-Lusztig characters, see [5, Proposition 11.3.2], the summands are pairwise orthogonal because each ${ }^{z} s$ lies in a distinct \mathcal{L}-conjugacy class. So, using Lemma 2.5 it suffices to bound

$$
\left|\left\langle\operatorname{Res}_{\mathbf{C}_{H w}\left(z_{s)}\right.}^{\mathbf{C}_{W F}\left({ }^{z} s\right)}(\tilde{\psi}), \operatorname{Res}_{\mathbf{C}_{H w}\left({ }^{(z s)}\right.}^{\mathbf{C}_{W W}\left(z^{z}\right)}(\tilde{\psi})\right\rangle\right| \leqslant\left\langle\operatorname{Res}_{\mathbf{C}_{H}\left(z^{2} s\right)}^{\mathbf{C}_{W}\left(z^{\prime} s\right)}(\psi), \operatorname{Res}_{\mathbf{C}_{H}\left(z_{s}\right)}^{\mathbf{C}_{W}\left(z^{z}\right)}(\psi)\right\rangle \leqslant \psi(1)^{2}
$$

But we know ψ is a constituent of $\operatorname{Ind}_{\mathbf{C}_{W_{1}}(s) W_{2}}^{\mathbf{C}_{W}(s)}(\phi \boxtimes 1)$ so

$$
\begin{aligned}
\psi(1)^{2} & \leqslant \operatorname{Ind}_{\mathbf{C}_{W}(s) W_{2}}^{\mathbf{C}_{W}(s)}(\phi \boxtimes 1)(1)^{2} \\
& \leqslant \operatorname{Ind}_{\mathbf{C}_{W}(s) W_{2}}^{\mathbf{C}_{W}(s)}(\phi \boxtimes 1)(1)^{2} \\
& \leqslant\left|W / W_{2}\right|^{2} \\
& \leqslant n^{2 j}
\end{aligned}
$$

2.3. An asymptotic version of [1, Theorem 1.1] and [25, Theorem 1.9]. Now we can prove the main result of the section:

Theorem 2.9. For any $\epsilon>0$, there are some explicit positive constants $N_{0}=N_{0}(\epsilon)$ and $q_{0}=q_{0}(\epsilon)$, such that the following statements holds for all integers $n \geq N_{0}$ and all prime powers $q \geq q_{0}$. Let $\mathcal{G}=\mathrm{GL}_{n}\left(\overline{\mathbb{F}_{q}}\right)$ and let $F: \mathcal{G} \rightarrow \mathcal{G}$ be a Frobenius endomorphism so that $\mathcal{G}^{F} \in\left\{\mathrm{GL}_{n}(q), \mathrm{GU}_{n}(q)\right\}$. Suppose we are in one of the following two cases.
(i) $G:=\mathcal{G}^{F}$ and $g \in G$ is any element such that $\mathbf{C}_{\mathcal{G}}(g)$ is contained in a proper F-stable Levi subgroup \mathcal{L} of \mathcal{G} and $L:=\mathcal{L}^{F}$.
(ii) $G:=[\mathcal{G}, \mathcal{G}]^{F} \in\left\{\operatorname{SL}_{n}(q), \mathrm{SU}_{n}(q)\right\}, g \in G$, and either
(a) $\mathbf{C}_{[\mathcal{G}, \mathcal{G}]}(g)$ is contained in a proper split Levi subgroup \mathcal{L} of $[\mathcal{G}, \mathcal{G}]$ and $L:=\mathcal{L}^{F}$, or
(b) g is non-central semisimple with $L:=\mathbf{C}_{G}(g)$.

Then

$$
\begin{equation*}
|\chi(g)| \leq \chi(1)^{\alpha(L)+\epsilon} \tag{2.11}
\end{equation*}
$$

for all $\chi \in \operatorname{Irr}(G)$.
Proof. Note that (2.11) is obvious if $\alpha:=\alpha(L) \geq 1-\epsilon$. So in what follows we will assume

$$
\alpha+\epsilon<1
$$

in particular $0<\epsilon<1$.
(A) First we prove (2.11) in the cases of (i) and (ii)(a). Note that the upper bound on $|\chi(g)|$ in Theorem 2.3 is obtained by combining (2.1), (2.2), and (2.10). If \mathcal{L} is split, $\varphi:={ }^{*} R_{\mathcal{L}_{1} F}^{\mathcal{G} F}(\chi)$ is a true character of \mathcal{L}_{1}^{F} (in the notation of the proof of Theorem 2.3), hence this upper bound is actually an upper bound on the degree of φ. Arguing as in part (ii) of the proof of [1, Theorem 1.1], it therefore suffices to prove (2.11) for

$$
G \in\left\{\mathrm{GL}_{n}(q), \mathrm{GU}_{n}(q)\right\}
$$

Let $j=\mathfrak{l}(\chi)$ be the level of χ in the sense of [11, Definition 1(ii)]. This means that multiplying χ by a suitable linear character of G, we may assume that $\mathfrak{l}^{*}(\chi)=j$. Applying Theorem 2.3, it suffices to prove

$$
\begin{equation*}
n^{3 j}\left(\frac{q+1}{q-1}\right)^{D / 2} \leq \chi(1)^{\epsilon} \tag{2.12}
\end{equation*}
$$

Note that the degree of any irreducible character of G is a monic polynomial in variable q with integer coefficients, in fact a product of a power of q and cyclotomic polynomials in q. Writing $D=\operatorname{dim} v^{\mathcal{G}}$, with $v^{\mathcal{G}}=\mathcal{O}_{\chi}^{*}$ being the wave front set of χ, we therefore have

$$
\chi(1) \geq(q-1)^{D / 2} .
$$

Choosing $q_{0}=q_{0}(\epsilon) \geq 3$ such that

$$
\frac{q_{0}+1}{q_{0}-1} \leq\left(q_{0}-1\right)^{\epsilon / 3}
$$

it remains to prove

$$
\begin{equation*}
n^{3 j} \leq \chi(1)^{2 \epsilon / 3} \tag{2.13}
\end{equation*}
$$

for $q \geq q_{0}$ and $n \geq N_{0}$.
Choosing $N_{0} \geq 4$ we have $n^{2} / 4-2>n^{2} / 16$ for $n \geq N_{0}$, and so, when $j>n / 2$ we have

$$
\chi(1)>q^{n^{2} / 16}>q^{n^{2} \epsilon / 16}
$$

by [11, Theorem 1.2(ii)]. Next, if $n / 4<j \leq n / 2$, then $j(n-j)>n^{2} / 8$, and so

$$
\chi(1)>q^{n^{2} / 8}
$$

by [11, Theorem $1.2(\mathrm{i})$]. If $0 \leq j \leq n / 4$, then $j(n-j) \geq 3 n j / 4$, and so

$$
\begin{equation*}
\chi(1) \geq q^{3 n j / 4} \tag{2.14}
\end{equation*}
$$

again by [11, Theorem 1.2(i)].
First we work in the regime

$$
n \epsilon / 12 \leq j \leq n .
$$

Then (2.14) and the above arguments show that

$$
\chi(1) \geq q^{n^{2} \epsilon / 16}
$$

Choose $N_{0} \geq 4$ such that

$$
\begin{equation*}
n \leq q_{0}^{n \epsilon^{2} / 72} \tag{2.15}
\end{equation*}
$$

for all $n \geq N_{0}$. Then for $q \geq q_{0}$ we now have

$$
n^{3 j} \leq n^{3 n} \leq q_{0}^{n^{2} \epsilon^{2} / 24} \leq \chi(1)^{2 \epsilon / 3}
$$

yielding (2.13) in this case.
Assume now that $j \leq n \epsilon / 12 \leq n / 12$. Then for $n \geq N_{0}$ and $q \geq q_{0}$ we now have by (2.14) and (2.15) that

$$
n^{3 j} \leq q_{0}^{n \epsilon^{2} j / 24}<q^{n \epsilon j / 2} \leq \chi(1)^{2 \epsilon / 3}
$$

proving (2.13) in this case as well.
(B) Now we handle the case (ii)(b), embedding G in $\tilde{G}:=\mathcal{G}^{F}$. Letting $\tilde{L}:=\mathbf{C}_{G}(g)$, note that $\tilde{G}=G \tilde{L}$ and $g \in \tilde{L}$. Letting $\tilde{\chi} \in \operatorname{Irr}(\tilde{G})$ lie above χ, by Clifford's theorem we have

$$
\left.\tilde{\chi}\right|_{G}=\sum_{i=1}^{t} \chi^{x_{i}}
$$

where x_{1}, \ldots, x_{t} can be chosen from \tilde{L}. Since every x_{i} centralizes g, we have

$$
\tilde{\chi}(1)=t \chi(1), \tilde{\chi}(g)=t \chi(g) .
$$

By the case (i) proved in (A), $|\tilde{\chi}(g)| \leq \tilde{\chi}(1)^{\alpha+\varepsilon}$. As $\alpha+\varepsilon<1$, it follows that $|\chi(g)| \leq \chi(1)^{\alpha+\varepsilon}$.

3. Some numerical estimates

This section is devoted to numerical estimates which allow us to determine a finite list of possible exceptions to Conjecture 1 .

Let

$$
f_{a, x}(\delta):=\min \left(\left(\frac{1}{a}+\delta\right) x, \frac{1}{2}\left(\frac{1}{a}+\frac{a}{a-1} \delta^{2}\right)\right)
$$

The main goal of this section is to give an explicit finite list of possible exceptions to the rule that if $2 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{r}$ are integers such that $\sum_{i=1}^{r} \frac{1}{a_{i}}<r-2$, then

$$
\sum_{i=1}^{r} f_{a_{i}, x}\left(\delta_{i}\right)<x+\sum_{i=1}^{r} \frac{a_{i} \delta_{i}^{2}}{a_{i}-1}
$$

when $x \in[0,1 / 2]$ and $\delta_{i} \in\left[0, \frac{a_{i}-1}{a_{i}}\right]$ for all i. We will see that when the rule holds, Conjecture 1 holds for the corresponding genus 0 Fuchsian group. There is only one exception with $r \geq 4$ and thirty-one with $r=3$.

Proposition 3.1. For all $a \geq 2, x \in(0,1 / 2]$, and $\delta \in[0,1-1 / a]$, the function

$$
\frac{f_{a, x}(\delta)-\frac{a \delta^{2}}{a-1}}{x}
$$

is bounded above by $\max \left(\frac{x}{a}, G_{a, x}, H_{a, x}\right)$, where

$$
G_{a, x}= \begin{cases}\frac{(a-1) x+4}{4 a}, & \text { if } x \leq \frac{2 \sqrt{3 a+1}-4}{3 a(a-1)} \\ -\infty, & \text { if } x>\frac{2 \sqrt{3+1}-4}{3(a-1)}\end{cases}
$$

and

$$
H_{a, x}= \begin{cases}\frac{\sqrt{(a-1)^{2} x^{2}+2(a-1) x-(a-1)}}{a}-\frac{(a-1) x}{a}+\frac{1-x}{a x}, & \text { if }(a-1) x^{2}+a x \geq 1 \\ -\infty, & \text { if }(a-1) x^{2}+a x<1\end{cases}
$$

In particular,

$$
\begin{equation*}
f_{a, x}(\delta)<\frac{2 x}{\sqrt{a}}+\frac{a \delta^{2}}{a-1} . \tag{3.1}
\end{equation*}
$$

Proof. Let

$$
\begin{aligned}
g_{a, x}(\delta) & :=\left(\frac{1}{a}+\delta\right) x-\frac{a \delta^{2}}{a-1} \\
h_{a}(\delta) & :=\frac{1}{2 a}-\frac{a \delta^{2}}{2(a-1)},
\end{aligned}
$$

so

$$
f_{a, x}(\delta)-\frac{a \delta^{2}}{a-1}=\min \left(g_{a, x}(\delta), h_{a}(\delta)\right)
$$

For each fixed integer $a \geq 2$, we wish to determine as a function of $x \in(0,1 / 2]$, the (unique) element $\delta_{0}(x) \in\left[0, \frac{a-1}{a}\right]$ for which $\min \left(g_{a, x}(\delta), h_{a}(\delta)\right)$ achieves its maximum as a function of δ.

We note first that as functions of $\delta, g_{a, x}(\delta)$ and $h_{a}(\delta)$ are strictly concave, and $h_{a}(\delta)$ is decreasing on $[0, \infty)$. Therefore, $\delta_{0}(x)$ must either be the unique critical point $\frac{(a-1) x}{2 a}$ of $g_{a, x}(\delta)$, the minimum solution of $g_{a, x}(\delta)=h_{a}(\delta)$ in the interval $\left[0, \frac{a-1}{a}\right]$, or one of the endpoints 0 and $\frac{a-1}{a}$ of the interval. For the endpoints, we have

$$
\min \left(g_{a, x}(0), h_{a}(0)\right) \leq g_{a, x}(0)=\frac{x}{a}
$$

and

$$
\min \left(g_{a, x}\left(\frac{a-1}{a}\right), h_{a}\left(\frac{a-1}{a}\right)\right) \leq h_{a}\left(\frac{a-1}{a}\right)=\frac{1}{a}-\frac{1}{2} \leq 0 .
$$

If the maximum occurs at $\frac{(a-1) x}{2 a}$, it must be

$$
g_{a, x}\left(\frac{(a-1) x}{2 a}\right)=\frac{(a-1) x^{2}+4 x}{4 a}
$$

and this quantity must be less than or equal to

$$
h_{a}\left(\frac{(a-1) x}{2 a}\right)=\frac{4-(a-1) x^{2}}{8 a}
$$

so

$$
x \leq \frac{2 \sqrt{3 a+1}-4}{3(a-1)}
$$

Thus, for all x,

$$
\begin{equation*}
G_{a, x} \leq \frac{1}{a}+\frac{\sqrt{3 a+1}-2}{6 a} \leq \frac{1}{a}+\frac{1}{\sqrt{2 a}}<\frac{2}{\sqrt{a}} \tag{3.2}
\end{equation*}
$$

The graphs of $g_{a, x}(\delta)$ and $h_{a}(\delta)$ intersect only if

$$
\begin{equation*}
(a-1) x^{2}+2 x \geq 1 \tag{3.3}
\end{equation*}
$$

in which case the smaller δ-value satisfying $g_{a, x}(\delta)=h_{a}(\delta)$ is

$$
\delta=\frac{(a-1) x-\sqrt{(a-1)^{2} x^{2}+2(a-1) x-(a-1)}}{a}
$$

If this is $\delta_{0}(x)$, we have

$$
\begin{equation*}
H_{a, x}=\frac{\sqrt{(a-1)^{2} x^{2}+2(a-1) x-(a-1)} x}{a}-\frac{(a-1) x^{2}}{a}+\frac{1-x}{a} \leq \frac{1-x}{a} \leq \frac{1}{a} . \tag{3.4}
\end{equation*}
$$

By (3.3), $x>\frac{1}{2 \sqrt{a}}$, so (3.4) implies

$$
\frac{g_{a, x}\left(\delta_{0}(x)\right)}{x}<\frac{2}{\sqrt{a}}
$$

Together with (3.2), this implies the proposition.
Proposition 3.2. Let $r \geq 3$ be an integer, $a_{1} \leq a_{2} \leq \cdots \leq a_{r}$ be integers ≥ 2, and δ_{i} be nonnegative numbers with $\frac{1}{a_{i}}+\delta_{i} \leq 1$ for all i. We assume that the product $a_{1} \cdots a_{r}$ is not on the following list:
(i) $23 c, 7 \leq c \leq 24$
(ii) $24 c, 5 \leq c \leq 9$
(iii) $25 c, 5 \leq c \leq 7$
(iv) 266 ,
(v) $33 c, 4 \leq c \leq 6$
(vi) 344 ,
(vii) 2223.

Then for all $x \in(0,1 / 2]$,

$$
\sum_{i=1}^{r} f_{a_{i}, x}\left(\delta_{i}\right)<-\epsilon x+(r-2) x+\sum_{i=1}^{r} \frac{a_{i} \delta_{i}^{2}}{a_{i}-1}
$$

where ϵ is a positive constant which does not depend on x, r, the a_{i}, or the δ_{i}.

Proof. By (3.1) for $a \geq 100$ and machine computation for $2 \leq a<100$,

$$
\frac{f_{a, x}(\delta)-\frac{a \delta^{2}}{a-1}}{x} \leq \begin{cases}.555 & \text { if } a=2 \tag{3.5}\\ .399 & \text { if } a=3 \\ .318 & \text { if } 4 \leq a<100 \\ .2 & \text { if } 100 \leq a<10000 \\ .02 & \text { if } 10000 \leq a\end{cases}
$$

Therefore, if $r \geq 5$,

$$
r-2-\sum_{i=1}^{r} \frac{f_{a_{i}, x}\left(\delta_{i}\right)-\frac{a_{i} \delta_{i}^{2}}{a_{i}-1}}{x}>r-2-.56 r \geq .2
$$

If $r=4$ and $a_{4} \geq 4$, then

$$
r-2-\sum_{i=1}^{r} \frac{f_{a_{i}, x}\left(\delta_{i}\right)-\frac{a_{i} \delta_{i}^{2}}{a_{i}-1}}{x}>2-.56 \cdot 3-.318=.002
$$

while if $r=4$ and $a_{3} \geq 3$, then

$$
r-2-\sum_{i=1}^{r} \frac{f_{a_{i}, x}\left(\delta_{i}\right)-\frac{a_{i} \delta_{i}^{2}}{a_{i}-1}}{x}>2-.56 \cdot 2-.4 \cdot 2=.08
$$

The only remaining possibility for $r=4$ is 2223 .
For $r=3$, we may assume $a_{2} \geq 3$, so if $a_{3} \geq 10000$,

$$
r-2-\sum_{i=1}^{r} \frac{f_{a_{i}, x}\left(\delta_{i}\right)-\frac{a_{i} \delta_{i}^{2}}{a_{i}-1}}{x}>1-.56-.4-.02=.02
$$

The triples with $a_{3}<10000$ can be handled exhaustively by machine, by partitioning the x-interval [$0,1 / 2$] into subintervals on which $G_{x, a}$ and $H_{x, a}$ are bounded above.

We remark that it is feasible to give a proof of a somewhat weaker result which does not require machine computation at all. An earlier version of this paper gave an explicit argument which holds for all triangle groups of type $a b c$ except the following:
(a) $a=2, b=3,7 \leq c \leq 295$
(b) $a=2, b=4,5 \leq c \leq 26$
(c) $a=2, b=5,5 \leq c \leq 15$
(d) $a=2,6=6,6 \leq c \leq 11$
(e) $(a, b, c) \in\{(2,7,7),(2,7,8),(2,7,9),(2,7,10),(2,8,8)\}$
(f) $a=b=3,4 \leq c \leq 11$
(g) $(a, b, c) \in\{(3,4,4),(3,4,5),(3,4,6),(3,4,7),(3,5,5),(4,4,4)\}$

It holds, moreover, for $r=4$ except in the case of groups of type 2223 and 2224 and for all groups with $r \geq 5$.

Lemma 3.3. Let g be a positive integer and r a non-negative integer such that if $g=1$, then $r>0$. Let $a_{1} \leq a_{2} \leq \cdots \leq a_{r}$ be a (possibly empty) sequence of integers ≥ 2. Then for all $x \in\left[0, \frac{1}{2}\right]$,

$$
\sum_{i=1}^{r} f_{a_{i}, x}\left(\delta_{i}\right)<-.44 x+(2 g+r-2) x+\sum_{i=1}^{r} \frac{a_{i} \delta_{i}^{2}}{a_{i}-1}
$$

Proof. If $g=1$ and $r \geq 1$, (3.5) implies

$$
\sum_{i=1}^{r} \frac{f_{a_{i}, x}\left(\delta_{i}\right)-\frac{a_{i} \delta_{i}^{2}}{a_{i}-1}}{x}<.56 r \leq-.44+r=-.44+(2 g+r-2) .
$$

If $g \geq 2$ and $r \geq 0$,

$$
\sum_{i=1}^{r} \frac{f_{a_{i}, x}\left(\delta_{i}\right)-\frac{a_{i} \delta_{i}^{2}}{a_{i}-1}}{x} \leq .56 r .<-.44+(2+r) \leq-.44+(2 g+r-2) .
$$

4. Asymptotics of $j_{q, n}(a)$

Let t be an element of $G_{n}=\operatorname{GL}_{n}(q)$ of order a. We assume q is prime to a, Let $\zeta=\zeta_{a}$ be a primitive a th root of unity in $\overline{\mathbb{F}}_{q}$, so $z^{a}-1=0$ has distinct roots $\zeta, \zeta^{2}, \ldots, \zeta^{a}=1$, in $\overline{\mathbb{F}}_{q}$. Let m_{i} denote the multiplicity of ζ^{i} as an eigenvalue of t. We write $i \sim j$ if ζ^{i} and ζ^{j} have the same Frobenius orbit. The vector $\left(m_{1}, \ldots, m_{a}\right)$ satisfies the following conditions:
(1) $m_{i} \in \mathbb{Z}$ for all i,
(2) $m_{1}+\cdots+m_{a}=n$,
(3) $m_{i}=m_{j}$ whenever $i \sim j$,
(4) $m_{i} \geq 0$ for all i.

The element t is determined up to conjugacy in $\mathrm{GL}_{n}(q)$ by the vector $\left(m_{1}, \ldots, m_{a}\right)$. For given n, the vector is determined by m_{1}, \ldots, m_{a-1}, so the number of possibilities is $O\left(n^{a-1}\right)$.

Let S denote the subset of $\{1, \ldots, a\}$ consisting of the smallest element in each Frobenius orbit, and let l_{s} be the size of the orbit of s. The centralizer of t in $\mathrm{GL}_{n}(q)$ can be written $\prod_{s \in S} \mathrm{GL}_{m_{s}}\left(q^{l_{s}}\right)$, so the conjugacy class $C=t^{G_{n}}$ satisfies

$$
\begin{equation*}
|C|=\frac{q^{n^{2}} \prod_{j=1}^{n}\left(1-q^{-j}\right)}{\prod_{s \in S}\left(q^{l_{s} m_{s}^{2}} \prod_{j=1}^{m_{s}}\left(1-q^{-l_{s} j}\right)\right)}=\frac{q^{n^{2}-\sum_{i=1}^{a} m_{i}^{2}} q^{(1-a) / 24} \eta\left(\frac{i \log q}{2 \pi}\right)}{\prod_{s \in S} \eta\left(\frac{i l_{s} \log q}{2 \pi}\right)} \frac{\prod_{s \in S} \prod_{j=m_{s}+1}^{\infty}\left(1-q^{-l_{s} j}\right)}{\prod_{j=n+1}^{\infty}\left(1-q^{-j}\right)} \tag{4.1}
\end{equation*}
$$

where $\eta(z)$ is the Dedekind eta-function. The second multiplicand on the right hand side can be bounded above in terms of a, and it approaches 1 as $\inf _{i} m_{i}$ goes to ∞.

Writing

$$
\begin{equation*}
n^{2}-\sum_{i=1}^{a} m_{i}^{2}=n^{2}\left(1-\frac{1}{a}\right)-\sum_{i=1}^{a}\left(\frac{n}{a}-m_{i}\right)^{2} \tag{4.2}
\end{equation*}
$$

we see that if $m_{i} \leq n / 2 a$, then

$$
|C|=O\left(q^{\left(1-1 / a-1 / 4 a^{2}\right) n^{2}}\right),
$$

so the sum of $|C|$ over all conjugacy classes with $\inf _{i} m_{i} \leq n / 2 a$ is $o\left(q^{(1-1 / a) n^{2}}\right)$.
We define $j_{q, n, k}(a)$ to be the number of elements $t \in \mathrm{GL}_{n}(q)$ with $t^{a}=1$ and $\operatorname{det}(a)=\zeta^{k}$. Consider the subset of \mathbb{Z}^{a} satisfying conditions (1)-(3) and the congruence condition

$$
\begin{equation*}
\sum_{i=1}^{r} i m_{i} \equiv k \quad(\bmod a) \tag{4.3}
\end{equation*}
$$

which is equivalent to the condition $\operatorname{det}(t)=\zeta^{k}$. This is a coset $\lambda_{n}+\Lambda$, where Λ is a subgroup of \mathbb{Z}^{a} which does not depend on n and $\lambda_{n} \in \mathbb{Z}^{a}$ has coordinate sum n. Moreover, adding 2 to each m_{i} and $2 a$ to n preserves the sets satisfying conditions (1)-(3) and (4.3), so

$$
\lambda_{n+2 a}=\lambda_{n}+(2,2, \ldots, 2) .
$$

Thus,

$$
\lambda_{n}^{\prime}:=\lambda_{n}-\left(\frac{n}{a}, \frac{n}{a}, \ldots, \frac{n}{a}\right)
$$

is periodic in n with period $2 A$ and has coordinate sum 0 .
By (4.1) and (4.2),

$$
\begin{aligned}
j_{q, n, k}(a) & =\sum_{\left(m_{1}, \ldots, m_{a}\right) \in\left(\lambda_{n}+\Lambda\right) \cap \mathbb{N}^{a}} \frac{q^{n^{2}} \prod_{j=1}^{n}\left(1-q^{-j}\right)}{\prod_{s \in S}\left(q^{l_{s} m_{s}^{2}} \prod_{j=1}^{m_{s}}\left(1-q^{-l_{s} j}\right)\right)} \\
& =\sum_{\left(m_{1}, \ldots, m_{a}\right) \in\left(\lambda_{n}+\Lambda\right) \cap \mathbb{N}^{a}} \frac{q^{n^{2}-\sum_{i=1}^{a} m_{i}^{2}} q^{(1-a) / 24} \eta\left(\frac{i \log q}{2 \pi}\right)}{\prod_{s \in S} \eta\left(\frac{i s_{s} \log q}{2 \pi}\right)}+o\left(q^{(1-1 / a) n^{2}}\right) \\
& =\frac{q^{(1-a) / 24} \eta\left(\frac{i \log q}{2 \pi}\right)}{\prod_{s \in S} \eta\left(\frac{i l_{s} \log q}{2 \pi}\right)} \sum_{\left(m_{1}, \ldots, m_{a}\right) \in \lambda_{n}+\Lambda} q^{n^{2}-\sum_{i=1}^{a} m_{i}^{2}}+o\left(q^{(1-1 / a) n^{2}}\right) \\
& =\frac{q^{(1-a) / 24} \eta\left(\frac{i \log q}{2 \pi}\right)}{\prod_{s \in S} \eta\left(\frac{i l_{s} \log q}{2 \pi}\right)} q^{(1-1 / a) n^{2}} \sum_{\lambda^{\prime} \in \lambda_{n}^{\prime}+\Lambda} q^{-\lambda^{\prime} \cdot \lambda^{\prime}}+o\left(q^{(1-1 / a) n^{2}}\right),
\end{aligned}
$$

where the implicit constant on the right hand side does not depend on q. Defining

$$
\theta_{v}(z):=\sum_{\lambda \in v+\Lambda} e^{2 \pi i(\lambda \cdot \lambda) z}
$$

and

$$
f_{n}(z):=\frac{\eta(z) \theta_{\lambda_{n}^{\prime}}(z)}{\prod_{s \in S} \eta\left(l_{s} z\right)}
$$

we have proved the following proposition:
Proposition 4.1. The periodic sequence $f_{1}, f_{2}, f_{3}, \ldots$ of half-integral weight modular forms with integral q-expansions satisfies

$$
j_{q, n, k}(a)=\left(f_{n}\left(\frac{i \log q}{2 \pi}\right)+o(1)\right) q^{(1-a) / 24} q^{(1-1 / a) n^{2}}
$$

where the $o(1)$ term does not depend on q.
From this, it is easy to deduce:
Corollary 4.2. Let a_{1}, \ldots, a_{r} denote positive integers with least common multiple A. Then there exists a $2 A$-periodic sequence of meromorphic modular forms $f_{1}, f_{2}, f_{3}, \ldots$ with integral Fourier coefficients, holomorphic except possibly at ∞, such that

$$
J_{q, n}\left(a_{1}, \ldots, a_{r}\right)=\left(f_{n}\left(\frac{i \log q}{2 \pi}\right)+o(1)\right) q^{\left(r-a_{1}-\cdots-a_{r}\right) / 24} q^{\left(r-1 / a_{1}-\cdots-1 / a_{r}\right) n^{2}}
$$

Proof. Let

$$
\Sigma\left(a_{1}, \ldots, a_{r}\right):=\left\{\left(k_{1}, \ldots, k_{r}\right) \in\left(\mathbb{Z} / a_{1} \mathbb{Z}\right) \times \cdots \times\left(\mathbb{Z} / a_{r} \mathbb{Z}\right) \mid \prod \zeta_{a_{i}}^{k_{i}}=1\right\}
$$

If $t_{i}^{a_{i}}=1$, then $\operatorname{det}\left(t_{i}\right)=\zeta_{a_{i}}^{k_{i}}$ for a well-defined $k_{i} \in \mathbb{Z} / a_{i} \mathbb{Z}$. Every element $\left(t_{1}, \ldots, t_{r}\right)$ of (1.2) determines $\left(k_{1}, \ldots, k_{r}\right) \in \Sigma\left(a_{1}, \ldots, a_{r}\right)$ such that $\operatorname{det}\left(t_{i}\right)=\zeta_{a_{i}}^{k_{1}}$. Therefore,

$$
J_{q, n}\left(a_{1}, \ldots, a_{r}\right)=\sum_{\left(k_{1}, \ldots, k_{r}\right) \in \Sigma\left(a_{1}, \ldots, a_{r}\right)} \prod_{i=1}^{r} j_{q, n, k_{i}}\left(a_{i}\right)
$$

and the corollary follows immediately from Proposition 4.1.

5. Counting Fuchsian group representations

If $t^{a}=1$, and m_{1}, \ldots, m_{a} are the eigenvalue multiplicities of t, define $\delta:=-1 / a+\sup _{i} m_{i} / n$. Thus, $\delta \geq 0$. Let j be chosen so $m_{j}=n / a+\delta n$.
Proposition 5.1. Let q be any sufficiently large prime power. For all $\epsilon>0$, there exists N such that if $n>N$, if $x \in(0,1 / 2]$ and χ is an irreducible character of G_{n} of degree $q^{x n^{2}}>1$, then

$$
\frac{\log |\chi(t)|}{n^{2} \log q} \leq f_{a, x}(\delta)+o(x) .
$$

Proof. As

$$
\sum_{i \neq j}\left(\frac{n}{a}-m_{i}\right) \geq \delta n
$$

by the Cauchy-Schwartz inequality.

$$
\sum_{i \neq j}\left(\frac{n}{a}-m_{i}\right)^{2} \geq \frac{\delta^{2} n^{2}}{a-1}
$$

By (4.2), the dimension of the centralizer of t in the algebraic group GL_{n} is

$$
\begin{equation*}
\frac{n^{2}}{a}+\sum_{i}\left(\frac{n}{a}-m_{i}\right)^{2} \geq \frac{n^{2}}{a}+\delta^{2} n^{2}+(a-1) \frac{\delta^{2} n^{2}}{(a-1)^{2}}=\frac{n^{2}}{a}+\frac{a \delta^{2} n^{2}}{a-1} . \tag{5.1}
\end{equation*}
$$

The centralizer of t in G_{n} is less than or equal to q to the power of the centralizer dimension, so the centralizer bound implies that for every irreducible character $\chi \in \operatorname{Irr}\left(G_{n}\right)$,

$$
\begin{equation*}
|\chi(t)| \leq q^{n^{2}\left(\frac{1}{2 a}+\frac{a \delta^{2}}{2(a-1)}\right)} \tag{5.2}
\end{equation*}
$$

On the other hand, by [1, Theorem 1.10], if L denotes the centralizer of t,

$$
\alpha(L) \leq \frac{\sup _{i} m_{i}}{n}=\frac{1}{a}+\delta .
$$

The character bound Theorem 2.9 therefore implies

$$
|\chi(t)| \leq \chi(1)^{\frac{1}{a}+\delta+o(1)}=q^{n^{2} x\left(\frac{1}{a}+\delta+o(1)\right)} .
$$

Combining this with (5.2), we obtain the proposition.
Proposition 5.2. Let q be any sufficiently large prime power. There exists $\epsilon>0$ such that for all $r \geq 3$ and all $2 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{r}$ not excluded in Proposition 3.2 above, there exists N such that if q is prime to all $a_{i}, n>N$, the elements $t_{i} \in G_{n}$ satisfy $t_{i}^{a_{i}}=1$, and χ is a non-linear irreducible character of G_{n}, we have

$$
\frac{\prod_{i}\left|t_{i}^{G_{n}}\right|}{\left|G_{n}\right|} \frac{\prod_{i}\left|\chi\left(t_{i}\right)\right|}{\chi(1)^{r-2}} \leq q^{n^{2}\left(-1+\sum_{i}\left(1-\frac{1}{a_{i}}\right)\right)} \chi(1)^{-\epsilon} .
$$

Proof. Let $x:=\log _{q^{n^{2}}} \chi(1)$, which by [14] is at least $1 / 2 n$. Let $\delta_{i}:=\mu_{i}-1 / a_{i}$, where $\mu_{i} n$ is the highest multiplicity of any eigenvalue of t_{i}, Z_{i} be the centralizer of t_{i} in G_{n}, and $d_{i} n^{2}$ be the dimension of the centralizer of t_{i} in the algebraic group GL_{n}. By (5.1), for all i,

$$
d_{i} \geq \frac{1}{a_{i}}+\frac{a_{i} \delta_{i}^{2}}{a_{i}-1},
$$

and

$$
\left|Z_{i}\right| \geq q^{d_{i} n^{2}} \prod_{i=1}^{\infty}\left(1-q^{-i}\right)^{-a_{i}} \geq 4^{-a_{i}} q^{d_{i} n^{2}} \geq q^{-2 a_{i}+d_{i} n^{2}}
$$

Thus,

$$
\frac{\prod_{i=1}^{r}\left|t_{i}^{G_{n}}\right|}{\left|G_{n}\right|} \leq q^{\left(\frac{2}{n^{2}}\left(\sum_{i} a_{i}\right)+r-1-\sum_{i} d_{i}\right) n^{2}} .
$$

By Proposition 5.1,

$$
\prod_{i}\left|\chi\left(t_{i}\right)\right| \leq q^{\left(\sum_{i} f_{a_{i}, x}\left(\delta_{i}\right)+o(1)\right) n^{2}}
$$

SO

$$
\frac{\prod_{i}\left|t_{i}^{G_{n}}\right|}{\left|G_{n}\right|} \frac{\prod_{i}\left|\chi\left(t_{i}\right)\right|}{\chi(1)^{r-2}} \leq q^{\left((2-r) x+\sum_{i} f_{a_{i}, x}\left(\delta_{i}\right)-\sum_{i} d_{i}+(r-1)+o(1)\right) n^{2}} .
$$

By Proposition 3.2, under the hypothesis on Γ, we have

$$
\begin{aligned}
(2-r) x+\sum_{i} f_{a_{i}, x}\left(\delta_{i}\right)-\sum_{i} d_{i}+(r-1) & \leq(2-r) x+\sum_{i} f_{a_{i}, x}\left(\delta_{i}\right)-\sum_{i} \frac{1}{a_{i}}-\sum_{i} \frac{a_{i} \delta_{i}^{2}}{a_{i}-1}+(r-1) \\
& <-\epsilon x-\sum_{i} \frac{1}{a_{i}}+(r-1)
\end{aligned}
$$

and the proposition follows.
The positive genus variant of this result is as follows:
Lemma 5.3. Let q be any sufficiently large prime power. There exists N such that for all $g \geq 1$, r non-negative and positive if $g=1,2 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{r}$, such that q is prime to a_{i} for all i, $n>N, t_{i} \in G_{n}$ satisfying $t_{i}^{a_{i}}=1$, and non-linear irreducible characters χ of G_{n}, we have

$$
\prod_{i}\left|t_{i}^{G_{n}}\right|\left|G_{n}\right|^{2 g-1} \frac{\prod_{i}\left|\chi\left(t_{i}\right)\right|}{\chi(1)^{2 g+r-2}} \leq q^{n^{2}\left(2 g-1+\sum_{i}\left(1-\frac{1}{a_{i}}\right)\right)} \chi(1)^{-.44}
$$

Proof. The proof is exactly the same as that of Proposition 5.2 except that we use Lemma 3.3 instead of Proposition 3.2

Lemma 5.4. Let $H_{i}=\mathrm{GL}_{n_{i}}\left(q_{i}\right)$, where $\lim _{i \rightarrow \infty} n_{i}=\infty$. Then for all $\epsilon>0$,

$$
\sum_{\chi \in \operatorname{Irr}\left(H_{i}\right)} \chi(1)^{-\epsilon}=q_{i}-1+o\left(q_{i}^{-\frac{\epsilon n_{i}}{3}}\right)
$$

Proof. By [19, Theorem 1.2],

$$
\sum_{\chi \in \operatorname{Irr}\left(\operatorname{SL}_{n_{i}}\left(q_{i}\right)\right)} \chi(1)^{-\epsilon / 2}=1+o(1)
$$

so if D_{i} denotes the minimum degree of a non-trivial character of $\mathrm{SL}_{n_{i}}\left(q_{i}\right)$,

$$
\sum_{\chi \in \operatorname{Irr}\left(\mathrm{SL}_{n_{i}}\left(q_{i}\right)\right)} \chi(1)^{-\epsilon}=1+o\left(D^{-\epsilon / 2}\right)=1+o\left(q_{i}^{-\frac{\epsilon n_{i}}{3}}\right)
$$

by [14]. The relation which assigns to each element of $\operatorname{Irr}\left(H_{i}\right)$ all the elements in $\operatorname{Irr}\left(\mathrm{SL}_{n_{i}}\left(q_{i}\right)\right)$ which are constituents of its restriction is at most $q-1$ to 1 and non-increasing in degree. There are $q_{i}-1$ linear characters for H_{i}, all mapping to the trivial character of $\left.\mathrm{SL}_{n_{i}}\left(q_{i}\right)\right)$. Therefore,

$$
1-q_{i}+\sum_{\chi \in \operatorname{Irr}\left(H_{i}\right)} \chi(1)^{-\epsilon}=o\left(\left(q_{i}-1\right) q_{i}^{-\epsilon n_{i} / 3}\right)
$$

and the lemma follows.
We can now prove Theorems A and B.

Proof. We assume first that $g=0$, so Γ is determined by $2 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{r}$. A homomorphism $\Gamma \rightarrow G_{n}$ is determined by the images $t_{1}, \ldots, t_{r} \in G_{n}$ of $z_{1}, \ldots, z_{r} \in \Gamma$, which satisfy $t_{i}^{a_{i}}=1$ and $\prod_{i} \operatorname{det}\left(t_{i}\right)=1$. We can partition the set of homomorphisms according to the conjugacy classes C_{1}, \ldots, C_{r} to which the t_{i} belong. By the Frobenius formula, the total number of homomorphisms is

$$
\begin{equation*}
\sum_{\left(C_{1}, \ldots, C_{r}\right)} \frac{\left|C_{1} \times \cdots \times C_{r}\right|}{\left|G_{n}\right|} \sum_{\chi \in \operatorname{Irr}\left(G_{n}\right)} \frac{\chi\left(C_{1}\right) \cdots \chi\left(C_{r}\right)}{\chi(1)^{r-2}} \tag{5.3}
\end{equation*}
$$

The determinant condition implies that each linear character in the inner sum contributes 1 , and there are a total of $q-1$ such characters. Their total contribution is therefore

$$
\begin{equation*}
(q-1) \sum \frac{\left|C_{1} \times \cdots \times C_{r}\right|}{\left|G_{n}\right|}=(q-1) J_{q, n}\left(a_{1}, \ldots, a_{r}\right)\left|G_{n}\right|^{-1} \tag{5.4}
\end{equation*}
$$

By Lemma 5.4, the contribution of all non-linear characters χ to (5.3) is $o\left(q^{-\epsilon n / 3} q^{\left.(1-\chi(\Gamma)) n^{2}\right) \text {. By }}\right.$ Corollary 4.2,

$$
|\operatorname{Hom}(\Gamma, G)|=(q-1) q^{\left(r-a_{1}-\cdots-a_{r}\right) / 24}\left(f_{n}\left(\frac{i \log q}{2 \pi}\right)+o(1)\right) q^{(1-\chi(\Gamma))) n^{2}}
$$

which implies Theorem A and Theorem B in the genus 0 case. The proof in the higher genus case is the same except that we use Lemma 5.3 instead of Proposition 5.2.

Proposition 5.5. Let a and n be positive integers, $a \geq 2$, and let q be a prime power which is 1 $(\bmod a)$. The minimum dimension of the centralizer in GL_{n} of a semisimple element $t \in \mathrm{GL}_{n}(q)$ of order dividing a is $\frac{n^{2}}{a}+a\left\{\frac{n}{a}\right\}\left\{\frac{-n}{a}\right\}$. If a is odd, t can be chosen to have determinant 1 . If a is even and $\frac{n}{a} \notin \mathbb{Z}$, then t can be chosen to have determinant 1 or -1 . If a is even and $\frac{n}{a} \in \mathbb{Z}$, then t must have determinant $(-1)^{\frac{n}{a}}$; if this is -1 , there is no element in $\mathrm{GL}_{n}(q)$ whose centralizer has dimension $\frac{n^{2}}{a}+1$, but there is an element $t^{\prime} \in \mathrm{SL}_{n}(q)$ with centralizer dimension $\frac{n^{2}}{a}+2$.
Proof. If the multiplicities m_{1}, \ldots, m_{a} of the eigenvalues $\zeta_{a}, \ldots, \zeta_{a}^{a}$ of a semisimple $t \in \mathrm{GL}_{n}(q)$ satisfying $t^{a}=1$ are written $\frac{n}{a}+\varepsilon_{i}$, then the centralizer of t has dimension

$$
\sum_{i} m_{i}^{2}=\frac{n^{2}}{a}+\sum_{i} \varepsilon_{i}^{2}
$$

As $\sum_{i} \varepsilon_{i}=0$, either all are zero (which can only happen in the case that a divides n, or at least one is positive and at least one is negative. In the latter case, if any $\varepsilon_{i} \geq 1$, then by reducing this by 1 and increasing some negative ε_{j} by 1 , we decrease $\sum_{i} \varepsilon_{i}^{2}$, and likewise if some $\varepsilon_{i} \leq-1$. As all ε_{i} are $\left\{\frac{n}{a}\right\}(\bmod 1)$, each must be $\left\{\frac{n}{a}\right\}$ or $\left\{\frac{n}{a}\right\}-1$, and since they sum to zero, there must be $a-a\left\{\frac{n}{a}\right\}$ of the latter and $a\left\{\frac{n}{a}\right\}$, implying $\sum_{i} \varepsilon_{i}^{2}=a\left\{\frac{n}{a}\right\}\left\{\frac{-n}{a}\right\}$.

Next, we claim that as long as $\left\{\frac{n}{a}\right\} \neq 0$, there exists some sequence m_{1}, \ldots, m_{a} consisting of $a\left\{\frac{n}{a}\right\}$ copies of $\left\lceil\frac{n}{a}\right\rceil$ and $a-a\left\{\frac{n}{a}\right\}$ copies of $\left\lfloor\frac{n}{a}\right\rfloor$ such that $\prod_{i} \zeta_{a}^{i m_{i}}$ is any desired power of ζ_{a}. To prove this, it suffices to show that if $0<k<a$, the sums of k-element subsets S of $\{0,1, \ldots, a-1\}$ represent all residue classes $(\bmod a)$. Indeed, if $S \neq\{a-1, a-2, \ldots, a-k\}$, there exists $s \in S$ such that $s+1 \in\{0,1, \ldots, a-1\} \backslash S$. Thus, the set of sums of k-element subsets S includes all integers from $\binom{k}{2}$ to $\binom{a}{2}-\binom{a-k}{a}$, a total of $k(a-k)+1 \geq a$ consecutive integers, which therefore represent all congruence classes $(\bmod a)$.

Finally, assume a divides n, so $m_{1}=\cdots=m_{a}=\frac{n}{a}$ gives the minimum value $\frac{n^{2}}{a}$ of $\sum_{i} m_{i}^{2}$. Any other choice of $\left(m_{1}, \ldots, m_{a}\right)$ must have all ε_{i} integral and at least two non-zero, so $\sum_{i} m_{i}^{2} \geq \frac{n^{2}}{a}+2$. If $m_{1}=\cdots=m_{a}$ and $\frac{n}{a}$ is even or a is odd, then $\sum_{i} i m_{i}$ is divisible by a, so $\operatorname{det}(t)=1$. If a is
even and $\frac{n}{a}$ is odd, then $m_{1}=\cdots=m_{a}$ gives $\operatorname{det}(t)=-1$. In this last case, setting $\varepsilon_{1}=1$ and $\varepsilon_{a / 2+1}=-1$ and all other $\varepsilon_{i}=0$, we get $\sum_{i} i m_{i}$ is divisible by a and $\sum_{i} m_{i}^{2}=\frac{n^{2}}{a}+2$.

Let E_{Γ} denote the set of i such that a_{i} is even. As in the statement of Theorem C, for each positive integer n, we define $\sigma_{\Gamma, n}:=-1$ if $\frac{n}{a_{i}} \in \mathbb{Z}$ for all $i \in E_{\Gamma}$, and $\sum_{i \in E_{\Gamma}} \frac{n}{a_{i}}$ is odd; otherwise $\sigma_{\Gamma, n}:=1$.

Proposition 5.6. Suppose $q \equiv 1\left(\bmod a_{i}\right)$ for all i. If $\left(t_{1}, \ldots, t_{r}\right)$ is an r-tuple of semisimple elements in $\mathrm{GL}_{n}(q)$ such that $t_{i}^{a_{i}}=1$ and $\prod_{i} \operatorname{det}\left(t_{i}\right)=1$, the minimum possible sum of the dimensions of the centralizers of the t_{i} in GL_{n} is

$$
1-\sigma_{\Gamma, n}+\sum_{i=1}^{r}\left(\frac{n^{2}}{a_{i}}+a_{i}\left\{\frac{n}{a_{i}}\right\}\left\{-\frac{n}{a_{i}}\right\}\right) .
$$

Proof. If there is at least one a_{i} which is even and such that $\frac{n}{a_{i}} \notin \mathbb{Z}$, then we can choose t_{i} to have either determinant 1 or -1 and centralizer dimension

$$
\begin{equation*}
\frac{n^{2}}{a_{i}}+a_{i}\left\{\frac{n}{a_{i}}\right\}\left\{-\frac{n}{a_{i}}\right\} . \tag{5.5}
\end{equation*}
$$

For $j \neq i$, we can choose t_{j} to have determinant in $\{ \pm 1\}$ and centralizer $\frac{n^{2}}{a_{j}}+a_{j}\left\{\frac{n}{a_{j}}\right\}\left\{-\frac{n}{a_{j}}\right\}$. Therefore, we can choose minimal centralizer dimension for all t_{i} while imposing the condition $\prod_{i} \operatorname{det}\left(t_{i}\right)=1$.

If $\frac{n}{a_{i}} \in \mathbb{Z}$ for all a_{i} even, and the set of i such that a_{i} is even and $\frac{n}{a_{i}}$ is odd has even cardinality, then we may choose t_{i} whose centralizer has dimension (5.5) for all i and such that $\operatorname{det}\left(t_{i}\right)=1$ except when a_{i} is even and $\frac{n}{a_{i}}$ is odd. In these cases, of which there are an odd number, $\operatorname{det}\left(t_{i}\right)=1$, so again $\prod_{i} \operatorname{det}\left(t_{i}\right)=1$.

What remains is the case $\sigma_{\Gamma, n}=-1$, and here if t_{i} has centralizer dimension (5.5) for all i, then the product $\prod_{i} \operatorname{det}\left(t_{i}\right)$ is -1 times a product of elements of odd order, so it cannot be 1 . On the other hand, if we choose one t_{i} with a_{i} even and $\frac{n}{a_{i}}$ odd, and choose it to have determinant 1 and centralizer dimension $\frac{n^{2}}{a_{i}}+2$, and all other t_{j} have minimal centralizer dimension and $\operatorname{det}\left(t_{j}\right)= \pm 1$, then the product $\prod_{i} \operatorname{det}\left(t_{i}\right)=1$.

We now prove Theorem C.

Proof. By Theorem B there exist Q and N such that if $q>Q$ is relatively prime to A and $n>N$, then

$$
\frac{1}{2}<\frac{q^{(1-2 g) n^{2}}\left|\operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n}(q)\right)\right|}{q J_{q, n}\left(a_{1}, \ldots, a_{r}\right)}<\frac{3}{2}
$$

For any fixed q and n, let $X_{q, n}$ denote the variety $\operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n}\right)$ over the field \mathbb{F}_{q}. Then, for all positive integers m,

$$
\frac{1}{2}<\frac{q^{(1-2 g) m n^{2}}\left|X_{q, n}\left(\mathbb{F}_{q^{m}}\right)\right|}{q^{m} J_{q^{m}, n}\left(a_{1}, \ldots, a_{r}\right)}<\frac{3}{2}
$$

By Proposition 5.6,

$$
\begin{aligned}
\operatorname{dim} X_{q, n} & =\underset{m}{\lim \sup _{\log }^{q^{m}}}\left|X_{q, n}\left(\mathbb{F}_{q^{m}}\right)\right| \\
& =1+(2 g-1) n^{2}+\underset{m}{\lim \sup _{\log }^{q^{m}}} J_{q^{m}, n}\left(a_{1}, \ldots, a_{r}\right) \\
& =1+(2 g-1) n^{2}+r n^{2}-1+\sigma_{\Gamma, n}-\sum_{i=1}^{r}\left(\frac{n^{2}}{a_{i}}+a_{i}\left\{\frac{n}{a_{i}}\right\}\left\{-\frac{n}{a_{i}}\right\}\right) \\
& =\sigma_{\Gamma, n}+(1-\chi(\Gamma)) n^{2}-\sum_{i=1}^{r} a_{i}\left\{\frac{n}{a_{i}}\right\}\left\{-\frac{n}{a_{i}}\right\} .
\end{aligned}
$$

The first claim of the theorem follows in the positive characteristic case.
For characteristic zero, we consider the scheme $\operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n, \mathbb{Z}}\right)$ over $\operatorname{Spec} \mathbb{Z}$ whose \mathbb{F}_{p} fiber is the n-dimensional representation variety of Γ over \mathbb{F}_{p}. By the constructibility of the set of dimensions of irreducible fiber components [10, Proposition 9.5.5], the dimension of the generic fiber must be the same as the common dimension of any infinite set of fibers over closed points.

Finally, for the second claim of the theorem, we observe that $\{t\}\{-t\} \geq-\frac{1}{4}$ for all real t, so for all i,

$$
a_{i}\left\{\frac{n}{a_{i}}\right\}\left\{-\frac{n}{a_{i}}\right\} \geq-\frac{a_{i}}{4} .
$$

We have $\sigma_{\Gamma, n}>-\frac{1}{2}$ unless there is at least one value of i for which a_{i} is even and $\frac{n}{a_{i}}$ is integral. For this value of $i, a_{i} \geq 2$, so

$$
\sigma_{\Gamma, n}+a_{i}\left\{\frac{n}{a_{i}}\right\}\left\{-\frac{n}{a_{i}}\right\} \geq-\frac{1}{2}-\frac{a_{i}}{4},
$$

which finishes the proof.

References

[1] R. Bezrukavnikov, M. Liebeck, A. Shalev, and Pham Huu Tiep: Character bounds for finite groups of Lie type. Acta Math. 221 (2018), no. 1, 1-57.
[2] C. Bonnafé: Sur les caractères des groupes réductifs finis à centre non connexe: applications aux groupes spéciaux linéaires et unitaires. Astérisque (2006), no. 306.
[3] J. Brundan, R. Dipper, and A. S. Kleshchev: Quantum linear groups and representations of $G L_{n}\left(\mathbb{F}_{q}\right)$. Memoirs Amer. Math. Soc. 149 (2001), No. 706.
[4] P. Deligne and G. Lusztig: Representations of reductive groups over finite fields. Ann. of Math. (2) 103 (1976), no. 1, 103-161.
[5] F. Digne and J. Michel: Representations of finite groups of Lie type. Second edition. London Math. Soc. Stud. Texts, 95. Cambridge University Press, Cambridge, 2020.
[6] R. Dipper and P. Fleischmann: Modular Harish-Chandra theory I. Math. Z. 211 (1992), 49-71.
[7] J. Fulman and R. M. Guralnick: Bounds on the number and sizes of conjugacy classes in finite Chevalley groups with applications to derangements, Trans. Amer. Math. Soc. 364 (2012), 3023-3070.
[8] E. Giannelli, A. S. Kleshchev, G. Navarro, and Pham Huu Tiep: Restriction of odd degree characters and natural correspondences. Int. Math. Res. Notices 2017, no. 20, 6089-6118.
[9] D. Gluck: Sharper character value estimates for groups of Lie type. J. Algebra 174 (1995), no. 1, 229-266.
[10] A. Grothendieck: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III. Inst. Hautes Études Sci. Publ. Math. No. 28 (1966), 255 pp.
[11] R. M. Guralnick, M. Larsen, and Pham Huu Tiep: Character levels and character bounds. Forum Math. Pi 8 (2020), e2, 81 pp.
[12] R. M. Guralnick, M. Larsen, and Pham Huu Tiep: Character levels and character bounds for finite classical groups. Invent. Math. 235 (2024), no. 1, 151-210.
[13] N. Kawanaka, Generalized Gelfand-Graev representations of exceptional simple algebraic groups over a finite field. I, Invent. Math. 84 (1986), 575-616.
[14] V. Landazuri, and G. Seitz: On the minimal degrees of projective representations of the finite Chevalley groups. J. Algebra 32 (1974), 418-443.
[15] M. Larsen, J. Taylor, and Pham Huu Tiep: Character bounds for regular semisimple elements and asymptotic results on Thompson's conjecture. Math. Z 303 (2023), no. 2, Paper No. 47, 45 pp.
[16] R. Lawther: Elements of specified order in simple algebraic groups. Trans. Amer. Math. Soc. 357 (2005), no. 1, 221-245.
[17] M. W. Liebeck and A. Shalev: Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks. J. Algebra 276 (2004), no. 2, 552-601.
[18] M. W. Liebeck and A. Shalev: Fuchsian groups, finite simple groups and representation varieties. Invent. Math. 159 (2005), no. 2, 317-367.
[19] M. W. Liebeck and A. Shalev: Character degrees and random walks in finite groups of Lie type. Proc. London Math. Soc. (3) 90 (2005), no. 1, 61-86.
[20] M. W. Liebeck, A. Shalev, and Pham Huu Tiep: Character ratios, representation varieties and random generation of finite groups of Lie type. Adv. Math. 374 (2020), 107386, 39 pp.
[21] G. Lusztig: Characters of reductive groups over a finite field. Ann. of Math. Stud., 107, Princeton University Press, Princeton, NJ, 1984.
[22] G. Navarro, Pham Huu Tiep, A. Turull: Brauer characters with cyclotomic field of values. J. Pure Appl. Algebra 212 (2008), no. 3, 628-635.
[23] G. Shimura: On modular forms of half integral weight. Ann. of Math. (2) 97 (1973), 440-481.
[24] J. Taylor, Generalised Gelfand-Graev representations in small characteristics, Nagoya Math. J. 224 (2016), 93-167.
[25] J. Taylor and Pham Huu Tiep: Lusztig induction, unipotent support, and character bounds. Trans. Amer. Math. Soc. 373 (2020), 8637-8776.
Email address: mjlarsen@indiana.edu
Department of Mathematics, Indiana University, Bloomington, IN 47405, U.S.A.
Email address: jay.taylor@manchester.ac.uk
Department of Mathematics, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.

Email address: pht19@math.rutgers.edu
Department of Mathematics, Rutgers University, Piscataway, NJ 08854, U.S.A.

[^0]: The first author was partially supported by the NSF grants DMS-2001349 and DMS-2401098. The third author gratefully acknowledges the support of the NSF (grant DMS-2200850) and the Joshua Barlaz Chair in Mathematics.

